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ABSTRACT. We propose and study a method to discretize linear second order elliptic equations
on a domain Ω using any two finite volume schemes, each scheme being applied on a different
region of Ω. We point out general properties of finite volume schemes which allow us to prove
the well-posedness and convergence of the method, and we provide numerical results, involving
two particular schemes, to show its efficiency.
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1. Introduction

Finite volume schemes are widely used to discretize diffusion problems; they have
several features, such as the conservation of various physical quantities, which makes
them popular in some engineering fields. The basic schemes (see [EYM 00]) are
easy to implement and cost-effective (in terms of memory and CPU time) but can
only be applied on grids which satisfy some “admissibility” conditions (linking the
geometry of the grid with the operator in the equation); other schemes (such as in
[AAV 98, DOM 05, DRO 06-2, LEP 05]) can be applied on very general grids, but
are much less cost-effective.

In several situations, the considered grids are “non-admissible” only in part of
the domain; in this case, it does not seem wise to use an expensive scheme on the
whole domain, but only in the non-admissible part of the grid, and to use a simpler
scheme where possible. The aim of this paper is to present a general framework to
achieve exactly this: to discretize an equation by applying two different finite volume
schemes in two different regions. The ideas we use are quite general, but for the sake



of legibility we present them using the following model of a second order elliptic
problem with Dirichlet boundary conditions:

−div(A∇u) = f in Ω, [1]

u = g on ∂Ω, [2]

where Ω is a bounded polygonal open subset of Rd and f ∈ L2(Ω). Since we will
only consider generic finite volume methods (see below), the precise assumptions
regarding the rest of the data is not important here (it only matters that, when taking
specific schemes, the data are compatible with those schemes).

Up until the numerical results presented in section 5, we intend to handle each
finite volume scheme as a black box: in order to build a general framework, we will
not consider the precise way each scheme is written, but rather the main features fi-
nite volume schemes usually possess (basic unknowns, convergence properties, etc.).
Section 2 is devoted to a general presentation of finite volume methods for elliptic
problems and their core unknowns and relations. In section 3, we present the cou-
pling of two schemes, i.e. a way to discretize [1]–[2] by applying two finite volume
schemes on two different subdomains, using no more information on these schemes
than the basic information from section 2. We are then interested in the proof that
such a coupling works; the studies of convergence of various finite volume methods
usually rely on the same techniques (a priori estimates, compactness properties of the
approximate solution, proof that its limit is a solution to the PDE): in section 4, we
show that if each scheme, independently of the other and of any coupling considera-
tion, enjoys such properties, then the scheme obtained by coupling both has a unique
solution which converges to the solution of the continuous equation. Hence the “black
box” idea mentioned above: we only use the convergence properties of each scheme,
not their precise expression, to ensure the convergence of the coupling... at least in
theory, but the numerical experiments provided in section 5 also show its practical
efficiency.

In order to retain enough space for the presentation of several numerical results,
the proofs of the theorems stated below are only sketched here; full proofs will be
included in a forthcoming paper.

2. Core elements of finite volume schemes for elliptic problems

Finite volume schemes for a second order boundary value problem such as [1]–[2]
are usually built along the following guidelines.

Discretization of Ω: a discretization D of the domain consists as a minimum of a
partition M of Ω in polygonal open sets K (the control volumes) and a set E of edges
σ. Denoting by EK the set of edges (1) contained in the boundary of K ∈ M, it is

1. Notice that these “edges” are not necessarily “true” edges of the control volumes: a true edge
of a control volume can sometimes be cut into several edges of the discretization.
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assumed that ∂K = ∪σ∈EK
σ. It is also required that each edge σ is either shared by

two different control volumes K and L (in which case σ is called an interior edge and
we sometimes write σK,L to indicate that K and L are the control volumes on either
side of σ) or is included in ∂Ω (in which case σ is called an exterior edge and we
sometimes write σK,∂ to indicate that K is the unique control volume containing σ in
its boundary). The set of interior and exterior edges are respectively denoted by Eint

and Eext.

Each method also demands special admissibility assumptions on the discretiza-
tion, and probably other elements of discretization (such as points inside the control
volumes, etc.); these precise assumptions and additional elements will not be useful
to us (we simply consider that, if a specific method has been chosen, this means that
the discretization is admissible with respect to this method).

Unknowns: the unknowns associated with the finite volume scheme are:

– approximate values (uK)K∈M of the solution in the control volumes,
– approximate values (uσ)σ∈Eext of the solution on the edges contained in ∂Ω,
– approximate values (FK,σ)K∈M , σ∈EK

of the fluxes
∫

σ
A∇u ·nK,σ (nK,σ is the

normal to σ outward K).

Notice that some schemes necessitate the introduction of more unknowns, which
we then call dummy unknowns; others can reduce the number of unknowns, express-
ing the fluxes by means of the approximate values in each control volume. These
specificities will be of no interest to us: we only require that the preceding unknowns
(uK , uσ, FK,σ) exist or can be reconstructed in the considered schemes, and that they
satisfy the following basic equations.

Basic relations: the basic physical laws that lead to [1]–[2] are:

∀σK,L ∈ Eint , FK,σ + FL,σ = 0 (conservativity of the fluxes), [3]

∀K ∈M , −
∑

σ∈EK

FK,σ = m(K)fK (balance of the fluxes), [4]

∀σ ∈ Eext , uσ = gσ (boundary conditions), [5]

where m(K) is the measure of the control volume K and fK and gσ are appropriate
approximate values of f and g on K and σ (the most common choices are the mean
values on K and σ, which we assume in the following).

There are additional equations (needed to obtain a square linear system), which
define each specific finite volume method. As for the discretization of Ω and the set of
unknowns, these additional elements will be of no use to us, as we intend to rely only
on global approximation properties of the schemes (see section 4).

From now on, all the schemes we consider are based on the preceding core ele-
ments and we use the following notations.
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Notations: ω being a polygonal open domain of Rd, a FV scheme for [1]–[2] on ω is
(S,D) where S is a finite volume method for [1]–[2] on ω (i.e. a way, given an admis-
sible discretization, to construct an approximation of the solution to [1]–[2] on ω) and
D = (M, E) is an admissible (with respect to this method) discretization of ω. What
we call a solution U to (S,D) is in fact the extraction of all non-dummy unknowns of a
complete solution to the scheme: U = ((uK)K∈M, (uσ)σ∈Eext , (FK,σ)K∈M , σ∈EK

).
We denote by u : Ω → R the piecewise constant function equal to uK on the control
volume K ∈ M and by t(U) : ∂ω → R the piecewise constant function equal to uσ

on the edge σ ∈ Eext. When U is equipped with an index or an exponent (say U [ or
Un), the same notation is transferred to u (which gives u[ or un), but not necessarily
to uK , uσ or FK,σ in order to keep the notations light (the situation makes it clear
when these scalar data correspond to a Un or a u[, for example).

3. How should two finite volume schemes be coupled?

We now consider the situation where Ω is cut into two connected polygonal do-
mains Ω[ and Ω], and we denote by Γ = ∂Ω[ ∩ Ω = ∂Ω] ∩ Ω = ∂Ω[ ∩ ∂Ω] their
interface. We assume that each region Ω[ and Ω] has been discretized in such a way
that these discretizations D[ = (M[, E[) and D] = (M], E]) are compatible on Γ:
each exterior edge of each discretization is either completely included in Γ or does
not intersect Γ, and each edge of E[

ext contained in Γ is also an edge of E]
ext (and

vice-versa); see Figure 1 (in which certain “geometrical” edges are in fact cut into two
edges of discretization).

Ω]

Γ

Ω[

Ω[

Ω]

Γ

Figure 1. Examples of Ω cut into Ω[ and Ω], with discretizations of each subdomain.

We want to approximate the solution to [1]–[2] using one finite volume method
S[ in Ω[, on the discretization D[, and another finite volume method S] in Ω], on the
discretization D]. Assuming that these discretizations are admissible with respect to
the corresponding methods, it is straightforward to write most of the equations of S[
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and S] in each subdomain, including the boundary conditions u = g on ∂Ω[ ∩ ∂Ω =
∂Ω[\Γ and ∂Ω] ∩ ∂Ω = ∂Ω]\Γ. The only equations of S[ and S] which we cannot
write are the ones concerning the boundary conditions on Γ, that is to say, for each
scheme, equations [5] for σ ⊂ Γ (notice that Γ is a piece of the boundaries of the
domains Ω[ and Ω], on which we use S[ and S]). Hence, to close the global linear
system, there lacks as many equations as twice the number of edges contained in Γ
(once this number for each scheme).

The equations we must add to those of S[ and S] already written are in fact quite
obvious: we do not want the approximate solution to have a jump across Γ (because
the continuous one does not), and the fluxes should remain conservative across this
interface. Denoting with a superscript [ and ] unknowns respectively corresponding
to S[ and S], the additional equations therefore are:

for all edge σ ⊂ Γ, u[
σ = u]

σ, [6]

for all edge σ ⊂ Γ, denoting by K ∈M[ and L ∈M]

the control volumes on each side of σ, F [
K,σ + F ]

L,σ = 0.
[7]

This gives the desired number of supplemental equations, and the linear system con-
sisting of the equations of S[ in Ω[, the equations of S] in Ω], [6] and [7] is therefore
square. The scheme thus obtained is denoted by S[–S]–[6]–[7].

4. What can ensure that such a coupling works?

In this section, we try and find properties that are usually satisfied by finite volume
schemes and that ensure, if separately verified by S[ and S], that the coupling S[–
S]–[6]–[7] has a unique approximate solution which converges, as the size of the
discretizations tend to 0, to the solution of [1]–[2].

4.1. Solvability

The existence of a solution to a finite volume scheme is often linked to a priori
estimates involving a so-called “discrete H1-norm” associated with the scheme.

Definition 1 (Property N) A FV scheme (S,D) for [1]–[2] on ω satisfies Property N
if, for any solution U = ((uK)K∈M, (uσ)σ∈Eext , (FK,σ)K∈M , σ∈EK

) to (S,D), the
quantity

|U |2S,D =
∑

σK,L∈Eint

FK,σ(uL − uK) +
∑

σK,∂∈Eext

FK,σ(uσ − uK) [8]

is indeed positive, and if all the unknowns of S are zero as soon as |U |S,D and one of
the (uσ)σ∈Eext are zero.
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Theorem 1 If (S[,D[) and (S],D]) both satisfy Property N, then the scheme S[–S]–
[6]–[7] has one and only one solution.

Sketch of proof of Theorem 1

For each scheme i ∈ {[, ]}, we multiply [4] by the corresponding unknown ui
K ,

sum on the control volumes K ∈Mi and use the conservativity [3] to gather the sums
by edges. Summing on i = [, ] and taking into account [5], [6] and [7], this leads to∑

i=[,]

∑
K∈Mi

m(K)fKui
K +

∑
i=[,]

∑
σK,∂ ∈ Ei

ext
σ⊂∂Ωi\Γ

F i
K,σgσ = |U [|2S[,D[ + |U ]|2S],D] . [9]

Thus, if the right-hand side (f, g) of the system vanishes, so does |U [|S[,D[ and
|U ]|S],D] . Since at least one of the two subdomains sees ∂Ω, where the boundary
condition g is zero, Property N implies that, in this subdomain, all the unknowns
vanish, which extends to the other subdomain through the equality of the boundary
unknowns on Γ. Hence, the linear square system S[–S]–[6]–[7] is solvable.

4.2. A priori estimates

To simplify the rest of the presentation, we assume from now on that g = 0 (which,
because of Γ, does not mean that the schemes S[ and S] are only written with homo-
geneous Dirichlet conditions).

Quantity [8] used to prove the solvability of the scheme is also well suited to
obtaining estimates: from [9] we notice that

|U [|2S[,D[ + |U ]|2S],D] ≤ ||f ||L2(Ω)

(
||u[||L2(Ω[) + ||u]||L2(Ω])

)
. [10]

If both subdomains Ω[ and Ω] see enough of ∂Ω (as in the first example in Figure
1), then both schemes S[ and S] make use of homogeneous Dirichlet conditions on a
large part of the boundary and we can expect the existence of Poincaré’s inequalities,
i.e. that the L2 norms of u[ and u] are controlled by |U [|S[,D[ and |U ]|S],D] : this is
the situation depicted by Property P0 below (in which Λ is intended to play the role
of ∂Ω[\Γ or ∂Ω]\Γ). However it can happen that one of the domains does not see
(enough of) the boundary of ∂Ω, in which case the second sees all (or nearly all) of it:
that is the case in the second example of Figure 1. Assume that it happens to Ω]; in this
situation, the best we can hope for is to estimate ||u]||L2(Ω]) by means of |U ]|S],D]

and ||t(U ])||L2(∂Ω]) (Property P below); to bound t(U ]), which is zero outside Γ,
we then use [6], which states that t(U ]) = t(U [) on Γ, and the fact that t(U [) can
probably be controlled by |U [|S[,D[ since Ω[ sees ∂Ω (cf. Property T below).

Definition 2 (Properties P0 and P) Let (S,Dn)n≥1 be FV schemes for [1]–[2] on ω
and let Λ ⊂ ∂ω. Then (S, (Dn)n≥1,Λ) satisfies Property P0 or Property P if there
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exists C > 0 such that, for all n ≥ 1 and any solution U of (S,Dn) satisfying uσ = 0
whenever σ ⊂ Λ, the corresponding inequality holds:

||u||L2(ω) ≤ C|U |S,D (for Property P0),

||u||L2(ω) ≤ C
(
||t(U)||L2(∂ω) + |U |S,D

)
(for Property P).

Definition 3 (Property T) Let (S,Dn)n≥1 be FV schemes for [1]–[2] on ω and let
Λ ⊂ ∂ω. Then (S, (Dn)n≥1,Λ) satisfies Property T if there exists C > 0 such that,
for all n ≥ 1 and any solution U of (S,Dn) satisfying uσ = 0 whenever σ ⊂ Λ, we
have ||t(U)||L2(∂ω) ≤ C

(
||u||L2(ω) + |U |S,D

)
.

REMARK. — In general, Properties P and T are verified even for functions which do
not vanish on Λ.

The a priori estimates we can then obtain are described in the following theorem.

Theorem 2 Let (D[
n)n≥1 and (D]

n)n≥1 be discretizations of Ω[ and Ω] such
that, for all n ≥ 1, (S[,D[

n) and (S],D]
n) satisfy Property N. Assume that

(S[, (D[
n)n≥1, ∂Ω[\Γ) satisfies Property P0 and that either one of the following

holds:

1) (S], (D]
n)n≥1, ∂Ω]\Γ) satisfies Property P0, or

2) (S], (D]
n)n≥1, ∂Ω]\Γ) satisfies Property P and (S[, (D[

n)n≥1, ∂Ω[\Γ) satisfies
Property T.

Then there exists C1 such that, for all n ≥ 1, if (U [
n, U ]

n) is the solution to S[–S]–
[6]–[7] on (D[

n,D]
n),

||u[
n||L2(Ω[) + |U [

n|S[,D[
n

+ ||u]
n||L2(Ω]) + |U ]

n|S],D]
n
≤ C1.

Sketch of proof of Theorem 2

We have ||u[
n||L2(Ω[) ≤ C2|U [

n|S[,D[
n

. In either case 1) or 2), relying on the general
reasoning described above, we can see that ||u]

n||L2(Ω]) ≤ C3(|U [|S[,D[
n
+|U ]

n|S],D]
n
).

Using [10], we then deduce the estimate on U [
n and U ]

n which, in turn, give the bound
on u[

n and u]
n.

4.3. Convergence

The usual proof of convergence in finite volume methods is achieved in two steps:
first, it is shown that the a priori estimates involving the | · |S,D norm give some com-
pactness properties on the approximate solutions, which makes it possible to extract a
subsequence converging toward a function of H1 (this is translated in Property C be-
low); then, it is shown that the subsequent limit is the weak solution to the PDE (this is
the purpose of Property L below); in particular, this proves that there can only be one
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limit for subsequences of approximate solutions, and hence that the whole sequence
converges.

Definition 4 (Property C) Let (S,Dn)n≥1 be FV schemes for [1]–[2] on ω such that
the size of Dn (2) tends to 0 as n →∞, and let Λ ⊂ ∂ω. We say that (S, (Dn)n≥1,Λ)
satisfies Property C if, for all solution Un of (S,Dn) such that uσ = 0 whenever
σ ⊂ Λ and (||un||L2(ω) + |Un|S,Dn)n≥1 is bounded, up to a subsequence, (un)n≥1

converges weakly-∗ in L2(ω) to some ū ∈ H1(ω) and t(Un) → γ(ū) weakly-∗ in
L2(∂ω) (where γ is the usual trace operator on H1(ω)).

REMARK. — All finite volume methods achieve a much better convergence than this
weak-∗ convergence: this convergence holds in general in L2(ω), or even better.

Definition 5 (Property L) Let (S,Dn)n≥1 be FV schemes for [1]–[2] on ω such that
the size of Dn tends to 0 as n → ∞, and let Γ ⊂ ∂ω. Let In : C∞(Rd) →
L2(Γ) be a projector on the piecewise constant functions adapted to En,ext: In(ϕ) =
(In(ϕ)σ)σ∈En,ext , σ⊂Γ. We say that (S, (Dn)n≥1,Γ, (In)n≥1) satisfies Property L if,
for any Un solution of (S,Dn) such that (|Un|S,Dn)n≥1 is bounded and (un)n≥1 con-
verges weakly-∗ in L2(ω) to some ū ∈ H1(ω), for all ϕ ∈ C∞(Rd) the support
of which does not intersect ∂ω\Γ, there exists piecewise constant functions ϕMn =
(ϕK)K∈Mn which converge to ϕ weakly-∗ in L2(ω) as n → ∞, such that ϕK = 0
whenever supp(ϕ) ∩K = ∅ and, as n →∞,∑

σK,L∈En,int

FK,σ(ϕL−ϕK)+
∑

σK,∂ ∈ En,ext
σ⊂Γ

FK,σ(In(ϕ)σ−ϕK) →
∫

ω

A∇ū ·∇ϕ. [11]

REMARK. — The terms ϕL − ϕK and In(ϕ)σ − ϕK approximate the fluxes of ∇ϕ
and, assuming that A = Id to simplify the reasoning, finite volume schemes are usual-
ly built so that a discrete integration by parts in the left-hand side of [11] leads to
−
∫

ω
un∆ϕ +

∫
∂ω

t(Un)∇ϕ · n + αn with limn→∞ αn = 0 (3); passing to the limit
thanks to Property C, this gives −

∫
ω

ū∆ϕ +
∫

∂ω
γ(ū)∇ϕ · n =

∫
ω
∇ū · ∇ϕ and

Property L is thus quite natural.

Let us now state the convergence result concerning S[–S]–[6]–[7].

Theorem 3 Assume the assumptions of Theorem 2 and that (S[, (D[
n)n≥1, ∂Ω[\Γ)

and (S], (D]
n)n≥1, ∂Ω]\Γ) satisfy Property C. We also assume that there exists pro-

jectors In : C∞(Rd) → L2(Γ) on the piecewise constant functions adapted to E[
n,ext

(4) such that (S[, (D[
n)n≥1,Γ, (In)n≥1) and (S], (D]

n)n≥1,Γ, (In)n≥1) satisfy Prop-
erty L. Let (U [

n, U ]
n) be the solution to S[–S]–[6]–[7] and let un be equal to u[

n on Ω[

2. That is to say the maximum of the diameters of the control volumes of Dn.
3. Or sometimes even directly

R
ω
(∇u)n · ∇ϕ + αn, if an approximate value (∇u)n of the

gradient of the solution is provided by the scheme.
4. And thus also to E]

n,ext.
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and to u]
n on Ω]. Then (un)n≥1 converges to the weak solution of [1]–[2] weakly-∗

in L2(Ω), and in any Lebesgue space in which the convergence in Property C holds
for S[ and S].

Sketch of proof of Theorem 3

From Theorem 2 and Property C we have, up to a subsequence, u[
n → ū[ and

u]
n → ū] weakly-∗ in L2(Ω[) and L2(Ω]), where ū[ ∈ H1(Ω[) and ū] ∈ H1(Ω]).

Since the traces t(U [
n) and t(U ]

n) weakly-∗ converge to the traces of ū[ and ū], the ho-
mogeneous Dirichlet boundary conditions and equality [6] of these traces on Γ ensure
that the function ū equal to ū[ on Ω[ and to ū] on Ω] belongs to H1

0 (Ω).

It remains to prove that ū is the weak solution to [1]–[2] (with g = 0). Let ϕ ∈
C∞c (Ω); for each i ∈ {[, ]}, we multiply equation [4] of the scheme Si by ϕi

K (from
the piecewise approximation ϕMi

n
of ϕ given by Property L of Si), sum on K and

use the conservativity [3] to gather by edges, eliminating from this sum the edges
on ∂Ω since ϕ vanishes near this boundary. From [7] we have, for all σK,L ⊂ Γ,
F [

K,σIn(ϕ)σ +F ]
L,σIn(ϕ)σ = 0; this allows us to introduce In(ϕ)σ into the preceding

results so that, when we sum them on i = [, ], we find∑
i=[,]

( ∑
σK,L∈Ei

n,int

F i
K,σ(ϕi

L − ϕi
K) +

∑
σK,∂ ∈ Ei

n,ext
σ⊂Γ

F i
K,σ(In(ϕ)σ − ϕi

K)
)

=
∑
i=[,]

∫
Ωi

f ϕMi
n
.

Property L of both schemes then shows, passing to the limit n → +∞, that ū satisfies
the weak formulation of [1]–[2].

REMARK. — As the proof shows, it is important that the discretization of ϕ on Γ (via
In(ϕ)) is the same for both schemes, which may require additional compatibility as-
sumptions on D[ and D] on Γ.

5. Implementation and numerical results

5.1. A word on practical implementation

Although the objectives of the presentation above are not the same as those of
domain decomposition techniques, there are of course formal similarities between
the two theories. In particular, we can try and solve S[–S]–[6]–[7] via iterative me-
thods, using only pre-existing separate codes for S[ and S]. Let F(Γ) be the set
of functions on Γ which are constant on each edge σ ⊂ Γ and, for i = [, ], define
the Dirichlet-to-Neumann operator T i : F(Γ) → F(Γ) in domain Ωi: T i(X) =
( 1
m(σ)F

i
K,σ)σ⊂Γ, where U i = ((uK)K∈Mi , (uσ)σ∈Ei

ext
, (FK,σ)K∈Mi , σ∈EK

) is the
solution to (Si,Di) with f = 0 and boundary condition equal to 0 on ∂Ωi\Γ and to
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X on Γ. In view of [6] and [7], computing the solution to the coupling of S[ and
S] comes down to solving an equation T [(X) + T ](X) = H (where H takes into
account the right-hand side f ). Using the L2 scalar product on F(Γ), it is easy to see
that

〈T i(X), Y 〉 =
∑

σK,L∈Ei
int

FK,σ(vL − vK) +
∑

σ∈Ei
ext

FK,σ(vσ − vK) [12]

where ((vK)K∈Mi , (vσ)σ∈Ei
ext

, (GK,σ)K∈Mi , σ∈EK
) is the solution to (Si,Di) cor-

responding to boundary condition Y on Γ (indeed, since (FK,σ)σ∈EK
satisfies [4]

with f = 0, the terms involving vK and vL in [12] vanish). For most schemes, the
right-hand side of [12] is a discrete equivalent of

∫
ω

A∇u · ∇v and, therefore, if A is
symmetric we can expect T i to also be symmetric. Moreover, 〈T i(X), X〉 = |U |2Si,Di

is non-negative and, for at least one i = [, ] (such that Si satisfies Property P0), say
i = [, in virtue of Property T, we have 〈T i(X), X〉 ≥ C||X||2. Operators T [ and
T ] both being continuous (the dimension of F(Γ) is finite), we can therefore invoke
[QUA 99, Theorem 4.2.2] to ensure that, for some θ > 0 small enough, the iterative
method Xk+1 = Xk + θ(T [)−1(H − T [(Xk) − T ](Xk)) converges to the solution
X of T [(X) + T ](X) = H .

This iterative procedure can be implemented by separately solving S[ and S] (al-
ternatively with Dirichlet and Neumann boundary conditions for S[), and is therefore
agreeable if codes for each scheme are already available. However, fixing a θ ensur-
ing the convergence of the iterations and estimating the corresponding rate demands
to delve into the specificities of each scheme (to compute coercivity and continuity
constants of T [ and T ]). In the following numerical tests, we therefore preferred to
implement a specific code to directly solve S[–S]–[6]–[7].

5.2. Framework of the numerical tests

We present one example of the coupling of two finite volume schemes: the stan-
dard 2-point finite volume scheme from [EYM 00] and the mixed finite volume scheme
from [DRO 06-2]. The standard 2-point finite volume scheme (denoted by “FV2” be-
low) has only one unknown uK per control volume K, but requires the grid to have
strong orthogonal properties. The mixed finite volume scheme (denoted by “MFV”
below) is written with many more unknowns (the basic unknowns from section 2 and
approximate values of the gradient in each control volume); fortunately, a hybridiza-
tion method makes it possible to write it using only one unknown per edge (approxi-
mate values of the solution on the edges), which is nevertheless more expensive than
the 2-point finite volume scheme. On the other hand, it can be used on nearly any grid
(in dimension 2 or more), and for a wide class of equations (from anisotropic hetero-
geneous linear ones [DRO 06-2], to fully non-linear equations of the p-laplacian type
[DRO 06-1], to miscible flows in porous media [CHA 07], to Navier-Stokes equations
[DRO 07]). In a forthcoming work, we will prove that both FV2 and MFV satisfy all
the properties N, P0, P, T, C and L stated in section 4 (with, of course, an adapted
choice of Λ for Property P0).
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Each grid admissible for the coupling of the two preceding schemes is also ad-
missible for the pure MFV. As explained in the introduction, the aim of the coupling
method is to reduce the cost of the scheme by applying, where possible, the simpler
2-point finite volume scheme instead of the mixed finite volume scheme. In the case
of the coupling of FV2 and MFV, the method is therefore efficient if it leads to a
significant reduction in the size of the system (with respect to the pure MFV), while
preserving the error between the approximate and exact solutions, and the qualitative
properties of the approximate solution.

We denote, for a given test, the number of control volumes by NCV, the number
of unknowns by UNK, the L2 relative error by e2 and the L∞ relative error by e∞
(relative errors are the errors divided by the norm of the solution). The linear systems
are solved using direct Gauss eliminations. In a first batch of tests, we concentrate on
the behaviour of the coupling method with respect to various griddings of the domain,
and not on the influence of anisotropy or heterogeneity phenomenons. In a second
series of tests, we study the ability of the method to handle strong heterogeneities in
the diffusion tensor, which in particular lead to an irregular right-hand side.

5.3. Effect of various griddings of the domain

We take here Ω =]0, 1[2 and A = Id. The source term f is chosen so that the exact
solution is ū(x, y) = x(1− x)y(1− y).

The first test we consider involves cartesian grids. On such grids, we can apply
either FV2, MFV or the coupling of both schemes (using for example FV2 on Ω[ =
{x > 0.5} and MFV on Ω] = {x < 0.5}). We compare those three choices in Table
1. Of course, for such a grid, it is unwise to use a complex scheme such as the MFV
or even the coupling of MFV and FV2; we only present those results to show that they
all lead to similar errors (and a convergence of order roughly 2 with respect to the size
of the mesh).

The second test is based on a family of grids constructed from the first example of
Figure 1, by uniform subdivisions of each control volume. The subdomain Ω] = {x <
0.5} is not admissible with respect to FV2, so we use FVM on it; on the contrary, the
subdomain Ω[ = {x > 0.5} is adapted to FV2 and, in the coupling, we therefore
use this simpler scheme on this domain. The results, given in Table 2, clearly show
no degradation (and even an improvement) of the rates of convergence (roughly 2)
between MFV and the coupling MFV-FV2, while in the meantime the coupling allows
for an economy of nearly 25% on the number of unknowns. Moreover, as we can see
in Figure 2 (which shows the grid and the solution to the coupling MFV-FV2 in the
NCV=1600 case), the exchange of information between MFV and FV2 at the interface
Γ = {x = 0.5} provokes no perceptible perturbation of the approximate solution.

In all the preceding tests, both subdomains Ω[ and Ω] have a common boundary
with the whole domain Ω (and hence both schemes applied on these subdomains sat-
isfy Property P0); let us now consider a case where Ω] is completely inside Ω, and
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FV2
NCV UNK e2 e∞
6400 6400 2.29E-4 1.54E-4

10000 10000 1.46E-4 9.93E-5
22500 22500 6.52E-5 4.42E-5
40000 40000 3.67E-5 2.49E-5

MFV Coupling MFV-FV2
NCV UNK e2 e∞ UNK e2 e∞
6400 12640 2.29E-4 1.55E-4 9560 2.21E-4 1.55E-4
10000 19800 1.47E-4 9.93E-5 14950 1.41E-4 9.95E-5
22500 44700 6.47E-5 4.42E-5 33675 6.27E-5 4.42E-5
40000 79600 3.68E-5 2.49E-5 59900 3.56E-5 2.68E-5

Table 1. Comparison between FV2, MFV and the coupling of both, on cartesian grids.

MFV Coupling MFV-FV2
NCV UNK e2 e∞ UNK e2 e∞
10000 19800 2.97E-4 6.92E-4 14950 2.80E-4 6.93E-4
22500 44700 1.32E-4 3.22E-4 33675 1.24E-4 3.22E-4
40000 79600 7.39E-5 1.85E-4 59900 7.03E-5 1.85E-4

Table 2. Comparison between MFV and the coupling MFV-FV2, on grids constructed
from the pattern in Figure 2.

thus the scheme applied on this subdomain satisfies only Property P. The grids we use
are constructed by uniform subdivision of the second example in Figure 1 and, obvi-
ously, we use MFV on Ω] (not admissible for FV2) and FV2 on Ω[. The results are
presented in Table 3, and one grid and solution are drawn in Figure 3. As before, the
pure MFV and the coupling MFV-FV2 lead to errors of similar magnitude, and the
coupling provokes no numerical glitch around the interface Γ between the two subdo-
mains. The gain on the number of unknowns is even greater here (more than 33%).

MFV Coupling MFV-FV2
NCV UNK e2 e∞ UNK e2 e∞
10000 19800 2.75E-4 3.38E-4 12600 2.92E-4 3.37E-4
21904 43512 1.25E-4 1.54E-4 29032 1.26E-4 1.49E-4
40000 79600 6.98E-5 8.63E-5 50200 7.31E-5 8.99E-5

Table 3. Comparison between MFV and the coupling MFV-FV2, on grids constructed
from the pattern in Figure 3.
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Figure 2. Grid (1600 control volumes) and solution (white=max, black=min): MFV
in {x < 0.5} and FV2 in {x > 0.5}.

Figure 3. Grid (1600 control volumes) and solution (white=max, black=min): MFV
in ]0.4, 0.8[2 and FV2 elsewhere.

In the last numerical test, we consider grids made of triangles instead of quad-
rangles; the general pattern is presented in Figure 4. The triangle formed by (0, 0),
(0.5, 0.7) and (1, 0) is discretized by an admissible FV2 grid (all triangular control
volumes inside have acute angles), whereas we must use MFV on the rest of the do-
main. The results, presented in Table 4 and Figure 4, once again show similar errors
for MFV and MFV-FV2 (less than 5% of difference on the relative errors), but the gain
on the number of unknowns is much less significant than in the case of quadrangular
meshes (around 8%).
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MFV Coupling MFV-FV2
NCV UNK e2 e∞ UNK e2 e∞
10000 14900 5.76E-4 1.15E-3 13725 6.04E-4 1.15E-3
22500 33600 2.56E-4 5.12E-4 30900 2.68E-4 5.12E-4
40000 59800 1.44E-4 2.88E-4 54950 1.51E-4 2.88E-4

Table 4. Comparison between MFV and the coupling MFV-FV2, on grids constructed
from the pattern in Figure 4.

Figure 4. Grid (1600 control volumes) and solution (white=max, black=min): FV2 in
the triangle ((0, 0), (0.5, 0.7), (1, 0)) and MFV elsewhere.

5.4. Strong heterogeneity and irregular right-hand side

We still take Ω =]0, 1[2, but we now consider a heterogeneous discontinuous
(though quite simple) diffusion tensor: A(x, y) = klId if x ≤ 0.5 and A(x, y) = krId
if x > 0.5, with kl and kr various positive constants. Since we are here interested in
the effects of the discontinuity of the diffusion, we only consider a regular solution:
ū(x, y) = x2 (the boundary conditions are therefore no longer homogeneous). No-
tice that, in this case, the right-hand side f = −div(A∇ū) is not in L2(Ω) but only in
(H1(Ω))′: in fact, it is a measure with a singular part along the interface {x = 0.5}; its
discretization

∫
K

f is therefore not a real issue, except that it is necessary to choose, if
{x = 0.5} corresponds to edges of the grid, to which control volume (right or left) the
singular part should be given (it can also be split between the two control volumes).
We study here the impact of this choice.

We consider only two families of grids: cartesian grids and the family obtained
by subdivisions of the grid in Figure 2. In both cases, we apply MFV on the domain
{x ≤ 0.5} and FV2 on the domain {x > 0.5}, giving the singular part of the right-
hand side to the control volumes in one domain or the other. The effect of the coupling
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with respect to the reduction of the number of unknowns on these grids was studied
above, so we only present the error results.

The results for the relative L2 errors on cartesian grids are presented in Tables 5
(when the singular part of the right-hand side is given to the left domain, on which we
apply MFV) and 6 (when the singular part of the right-hand side is given to the right
domain, on which we apply FV2).

Ratio of the diffusions kr

kl

NCV 1E-4 1E-2 0 1E2 1E4
10000 3.47E-3 3.63E-3 4.32E-5 0.35 35.72
22500 2.23E-3 2.42E-3 1.92E-5 0.24 24.02
40000 1.62E-3 1.81E-3 1.07E-5 0.18 18.18

Table 5. Relative L2 errors, with respect to the ratio of diffusions, for the coupling
MFV-FV2 on cartesian grids; singular part of f given to the left (MFV) domain.

Ratio of the diffusions kr

kl

NCV 1E-4 1E-2 0 1E2 1E4
10000 36.90 0.36 4.32E-5 3.66E-3 3.73E-3
22500 24.60 0.24 1.92E-5 2.43E-3 2.48E-3
40000 18.46 0.18 1.07E-5 1.82E-3 1.85E-3

Table 6. Relative L2 errors, with respect to the ratio of diffusions, for the coupling
MFV-FV2 on cartesian grids; singular part of f given to the right (FV) domain.

Obviously, relative errors of order 0.2 or even 36 mean that the approximate so-
lution has very little in common with the exact solution! However, we present these
results because they allow for us to garner an interesting constatation.

We first notice that, in all the cases presented in Tables 5 and 6, even in the cases
where the error is unacceptably large, the order of convergence is always 1 (except, of
course, when there is no discontinuity of the diffusion tensor). This degradation, with
respect to the order 2 noticed in the previous numerical tests, can be explained by the
fact that the right-hand side f is singular here: it is only in (H1(Ω))′, not in L2(Ω);
the loss of one order of convergence is therefore compatible with the theoretical study
and numerical observations in [DRO 03]. The next thing we notice, and probably the
most important thing, is that the “constant” of the convergence (i.e. the C such that
the error is bounded by C times the size of the mesh) strongly depend on the way
we distribute the singular part of f ; if this singular part is given to the domain with
strongest diffusion, C does not really vary with the ratio of the diffusions, and the
results are therefore good even for strong diffusion ratios; on the other hand, if we put
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the singular part of f in the domain with weakest diffusion (5), C varies linearly with
respect to the diffusion ratio: hence, for “reasonable” sizes of meshes and large diffu-
sion ratios, although the order of convergence is still 1, we obtain very bad L2 errors.
As the tables show, these results depend very little on the choice of the scheme (FV2
or MFV) used to discretize each domain, and in fact we noticed the same behaviour
when applying only MFV or FV2 on the whole domain Ω.

We ran the same tests on grids obtained by subdivisions of that in Figure 2 (the
results are presented in Tables 7 and 8 and in Figure 5); the order of convergence in
this case is slightly less than 1, but the behaviour of the constant C is the same as for
cartesian grids.

The general conclusion of these tests with highly heterogeneous diffusion is quite
clear: the singular part of the right-hand side should always be given to the domain
with the strongest diffusion. This should perhaps be linked to the usual handling of
gravity forces in equations of the kind −div(K(∇p−ρg∇z)) = f ; when discretizing
these equations, instead of considering div(K(ρg∇z)) as a right-hand side to be inte-
grated on the control volumes, this term is in general discretized by applying a finite
volume scheme on z, which comes down to replacing

∫
K

div(K(ρg∇z)) by the flux
balance on K associated with this scheme. If a 2-point finite volume scheme is used,
it is known by experience that, in the case of strong heterogeneity, the transmissivity
coefficient on an edge should be calculated using a harmonic mean of the diffusions
in the control volumes on each side; in this case, if σK,L is an edge across which the
diffusion tensor has a strong jump, and if K is in the region of strong diffusion and
L in the region of weak diffusion, then all the transmissivities on the edges of L are
small (of the order of the diffusion in L), whereas all the transmissivities on the edges
of K except one, corresponding to σ, are large (of the order of the diffusion in K).
Therefore, the right-hand side coming from the discretization of div(K(ρg∇z)) is
small on L and large on K and, although using a different means, this method comes
down to handling the diffusion jump exactly as we advise above: put the singular part
coming from this jump in the control volume where the diffusion is larger.

Ratio of the diffusions kr

kl

NCV 1E-4 1E-2 0 1E2 1E4
10000 4.40E-3 4.32E-3 3.38E-5 0.16 16.58
22500 2.96E-3 2.90E-3 1.50E-5 0.11 11.08
40000 2.23E-3 2.19E-3 8.46E-6 8.26E-2 8.32

Table 7. Relative L2 errors, with respect to the ratio of diffusions, for the coupling
MFV-FV2 on grids constructed from the grid in Figure 2; singular part of f given to
the left (MFV) domain.

5. This is also the case if we split the singular part of f between the two domains.
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Ratio of the diffusions kr

kl

NCV 1E-4 1E-2 0 1E2 1E4
10000 36.90 0.36 3.38E-5 3.64E-3 3.71E-3
22500 24.60 0.24 1.50E-5 2.42E-3 2.47E-3
40000 18.46 0.18 8.46E-6 1.81E-3 1.85E-3

Table 8. Relative L2 errors, with respect to the ratio of diffusions, for the coupling
MFV-FV2 on grids constructed from the grid in Figure 2; singular part of f given to
the right (FV) domain.

Figure 5. Approximate solution in the case of discontinuous diffusion; exact solution
ū(x, y) = x2; grid of Figure 2, singular part of the right-hand side given to the left
(MFV) domain; ratios of diffusion kr

kl
equal to 10−2 (left) or 102 (right).
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