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Abstract We construct finite volume schemes, on unstructured and irregular grids and in any space
dimension, for non-linear elliptic equations of the p-Laplacian kind: −div(|∇u|p−2∇u) = f (with 1 <
p < ∞). We prove the existence and uniqueness of the approximate solutions, as well as their strong
convergence towards the solution of the PDE. The outcome of some numerical tests are also provided.
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1 Introduction

We consider non-linear elliptic equations of the Leray-Lions kind:

{
−div(a(x,∇ū)) = f in Ω,
ū = 0 on ∂Ω ,

(1.1)

where Ω is a bounded open polygonal subset of R
d and, for some p ∈]1,∞[,

a : Ω × R
d → R

d is a Caratheodory function (i.e. measurable w.r.t. its first variable
and continuous w.r.t. its second variable) ,

(1.2)

∃α0 > 0 such that a(x, ξ) · ξ ≥ α0|ξ|p for a.e. x ∈ Ω and all ξ ∈ R
d , (1.3)

(a(x, ξ) − a(x, η)) · (ξ − η) > 0 for a.e. x ∈ Ω and all ξ 6= η , (1.4)

∃b ∈ Lp′

(Ω) , ∃Λ > 0 such that |a(x, ξ)| ≤ b(x) + Λ|ξ|p−1 for a.e. x ∈ Ω and all ξ ∈ R
d , (1.5)

f ∈ Lp′

(Ω). (1.6)

It is known, see [22], that such equations have unique weak solutions in W 1,p
0 (Ω) (the uniqueness comes

from the fact that we consider a monotone operator: a does not depend on ū). These kinds of problem
appear for example in the motion of glaciers [21], in flows of incompressible turbulent fluids through porous
media [11] or in airfoil design [20]. They also serve as basic references for the mathematical study of fully
non-linear elliptic equations (the canonical example being the p-Laplacian: −div(|∇u|p−2∇u) = f).

Finite element approximation of (1.1) has been studied in a number of papers, such as [5, 8, 16, 17, 18,
21, 24]. These references give error estimates on the approximation, but are mainly restricted to the case
of two-dimensional domains Ω and/or to problems that come from the minimization of a functional.

Since (1.1) appears in physical models, it seems natural to try and approximate it with schemes which
preserve physical properties; finite volume methods are among such schemes (they preserve the conser-
vativity of the fluxes, for example). Their principle is to integrate the PDE in (1.1) on small polygonal
sets inside Ω (the control volumes); using Stokes formula, this gives an equation on the fluxes of a(∇ū)
through the edges of each control volume. One must then approximate these fluxes, using for example
values of ū on the control volumes on each side of the edges; this leads to a system on these values, which
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Montpellier cedex 5, France. email: droniou@math.univ-montp2.fr

1



is the finite volume scheme. For linear equations, say a(∇ū) = ∇ū, approximating the flux
∫

σ
∇ū · n

through an edge σ (n is a unit normal to σ) only demands to approximate the normal component ∇ū ·n
of ∇ū, which can be easily done thanks to the values of ū on each side of σ. But for non-linear equations,
for example a(∇ū) = |∇ū|p−2∇ū, approximating the flux

∫
σ
|∇ū|p−2∇ū · n demands to approximate all

the components of ∇ū (because of the term |∇ū|p−2), which is far less easy to do.
In a series of papers, Andreianov and al. construct finite volume schemes for (1.1), at first for the p-
Laplacian on cartesian grids [2, 3] and, more recently, for Leray-Lions operators on general meshes [4].
To approximate the whole gradient ∇ū with values of ū, they use dual meshes (two grids on Ω) and either a
four-point finite difference method (on cartesian grids) or the gradient reconstruction introduced in [9] (on
general grids). They show the convergence of their schemes and, under additional hypotheses on a, fine
error estimates (using optimal regularity results for the solution). However, these schemes are presented on
two-dimensional domains and their extension to the case d ≥ 3 does not seem straightforward, considering
the difficulty of manipulating dual meshes in higher dimensions.

The idea of the mixed finite volume scheme we use is to keep the fluxes of a(∇ū) and the gradient of ū
as unknowns, and not to try, in a first time, to approximate these fluxes and gradient using the values
of ū. The integration of the PDE on each control volume gives an equation on the fluxes, with which we
reconstruct a(∇ū) thanks to a general formula (see Lemma 8.2). We thus write a quite simple scheme
which not only handles fully non-linear equations but can also be applied in any space dimension and to
a wide variety of grids on Ω (see Definition 2.1).

In the following section, we present the finite volume scheme for (1.1) and we state the main results
(existence, uniqueness and convergence of the approximate solutions). Our scheme is based on three
unknowns functions (u,v, F ), which respectively correspond to approximations of ū, of ∇ū and of the
fluxes of a(∇ū); one of the equations quite naturally states that v is, in a sense, the gradient of u (with
a penalization involving F ): in Section 3, we give some basic properties satisfied by the (u,v, F ) which
verify this particular equation. Section 4 is devoted to the proof of the results stated in Section 2. In
Section 5, we study some generalizations of the scheme presented in Section 2: a scheme for non-monotone
operators (that is to say, equations of the kind −div(a(x, ū,∇ū)) = f), a non-penalized scheme, and a
scheme for right-hand sides in W−1,p′

(Ω). We have run numerical experiments, and we present some of
their results in Section 6. After a short conclusion (Section 7), an appendix (Section 8) gathers a few
technical results used in the paper.

2 The finite volume discretization

Our finite volume scheme for (1.1) is inspired by the mixed finite volume scheme introduced in [12]. Let
us first recall the notion of admissible discretization of Ω.

Definition 2.1 [Admissible discretization] Let Ω be an open bounded polygonal subset of R
d. An

admissible finite volume discretization of Ω is given by D = (M, E ,P), where:

• M is a finite family of non empty open polygonal convex disjoint subsets of Ω (the “control volumes”)
such that Ω = ∪K∈MK.

• E is a finite family of disjoint subsets of Ω (the “edges” of the mesh), such that, for all σ ∈ E, there
exists an affine hyperplane E of R

d and K ∈ M verifying: σ ⊂ ∂K ∩ E and σ is a non empty
open convex subset of E. We assume that, for all K ∈ M, there exists a subset EK of E such
that ∂K = ∪σ∈EK

σ. We also assume that, for all σ ∈ E, either σ ⊂ ∂Ω or σ = K ∩ L for some
(K,L) ∈ M2.

• P is a family of points of Ω indexed by M, denoted by P = (xK)K∈M and such that, for all K ∈ M,
xK ∈ K.
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Remark 2.1 This definition of discretization allows a wide variety of grids, in any space dimension
and with very few geometric restrictions. In particular, we accept meshes which are not admissible with
respect to the definition given in [15], and meshes whose edges have been cut in two (or more) via a local
refinement procedure. See [12].
Also, it is not really mandatory that each xK be in its control volume: it only needs to stay within distance
∼ diam(K) of K.

In the rest of the paper, we use the following notations associated with an admissible discretization D.
The d-dimensional measure of a control volume K is written m(K), and the (d− 1)-dimensional measure
of an edge σ is m(σ); in the integral signs, γ denotes the measure on the edges. If σ ∈ EK , then nK,σ is
the unit normal to σ outward to K. In the case where σ ∈ E is such that σ = K ∩ L for (K,L) ∈ M2,
we denote σ = K|L. For all σ ∈ E , xσ is the barycenter of σ. The set of interior (resp. boundary) edges
is defined as Eint = {σ ∈ E ; σ 6⊂ ∂Ω} (resp. Eext = {σ ∈ E ; σ ⊂ ∂Ω}).
We study the convergence of the approximations as the size of the discretization

size(D) = sup{diam(K) ; K ∈ M}

tends to 0, under the assumption that the regularity of the discretization stays bounded, the regularity
being defined by

regul(D) = sup

{
max

(
diam(K)d

ρd
K

,Card(EK)

)
; K ∈ M

}

where, for K ∈ M, ρK is the supremum of the radius of the balls contained in K (notice that regul(D)
stays bounded under a local refinement procedure). One of the main interests of this quantity is the
following inequality: for all K ∈ M,

diam(K)d ≤ regul(D)ρd
K ≤ regul(D)

ωd
m(K) , (2.1)

where ωd is the volume of the unit ball in R
d.

If D is an admissible discretization of Ω, we denote by HD the space of functions Ω → R which are
constant on each control volume K ∈ M (the value on K of a function g ∈ HD is written gK), and by F
the space of real numbers (FK,σ)K∈M , σ∈EK

. For ν = (νK)K∈M a family of positive numbers, we define
Lp,ν(D) as the set of all (u,v, F ) ∈ HD ×Hd

D ×F such that

vK · (xσ − xK) + vL · (xL − xσ) + νKm(K)|FK,σ|
1

p−1
−1FK,σ − νLm(L)|FL,σ|

1

p−1
−1FL,σ

= uL − uK , ∀σ = K|L ∈ Eint,

vK · (xσ − xK) + νKm(K)|FK,σ |
1

p−1
−1FK,σ = −uK , ∀K ∈ M, ∀σ ∈ EK ∩ Eext.

(2.2)

We let aK(ξ) = 1
m(K)

∫
K
a(x, ξ) dx and we consider the following finite volume scheme for (1.1): find

(u,v, F ) ∈ Lp,ν(D) such that

FK,σ + FL,σ = 0, ∀σ = K|L ∈ Eint, (2.3)

m(K)aK(vK) =
∑

σ∈EK

FK,σ(xσ − xK), ∀K ∈ M, (2.4)

−
∑

σ∈EK

FK,σ =

∫

K

f(x) dx, ∀K ∈ M. (2.5)

The scheme ((2.2),(2.3),(2.4),(2.5)) is quite easy to understand if we point out that u and v play the role
of approximations of ū (the solution to (1.1)) and ∇ū. Equation (2.5) comes from a formal integration
of (1.1) on each control volume K, FK,σ being an approximation of the flux of a(∇ū) through σ: FK,σ ≈
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∫
σ
a(∇ū) · nK,σ dγ. This expression shows that these fluxes are naturally conservative, hence (2.3).

Lemma 8.2 in the appendix gives a formula which reconstructs a vector knowing its fluxes on the edges
of a control volume: (2.4) simply states that we use this formula to reconstruct a(∇ū) (recall that
vK is an approximation on K of ∇ū). Lastly, (2.2) is the expression (if we forget the fluxes) that
∇ū (approximated by v) is the gradient of ū (approximated by u); we need to penalize this equation

with the terms |FK,σ|
1

p−1
−1FK,σ in order to estimate the fluxes and ensure their uniqueness (see also

subsection 5.2); to understand the power chosen for FK,σ, we can consider the case of the p-Laplacian
a(∇ū) = |∇ū|p−2∇ū: in this situation, |FK,σ| ≈ m(σ)|∇ū|p−1 and, since |vK | ≈ |∇ū|, it is quite natural
that FK,σ appears with total power equal to 1

p−1 .

The main results of this paper are the following two theorems. The first one states that the finite
volume scheme has a unique solution, and the second one that this solution converges, as the size of the
discretization tends to 0, to the weak solution of (1.1).

Theorem 2.1 Under Hypotheses (1.2)—(1.6), if D is an admissible discretization of Ω and (νK)K∈M

is a family of positive numbers, then there exists a unique solution (u,v, F ) to ((2.2),(2.3),(2.4),(2.5)).

Theorem 2.2 Assume Hypotheses (1.2)—(1.6). Let (Dn)n≥1 be a sequence of admissible discretizations
of Ω such that size(Dn) → 0 and (regul(Dn))n≥1 is bounded. Let ν0 > 0 and β ∈]− p′(d− 1),−p′(d− 2)[.
Let (un,vn, Fn) be the solution to ((2.2),(2.3),(2.4),(2.5)) for D = Dn and νK = ν0diam(K)β for all
K ∈ Mn. Let ū ∈ W 1,p

0 (Ω) be the weak solution to (1.1).
Then, as n→ ∞, un → ū weakly in Lp(Ω) and strongly in Lq(Ω) for all q < p, and vn → ∇ū strongly in
Lp(Ω)d.

Remark 2.2 By (1.2) and (1.5), the strong convergence of vn to ∇ū in Lp(Ω)d implies the strong
convergence of a(·,vn) to a(·,∇ū) in Lp′

(Ω)d.

Remark 2.3 If the “ > ” in (1.4) is replaced by “ ≥ ”, these results hold with the following changes:
there is not uniqueness of the solution to the approximate (or limit) problem, the convergence holds only
up to a subsequence, and the convergence of vn is weak in Lp(Ω)d.

3 Properties of Lp,ν(D)

To study the convergence of the scheme, we need some properties of the set Lp,ν(D). In the case p = 2,
the following lemmas are proved in [12]; for the sake of completeness, we give below the full proofs for
any p, using and even simplifying [12] whenever possible.

Lemma 3.1 [Poincaré’s inequality] Let D be an admissible discretization of Ω such that regul(D) ≤ θ
for some θ > 0, and let (νK)K∈M be a family of positive real numbers. There exists C1 only depending
on d, p, Ω and θ such that, for all (u,v, F ) ∈ Lp,ν(D),

||u||Lp(Ω) ≤ C1

(
||v||Lp(Ω)d +Mp(D, ν, F )

)
,

where Mp(D, ν, F ) =
(∑

K∈M

∑
σ∈EK

diam(K)(d−1)pνp
K

(
|FK,σ|

1

p−1

)p

m(K)
) 1

p

.

Proof of Lemma 3.1
Let B be a ball containing Ω and let w be the weak solution of −∆w = |u|p−2u on B with value 0 on ∂B
(we have extended u by 0 outside Ω). By well known regularity results (see e.g. [23, 1]), there exists C2

only depending on d, B and p (that is, on d, Ω and p) such that w ∈W 2,p′

(B) with

||w||W 2,p′ (B) ≤ C2|| |u|p−2u||Lp′(B) = C2||u||p−1
Lp(Ω). (3.1)
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We multiply each equation of (2.2) by
∫

σ
∇w ·nK,σ dγ, sum over the edges and gather by control volumes

using nK,σ = −nL,σ whenever σ = K|L; this gives

∑

K∈M

∑

σ∈EK

vK · (xσ − xK)

∫

σ

∇w · nK,σ dγ

+
∑

K∈M

∑

σ∈EK

νKm(K)|FK,σ|
1

p−1
−1FK,σ

∫

σ

∇w · nK,σ dγ = −
∑

K∈M

uK

∑

σ∈EK

∫

σ

∇w · nK,σ dγ

= −
∑

K∈M

uK

∫

K

∆w(x) dx

= ||u||pLp(Ω). (3.2)

Let us denote T1 and T2 the two terms in the left-hand side of this equality.
Since regul(D) ≤ θ, we can apply Lemma 8.1 to find C3 only depending on d, p, Ω and θ such that

∣∣∣∣
1

m(σ)

∫

σ

∇w dγ · nK,σ

∣∣∣∣
p′

≤
∣∣∣∣

1

m(σ)

∫

σ

∇w dγ
∣∣∣∣
p′

≤ C3

m(σ)diam(K)
||w||p

′

W 2,p′ (K)
(3.3)

(we have bounded diam(K)p′

, which appears when applying Lemma 8.1, by diam(Ω)p′

). Therefore, for
all real numbers λK,σ, by Hölder’s inequality,
∣∣∣∣∣
∑

K∈M

∑

σ∈EK

λK,σ

∫

σ

∇w · nK,σ dγ

∣∣∣∣

=

∣∣∣∣∣
∑

K∈M

∑

σ∈EK

m(σ)
(
diam(K)

− 1

p′ λK,σ

)
×
(

diam(K)
1

p′
1

m(σ)

∫

σ

∇w dγ · nK,σ

)∣∣∣∣∣

≤
(
∑

K∈M

∑

σ∈EK

m(σ)
∣∣∣diam(K)

− 1

p′ λK,σ

∣∣∣
p
) 1

p

×
(
∑

K∈M

∑

σ∈EK

m(σ)

∣∣∣∣diam(K)
1

p′
1

m(σ)

∫

σ

∇w dγ · nK,σ

∣∣∣∣
p′
) 1

p′

≤
(
∑

K∈M

∑

σ∈EK

m(σ)diam(K)−(p−1)|λK,σ |p
) 1

p
(
∑

K∈M

∑

σ∈EK

C3||w||p
′

W 2,p′ (K)

) 1

p′

≤
(
ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d−p|λK,σ|p
) 1

p

C
1

p′

3 regul(D)
1

p′ ||w||W 2,p′ (Ω)

(we have used the fact that Card(EK) ≤ regul(D) and that, if σ ∈ EK , then m(σ) ≤ ωd−1diam(K)d−1

since diam(σ) ≤ diam(K)). Applying this estimate to λK,σ = vK · (xσ − xK) we find, thanks to (2.1)
and since regul(D) ≤ θ,

|T1| ≤ C
1

p′

3 θ
1

p′ ||w||W 2,p′ (Ω)

(
ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d−p|vK |pdiam(K)p

) 1

p

≤ C
1

p′

3 θ
1

p′ ||w||W 2,p′ (Ω)

(
regul(D)2ωd−1

ωd

∑

K∈M

m(K)|vK |p
) 1

p

≤ C
1

p′

3 θ
1

p′ ||w||W 2,p′ (Ω)

(
θ2ωd−1

ωd

) 1

p

||v||Lp(Ω)d (3.4)
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and, with λK,σ = νKm(K)|FK,σ |
1

p−1
−1FK,σ, since m(K) ≤ ωddiam(K)d,

|T2| ≤ C
1

p′

3 θ
1

p′ ||w||W 2,p′ (Ω)

(
ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d−pνp
Km(K)p

(
|FK,σ|

1

p−1

)p
) 1

p

≤ C
1

p′

3 θ
1

p′ ||w||W 2,p′ (Ω)

×
(
ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d−pωp−1
d diam(K)d(p−1)m(K)νp

K

(
|FK,σ|

1

p−1

)p
) 1

p

≤ C
1

p′

3 θ
1

p′ ||w||W 2,p′ (Ω)

(
ωd−1ω

p−1
d

∑

K∈M

∑

σ∈EK

diam(K)(d−1)pνp
K

(
|FK,σ|

1

p−1

)p

m(K)

) 1

p

. (3.5)

Gathering (3.2), (3.4) and (3.5), we see that

||u||pLp(Ω) ≤ C4||w||W 2,p′ (Ω)||v||Lp(Ω)d + C4||w||W 2,p′ (Ω)Mp(D, ν, F )

for some C4 only depending on d, p, Ω and θ, and we conclude the proof by (3.1).

Lemma 3.2 [Equicontinuity of the translations] Let D be an admissible discretization of Ω such
that regul(D) ≤ θ for some θ > 0, and let (νK)K∈M be a family of positive real numbers. There exists
C5 only depending on d, Ω and θ such that, for all (u,v, F ) ∈ Lp,ν(D) and all ξ ∈ R

d,

||u(· + ξ) − u||L1(Rd) ≤ C5

(
||v||L1(Ω)d +M1(D, ν, F )

)
|ξ| ,

where M1(D, ν, F ) =
∑

K∈M

∑
σ∈EK

diam(K)d−1νK |FK,σ|
1

p−1 m(K) and u has been extended by 0 outside
Ω.

Proof of Lemma 3.2
Let F̃K,σ = |FK,σ|

1

p−1
−1FK,σ. If (u,v, F ) ∈ Lp,ν(D), then (u,v, F̃ ) ∈ L2,ν(D) and we can apply Lemma

3.2 in [12] (which is in fact exactly the result we want to prove in the case p = 2): there exists C5 only
depending on d, Ω and θ such that, for all ξ ∈ R

d,

||u(· + ξ) − u||L1(Rd) ≤ C5

(
||v||L1(Ω)d +

∑

K∈M

∑

σ∈EK

diam(K)d−1νK |F̃K,σ |m(K)

)
|ξ|.

By definition of F̃K,σ, this concludes the proof.

Lemma 3.3 [Compactness property] Let (Dn)n≥1 be a sequence of admissible discretizations of Ω
such that size(Dn) → 0 and (regul(Dn))n≥1 is bounded. Let (νn)n≥1 be a sequence of families of positive
numbers (each family being indexed by Mn). We take (un,vn, Fn) ∈ Lp,νn

(Dn) and we assume that
(||vn||Lp(Ω)d)n≥1 and (Mp(Dn, νn, Fn))n≥1 are bounded, and that M1(Dn, νn, Fn) → 0 as n → ∞ (Mp

and M1 are defined in Lemmas 3.1 and 3.2).
Then there exists ū ∈ W 1,p

0 (Ω) such that, up to a subsequence, un → ū weakly in Lp(Ω) and strongly in
Lq(Ω) for all q < p, and vn → ∇ū weakly in Lp(Ω)d.

Proof of Lemma 3.3
Thanks to the assumptions, to Lemmas 3.1 and 3.2, and to Kolmogorov compactness theorem, we can
assume that, up to a subsequence, (un)n≥1 converges to some ū weakly in Lp(Ω) and strongly in L1(Ω),
and that (vn)n≥1 converges to some v̄ weakly in Lp(Ω)d. This implies un → ū strongly in Lq(Ω) for all

q < p and it remains to prove that ū ∈ W 1,p
0 (Ω) and that v̄ = ∇ū.
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To achieve this, we extend ū and v̄ by 0 outside Ω and we prove that ∇ū = v̄ in the distributional sense
on R

d: this will in particular prove that ū ∈ W 1,p(Rd) and, since it is null outside Ω, that it also belongs
to W 1,p

0 (Ω).
For simplicity of notations, we drop all the indices n. Let ϕ ∈ C∞

c (Rd) and e ∈ R
d; multiply each equation

of (2.2) by
∫

σ ϕ e ·nK,σ dγ, sum over the edges and gather by control volumes using nK,σ = −nL,σ when
σ = K|L; this leads to

∑

K∈M

vK ·
∑

σ∈EK

∫

σ

ϕ e · nK,σ dγ(xσ − xK)

+
∑

K∈M

∑

σ∈EK

νKm(K)|FK,σ |
1

p−1
−1FK,σ

∫

σ

ϕ e · nK,σ dγ = −
∑

K∈M

uK

∑

σ∈EK

∫

σ

ϕ e · nK,σ dγ. (3.6)

Let T3, T4 and T5 be the three terms of this equation.
We have

T5 = −
∑

K∈M

uK

∫

K

div(ϕ e)(x) dx

= −
∫

Ω

u(x)div(ϕ e)(x) dx → −
∫

Ω

ū(x)div(ϕ e)(x) dx as size(D) → 0.

Let

T6 =
∑

K∈M

vK ·
∑

σ∈EK

m(σ)

(
1

m(K)

∫

K

ϕ(x) e dx

)
· nK,σ(xσ − xK).

We have, for all σ ∈ EK , m(σ)diam(K) ≤ ωd−1diam(K)d ≤ ωd−1regul(D)
ωd

m(K) (see (2.1)). Using the
regularity of ϕ, we therefore obtain C6 only depending on ϕ such that

|T3 − T6| ≤ C6

∑

K∈M

|vK |
∑

σ∈EK

m(σ)diam(K)|xσ − xK |

≤ C6size(D)
∑

K∈M

ωd−1regul(D)2

ωd
m(K)|vK |

≤ C6size(D)
ωd−1regul(D)2

ωd
||v||L1(Ω)d → 0 as size(D) → 0

(we have used Card(EK) ≤ regul(D)). Moreover, thanks to Lemma 8.2,

T6 =
∑

K∈M

vK ·
∫

K

ϕ(x) e dx =

∫

Ω

v(x) · ϕ(x) e dx→
∫

Ω

v̄(x) · ϕ(x) e dx as size(D) → 0.

Hence, T3 →
∫
Ω

v̄(x) · ϕ(x) e dx as size(D) → 0.
By assumption,

|T4| ≤ ||ϕ e||∞
∑

K∈M

∑

σ∈EK

νKm(K)|FK,σ|
1

p−1 m(σ) ≤ ||ϕ e||∞ωd−1M1(D, ν, F ) → 0 as size(D) → 0.

Gathering these convergences in (3.6) and recalling that v̄ and ū have been extended by 0 outside Ω, we
obtain ∫

Rd

v̄(x) · ϕ(x) e dx = −
∫

Rd

ū(x)div(ϕ e)(x) dx ,

which concludes the proof.
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4 Proofs of Theorems 2.1 and 2.2

Let us give an overview on the techniques used to prove the main theorems of this paper.
The first idea is, as usual, to obtain a priori estimates on the solution to the scheme. In order to do so,
the basic technique (as already done in [12]) consists in multiplying each edge equation (2.2) by the fluxes;
summing on the edges and gathering by control volumes thanks to (2.3) (which comes down to making a
discrete integrate by parts), the right-hand side of (2.4) and the left-hand side of (2.5) naturally appear,
which immediately leads to the desired estimates. These manipulations (multiplying the edges equations
by some fluxes, summing and gathering by control volumes, identifying a reconstruction of gradient or
a balance of fluxes) are recurrent in the handling of this mixed finite volume scheme and were used in
the preceding section; rather than gathering them in abstract and general lemmas (which would anyhow
need to be fitted to each situation), we prefer to repeat them when necessary, in order for the reader to
become familiar with the techniques associated to our scheme.
Once a priori estimates are known, the compactness property of Lp,ν(D) gives a subsequence of the
solution which weakly converges as size(D) → 0. Since the problem is nonlinear, we cannot simply pass
to the limit and we therefore come back to the monotony method of Minty-Browder, as used in the paper
[22] of Leray-Lions. The trick is to write, for all regular ϕ, the discrete version of

∫

Ω

(a(x,∇ϕ(x)) − a(x,v(x))) · (∇ϕ(x) − v(x)) dx ≥ 0 (4.7)

(with, instead of ∇ϕ, the function equal to the mean value of ∇ϕ on each control volume) and, using the
basic manipulations described above, to pass to the limit in a similar way as in [22], thus proving that
the weak limit ū of the approximate solution is the weak solution to (1.1).
To conclude and prove the strong convergence of v to ∇ū, one needs to use the exact solution ū instead
of ϕ in the discrete counterpart of (4.7). However, in order to control the ensuing terms, because of (2.2)
one must bound the error between ū(xL) − ū(xK) and ∇ū(xK) · (xσ − xK) + ∇ū(xL) · (xL − xσ) (or
similar terms with the mean values of the functions on the control volumes instead of their values at xK

and xL); since ū lacks regularity, such a bound does not exist in general. To overcome this difficulty, we
use in (4.7) any regular function ϕ which is close enough to ū, and we are then able to prove that the
left-hand side of (4.7) with ū instead of ϕ is small if size(D) is small. This gives the a.e. convergence of v
to ∇ū, and the convergence in Lp(Ω)d is then easy to obtain by classical techniques of monotone elliptic
equations.

We now turn to the proof of the existence and uniqueness of a solution to the finite volume approximation.

Proof of Theorem 2.1
Step 1: Existence.
The proof is made by means of the topological degree.
Since ξ → aK(ξ) is continuous (this comes from (1.2), (1.5) and the dominated convergence theorem),
the non-linear system ((2.2),(2.3),(2.4),(2.5)) can be written as G(u,v, F ) = 0 with G continuous HD ×
Hd

D ×Fcons → HD ×Hd
D ×Fcons (we define Fcons as the vector space of families (FK,σ)K∈M , σ∈EK

such
that FK,σ + FL,σ = 0 whenever σ = K|L ∈ Eint). The components of G are respectively given by the
difference between the left-hand sides and right-hand sides of (2.5), (2.4) and (2.2).
For t ∈ [0, 1], let Gt be the application HD × Hd

D × Fcons → HD × Hd
D × Fcons defined, as G, by

(2.5), (2.4) and (2.2) in which we have replaced aK(ξ) by taK(ξ) + (1 − t)ξ and |FK,σ|
1

p−1
−1FK,σ by

t|FK,σ|
1

p−1
−1FK,σ + (1− t)FK,σ. The function t→ Gt is a continuous homotopy between G0 and G1 = G.

But G0 is an affine function which corresponds to an invertible system, by the results in [12] (the estimate
we make below also shows that G0 is invertible); hence, for all R large enough, denoting BR the ball of
radius R in HD×Hd

D×Fcons, we have deg(G0, BR, 0) 6= 0. If we manage to prove that, for R large enough
and for all t ∈ [0, 1], any solution to Gt(u,v, F ) = 0 satisfies ||(u,v, F )|| < R, then the properties of the
topological degree (see [10]) ensure that deg(G, BR, 0) = deg(G0, BR, 0) 6= 0, and thus that there exists a
solution in BR to G(u,v, F ) = 0.
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Let t ∈ [0, 1] and (u,v, F ) satisfy Gt(u,v, F ) = 0, that is to say

vK · (xσ − xK) + vL · (xL − xσ) + νKm(K)
[
t|FK,σ|

1

p−1
−1FK,σ + (1 − t)FK,σ

]

−νLm(L)
[
t|FL,σ|

1

p−1
−1FL,σ + (1 − t)FL,σ

]
= uL − uK , ∀σ = K|L ∈ Eint,

vK · (xσ − xK) + νKm(K)
[
t|FK,σ|

1

p−1
−1FK,σ + (1 − t)FK,σ

]
= −uK ,

∀K ∈ M, ∀σ ∈ EK ∩ Eext ,

(4.8)

FK,σ + FL,σ = 0, ∀σ = K|L ∈ Eint, (4.9)

m(K) [taK(vK) + (1 − t)vK ] =
∑

σ∈EK

FK,σ(xσ − xK), ∀K ∈ M, (4.10)

−
∑

σ∈EK

FK,σ =

∫

K

f(x) dx , ∀K ∈ M. (4.11)

Multiply (4.8) by FK,σ, sum over the edges and gather by control volumes using (4.9) and (4.11):

∑

K∈M

vK ·
∑

σ∈EK

FK,σ(xσ − xK) +
∑

K∈M

∑

σ∈EK

νKm(K)
[
t|FK,σ|

p

p−1 + (1 − t)|FK,σ |2
]

= −
∑

K∈M

uK

∑

σ∈EK

FK,σ

=
∑

K∈M

uKfK

where fK =
∫

K
f(x) dx. By (4.10) and (1.3) we deduce, denoting µD = inf{νK , K ∈ M} > 0 and

λD = inf{m(K) , K ∈ M} > 0,

λD
(
tα0||(vK)||plp + (1 − t)||(vK)||2l2

)
+ µDλD

(
t||(FK,σ)||p

′

lp′ + (1 − t)||(FK,σ)||2l2
)
≤ C7||(uK)||l1 (4.12)

where C7 does not depend on t or (u,v, F ) (we have denoted, for a finite family (zi)i∈I and r ∈ [1,∞[,
||(zi)||rlr =

∑
i∈I |zi|r). Since all the norms on a finite dimensional space are equivalent, we deduce

(
t||(vK)||pl1 + (1 − t)||(vK)||2l1

)
+
(
t||(FK,σ)||p

′

l1 + (1 − t)||(FK,σ)||2l1
)
≤ C8||(uK)||l1 (4.13)

where C8 depends on D but not on t or (u,v, F ).

Defining F̃K,σ = t|FK,σ|
1

p−1
−1FK,σ + (1 − t)FK,σ , we notice that (u,v, F̃ ) ∈ L2,ν(D); we can therefore

apply Lemma 3.1 (with p = 2) and use the fact that all the norms on a finite dimensional space are
equivalent to find C9 and C10 depending on the discretization D but not on t or (u,v, F ) such that

||(uK)||l1 ≤ C9

(
||(vK)||l1 + ||(F̃K,σ)||l1

)

≤ C9

(
||(vK)||l1 + t||(|FK,σ |

1

p−1 )||l1 + (1 − t)||(FK,σ)||l1
)

≤ C10

(
||(vK)||l1 + t||(FK,σ)||

1

p−1

l1 + ||(FK,σ)||l1
)

(4.14)

(we have used the inequality
∑

i∈I |zi|
1

p−1 ≤ Card(I)(
∑

i∈I |zi|)
1

p−1 , which is true since each |zj | is
bounded by

∑
i∈I |zi|). Injecting this in (4.13), we obtain

(
t||(vK)||pl1 + (1 − t)||(vK)||2l1

)
+

(
t

(
||(FK,σ)||

1

p−1

l1

)p

+ (1 − t)||(FK,σ)||2l1
)

≤ C11

(
||(vK)||l1 + t||(FK,σ)||

1

p−1

l1 + ||(FK,σ)||l1
)

(4.15)
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where C11 does not depend on t or (u,v, F ).
For t ≥ 1

2 , Young inequalities allow to deduce that

1

2
||(vK)||pl1 +

1

2

(
||(FK,σ)||

1

p−1

l1

)p

≤ C11

(
||(vK)||l1 + ||(FK,σ)||

1

p−1

l1 + ||(FK,σ)||l1
)

≤ C12 +
1

4
||(vK)||pl1 +

1

8

(
||(FK,σ)||

1

p−1

l1

)p

+
1

8
||(FK,σ)||p

′

l1

(where C12 only depends on p and C11) and thus that ||(vK)||pl1 + ||(FK,σ)||p
′

l1 ≤ 4C12.
For t ≤ 1

2 , we write from (4.15):

1

2
||(vK)||2l1 + t

(
||(FK,σ)||

1

p−1

l1

)p

+
1

2
||(FK,σ)||2l1

≤ C11

(
||(vK)||l1 + t||(FK,σ)||

1

p−1

l1 + ||(FK,σ)||l1
)

≤ C13 +
1

4
||(vK)||2l1 +

(
t||(FK,σ)||

1

p−1

l1

)p

+
1

4
||(FK,σ)||2l1

≤ C13 +
1

4
||(vK)||2l1 + t

(
||(FK,σ)||

1

p−1

l1

)p

+
1

4
||(FK,σ)||2l1

where C13 only depends on C11 and p (we have used tp−1 ≤ 1). Hence, here again we have an estimate:
||(vK)||2l1 + ||(FK,σ)||2l1 ≤ 4C13.
In either case, we find R1 > 0 not depending on t ∈ [0, 1] or (u,v, F ) such that ||(vK)||l1 + ||(FK,σ)||l1 ≤
R1. Using this estimate in (4.14), we also deduce a bound on ||(uK)||l1 , which concludes the proof of
existence.

Step 2: Uniqueness.
Assume that (u,v, F ) and (u′,v′, F ′) are two solutions to ((2.2),(2.3),(2.4),(2.5)). Then, by (1.4),

0 ≤
∑

K∈M

m(K)(aK(vK) − aK(v′
K)) · (vK − v′

K)

=
∑

K∈M

∑

σ∈EK

(FK,σ − F ′
K,σ)(xσ − xK) · (vK − v′

K)

=
∑

σ∈E

(FK,σ − F ′
K,σ) [(vK − v′

K) · (xσ − xK) + (vL − v′
L) · (xL − xσ)]

=
∑

σ∈E

(FK,σ − F ′
K,σ) [(uL − u′L) − (uK − u′K)]

−
∑

σ∈E

(FK,σ − F ′
K,σ)

[
νKm(K)|FK,σ |r−1FK,σ − νLm(L)|FL,σ|r−1FL,σ

−
(
νKm(K)|F ′

K,σ|r−1F ′
K,σ − νLm(L)|F ′

L,σ|r−1F ′
L,σ

)]

where r = 1
p−1 and the quantities with index L are defined as null if σ ∈ Eext ∩ EK . Gathering these last

sums by control volumes, we obtain

0 ≤
∑

K∈M

m(K)(aK(vK) − aK(v′
K)) · (vK − v′

K)

= −
∑

K∈M

(uK − u′K)
∑

σ∈EK

(FK,σ − F ′
K,σ)
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−
∑

K∈M

∑

σ∈EK

νKm(K)(FK,σ − F ′
K,σ)

[
|FK,σ|r−1FK,σ − |F ′

K,σ|r−1F ′
K,σ

]

= −
∑

K∈M

∑

σ∈EK

νKm(K)(FK,σ − F ′
K,σ)

[
|FK,σ|r−1FK,σ − |F ′

K,σ|r−1F ′
K,σ

]

since
∑

σ∈EK
FK,σ −∑σ∈EK

F ′
K,σ = −

∫
K
f(x) dx +

∫
K
f(x) dx = 0. As X → |X |r−1X is non-decreasing

on R, we deduce

0 ≤
∑

K∈M

m(K)(aK(vK) − aK(v′
K)) · (vK − v′

K)

= −
∑

K∈M

∑

σ∈EK

νKm(K)(FK,σ − F ′
K,σ)

[
|FK,σ|r−1FK,σ − |F ′

K,σ|r−1F ′
K,σ

]

≤ 0

and thus all the terms (which are non-negative) in these sums are null. By (1.4), this implies vK = v′
K

for all K ∈ M and, since X → |X |r−1X is one-to-one, FK,σ = F ′
K,σ for all K ∈ M and all σ ∈ EK .

We then use the equations (2.2) linking u to (v, F ) and u′ to (v′, F ′) to conclude that uK = u′K for all
K ∈ M (first for the control volumes on the boundary of Ω and then, successively, for all the control
volumes inside Ω).

Before proving Theorem 2.2, we need more precise estimates on the solution to the finite volume approx-
imation.

Lemma 4.1 [Estimate on the discrete solution] Assume Hypotheses (1.2)—(1.6). Let D be an
admissible discretization of Ω such that regul(D) ≤ θ for some θ > 0. Let (νK)K∈M be a family of
positive real numbers such that, for some ν0 > 0 and some β ≥ −p′(d − 1), νK ≤ ν0diam(K)β for all
K ∈ M. Let (u,v, F ) be the solution to ((2.2),(2.3),(2.4),(2.5)). Then there exists C14 only depending
on d, p, Ω, θ, f , ν0, β and α0 such that

||v||p
Lp(Ω)d +

∑

K∈M

∑

σ∈EK

νK

(
|FK,σ|

1

p−1

)p

m(K) ≤ C14.

Proof of Lemma 4.1
Multiply (2.2) by FK,σ, sum over the edges and gather by control volumes using (2.3). This leads to

∑

K∈M

vK ·
∑

σ∈EK

FK,σ(xσ − xK) +
∑

K∈M

∑

σ∈EK

νKm(K)|FK,σ|
1

p−1
+1 = −

∑

K∈M

uK

∑

σ∈EK

FK,σ.

By (2.4) and (2.5), we deduce

∑

K∈M

m(K)aK(vK) · vK +
∑

K∈M

∑

σ∈EK

νKm(K)
(
|FK,σ|

1

p−1

)p

=

∫

Ω

f(x)u(x) dx (4.16)

and, thanks to Hypothesis (1.3) and Young inequality, for all ε > 0,

α0||v||pLp(Ω)d +
∑

K∈M

∑

σ∈EK

νKm(K)
(
|FK,σ|

1

p−1

)p

≤ ||f ||Lp′(Ω)||u||Lp(Ω)

≤ 1

p′(pε)
p′

p

||f ||p
′

Lp′(Ω)
+ ε||u||pLp(Ω).
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We now apply Lemma 3.1 to find C15 only depending on d, p, Ω, θ and f such that

α0||v||pLp(Ω)d +
∑

K∈M

∑

σ∈EK

νK

(
|FK,σ|

1

p−1

)p

m(K)

≤ C15ε
−p′

p + εC15||v||pLp(Ω)d + εC15

∑

K∈M

∑

σ∈EK

diam(K)(d−1)pνp
K

(
|FK,σ|

1

p−1

)p

m(K) (4.17)

≤ C15ε
−p′

p + εC15||v||pLp(Ω)d + εC15

∑

K∈M

∑

σ∈EK

(
diam(K)(d−1)pνp−1

K

)
νK

(
|FK,σ|

1

p−1

)p

m(K).

Since νK ≤ ν0diam(K)β, we have

diam(K)(d−1)pνp−1
K ≤ νp−1

0 diam(K)(d−1)p+β(p−1) ≤ νp−1
0 diam(Ω)(d−1)p+β(p−1)

(we have used (d − 1)p + β(p − 1) ≥ 0, which is true since (d − 1)p′ + β ≥ 0). Hence, there exists C16

only depending on d, p, Ω, θ, f , ν0 and β such that

α0||v||pLp(Ω)d+
∑

K∈M

∑

σ∈EK

νK

(
|FK,σ |

1

p−1

)p

m(K)

≤ C15ε
− p′

p + εC15||v||pLp(Ω)d + εC16

∑

K∈M

∑

σ∈EK

νK

(
|FK,σ |

1

p−1

)p

m(K)

and the choice ε = inf( α0

2C15

, 1
2C16

) concludes the proof.

Let us now prove the convergence of the finite volume approximation.

Proof of Theorem 2.2
Step 1: convergence of (u,v).
For simplicity, we drop the indices n. We have

Mp(D, ν, F )p =
∑

K∈M

∑

σ∈EK

diam(K)(d−1)pνp−1
K νK

(
|FK,σ|

1

p−1

)p

m(K)

= νp−1
0

∑

K∈M

∑

σ∈EK

diam(K)(d−1)p+β(p−1)νK

(
|FK,σ|

1

p−1

)p

m(K)

≤ νp−1
0 size(D)(d−1)p+β(p−1)

∑

K∈M

∑

σ∈EK

νK

(
|FK,σ |

1

p−1

)p

m(K) (4.18)

since (d − 1)p + β(p − 1) > 0 (because β > −p′(d − 1)). Hence, by the assumptions and Lemma 4.1,
Mp(D, ν, F ) → 0 (and is thus bounded) as size(D) → 0. Moreover,

M1(D, ν, F ) =
∑

K∈M

∑

σ∈EK

diam(K)d−1νK |FK,σ|
1

p−1 m(K)

≤
(
∑

K∈M

∑

σ∈EK

diam(K)(d−1)pνp
K

(
|FK,σ |

1

p−1

)p

m(K)

) 1

p
(
∑

K∈M

∑

σ∈EK

m(K)

) 1

p′

≤ Mp(D, ν, F )regul(D)
1

p′ m(Ω)
1

p′

and therefore M1(D, ν, F ) → 0 as size(D) → 0. Since v is bounded in Lp(Ω)d (Lemma 4.1), the as-
sumptions of Lemma 3.3 are fulfilled and there exists ū ∈ W 1,p

0 (Ω) such that, up to a subsequence, as
size(D) → 0, u→ ū weakly in Lp(Ω) and strongly in Lq(Ω) for all q < p, and v → ∇ū weakly in Lp(Ω)d.
We now prove that ū is a weak solution to (1.1); since this solution is unique, this will prove that the
whole sequences (u,v), not only subsequences, converge.
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Step 2: the limit is a solution to (1.1).
To prove that ū is a weak solution to (1.1), since the problem is non-linear and since we only have the
weak convergence of v, we copy the monotony method of Minty-Browder used in [22].
Let ϕ ∈ C∞

c (Ω) and denote [∇ϕ]K the mean value of ∇ϕ on the control volume K. By the monotony
hypothesis (1.4), we can write

0 ≤
∑

K∈M

m(K)(aK([∇ϕ]K) − aK(vK)) · ([∇ϕ]K − vK). (4.19)

We have

∑

K∈M

m(K)aK([∇ϕ]K) · ([∇ϕ]K − vK) =

∫

Ω

aD(x, (∇ϕ)D(x)) · ((∇ϕ)D(x) − v(x)) dx

where aD(·, ξ) is the piecewise constant function equal to aK(ξ) on each control volume K and (∇ϕ)D
is the piecewise constant function equal to [∇ϕ]K on each control volume K. Lemma 8.3 shows that,
as size(D) → 0, aD(·, (∇ϕ)D) → a(·,∇ϕ) strongly in Lp′

(Ω)d, and it is quite clear that (∇ϕ)D → ∇ϕ
strongly in Lp(Ω)d. Since v → ∇ū weakly in Lp(Ω)d, we deduce that

∑

K∈M

m(K)aK([∇ϕ]K) · ([∇ϕ]K −vK) →
∫

Ω

a(x,∇ϕ(x)) · (∇ϕ(x)−∇ū(x)) dx as size(D) → 0. (4.20)

By (2.4) and (2.3), we find

∑

K∈M

m(K)aK(vK) · [∇ϕ]K =
∑

K∈M

∑

σ∈EK

FK,σ(xσ − xK) · [∇ϕ]K

=
∑

σ∈Eint , σ=K|L

FK,σ ([∇ϕ]K · (xσ − xK) + [∇ϕ]L · (xL − xσ))

(we take size(D) small enough so that ϕ = 0 on the control volumes which touch the boundary of Ω).
Since ϕ is regular, we have

[∇ϕ]K · (xσ − xK) + [∇ϕ]L · (xL − xσ) = ϕ(xL) − ϕ(xK) +RK,L (4.21)

where |RK,L| ≤ C17(diam(K)2 + diam(L)2) with C17 only depending on ϕ. Hence, gathering by control
volumes thanks to (2.3), using (2.5) and recalling that ϕ(xK) = 0 if EK ∩ Eext 6= ∅,

∑

K∈M

m(K)aK(vK) · [∇ϕ]K =
∑

σ∈Eint , σ=K|L

FK,σ(ϕ(xL) − ϕ(xK)) + T7

= −
∑

K∈M

ϕ(xK)
∑

σ∈EK

FK,σ + T7

=
∑

K∈M

ϕ(xK)

∫

K

f(x) dx + T7 (4.22)

where |T7| ≤ C17

∑
K∈M

∑
σ∈EK

diam(K)2|FK,σ|. We now write

|T7| ≤ C17

∑

K∈M

∑

σ∈EK

(
diam(K)2(νKm(K))

− 1

p′

)
×
(
|FK,σ |(νKm(K))

1

p′

)

≤ C17

(
∑

K∈M

∑

σ∈EK

diam(K)2p(νKm(K))
− p

p′

) 1

p
(
∑

K∈M

∑

σ∈EK

|FK,σ|p
′

νKm(K)

) 1

p′

. (4.23)
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By Lemma 4.1, the second factor of this right-hand side is bounded. Moreover,

∑

K∈M

∑

σ∈EK

diam(K)2p(νKm(K))
− p

p′ ≤ ν
− p

p′

0 regul(D)
∑

K∈M

diam(K)
2p−β p

p′ m(K)
− p

p′
−1

m(K)

≤ ν
− p

p′

0 regul(D)
∑

K∈M

diam(K)2p−β(p−1)m(K)−pm(K).

Using (2.1), and since (2 − d)p− β(p− 1) > 0 (because β < −p′(d− 2)), we find

∑

K∈M

∑

σ∈EK

diam(K)2p(νKm(K))
− p

p′ ≤ ν
− p

p′

0 regul(D)
regul(D)p

ωp
d

∑

K∈M

diam(K)2p−β(p−1)−dpm(K)

≤ ν
− p

p′

0 regul(D)
regul(D)p

ωp
d

size(D)(2−d)p−β(p−1)m(Ω).

This last term tends to 0 as size(D) → 0 (recall that regul(D) is bounded), and we deduce from (4.23)
that T7 → 0 as size(D) → 0. Coming back to (4.22), we obtain

∑

K∈M

m(K)aK(vK) · [∇ϕ]K →
∫

Ω

f(x)ϕ(x) dx as size(D) → 0. (4.24)

We have seen in the proof of Lemma 4.1 that (u,v, F ), solution to ((2.2),(2.3),(2.4),(2.5)), satisfies (4.16);
in particular,

∑

K∈M

m(K)aK(vK) · vK ≤
∫

Ω

f(x)u(x) dx →
∫

Ω

f(x)ū(x) dx as size(D) → 0. (4.25)

Thanks to (4.20), (4.24) and (4.25), we can take the limsup of (4.19) as size(D) → 0 and we find

0 ≤
∫

Ω

a(x,∇ϕ(x)) · (∇ϕ(x) −∇ū(x)) dx −
∫

Ω

f(x)ϕ(x) dx +

∫

Ω

f(x)ū(x) dx

=

∫

Ω

a(x,∇ϕ(x)) · (∇ϕ(x) −∇ū(x)) dx −
∫

Ω

f(x)(ϕ(x) − ū(x)) dx. (4.26)

It is well known that such an inequality, valid for all regular ϕ, implies that ū is a weak solution of (1.1);
for the sake of completeness, we nevertheless make the proof.
Let ψ ∈ C∞

c (Ω), t > 0 and (ϕn)n≥1 be functions in C∞
c (Ω) which converge in W 1,p

0 (Ω) to ū + tψ. We
can apply (4.26) to ϕn and pass to the limit n → ∞, thanks to (1.2) and (1.5) (for example, we extract
a subsequence such that ∇ϕn → ∇ū+ t∇ψ a.e. and we use Vitali theorem); this gives

∫

Ω

a(x,∇ū(x) + t∇ψ(x)) · (t∇ψ(x)) dx −
∫

Ω

tf(x)ψ(x) dx ≥ 0.

Dividing this inequality by t and letting t → 0+ (still using (1.2) and (1.5)), we obtain
∫
Ω a(x,∇ū(x)) ·

∇ψ(x) dx −
∫
Ω f(x)ψ(x) dx ≥ 0. Replacing ψ by −ψ, we see that this inequality is in fact an equality,

which proves that ū is a weak solution to (1.1).

Step 3: Strong convergence of v.
It remains to prove that v → ∇ū strongly in Lp(Ω)d. As usual, we only prove the strong convergence
of a subsequence and we use the uniqueness of the limit to obtain the strong convergence of the whole
sequence. The methods used here are quite similar to the classical techniques of non-linear elliptic
equations; however, since we cannot directly put a discretization of ū as a test function in our finite
volume scheme (because ū is not regular enough), we have to adapt these techniques by taking regular
functions which approximate ū.
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Let us first prove that, up to a subsequence, v → ∇ū almost everywhere on Ω. Let ε ∈]0, 1[ and take
(ϕj)j≥1 ∈ C∞

c (Ω) such that ϕj → ū in W 1,p
0 (Ω) as j → ∞. We have

∫

Ω

(a(x,∇ū(x)) − a(x,v(x)))·(∇ū(x) − v(x)) dx

≤ ||a(·,∇ū) − a(·,∇ϕj)||Lp′(Ω)d

(
||∇ū||Lp(Ω)d + ||v||Lp(Ω)d

)

+

∫

Ω

(a(x,∇ϕj(x)) − a(x,v(x))) · (∇ū(x) − v(x)) dx

≤ ||a(·,∇ū) − a(·,∇ϕj)||Lp′(Ω)d

(
||∇ū||Lp(Ω)d + ||v||Lp(Ω)d

)

+
(
||a(·,∇ϕj)||Lp′(Ω)d + ||a(·,v)||Lp′ (Ω)d

)
||∇ū−∇ϕj ||Lp(Ω)d

+

∫

Ω

(a(x,∇ϕj(x)) − a(x,v(x))) · (∇ϕj(x) − v(x)) dx.

Since v and ∇ϕj are bounded in Lp(Ω)d, (1.5) shows that a(·,v) and a(·,∇ϕj) are bounded in Lp′

(Ω)d,

independently of j or D. Moreover, since ϕj → ū in W 1,p
0 (Ω), (1.2) and (1.5) allow to see that a(·,∇ϕj) →

a(·,∇ū) in Lp′

(Ω)d as j → ∞. Hence, we can fix j = J not depending on D such that ||ϕJ −ū||W 1,p
0

(Ω) ≤ ε

and
∫

Ω

(a(x,∇ū(x)) − a(x,v(x)))·(∇ū(x) − v(x)) dx

≤ ε+

∫

Ω

(a(x,∇ϕJ (x)) − a(x,v(x))) · (∇ϕJ (x) − v(x)) dx.

We have (∇ϕJ )D → ∇ϕJ in Lp(Ω)d as size(D) → 0, which implies a(·, (∇ϕJ )D) → a(·,∇ϕJ ) in Lp′

(Ω)d.
Using the fact that v is bounded in Lp(Ω)d, we deduce that, for size(D) small enough,

∫

Ω

(a(x,∇ū(x))−a(x,v(x))) · (∇ū(x) − v(x)) dx

≤ 2ε+

∫

Ω

(a(x, (∇ϕJ )D(x)) − a(x,v(x))) · ((∇ϕJ )D(x) − v(x)) dx. (4.27)

But
∫

Ω

(a(x, (∇ϕJ )D(x)) − a(x,v(x)))·((∇ϕJ )D(x) − v(x)) dx

=
∑

K∈M

m(K)(aK([∇ϕJ ]K) − aK(vK)) · ([∇ϕJ ]K − vK),

which is the right-hand side of (4.19) with ϕ = ϕJ . The reasoning made in Step 2 (recall that ϕJ is
regular) shows that this term is bounded from above by a quantity which tends, as size(D) → 0, to∫
Ω
a(x,∇ϕJ (x)) · (∇ϕJ (x) − ∇ū(x)) dx −

∫
Ω
f(x)(ϕJ (x) − ū(x)) dx. Since we have chosen ϕJ so that

||ϕJ − ū||W 1,p
0

(Ω) ≤ ε, (1.5) implies

∣∣∣∣
∫

Ω

a(x,∇ϕJ (x)) · (∇ϕJ (x) −∇ū(x)) dx −
∫

Ω

f(x)(ϕJ (x) − ū(x)) dx

∣∣∣∣

≤
(
||a(·,∇ϕJ )||Lp′ (Ω)d + ||f ||Lp′(Ω)

)
ε

≤
(
||b||Lp′(Ω) + Λ||∇ϕJ ||p−1

Lp(Ω)d + ||f ||Lp′(Ω)

)
ε

≤ C18ε
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where C18 only depends on p, b, Λ, f and ū (we have used the bound ||∇ϕJ ||Lp(Ω)d ≤ 1 + ||∇ū||Lp(Ω)d).
Hence, if size(D) is small enough,

∫
Ω(a(x, (∇ϕJ )D(x)) − a(x,v(x))) · ((∇ϕJ )D(x) − v(x)) dx ≤ C18ε+ ε

and (4.27) gives ∫

Ω

(a(x,∇ū(x)) − a(x,v(x))) · (∇ū(x) − v(x)) dx ≤ (C18 + 3)ε.

Since the integrand is nonnegative (see (1.4)), this proves that (a(·,∇ū)−a(·,v)) · (∇ū−v) → 0 in L1(Ω)
as size(D) → 0. Up to a subsequence, the convergence therefore also holds almost everywhere on Ω. Let
x be such that, along this subsequence,

(a(x,∇ū(x)) − a(x,v(x))) · (∇ū(x) − v(x)) → 0 as size(D) → 0. (4.28)

We have, by (1.3) and (1.5),

α0|v(x)|p ≤ a(x,v(x)) · v(x)

= (a(x,∇ū(x)) − a(x,v(x))) · (∇ū(x) − v(x)) − a(x,∇ū(x)) · (∇ū(x) − v(x))

+a(x,v(x)) · ∇ū(x)
≤ (a(x,∇ū(x)) − a(x,v(x))) · (∇ū(x) − v(x)) + C19 + C19|v(x)|

+C19|b(x)| + C19Λ|v(x)|p−1

where C19 depends on ū and x but not on v. The first term of this right-hand side being bounded (it
tends to 0), this inequality shows that v(x) stays bounded as size(D) → 0 (the power of |v(x)| in the left-
hand side is greater than the powers in the right-hand side). Let ξ be the limit of a subsequence of v(x);
passing to the limit (along this new subsequence) in (4.28), thanks to (1.2), we obtain (a(x,∇ū(x)) −
a(x, ξ)) · (∇ū(x)− ξ) = 0 and thus, by (1.4), ξ = ∇ū(x); since this is true for all converging subsequences
of v(x), this shows that, along the subsequence for which (4.28) holds almost everywhere on Ω, we have
v(x) → ∇ū(x).

We can now conclude that v → ∇ū strongly in Lp(Ω)d. We first notice that
∫

Ω

a(x,v(x)) · v(x) dx =
∑

K∈M

m(K)aK(vK) · vK ,

so that (4.25) implies, since ū is a weak solution to (1.1),

lim sup
size(D)→0

∫

Ω

a(x,v(x)) · v(x) dx ≤
∫

Ω

f(x)ū(x) dx =

∫

Ω

a(x,∇ū(x)) · ∇ū(x) dx. (4.29)

Using (1.2) and the fact that v → ∇ū almost everywhere, we have a(·,v) ·v → a(·,∇ū) · ∇ū a.e. on Ω as
size(D) → 0; these functions being nonnegative (see (1.3)), Fatou’s lemma gives

∫

Ω

a(x,∇ū(x)) · ∇ū(x) dx ≤ lim inf
size(D)→0

∫

Ω

a(x,v(x)) · v(x) dx. (4.30)

Gathering (4.29) and (4.30), we deduce
∫

Ω

a(x,v(x)) · v(x) dx →
∫

Ω

a(x,∇ū(x)) · ∇ū(x) dx as size(D) → 0.

Since the integrand a(·,v) ·v is nonnegative and converges a.e. to a(·,∇ū) ·∇ū ∈ L1(Ω), we see by Lemma
8.4 that a(·,v) ·v converges in L1(Ω) as size(D) → 0; in particular, a(·,v) · v is equi-integrable and (1.3)
thus shows that |v|p is also equi-integrable. Vitali theorem then concludes the proof.

Remark 4.1 If the sequence of discretizations satisfies: there exists C > 0 such that for all n ≥ 1 and all

(K,L) ∈ Mn neighboring control volumes we have diam(K)
diam(L) ≤ C, then we can prove the strong convergence

in Lp(Ω) of un to ū (by strengthening Lemma 3.1, see [13]). However, such an hypothesis restricts the
sequences of discretizations we can choose (for example, if we want to refine the grids, it must be done
by layers).
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5 More schemes

5.1 Non-monotone operators

We can apply, with minor modifications, the scheme of Section 2 to non-monotone equations of the kind
{

−div(a(x, ū,∇ū)) = f in Ω ,
ū = 0 on ∂Ω

(5.1)

where f satisfies (1.6) and

a : Ω × R × R
d → R

d is measurable w.r.t. its first variable
and continuous w.r.t. its last two variables ,

(5.2)

∃α0 > 0 such that a(x, s, ξ) · ξ ≥ α0|ξ|p for a.e. x ∈ Ω, all s ∈ R and all ξ ∈ R
d , (5.3)

(a(x, s, ξ) − a(x, s, η)) · (ξ − η) > 0 for a.e. x ∈ Ω, all s ∈ R and all ξ 6= η , (5.4)

∃b ∈ Lp′

(Ω) , ∃r ∈ [1, p[ , ∃Λ > 0 such that |a(x, s, ξ)| ≤ b(x) + Λ|s|r−1 + Λ|ξ|p−1 ,
for a.e. x ∈ Ω, all s ∈ R and all ξ ∈ R

d.
(5.5)

Under these assumptions, there exists at least one solution to (5.1). Except in some special cases (see
e.g. [6]), uniqueness is lost.

The scheme we consider is (2.2), (2.3), (2.5) and the following natural replacement of (2.4):

m(K)aK(uK ,vK) =
∑

σ∈EK

FK,σ(xσ − xK) , ∀K ∈ M , (5.6)

where aK(s, ξ) = 1
m(K)

∫
K
a(x, s, ξ) dx.

The space Lp,ν(D) does not change (it was solely based on (2.2)) and we can therefore use Lemmas
3.1, 3.2 and 3.3. Existence of a solution to ((2.2),(2.3),(2.5),(5.6)) is obtained exactly as in the proof of
Theorem 2.1; however, in general, uniqueness of the solution fails (as for (5.1)).

The mixed finite volume scheme for (5.1) then converges according to the following result. Notice that,
since there is not uniqueness of the solution to the limit problem, we can only prove the convergence of
a subsequence of approximations.

Theorem 5.1 Assume Hypotheses (5.2)—(5.5) and (1.6). Let (Dn)n≥1 be a sequence of admissible
discretizations of Ω such that size(Dn) → 0 and (regul(Dn))n≥1 is bounded. Let ν0 > 0 and β ∈] −
p′(d − 1),−p′(d − 2)[. Let (un,vn, Fn) be a solution to ((2.2),(2.3),(2.5),(5.6)) for D = Dn and νK =
ν0diam(K)β for all K ∈ Mn.
Then there exists a weak solution ū ∈W 1,p

0 (Ω) to (5.1) such that, up to a subsequence, un → ū weakly in
Lp(Ω) and strongly in Lq(Ω) for all q < p, and vn → ∇ū strongly in Lp(Ω)d.

Proof of Theorem 5.1
We drop the indices n. Under the assumptions on D and ν, we obtain the same estimate on the solutions
to ((2.2),(2.3),(2.5),(5.6)) as in Lemma 4.1 (using (5.3) instead of (1.3)). Thus, as in Step 1 of the proof
of Theorem 2.2, we have a subsequence of (u,v) which converges, as size(D) → 0 and regul(D) stays
bounded, to some (ū,∇ū) weakly in Lp(Ω)d+1, with ū ∈W 1,p

0 (Ω). We also have u→ ū strongly in Lq(Ω)
for all q < p and therefore, up to another subsequence, a.e. on Ω.

To prove that ū is a solution to (5.1), we replace (4.19) by

0 ≤
∑

K∈M

m(K) (aK(uK , [∇ϕ]K) − aK(uK ,vK)) · ([∇ϕ]K − vK) (5.7)
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(see (5.4)) and the only term whose study of convergence differs from what is done in the proof of Theorem
2.2 is

∑

K∈M

m(K)aK(uK , [∇ϕ]K) · ([∇ϕ]K − vK) =

∫

Ω

aD(x, u(x), (∇ϕ)D(x)) · ((∇ϕ)D(x) − v(x)) dx

(where aD(x, s, ξ) = aK(s, ξ) if x ∈ K). To prove the convergence of this term to
∫
Ω
a(x, ū(x),∇ϕ(x)) ·

(∇ϕ(x) − ∇ū(x)) dx, we only need to prove that aD(·, u, (∇ϕ)D) → a(·, ū,∇ϕ) strongly in Lp′

(Ω)d as
size(D) → 0 (since (∇ϕ)D → ∇ϕ and v → ∇ū weakly in Lp(Ω)d). This is done using the same techniques
as in the proof of Lemma 8.3: define (a(·, ū,∇ϕ))D as the piecewise constant function whose value on a
control volume K is the mean value of a(·, ū,∇ϕ) on K; we have, the same way we prove (8.1),

∫

Ω

|aD(x, u(x), (∇ϕ)D(x)) − (a(·, ū,∇ϕ))D(x)|p′

dx

≤
∫

Ω

|a(y, u(y), (∇ϕ)D(y)) − a(y, ū(y),∇ϕ(y))|p′

dy. (5.8)

For a.e. y ∈ Ω and as size(D) → 0, we have (∇ϕ)D(y) → ∇ϕ(y) and u(y) → ū(y) so that, by (5.2),
|a(y, u(y), (∇ϕ)D(y)) − a(y, ū(y),∇ϕ(y))|p′ → 0. By (5.5), we can write

|a(y, u(y), (∇ϕ)D(y))−a(y, ū(y),∇ϕ(y))|p′

≤ C20b(y)
p′

+ C20||∇ϕ||p∞ + C20|u(y)|p
′(r−1) + C20|ū(y)|p

′(r−1)

where C20 only depends on p and Λ. But 0 ≤ p′(r − 1) < p′(p − 1) = p and u is bounded in Lp(Ω);
hence, |u|p′(r−1) is equi-integrable and Vitali theorem shows that the right-hand side of (5.8) tends to 0 as
size(D) → 0. As a(·, ū,∇ϕ) ∈ Lp′

(Ω)d, we have (a(·, ū,∇ϕ))D → a(·, ū,∇ϕ) in Lp′

(Ω)d as size(D) → 0,
which concludes the proof of the convergence of aD(·, u, (∇ϕ)D) to a(·, ū,∇ϕ) in Lp′

(Ω)d.
Passing to the limsup in (5.7), we arrive at the equivalent of (4.26):

0 ≤
∫

Ω

a(x, ū(x),∇ϕ(x)) · (∇ϕ(x) −∇ū(x)) dx −
∫

Ω

f(x)(ϕ(x) − ū(x)) dx

and the conclusion that ū is a weak solution to (5.1) follows as in the proof of Theorem 2.2.

To obtain the strong convergence of v to ∇ū, we reason as in Step 3 of the proof of Theorem 2.2 with
a(·, u, ·) instead of a(·, ·): taking (ϕj)j≥1 ∈ C∞

c (Ω) which converges to ū in W 1,p
0 (Ω), we write

∫

Ω

(a(x, u(x),∇ū(x)) − a(x, u(x),v(x))) · (∇ū(x) − v(x)) dx

≤ ||a(·, u,∇ū) − a(·, u,∇ϕj)||Lp′ (Ω)d

(
||∇ū||Lp(Ω)d + ||v||Lp(Ω)d

)

+

∫

Ω

(a(x, u(x),∇ϕj(x)) − a(x, u(x),v(x))) · (∇ū(x) − v(x)) dx

≤ ||a(·, u,∇ū) − a(·, u,∇ϕj)||Lp′ (Ω)d

(
||∇ū||Lp(Ω)d + ||v||Lp(Ω)d

)

+
(
||a(·, u,∇ϕj)||Lp′ (Ω)d + ||a(·, u,v)||Lp′ (Ω)d

)
||∇ū−∇ϕj ||Lp(Ω)d

+

∫

Ω

(a(x, u(x),∇ϕj(x)) − a(x, u(x),v(x))) · (∇ϕj(x) − v(x)) dx.

Since u → ū a.e. on Ω and |u|p′(r−1) is equi-integrable as size(D) → 0, and since ∇ϕj → ∇ū in Lp(Ω)d

as j → ∞, it is possible to prove (for example by way of contradiction), using (5.2) and (5.5), that
a(·, u,∇ϕj) → a(·, u,∇ū) in Lp′

(Ω)d as j → ∞, uniformly with respect to u and thus D (recall that,
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though we do not indicate it, u and D are considered along a sequence such that size(D) → 0). Therefore,
we can take j = J not depending on D such that ||ϕJ − ū||W 1,p

0
(Ω) ≤ ε and

∫

Ω

(a(x, u(x),∇ū(x))−a(x, u(x),v(x))) · (∇ū(x) − v(x)) dx

≤ ε+

∫

Ω

(a(x, u(x),∇ϕJ (x)) − a(x, u(x),v(x))) · (∇ϕJ (x) − v(x)) dx.

Still using the fact that u converges a.e. and |u|p′(r−1) is equi-integrable as size(D) → 0, we see that
a(·, u, (∇ϕJ )D) − a(·, u,∇ϕJ ) → 0 in Lp′

(Ω)d as size(D) → 0 and we arrive at the equivalent of (4.27):
for size(D) small enough,
∫

Ω

(a(x, u(x),∇ū(x))−a(x, u(x),v(x))) · (∇ū(x) − v(x)) dx

≤ 2ε+

∫

Ω

(a(x, u(x), (∇ϕJ )D)(x) − a(x, u(x),v(x))) · ((∇ϕJ )D(x) − v(x)) dx.

This last term is the right-hand side of (5.7) with ϕ = ϕJ , and the reasoning at the beginning of the
proof shows that it is bounded from above by a quantity which tends to

∫
Ω
a(x, ū(x),∇ϕJ (x)) ·(∇ϕJ (x)−

∇ū(x)) dx −
∫
Ω f(x)(ϕJ (x) − ū(x)) dx as size(D) → 0. We deduce, as in the proof of Theorem 2.2, that

(a(·, u,∇ū) − a(·, u,v)) · (∇ū − v) → 0 in L1(Ω) as size(D) → 0, which gives, up to a subsequence, the
convergence a.e. of v to ∇ū. We have

∫

Ω

a(x, u(x),v(x)) · v(x) dx =
∑

K∈M

m(K)aK(uK ,vK) · vK ≤
∫

Ω

f(x)u(x) dx

(this inequality, obtained as the one in (4.25), was already necessary to take the limsup of (5.7)). Hence,

lim sup
size(D)→0

∫

Ω

a(x, u(x),v(x)) · v(x) dx ≤
∫

Ω

f(x)ū(x) dx =

∫

Ω

a(x, ū(x),∇ū(x)) · ∇ū(x) dx

and, using the a.e. convergences of u and v, Fatou’s lemma implies
∫

Ω

a(x, ū(x),∇ū(x)) · ∇ū(x) dx ≤ lim inf
size(D)→0

∫

Ω

a(x, u(x),v(x)) · v(x) dx.

As in the proof of Theorem 2.2, we then obtain the convergence of a(·, u,v) · v in L1(Ω), and thus its
equi-integrability as size(D) → 0. (5.3) therefore gives the equi-integrability of |v|p and concludes the
proof.

5.2 Non-penalized scheme

We can also study a non-penalized version of the scheme of Section 2, that is to say the scheme for (1.1)
defined by (2.3), (2.4), (2.5) and

vK · (xσ − xK) + vL · (xL − xσ) = uL − uK , ∀σ = K|L ∈ Eint,

vK · (xσ − xK) = −uK , ∀K ∈ M, ∀σ ∈ EK ∩ Eext

(5.9)

(i.e. (2.2) with νK = 0). For general discretizations, it is not possible to prove a priori estimates on the
solutions to ((2.3),(2.4),(2.5),(5.9)) (2). However, restricting ourselves to “simplicial discretizations” as
defined below, we can prove the existence and uniqueness of an approximate solution, and its convergence
to the weak solution of (1.1).

2Consider the linear case on cartesian meshes; take one control volume K and put FK,σ = +1 on two parallel sides and

−1 on the other two sides; extend then these fluxes by conservativity: this gives an element in the kernel of the system.

Hence, the fluxes cannot be estimated; however, one can see that estimates on u and v still hold, but the lack of estimates

on the fluxes prevents to pass to the limit.
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Definition 5.1 We say that an admissible discretization D of Ω is simplicial if, for all K ∈ M, K is the
interior of the convex hull of d+1 points of R

d in general position (not contained in an affine hyperplane)
and Card(EK) = d+ 1 (the smallest possible number of edges for a control volume).

Remark 5.1 In dimension d = 2, simplicial discretizations are the ones made of triangles.

Theorem 5.2 Assume Hypotheses (1.2)—(1.6). Let (Dn)n≥1 be a sequence of admissible discretizations
of Ω such that size(Dn) → 0 and (regul(Dn))n≥1 is bounded. We also assume that each discretization Dn

is simplicial.
Then, for all n ≥ 1, there exists a unique solution (un,vn, Fn) to ((2.3),(2.4),(2.5),(5.9)) for D = Dn.
Moreover, if ū ∈ W 1,p

0 (Ω) is the weak solution to (1.1) then, as n → ∞, un → ū weakly in Lp(Ω) and
strongly in Lq(Ω) for all q < p, and vn → ∇ū strongly in Lp(Ω)d.

Remark 5.2 We can also, in the case of simplicial discretizations, prove the convergence of a non-
penalized version of the scheme presented in Subsection 5.1 for non-monotone operators.

Remark 5.3 In fact, sequences of simplicial discretizations (Dn)n≥1 such that (regul(Dn))n≥1 is bounded
satisfy the assumption in Remark 4.1. In Theorem 5.2, the convergence of (un)n≥1 to ū is therefore strong
in Lp(Ω).

Proof of Theorem 5.2
Notice first that, though the space Lp(D), defined as the set of functions (u,v) ∈ HD ×Hd

D which satisfy
(5.9), is different from Lp,ν(D), one can verify that all the results of Section 3 are still true for Lp(D)
(even for discretizations not made of simplicial meshes), provided that we replace all the νK by 0 (in
which case the terms M1 and Mp vanish and there is no mention of F ).

As usual, we drop the indices n. If FK = (FK,σ)σ∈EK
and AK is the (d + 1) × (d + 1) matrix whose

columns are the vectors (1,xσ − xK)T (σ ∈ EK), then Equations (2.4)-(2.5) can be written

AKFK =

(
−
∫
K
f(x) dx

m(K)aK(vK)

)
. (5.10)

It is shown in [12, proof of Lemma 6.4] that AK is invertible and that

||A−1
K || ≤ C21 sup(1, diam(K)−1) (5.11)

with C21 only depending on d and a bound on regul(D) (recall that there are exactly d + 1 edges
σ ∈ EK , so the norms we choose on the spaces R

Card(EK) = R
d+1 involved do not matter; in the

following, we take the norms ||FK || = (
∑

σ∈EK
|FK,σ|p

′

)1/p′

and ||(−
∫

K f(x) dx,m(K)aK(vK))T || =

|
∫

K
f(x) dx| + |m(K)aK(vK)|).

Step 1: existence and uniqueness of an approximate solution.
Thanks to (5.10), we can eliminate the fluxes in the non-linear system ((2.3),(2.4),(2.5),(5.9)), which can
therefore be considered as a system on (u,v). Existence of a solution is obtained, as in the proof of
Theorem 2.1, through a priori estimates on this system where aK(vK) has been replaced by taK(vK) +
(1 − t)vK . Reasoning as in Step 1 of the proof of Theorem 2.1, we arrive at (4.12) which reads, since
νK = 0,

λD
(
tα0||(vK)||pl1 + (1 − t)||(vK)||2l1

)
≤ C7||(uK)||l1 .

In our framework, Lemma 3.1 gives ||u||Lp(Ω) ≤ C1||v||Lp(Ω)d , and we thus deduce an estimate (indepen-
dent on t) on v which gives, in turn, an estimate on u. Existence of a solution to ((2.3),(2.4),(2.5),(5.9))
follows from these estimates and the topological degree.
Uniqueness is done exactly as in Step 2 of the proof of Theorem 2.1: even with νK = 0, the same
inequalities implies v = v′ which gives, by (5.9), u = u′ and, using (5.10), F = F ′.
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Step 2: convergence of the approximate solution.
The estimate of Lemma 4.1 is still true for νK = 0 (recall that, in this case, Lemma 3.1 bounds ||u||Lp(Ω)

solely in terms of ||v||Lp(Ω)d ). This shows that v is bounded in Lp(Ω)d and, applying Lemma 3.3 with

νK = 0, we find ū ∈ W 1,p
0 (Ω) such that, up to a subsequence and as size(D) → 0, u→ ū weakly in Lp(Ω)

and strongly in Lq(Ω) for all q < p, and v → ∇ū weakly in Lp(Ω)d.
To prove that ū is a weak solution to (1.1), we use the same argument as in the proof of Theorem 2.2.
Starting from (4.19), the only term whose convergence needs a special work is

∑
K∈M m(K)aK(vK) ·

[∇ϕ]K , because we have yet no estimate on the fluxes (since νK = 0, Lemma 4.1 says nothing on
(FK,σ)K∈M , σ∈EK

). We still write

∑

K∈M

m(K)aK(vK) · [∇ϕ]K =
∑

K∈M

ϕ(xK)

∫

K

f(x) dx+ T7

with |T7| ≤ C17

∑
K∈M

∑
σ∈EK

diam(K)2|FK,σ|. By (2.1),

|T7| ≤ C17

∑

K∈M

∑

σ∈EK

diam(K)2m(K)−
1

p |FK,σ|m(K)
1

p

≤ C17

(
∑

K∈M

∑

σ∈EK

diam(K)2p′

m(K)−
p′

p |FK,σ|p
′

) 1

p′

(
∑

K∈M

∑

σ∈EK

m(K)

) 1

p

≤ C17regul(D)
1

p m(Ω)
1

p



regul(D)
p′

p

ω
p′

p

d

∑

K∈M

∑

σ∈EK

diam(K)2p′−d p′

p |FK,σ |p
′





1

p′

. (5.12)

By (5.10) and (5.11) we have, taking size(D) ≤ 1 and using (1.5),

(
∑

σ∈EK

|FK,σ|p
′

) 1

p′

= ||FK || ≤ C21diam(K)−1

(∫

K

|f(x)| dx+ m(K)|aK(vK)|
)

≤ C21diam(K)−1

(∫

K

|f(x)| dx+

∫

K

b(x) dx + m(K)Λ|vK |p−1

)
.

Hence,

∑

σ∈EK

|FK,σ|p
′ ≤ C22diam(K)−p′

(∫

K

(|f(x)| + b(x) + |v(x)|p−1) dx

)p′

≤ C22diam(K)−p′

m(K)p′−1

∫

K

(|f(x)| + b(x) + |v(x)|p−1)p′

dx

≤ C22ω
p′−1
d diam(K)d(p′−1)−p′

∫

K

(|f(x)| + b(x) + |v(x)|p−1)p′

dx

where C22 only depends on d, p, Λ and a bound on regul(D). (5.12) then implies

|T7| ≤ C23

(
∑

K∈M

diam(K)2p′−d p′

p
+d(p′−1)−p′

∫

K

(|f(x)| + b(x) + |v(x)|p−1)p′

dx

) 1

p′

where C23 only depends on ϕ, d, p, Ω, Λ and a bound on regul(D). But 2p′ − dp′

p + d(p′ − 1) − p′ =

p′ + dp′(1 − 1
p ) − d = p′, so that

|T7| ≤ C23size(D)

(
∑

K∈M

∫

K

(|f(x)| + b(x) + |v(x)|p−1)p′

dx

) 1

p′
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= C23size(D)

(∫

Ω

(|f(x)| + b(x) + |v(x)|p−1)p′

dx

) 1

p′

.

Since v is bounded in Lp(Ω)d, |v|p−1 is bounded in Lp′

(Ω) and this inequality proves that T7 → 0 as
size(D) → 0. We then conclude as in the proof of Theorem 2.2.

5.3 Right-hand sides in W
−1,p′(Ω)

The natural space for the right-hand side of (1.1) is in fact W−1,p′

(Ω) (see [22]); besides, such terms can
naturally appear when obtaining conservative equations as (1.1) (see [19]). Following the ideas of [14],
we can adapt our scheme to this setting.

If f ∈ W−1,p′

(Ω), it is known that f = div(G) for some G ∈ Lp′

(Ω)d. Let D be an admissible discretiza-
tion of Ω. For all K ∈ M, we can formally write

∫
K f(x) dx =

∑
σ∈EK

∫
σ G · nK,σ dγ; defining

Gσ =





1

m(K ∪ L)

∫

K∪L

G(x) dx if σ = K|L ∈ Eint ,

1

m(K)

∫

K

G(x) dx if σ ∈ Eext ∩ EK ,

the expression m(σ)Gσ · nK,σ can be seen as a replacement of
∫

σ
G · nK,σ dγ (which is not well defined)

and the finite volume scheme for (1.1) with f = div(G) therefore reads: (2.2), (2.3), (2.4) and

−
∑

σ∈EK

FK,σ =
∑

σ∈EK

m(σ)Gσ · nK,σ, ∀K ∈ M. (5.13)

We then have the following result.

Theorem 5.3 Assume Hypotheses (1.2)—(1.5) and that f = div(G) with G ∈ Lp′

(Ω)d. Let (Dn)n≥1 be
a sequence of admissible discretizations of Ω such that size(Dn) → 0 and (regul(Dn))n≥1 is bounded. Let
ν0 > 0 and β ∈] − p′(d− 1),−p′(d− 2)[.
Then, for all n ≥ 1, there exists a unique solution (un,vn, Fn) to ((2.2),(2.3),(2.4),(5.13)) with D = Dn

and νK = ν0diam(K)β for all K ∈ Mn.
Moreover, if ū ∈ W 1,p

0 (Ω) is the weak solution to (1.1) then, as n → ∞, un → ū weakly in Lp(Ω) and
strongly in Lq(Ω) for all q < p, and vn → ∇ū strongly in Lp(Ω)d.

Proof of Theorem 5.3
We first notice that, since (2.2) has not been modified, the results of Section 3 still hold.

Step 1: existence and uniqueness of the approximate solution.
The existence and uniqueness of a solution to ((2.2),(2.3),(2.4),(5.13)) is a consequence of the proof of
Theorem 2.1 once we notice that, in this proof, fK =

∫
K
f(x) dx can be replaced by any real number

(and in particular
∑

σ∈EK
m(σ)Gσ · nK,σ) without changing the reasoning.

Step 2: estimates on the approximate solution.
In the following, we forget the indices n. To obtain estimates on the solution to ((2.2),(2.3),(2.4),(5.13)),
we make the manipulations at the beginning of the proof of Lemma 4.1 and we arrive at the equivalent
of (4.16), which reads here

∑

K∈M

m(K)aK(vK) · vK +
∑

K∈M

∑

σ∈EK

νKm(K)
(
|FK,σ|

1

p−1

)p

=
∑

K∈M

uK

∑

σ∈EK

m(σ)Gσ · nK,σ. (5.14)
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Let T8 be the right-hand side of this equation. Gathering by edges (notice that Gσ · nK,σ = −Gσ · nL,σ

if σ = K|L), we have T8 =
∑

σ∈E m(σ)Gσ · nK,σ(uK − uL) (we denote σ = K|L if σ ∈ Eint and uL = 0 if
σ ∈ Eext ∩ EK). Hence, by (2.2) and defining vL = νL = FL,σ = 0 if σ ∈ Eext ∩ EK , we find

T8 = −
∑

σ∈E

m(σ)Gσ · nK,σ (vK · (xσ − xK) + vL · (xL − xσ))

−
∑

σ∈E

m(σ)Gσ · nK,σ

(
νKm(K)|FK,σ|

1

p−1
−1FK,σ − νLm(L)|FL,σ|

1

p−1
−1FL,σ

)

= −
∑

K∈M

vK ·
∑

σ∈EK

m(σ)Gσ · nK,σ(xσ − xK)

−
∑

K∈M

∑

σ∈EK

m(σ)Gσ · nK,σνKm(K)|FK,σ |
1

p−1
−1FK,σ

=: T9 + T10.

We have, by (2.1),

|T9| ≤ ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d|vK | |Gσ|

≤ ωd−1regul(D)

ωd

∑

K∈M

∑

σ∈EK

m(K)|vK | |Gσ|

≤ ωd−1regul(D)

ωd

(
∑

K∈M

∑

σ∈EK

m(K)|Gσ|p
′

) 1

p′

(
∑

K∈M

∑

σ∈EK

m(K)|vK |p
) 1

p

and

|T10| ≤ ωd−1

∑

K∈M

∑

σ∈EK

m(K)νKdiam(K)d−1|FK,σ|
1

p−1 |Gσ|

≤ ωd−1

(
∑

K∈M

∑

σ∈EK

m(K)|Gσ |p
′

) 1

p′

×
(
∑

K∈M

∑

σ∈EK

m(K)νp
Kdiam(K)(d−1)p|FK,σ|

p

p−1

) 1

p

. (5.15)

Using Young inequalities, we deduce that for all ε > 0 there exists C24 depending on ε but not on D
(recall that regul(D) is bounded) such that

|T8| ≤ C24

∑

K∈M

∑

σ∈EK

m(K)|Gσ|p
′

+ ε||v||p
Lp(Ω)d + ε

∑

K∈M

∑

σ∈EK

m(K)νp
Kdiam(K)(d−1)p|FK,σ|

p

p−1 .

Let us study the expression involving Gσ: by Jensen’s inequality,

∑

K∈M

∑

σ∈EK

m(K)|Gσ|p
′ ≤

∑

K∈M

∑

σ∈EK

m(K)

m(K ∪ L)

∫

K∪L

|G(x)|p′

dx

≤
∑

K∈M

∑

σ∈EK

(∫

K

|G(x)|p′

dx+

∫

L

|G(x)|p′

dx

)

≤ 2regul(D)
∑

K∈M

∫

K

|G(x)|p′

dx

≤ 2regul(D)||G||p
′

Lp′ (Ω)d
(5.16)
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(we have taken L neighbor of K such that σ = K|L, or L = ∅ if σ ∈ Eext ∩ EK). We deduce that there
exists C25 depending on ε and G, but not on D, such that

|T8| ≤ C25 + ε||v||p
Lp(Ω)d + ε

∑

K∈M

∑

σ∈EK

m(K)νp
Kdiam(K)(d−1)p|FK,σ |

p

p−1 .

Injected in (5.14), this inequality leads to (4.17) and we can conclude, as in the proof of Lemma 4.1, that

||v||Lp(Ω)d and
∑

K∈M

∑
σ∈EK

νK

(
|FK,σ |

1

p−1

)p

m(K) stay bounded as size(D) → 0.

Step 3: convergence of the approximate solution.
Thanks to the preceding estimates, we can reason as in the proof of Theorem 2.2 and we arrive at (4.19).
The convergence (4.20) is obtained as before, and it remains to study the limits of

∑
K∈M m(K)aK(vK) ·

[∇ϕ]K and
∑

K∈M m(K)aK(vK) · vK .

Let us first consider the second expression. By (5.14), we have

∑

K∈M

m(K)aK(vK) · vK ≤ T8 = T9 + T10. (5.17)

Inequalities (5.15) and (5.16) show that |T10| ≤ C26Mp(D, ν, F ) where C26 does not depend on D. But
Mp(D, ν, F ) → 0 as size(D) → 0 (see (4.18)), and thus T10 → 0 as size(D) → 0.

Let ε > 0 and G̃ ∈ C∞
c (Ω)d such that ||G−G̃||Lp′(Ω)d ≤ ε. Let G̃σ be defined as Gσ but using G̃ instead

of G, and let

T11 = −
∑

K∈M

vK ·
∑

σ∈EK

m(σ)G̃σ · nK,σ(xσ − xK)

(i.e. T9 in which Gσ has been replaced by G̃σ). We have, by (2.1),

|T9 − T11| ≤ ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d|vK | |Gσ − G̃σ|

≤ ωd−1regul(D)

ωd

∑

K∈M

∑

σ∈EK

m(K)|vK | |Gσ − G̃σ|

≤ ωd−1regul(D)

ωd

(
∑

K∈M

∑

σ∈EK

m(K)|vK |p
) 1

p
(
∑

K∈M

∑

σ∈EK

m(K)|Gσ − G̃σ|p
′

) 1

p′

≤ ωd−1regul(D)

ωd
regul(D)

1

p ||v||Lp(Ω)d

(
∑

K∈M

∑

σ∈EK

m(K)|Gσ − G̃σ|p
′

) 1

p′

.

The same estimates that lead to (5.16), but applied to G − G̃ instead of G, show that the last term of

this right-hand side is bounded by (2regul(D))1/p′ ||G− G̃||Lp′(Ω)d . Hence,

|T9 − T11| ≤ C27ε (5.18)

where C27 does not depend on ε or D (recall that v is bounded in Lp(Ω)d). Let G̃K = 1
m(K)

∫
K

G̃(x) dx.

Since G̃ is regular we have, for all K ∈ M, by Lemma 8.2,

∑

σ∈EK

m(σ)G̃σ · nK,σ(xσ − xK) =
∑

σ∈EK

m(σ)G̃K · nK,σ(xσ − xK) +
∑

σ∈EK

m(σ)RK,σ · nK,σ(xσ − xK)

= m(K)G̃K +
∑

σ∈EK

m(σ)RK,σ · nK,σ(xσ − xK)
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where |RK,σ| ≤ C28(diam(K)+diam(L)) ≤ 2C28size(D) with C28 depending on G̃ but not on D. Hence,

∣∣∣T11 +
∑

K∈M

m(K)vK · G̃K

∣∣∣

≤ 2C28size(D)ωd−1

∑

K∈M

∑

σ∈EK

diam(K)d|vK |

≤ 2C28size(D)ωd−1regul(D)
regul(D)

ωd
||v||L1(Ω)d → 0 as size(D) → 0. (5.19)

But
∑

K∈M m(K)vK · G̃K =
∫
Ω

v(x) · G̃(x) dx →
∫
Ω
∇ū(x) · G̃(x) dx as size(D) → 0, since v → ∇ū

weakly in Lp(Ω)d. Moreover,

∣∣∣∣
∫

Ω

∇ū(x) · G̃(x) dx −
∫

Ω

∇ū(x) · G(x) dx

∣∣∣∣ ≤ ||∇ū||Lp(Ω)d ||G− G̃||Lp′(Ω)d ≤ ε||∇ū||Lp(Ω)d .

Therefore, by (5.18) and (5.19),

lim sup
size(D)→0

∣∣∣T9 +

∫

Ω

∇ū(x) ·G(x) dx
∣∣∣ ≤ (C27 + ||∇ū||Lp(Ω)d)ε.

Since this is true for all ε > 0 and since C27 does not depend on ε, we deduce that T9 → −
∫
Ω
∇ū(x) ·

G(x) dx as size(D) → 0. Recalling that T10 → 0, we deduce from (5.17) that

lim sup
size(D)→0

∑

K∈M

m(K)aK(vK) · vK ≤ −
∫

Ω

∇ū(x) ·G(x) dx. (5.20)

To study the convergence of
∑

K∈M m(K)aK(vK) · [∇ϕ]K , we make the manipulations that allowed to
write (4.22); here, they give, using (5.13),

∑

K∈M

m(K)aK(vK) · [∇ϕ]K =
∑

K∈M

ϕ(xK)
∑

σ∈EK

m(σ)Gσ · nK,σ + T7

=
∑

σ∈E

m(σ)Gσ · nK,σ(ϕ(xK) − ϕ(xL)) + T7

(where T7 is the same term as in the proof of Theorem 2.2, and thus tends to 0 as size(D) → 0, thanks
to the estimate we have on the fluxes FK,σ). We then re-use (4.21) to find

∑

K∈M

m(K)aK(vK) · [∇ϕ]K

= −
∑

σ∈E

m(σ)Gσ · nK,σ ([∇ϕ]K · (xσ − xK) + [∇ϕ]L · (xL − xσ)) + T12 + T7

= −
∑

K∈M

[∇ϕ]K ·
∑

σ∈EK

m(σ)Gσ · nK,σ(xσ − xK) + T12 + T7 (5.21)

where |T12| ≤ C29

∑
σ∈E m(σ)|Gσ |(diam(K)2 +diam(L)2) with C29 only depending on ϕ. Using the same

techniques as in the convergence of T9 above, it is easy to see that the first term of the right-hand side
of (5.21) tends to −

∫
Ω ∇ϕ(x) ·G(x) dx as size(D) → 0. Moreover,

|T12| ≤ C29

∑

K∈M

diam(K)2
∑

σ∈EK

m(σ)|Gσ |

≤ C29ωd−1size(D)
∑

K∈M

∑

σ∈EK

diam(K)d|Gσ|
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≤ C29ωd−1size(D)
regul(D)

ωd

∑

K∈M

∑

σ∈EK

m(K)|Gσ|

≤ C29ωd−1size(D)
regul(D)

ωd

(
∑

K∈M

∑

σ∈EK

m(K)|Gσ|p
′

) 1

p′

(regul(D)m(Ω))
1

p

and this right-hand side tends to 0 as size(D) → 0, thanks to (5.16). Hence, (5.21) shows that

∑

K∈M

m(K)aK(vK) · [∇ϕ]K → −
∫

Ω

∇ϕ(x) ·G(x) dx as size(D) → 0.

Thanks to this convergence, to (4.20) and to (5.20), we can take the limsup as size(D) → 0 of (4.19) and
we obtain

0 ≤
∫

Ω

a(x,∇ϕ(x)) · (∇ϕ(x) −∇ū(x)) dx +

∫

Ω

G(x) · (∇ϕ(x) −∇ū(x)) dx.

The conclusion that ū is a weak solution to (1.1) with f = div(G) and that v strongly converges to ∇ū
then follows exactly as in the proof of Theorem 2.2.

Remark 5.4 This handling of right-hand sides in W−1,p′

(Ω) can be simultaneously conducted with all
or part of the techniques in the preceding subsections.
Notice however that, to apply the non-penalized scheme to a right-hand side which belongs to W−1,p′

(Ω),
one needs a more precise estimate than (5.11) on the matrix AK : we can see [12, Proof of Lemma 6.4]
that, in fact, the coefficients in the first column of A−1

K are of order 1 (and not diam(K)−1). Hence,
when estimating FK by inverting (5.10) with

∫
K
f(x) dx replaced by

∑
σ∈EK

m(σ)Gσ ·nK,σ, this last term

appears with coefficients of order 1; once we have factorized diam(K)−1, the coefficients of Gσ are of
order diam(K)d ∼ m(K), which is sufficient to obtain a good estimate on the fluxes (see (5.16)).

6 Numerical results

We present here some numerical results. The domain Ω =] − 1, 1[2 is discretized using triangular grids;
each point xK is randomly chosen inside its control volume K. The equation we study is the p-Laplacian:
−div(|∇ū|p−2∇ū) = f , where the right-hand side f is taken so that the exact solution is ū(x, y) =
(x2 − 1)(y2 − 1) (one can check that this right-hand side belongs to Lp′

(Ω) provided that p >
√

2). We
are mainly interested in the way our scheme behaves with respect to p.

Remark 6.1 The non-linear system ((2.2),(2.3),(2.4),(2.5)), or its non-penalized version, is of size
(d + 1)Card(M) + Card(E) (thanks to (2.3), we can consider that there are as many fluxes as there are
edges). This is quite big; however, if we compute its solution via a Newton method (which requires the
resolution of a linearized version of this system), we can use the hybridization method of [12] to reduce
the linear systems to solve, at each iteration of the Newton method, to systems of size Card(Eint).
Notice that, strictly speaking, the function G defining the system ((2.2),(2.3),(2.4),(2.5)) is not regular if

p > 2 (because of the term |FK,σ|
1

p−1
−1FK,σ), which could be considered as an issue for its linearization

in the Newton method. However, the set where G is not regular is very thin (from a numerical point
of view, there is nearly no chance to fall in this set while applying the Newton algorithm) and, above
all, the existence of a solution to the scheme has been obtained by a topological degree argument; this
solution is therefore stable and, if one wants to be sure to apply the Newton method on a regular function,
it is possible to consider an obvious regular approximation of G (with the same structure as G and, in
particular, the same hybridation properties) and to search for a zero of this regularization, hence obtaining
a good approximation of the zero of G. However, in practical situations, this is not really necessary.

Remark 6.2 The grids we consider here are simplicial, so that the non-penalized version of the scheme
can be applied. When using other grids, the question arises as how to choose the penalization parameters ν0
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and β. The numerical tests on non-simplicial grids such as the ones in [12] give similar (and sometimes
even better) results to the ones we present below and show very little dependence on the choice of the
penalization parameters “within a reasonable range”: any ν0 ∈ [10−3, 10−10] and β ∈]−p′(d−1),−p′(d−2)[
provide good numerical results. Only very small values of ν0 (below 10−11) should be avoided since, in
some cases, they can give rise to numerical issues in the Newton algorithm; large values of ν0 are not
really a problem, except that they demand very thin grids in order to obtain correct approximations of the
solution.

Figure 1 shows the relative errors
||u−ū||p
||ū||p

and
||v−∇ū||p
||∇ū||p

versus the size of the discretization, in log-log

scale and for p = 1.5. The rates of convergence are 2.1 for u and 1 for v (the results for p = 2, not shown
here, exhibit the same slopes and, in fact, the graphs of the errors for p = 1.5 and p = 2 can nearly be
superimposed).
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Figure 1: p = 1.5. Relative errors
||u−ū||p
||ū||p

(“�”; slope ≈ 2.1) and
||v−∇ū||p
||∇ū||p

(“+”; slope ≈ 1)

versus the size of the discretization, in log-log scale.

We have also run experiments for p = 1.1 (f then does not belong to Lp′

(Ω), but its singularities are
isolated so we have still used (2.5) instead of (5.13)): the results are quite similar, and even better for
u (the rates of convergence for u and v are respectively 2.5 and 1). All these tests show something
that often appears when discretizing PDEs on regular meshes: a super-convergence of the approximate
solution with respect to its gradient; notice however that our meshes are not regular, since the xK have
been randomly chosen and are not located at the center of each control volume.

The results for p = 4 are presented in Figure 2. The rate of convergence for u (roughly 1.6) is worst
than in the cases p ≤ 2; curiously enough, the rate for v (roughly 1.2) seems slightly better than with
the preceding choices of p, but this does not last: as p increases, we notice that the rates of convergence
for both u and v diminish (for p = 6, these rates are respectively equal to 1 and 0.3). This phenomenon
is probably due to the fact that, if p > 2, the factor |∇ū|p−2 vanishes as ∇ū → 0 (in which case
−div(|∇ū|p−2∇ū) is a degenerate elliptic operator), and it can be compared with the lack of regularity
of the solution for large p: if p > 2, there exists right-hand sides in Lp′

(Ω) such that the solution does
not belong to W 2,p(Ω) (this never happens if p ≤ 2, see [5]).

In [8] and [5], some theoretical error estimates are given for the approximation by the Finite Element
method of the p-Laplacian equation in dimension d = 2; these estimates are of order p/2 (if p ≤ 2) or
2/p (if p ≥ 2) in the W 1,p norm. The preceding numerical results show that our scheme has a better
behavior in the vast majority of cases: for p = 1.5, the gradients converge with order 1 in our scheme
and (theoretically) with order 0.75 in the Finite Element scheme, and for p = 4 (respectively p = 6) our
convergence is of order 1.2 (respectively 0.3) whereas the order in [8] is 0.5 (respectively 0.33).
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Figure 2: p = 4. Relative errors
||u−ū||p
||ū||p

(“�”; slope ≈ 1.6) and
||v−∇ū||p
||∇ū||p

(“+”; slope ≈ 1.2)

versus the size of the discretization, in log-log scale.

Reference [21] studies the Finite Element approximation of a problem similar to (1.1) with p = 1.5, and
they observe a convergence of order 0.95, which is the same magnitude as the order 1 our scheme provides
in this case. In [4], numerical results are given for another Finite Volume scheme for anisotropic and
nonlinear elliptic equations in dimension d = 2. For anisotropic linear equations, the rate of convergence
is 0.5 in H1 norm, which is less that our scheme: as explained in [12], we observe in general an order
of convergence 1 in this situation. They also give orders of convergence for nonlinear equations with
different values of p: for example, with p = 4 they show orders 1.83 and 0.84 for the approximations of
the function and its gradient (we respectively have 1.6 and 1.2) and, with p = 6, the orders are 1.65 and
0.65 (versus 1 and 0.3 for our scheme). Notice however that these comparisons become sketchy since the
operator is not exactly the p-Laplacian, and the exact solution and meshes do not coincide with the ones
we have taken.

7 Conclusion

To conclude, we constructed Finite Volume schemes for nonlinear elliptic equations of the Leray-Lions
type (the p-Laplacian being the canonical example of these equations).
We defined spaces of functions associated with these schemes and we proved general properties on these
spaces (Poincaré’s inequality, compactness property), which allowed us to make the theoretical study
of the schemes. We showed the strong convergence of the approximate solutions and the approximate
gradients towards the solution of the PDE and its gradient, even in the case of a non-monotone operator
or for right-hand sides with little regularity.
The convergences hold for very general meshes (even unstructured or non-admissible ones, with respect
to the definition of [15]), with minimal assumptions; the proofs needed very few geometric considerations,
which allowed them to work in any space dimension and makes of this scheme a good candidate to handle
complex geometries and/or strongly coupled equations (as shown in [7]), all the more as the approximate
gradients strongly converge. We provided numerical results which show good performances for the scheme
(in most situations comparable to or better than other schemes).

8 Appendix

Lemma 8.1 Let r ∈ [1,∞[ and K be a non empty open polygonal convex set in R
d such that, for some

α > 0, there exists a ball of radius αdiam(K) contained in K. Let E be an affine hyperplane of R
d and

σ be a non-empty open subset of E contained in ∂K ∩ E. Then there exists C30 only depending on r, d

28



and α such that, for all v ∈W 1,r(K),

∣∣∣∣
1

m(σ)

∫

σ

v dγ

∣∣∣∣
r

≤ C30diam(K)r

m(σ)diam(K)

∫

K

|∇v(x)|r dx+
C30

m(σ)diam(K)

∫

K

|v(x)|r dx.

Proof of Lemma 8.1
Since K is convex, the regular functions are dense in W 1,r(K) and it suffices to prove the result for
v ∈ C1(Rd). Let pK be the center of a ball of radius αdiam(K) contained in K, and denote △K,σ the
convex hull of pK and σ. The last inequality in the proof of Lemma 6.2 in [12] reads

∣∣∣∣∣
1

m(△K,σ)

∫

△K,σ

v(x) dx − 1

m(σ)

∫

σ

v dγ

∣∣∣∣∣ ≤
C31dist(pK , E)

m(△K,σ)

∫

△K,σ

|∇v(x)| dx

where C31 only depends on α. Hence, since dist(pK , E) ≤ dist(pK , σ) ≤ diam(K),

∣∣∣∣
1

m(σ)

∫

σ

v dγ

∣∣∣∣ ≤
C31diam(K)

m(△K,σ)

∫

△K,σ

|∇v(x)| dx +
1

m(△K,σ)

∫

△K,σ

|v(x)| dx.

We have m(△K,σ) = m(σ)dist(pK ,E)
d , and Jensen’s inequality therefore gives

∣∣∣∣
1

m(σ)

∫

σ

v dγ

∣∣∣∣
r

≤ 2r−1Cr
31diam(K)r

m(△K,σ)

∫

△K,σ

|∇v(x)|r dx+
2r−1

m(△K,σ)

∫

△K,σ

|v(x)|r dx

≤ 2r−1dCr
31diam(K)r

m(σ)dist(pK , E)

∫

K

|∇v(x)|r dx +
2r−1d

m(σ)dist(pK , E)

∫

K

|v(x)|r dx.

Since K is convex and ∂K ∩ E contains a non-empty open subset of E, K is on one side of E; hence,
the ball of center pK and radius αdiam(K) is also on one side of E and dist(pK , E) ≥ αdiam(K). The
preceding estimate then concludes the proof.

Lemma 8.2 Let K be a non empty open convex polygonal set in R
d. For σ ∈ EK (the edges of K, in

the sense given in Definition 2.1), we let xσ be the center of gravity of σ; we also denote nK,σ the unit
normal to σ outward to K. Then, for all vector e ∈ R

d and for all point xK ∈ K, we have

m(K)e =
∑

σ∈EK

m(σ)e · nK,σ(xσ − xK).

The proof of Lemma 8.2 is a straightforward application of Stokes’ formula on the function x→ (xi−xi
K)e

(where the superscript i denotes the i-th component). It can be found in [12].

Lemma 8.3 Assume (1.2) and (1.5). Let ψ ∈ Cc(Ω)d. For D an admissible discretization of Ω, we
define aD : Ω × R

d → R
d and ψD : Ω → R

d by

for all K ∈ M and all ξ ∈ R
d, aD(·, ξ) = aK(ξ) =

1

m(K)

∫

K

a(x, ξ) dx on K ,

for all K ∈ M, ψD = ψK :=
1

m(K)

∫

K

ψ(x) dx on K.

Then aD(·, ψD) → a(·, ψ) strongly in Lp′

(Ω)d as size(D) → 0.
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Proof of Lemma 8.3
Let (a(·, ψ))D : Ω → R

d be the piecewise constant function equal, on each control volume K ∈ M, to the
mean value of a(·, ψ) on K. We first compare aD(·, ψD) with (a(·, ψ))D ; by Jensen’s inequality, we have

∫

Ω

|aD(x, ψD(x)) − (a(·, ψ))D(x)|p′

dx

=
∑

K∈M

∫

K

|aD(x, ψD(x)) − (a(·, ψ))D(x)|p′

dx

=
∑

K∈M

m(K)

∣∣∣∣
1

m(K)

∫

K

a(y, ψK) dy − 1

m(K)

∫

K

a(y, ψ(y)) dy

∣∣∣∣
p′

≤
∑

K∈M

∫

K

|a(y, ψK) − a(y, ψ(y))|p′

dy

=

∫

Ω

|a(y, ψD(y)) − a(y, ψ(y))|p′

dy. (8.1)

For all y ∈ Ω, the function a(y, ·) is continuous on R
d and ψD(y) → ψ(y) as size(D) → 0 (because ψ is

continuous); hence, |a(y, ψD(y)) − a(y, ψ(y))|p′ → 0 as size(D) → 0. Moreover, by (1.5),

|a(y, ψD(y)) − a(y, ψ(y))|p′ ≤ 2p′−1
(
2p′−1b(y)p′

+ 2p′−1Λp′ ||ψD||p∞ + 2p′−1b(y)p′

+ 2p′−1Λp′ ||ψ||p∞
)

≤ 22(p′−1)+1b(y)p′

+ 22(p′−1)+1Λp′ ||ψ||p∞.

Since b ∈ Lp′

(Ω), the dominated convergence theorem then implies that the right-hand side of (8.1) tends
to 0 as size(D) → 0, which shows that aD(·, ψD) − (a(·, ψ))D → 0 in Lp′

(Ω)d.

As a(·, ψ) ∈ Lp′

(Ω)d (see (1.5)), it is classical that (a(·, ψ))D → a(·, ψ) in Lp′

(Ω)d as size(D) → 0, and
the proof is therefore concluded.

The following lemma is a very easy result, quite classical in the study of non-linear elliptic equations.

Lemma 8.4 Let (fn)n≥1 be a sequence of nonnegative functions which converge a.e. on Ω to f ∈ L1(Ω).
If
∫
Ω fn(x) dx→

∫
Ω f(x) dx as n→ ∞, then fn → f in L1(Ω).

Proof of Lemma 8.4
We first notice that (f − fn)+ ≤ f , since fn ≥ 0. Hence, since f is integrable, the dominated convergence
theorem gives

∫
Ω(f(x) − fn(x))+ dx → 0 as n → ∞. We then write

∫
Ω(f(x) − fn(x)) dx =

∫
Ω(f(x) −

fn(x))+ dx−
∫
Ω
(f(x) − fn(x))− dx so that

∫

Ω

|f(x) − fn(x)| dx =

∫

Ω

(f(x) − fn(x))+ dx+

∫

Ω

(f(x) − fn(x))− dx

= 2

∫

Ω

(f(x) − fn(x))+ dx−
∫

Ω

(f(x) − fn(x)) dx

and the proof is concluded.
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