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Fractal Conservation Laws: Global Smooth
Solutions and Vanishing Regularization

Jérôme Droniou

Abstract. We consider the parabolic regularization of a scalar conservation
law in which the Laplacian operator has been replaced by a fractional power
of itself. Using a splitting method, we prove the existence of a solution to
the problem and, thanks to the Banach fixed point theorem, its uniqueness
and regularity. We also show that, as the regularization vanishes, the solu-
tion converge to the entropy solution of the scalar conservation law. We only
present here the outlines of the proofs; we refer the reader to [4] and [5] for
the details.
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1. Introduction

1.1. The equation and its motivations

The scalar conservation law{
∂tu(t, x) + div(f(u))(t, x) = 0 t > 0 , x ∈ R

N ,
u(0, x) = u0(x) x ∈ R

N ,
(1)

where f ∈ C∞(R; RN ) and u0 ∈ L∞(RN ), is a well-known equation. S.N. Krushkov
introduced in [6] a notion of solution for which existence and uniqueness holds
(the entropy solution). A way to prove the existence of such entropy solutions is
to consider the parabolic regularization of (1):{

∂tu
ε(t, x) + div(f(uε))(t, x) − ε∆uε(t, x) = 0 t > 0 , x ∈ R

N ,
uε(0, x) = u0(x) x ∈ R

N (2)

(for which existence, uniqueness and regularity of solutions is classical), to establish
so-called entropy inequalities (see Subsection 1.2), and to pass to the limit ε → 0.
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We are interested here in the case where we replace −∆ in the parabolic
regularization (2) by a fractional power (−∆)λ/2 of the Laplacian; precisely, we
consider{

∂tu(t, x) + div(f(u))(t, x) + g[u(t, ·)](x) = 0 t > 0 , x ∈ R
N ,

u(0, x) = u0(x) x ∈ R
N ,

(3)

where the operator g is defined through Fourier transform by

F(g[v])(ξ) = |ξ|λF(v)(ξ) with λ ∈]1, 2]. (4)

The motivation for the study of this problem comes from a question of P.
Clavin; he shows in [2] that, in some cases of gas detonation, the wave front satisfies
an equation which is close to (3) but with λ = 1; numerical tests indicate that
shocks can occur in this case. The question was: if λ > 1, do we have for (3)
the same regularization effect as for (2)? Curiously enough, the regularity of the
solutions to (3) is quite easy to obtain; their global existence, on the other hand,
is much harder (see Subsection 1.2). Some other motivations for (3) appear in [9].

1.2. Main difficulty

Some partial existence results for (3) can be found in [1], but they are either limited
to the case N = 1 and f(u) = u2 (and with quite regular initial data), or to results
of local existence in time.

The main problem when considering (3) is the lack of a priori estimates
(which would allow to pass from local existence to global existence). If we consider
this equation as a regularization of (1), a natural space for the solutions is L∞.
Let us briefly recall how L∞ estimates are obtained on the solutions to (2): if η is
a convex function and φ′ = η′f ′, multiplying (2) by η′(uε) and taking into account
(thanks to the convexity of η)

∆(η(uε)) = η′′(uε)|∇uε|2 + η′(uε)∆uε ≥ η′(uε)∆uε

leads to
∂tη(uε)(t, x) + div(φ(uε))(t, x) − ε∆(η(uε))(t, x) ≤ 0. (5)

Then, taking η ≡ 0 on [−||u0||∞, ||u0||∞] and η > 0 outside [−||u0||∞, ||u0||∞], the
integration of (5) gives ||uε(t)||∞ ≤ ||u0||∞ for all t > 0.

Such a manipulation cannot be made if ∆ is replaced by g. Thus, to obtain
L∞ bound on the solution to (3), we use a totally different method.

2. Existence of a global solution

The semi-group generated by g is quite easy to understand: passing to Fourier
transform, we see that the solution to ∂tv + g[v] = 0 with initial datum v(0) = v0

is given by v(t, x) = K(t, ·) ∗ v0(x), where the kernel K is defined by

K(t, x) = F−1(ξ → e−t|ξ|λ).
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A result of [8] states that K is nonnegative, so that ||K(t)||L1(RN ) = F(K)(0) = 1.
As a consequence, we see that

||v(t)||L∞(RN ) ≤ ||v0||L∞(RN ) , ||v(t)||L1(RN ) ≤ ||v0||L1(RN ) ,

|v(t)|BV (RN ) ≤ |v0|BV (RN ).

Hence, g “behaves well” (any interesting norm is preserved by g).
It is well known that the same holds for ∂tv + div(f(v)) = 0: if v evolves ac-

cording to this scalar conservation law, its L∞, L1 and BV norms do not increase.

Hence, since each operator ∂t + g and ∂t + div(f(·)) behaves well, we can let
them evolve on separate time intervals and, afterwards, try to mix them together
in order to get ∂t + div(f(·)) + g. This idea is well known in numerical analysis,
where it is called “splitting”, but to our knowledge it has never been used before
in order to prove the existence of a solution to a continuous problem.

We take u0 ∈ L1(RN ) ∩ L∞(RN ) ∩ BV (RN ) and, for δ > 0, we define a
function U δ : [0,∞[×R

N → R by (we omit the space variable):

• On [0, δ[, U δ is the solution to ∂tU
δ +2g[U δ] = 0 with initial datum U δ(0) =

u0.
• On [δ, 2δ[, U δ is the solution to ∂tU

δ + 2 div(f(U δ)) = 0 with initial datum
U δ(δ) obtained in the first step.

• On [2δ, 3δ[, U δ is the solution to ∂tU
δ +2g[U δ] = 0 with initial datum U δ(2δ)

given by the preceding step.
• etc. . .

That is to say, on half of the time – but in a set spread throughout [0,∞[ – U δ

evolves according to ∂t + 2g = 0 and, on the other half, it evolves according to
∂t + 2 div(f(·)) = 0; the factors “2” come from the fact that each of this operator
only appears on half of the time: if we want to recover ∂t + div(f(·)) + g = 0 on
the whole of [0,∞[ at the end, we must give a double weight to the operators on
each half of [0,∞[.

Thanks to the preceding considerations on both operators, we see that the
L∞, L1 and BV norms of U δ(t) are bounded by the corresponding norms of
u0. In particular, by Helly’s Theorem, {U δ(t) ; δ > 0} is relatively compact in
L1

loc(R
N ) for each t ≥ 0. It is possible to prove that {U δ ; δ > 0} is equicontinuous

[0,∞[→ L1(RN ) and thus, up to a subsequence and as δ → 0, that U δ converges in
C([0, T ]; L1

loc(R
N )) to some u. Multiplying by ϕ ∈ C∞

c ([0,∞[×R
N) the equations

satisfied by U δ and integrating, we can show that u satisfies (3) in a weak sense:
∫ ∞

0

∫
RN

u∂tϕ + f(u) · ∇ϕ − ug[ϕ] dtdx +
∫

RN

u0ϕ(0) dx = 0.

We have thus proved that, if u0 is regular enough, (3) has a solution in a
weak sense; moreover, this solution is bounded by ||u0||L∞(RN ).
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3. Regularity and uniqueness of the solution

3.1. Definition of solution

Another way to handle (3) is to consider that div(f(u)) is a lower order term, and
therefore to write ∂tu + g[u] = − div(f(u)). Since the semi-group generated by g
is known, Duhamel’s formula then gives

u(t, x) = K(t, ·) ∗ u0(x) −
∫ t

0

K(t − s, ·) ∗ div(f(u(s, ·)))(x) ds

and the properties of the convolution lead to

u(t, x) = K(t, ·) ∗ u0(x) −
∫ t

0

∇K(t − s, ·) ∗ f(u(s, ·))(x) ds. (6)

This suggests the following definition.

Definition 3.1. Let u0 ∈ L∞(RN ). A solution to (3) is u ∈ L∞(]0,∞[×R
N ) which

satisfies (6) for a.e. (t, x) ∈]0,∞[×R
N .

By the definition of K, it is obvious that K(t, x) = t−N/λK(1, t−1/λx); hence,
||∇K(t)||L1(RN ) = C0t

−1/λ and the integral term in (6) is defined as soon as u is
bounded.

It is then easy, by a Banach fixed point theorem, to prove the existence of a
solution on a small time interval [0, T ] (and its uniqueness on any time interval);
but, due to the lack of estimates on this solution, nothing ensures that it can be
extended to [0,∞[. However, using its integrability properties, it is possible to
prove that the weak solution constructed by a splitting method in Section 2 is
also a solution in the sense of Definition 3.1. Hence, we have the existence of a
global solution when the initial datum is regular enough, and its uniqueness for
any bounded initial condition.

3.2. Regularization effect

The regularity of the solution is not very difficult to obtain. Assume that u0 ∈
L∞(RN ) and take u a solution to (6) on [0, T0] (not necessarily the one constructed
before, since we have not assumed that u0 is integrable and has bounded variation).
Since ||∇K(t)||L1(RN ) = C0t

−1/λ, the idea is to apply a Banach fixed point theorem
on (6) in the space

ET = {v ∈ Cb(]0, T [×R
N) | t1/λ∇v ∈ Cb(]0, T [×R

N ; RN )}.
For T small enough and u0 ∈ L∞(RN ), we are able to prove the existence of a
solution to (6) in ET ; since the solution is unique in L∞(]0, T [×R

N), this proves
that the given solution u is C1 in space on ]0, T [; this reasoning can be done
from any initial time t0 (not only t0 = 0), which proves that u is C1 in space on
]0, T0[×R

N .
A bootstrap technique, based on integral equations satisfied by the derivatives

of u, allows to extend this method and to prove that u is C∞ in space, and that all
its spatial derivatives are bounded on ]t0, T0[×R

N , for all t0 > 0, by some constant
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depending on t0 and ||u||L∞(]0,T0[×RN ). It is then possible to give a meaning to g[u]
(we prove that, if 2m > N + λ, there exists integrable functions g1 and g2 such
that g[u] = g1 ∗ u + g2 ∗ ∆mu) and to show that (3) is satisfied in the classical
sense; this proves that u is also regular in time.

Thus, even if the initial datum is only bounded, the solution is regular and
we have a bound on its derivatives which only depends on a bound on the solution
itself. Let u0 ∈ L∞(RN ); we can approximate it (a.e. and in L∞ weak-∗) by
regular data un

0 , for which we have proven the existence of solutions un (Section
2); these solutions are bounded by supn ||un

0 ||L∞(RN ) < +∞, which gives a bound
on their derivatives; this proves that, up to a subsequence, un converge a.e. to
some bounded u; it is then easy to pass to the limit in (6), with (un

0 , un) instead
of (u0, u), to see that u is a solution to (3).

3.3. Main result

To sum up, we have obtained the following theorem.

Theorem 3.1. If f ∈ C∞(R; RN ) and u0 ∈ L∞(RN ), then (3) has a unique solution
in the sense of Definition 3.1. Moreover, this solution u satisfies

i) u ∈ C∞(]0,∞[×R
N ) and, for all t0 > 0, all the derivatives of u are bounded

on [t0,∞[×R
N ,

ii) for all t > 0, ||u(t)||L∞(RN ) ≤ ||u0||L∞(RN ),
iii) as t → 0, we have u(t) → u0 in Lp

loc(R
N ) for all p < ∞ and in L∞(RN )

weak-∗.

Remark 3.1. The construction via the splitting method proves that the solution to
(3) has more properties than the one stated above: any property which is satisfied
by both equations ∂t + g = 0 and ∂t + div(f(·)) = 0 is also satisfied by (3); for
example: the solution takes its values between the essential lower and upper bounds
of u0, and there is a L1-contraction principle for (3).

Remark 3.2. Since Theorem 3.1 only relies on the nonnegativity of K and the
integrability properties of K and ∇K, it is also valid for more general g’s, such as
sums of operators (4) or anisotropic operators of the kind

g =
N∑

j=1

(−∂2
j )

λj
2 , i.e., F(g[v])(ξ) =


 N∑

j=1

|ξj |λj


F(v)(ξ) , with λj ∈]1, 2].

The same holds for Theorem 4.1 and, in some cases, Theorem 4.2.

4. Vanishing regularization

Since (3) has been considered as a possible regularization of (1), it seems natural
to wonder if, aside from the regularizing effect which has just been proved, the
solutions to this equation stay close to the solution of the scalar conservation law
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when the weight on g is small. Precisely, if we consider{
∂tu

ε(t, x) + div(f(uε))(t, x) + εg[uε(t, ·)](x) = 0 t > 0 , x ∈ R
N ,

uε(0, x) = u0(x) x ∈ R
N ,

(7)

is it true that, as in the case of the parabolic regularization, uε converges as ε → 0
to the entropy solution of (1)?

The answer is not obvious if we recall that some higher-order regularizations
of conservation laws can generate too many oscillations, as the regularization van-
ishes, to allow the convergence towards the entropy solution; an example of this
phenomenon, the KdV equation ∂tu

ε + ∂x((uε)2) = ε∂3
xuε, is mentioned in [3].

The convergence of the parabolic regularization (2) to the conservation law
(1) is strongly based on the entropy inequality (5). If we want to prove the con-
vergence of (7) to (1), we need to prove an entropy inequality for the non-local
regularization g, and we are back to the problem mentioned in Subsection 1.2.

4.1. Entropy inequality

Therefore, we use again the splitting method. Let η be a convex function, φ′ = η′f ′

and U δ be the function constructed in Section 2 (with εg instead of g and for u0

regular enough). On Iδ = ∪p odd[pδ, (p + 1)δ], U δ is the (entropy) solution of a
scalar conservation law (1), and thus, for a nonnegative ϕ ∈ C∞

c ([0,∞[×R
N ),∫

Iδ

∫
RN

η(U δ)∂tϕ+2φ(U δ)·∇ϕdtdx =
∑

p odd

ap+1−ap = −a0+
∑

p even

ap−ap+1, (8)

where ap =
∫

RN η(U δ(pδ))ϕ(pδ) dx.
On [pδ, (p+1)δ] for p even, U δ satisfies ∂tU

δ +2εg[U δ] = 0 and thus U δ(t) =
K(2ε(t−pδ))∗U δ(pδ). Since η is convex and K(2ε(t−δ)) is nonnegative with total
mass 1, Jensen’s inequality gives η(U δ(t)) ≤ K(2ε(t − pδ)) ∗ η(U δ(pδ)); hence, ϕ
being nonnegative,

ap+1 − ap ≤
∫

RN

K(2εδ) ∗ η(U δ(pδ))ϕ((p + 1)δ) dx −
∫

RN

η(U δ(pδ))ϕ(pδ) dx. (9)

But t → K(2εt) ∗ η(U δ(pδ)) is solution to ∂tv + 2εg[v] = 0 with initial datum
η(U δ(pδ)), thus∫

RN

K(2εδ) ∗ η(U δ(pδ))ϕ((p + 1)δ) dx −
∫

RN

η(U δ(pδ))ϕ(pδ) dx (10)

=
∫ (p+1)δ

pδ

∫
RN

K(2ε(t − pδ)) ∗ η(U δ(pδ))(∂tϕ − 2εg[ϕ]) dtdx.

Since the L∞, L1 and BV norms of U δ(s) and η(U δ(s)) are bounded independently
of δ and s, and since K(t)t>0 is an approximate unit as t → 0 (2), we have, for

1In fact, for δ small enough, Uδ is regular on Iδ.
2This comes from the fact that K(t) is nonnegative with mass 1, and that K(t, x) =

t−N/λK(1, t−1/λx).
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t ∈]pδ, (p + 1)δ],

||K(2ε(t − pδ)) ∗ η(U δ(pδ)) − η(U δ(pδ))||L1(RN ) ≤ ω1(δ)

||η(U δ(t)) − η(U δ(pδ))||L1(RN ) ≤ C||U δ(t) − U δ(pδ)||L1(RN ) ≤ ω2(δ),

where ωj(δ) → 0 as δ → 0 (recall that U δ(t) = K(2ε(t− pδ)) ∗ U δ(pδ)); therefore,

||K(2ε(t − pδ)) ∗ η(U δ(pδ)) − η(U δ(t))||L1(RN ) ≤ ω1(δ) + ω2(δ) = ω3(δ)

and (9) and (10) give

ap+1 − ap ≤
∫ (p+1)δ

pδ

∫
RN

η(U δ(t))(∂tϕ − 2εg[ϕ]) dtdx

+ω3(δ)
∫ (p+1)δ

pδ

||∂tϕ(t)||L∞(RN ) + 2ε||g[ϕ(t)]||L∞(RN ) dt.

Summing on even p’s and coming back to (8), we find∫
Iδ

∫
RN

η(U δ)∂tϕ + 2φ(U δ) · ∇ϕdtdx +
∫

R+\Iδ

∫
RN

η(U δ)∂tϕ − 2εη(U δ)g[ϕ] dtdx

+
∫

RN

η(u0)ϕ(0) dx ≥ −C(ϕ)ω3(δ).

We can then pass to the limit δ → 0 (recall that U δ → uε); since the characteristic
functions of Iδ and R

+\Iδ weakly converge to 1/2, we obtain∫ ∞

0

∫
RN

η(uε)∂tϕ + φ(uε) · ∇ϕ − εη(uε)g[ϕ] dtdx +
∫

RN

η(u0)ϕ(0) dx ≥ 0 , (11)

which is the entropy inequality for (7). This relation has been obtained in the case
of regular initial data, but it can easily be extended to the case of general bounded
initial data by the same idea as in the end of Subsection 3.2.

4.2. Convergence results

Once the entropy inequality for (7) has been obtained, a comparison between
uε and u can be obtained by means of the doubling variable technique of S.N.
Krushkov: we write the entropy inequality (11) with η(uε) = |uε − u(s, y)| (s and
y fixed) and ϕ depending on (s, y), we integrate on (s, y), we do the same with
the entropy inequality satisfied by u (exchanging the roles of uε and u) and we
sum the results. Taking ϕ which forces s to be near t and y to be near x, the term
|uε(t, x) − u(t, x)| appears up to an error which can be controlled, and we obtain
the following result.

Theorem 4.1. If u0 ∈ L∞(RN ), then the solution to (7) converges, as ε → 0 and
in C([0, T ]; L1

loc(R
N )) for all T > 0, to the entropy solution of (1).

If we assume more regularity on the initial data, then the error terms which
appear in the doubling variable technique can be estimated more precisely and,
as in [7] for the parabolic approximation, an optimal rate of convergence can be
proved.
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Theorem 4.2. Assume that u0 ∈ L1(RN ) ∩ L∞(RN ) ∩ BV (RN ); let uε be the
solution to (7) and u be the entropy solution to (1). Then, for all T > 0, ||uε −
u||C([0,T ];L1(RN )) = O(ε1/λ).

Remark 4.1. We notice that, for λ < 2, the convergence is better than in the
case of parabolic approximation. This is due to the fact that, for small times (3),
g is less diffusive than ∆; this comes from the homogeneity property K(t, x) =
t−N/λK(1, t−1/λx) of the kernel of g, which is to be compared with the homogeneity
property G(t, x) = t−N/2G(1, t−1/2x) of the heat kernel.

On the contrary, and because of the same homogeneity properties, g is more
diffusive than ∆ for large times.
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