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Abstract We design a numerical scheme for a miscible displacement in porous me-
dia. This scheme is based on the Hybrid Mimetic Mixed method, which is applicable
on generic meshess, and uses a characteristic method for dealing with the advection.

1 Introduction

One of the tertiary oil recovery processes consists in injecting, in an underground
oil reservoir, a solvent that mixes with the residing oil and reduces its viscosity, thus
enabling its displacement towards a production well. Let Ω be a bounded domain in
Rd and [0,T ] be a time interval. Denote by K(x) and ϕ(x) the permeability tensor
and the porosity of the medium, respectively. Neglecting gravity, the mathematical
model is [8]:

∇ ·u = q+−q− := q on Ω × [0,T ]

u =− K
µ(c)

∇p on Ω × [0,T ]
(1a)

ϕ
∂c
∂ t

+∇ · (uc−D(x,u)∇c) = q+− cq− := qc on Ω × [0,T ] (1b)

This coupled system of PDEs has unknowns p(x, t) the pressure of the mixture,
u(x, t) the Darcy velocity, and c(x, t) the concentration of the injected solvent. The
functions q+ and q− represent the injection and production wells respectively, and
D(x,u) denotes the diffusion tensor

D(x,u) = ϕ(x) [dmI+dl |u|P(u)+dt |u|(I−P(u))] with P(u) =
(

uiu j

|u|2

)
i, j
.
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Here, dm is the molecular diffusion coefficient, dl and dt are the longitudinal and
transverse dispersion coefficients respectively, and P(u) is the projection matrix
along the direction of u. Also, µ(c) = µ(0)[(1− c)+M1/4c]−4 is the viscosity of
the fluid mixture, where M = µ(0)/µ(1) is the mobility ratio of the two fluids.
We consider no-flow boundary conditions and, as usual for this process, zero initial
conditions for the concentration:

u ·n = (D∇c) ·n = 0 on ∂Ω × [0,T ] , c(·,0) = 0 in Ω . (1c)

The pressure is fixed by imposing a zero average: for all t ∈ [0,T ],
∫

Ω
p(x, t)dx = 0

A number of numerical schemes have been considered for this model, some of
which are the Mixed Finite Element–Eulerian Lagrangian Localised Adjoint Meth-
ods (MFEM–ELLAM) [10] and a Mixed Finite Volume (MFV) scheme with up-
winding [3]. Due to the use of finite element methods, the MFEM–ELLAM is only
limited to certain types of meshes. Moreover, a large number of quadrature points
is required to produce acceptable results [9]. The MFV (part of the Hybrid Mimetic
Mixed (HMM) schemes, which contain in particular mixed-hybrid Mimetic Finite
Differences [5]) is adapted to more generic meshes, but the upwinding tends to in-
troduce excess diffusion in the solution. The purpose of this paper is to discretise (1)
using the HMM method, thus allowing for generic meshes, and using the ELLAM
for the advective term, to avoid the pitfalls of upwinding.

2 The HMM–ELLAM

We consider polytopal meshes as defined in [4], in dimension d = 2. Thus, T =
(M ,E ,P) are the set of cells, edges, and points of our mesh, respectively. EK ⊂ E
denotes the set of edges of the cell K ∈M . A usual way to approximate (1) is to
use a two-step process. Starting from a known value c(n) of c at time level n (for
n = 0, c(0) = 0), a numerical solution p(n+1) for p at time level n+1 is computed by
approximating (1a) with c = c(n). This computation also provides an approximation
u(n+1) of the Darcy velocity at time level n+1, and possibly of secondary quantities
(e.g., fluxes). The concentration c(n+1) at time level n+ 1 is then computed by ap-
proximating (1b) by using u = u(n+1) and the aforementioned secondary quantities.

2.1 Numerical Scheme for the Pressure Equation

Incorporating
∫

Ω
p = 0, the variational formulation for (1a) for each cell K ∈M is

then given by

∫
K

K
µ

∇p ·∇v−
∫

∂K

K
µ

∇p ·nnnK,σ v+
∫

Ω

p
∫

K
v =

∫
K

qv , ∀v ∈ H1(Ω). (2)
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We present the HMM method in its “finite volume” form, see e.g. [5]. The space of
degrees of freedom is XT := {w = ((wK)K∈M ,(wσ )σ∈EK )}. For σ ∈ EK , denote by
TK,σ the triangle with vertex xK and base σ (see Fig. 1), and define

∀w ∈ XT ,0 , ∇Hw(x) = ∇Kw+

√
2

dK,σ
[wσ −wK−∇Kw · (xxxσ − xxxK)]nnnK,σ , (3)

where ∇Kw = |K|−1
∑σ∈EK |σ |wσ nnnK,σ̃ is a linearly exact discretization of the gradi-

ent (it is exact if (wσ )σ∈EK interpolate an affine function at the edge midpoints) and
dK,σ is the orthogonal distance between xxxK and σ .

The concentration at time n is also approximated in XT , and so cell values
(cn

K)K∈M are accessible. We use them to define the pressure fluxes by:

∀K ∈M , ∀v ∈ XT , ∑
σ∈EK

FK,σ (vK− vσ ) =
∫

K

K(x)
µ(cn

K)
∇H p(x) ·∇Hv(x)dx.

The discrete form of (2) then follows easily. Taking test functions so that vK = 1
for cell K and 0 for all other cells gives the balance of fluxes, whilst choosing vσ = 1
for an edge σ gives either the flux conservativity (internal edges) or the no-flow
boundary conditions (boundary edges). The final scheme for the pressure, which
provides p(n+1) ∈ XT , as well as fluxes (FK,σ )K∈M , σ∈EK , is therefore

∑
σ∈EK

FK,σ + |K| ∑
M∈M

|M|pM =
∫

K
q. (4)

FK,σ +FL,σ = 0 for all edge σ between two different cells K and L,
FK,σ = 0 for all edge σ of K lying on ∂Ω .

(5)

2.2 Reconstruction of a Darcy velocity

The ELLAM requires to compute the characteristics of the advective component of
(1b), that is the solution, for each x ∈Ω , to the ODEs

dx̂
dt

(t) =
u(n+1)(x̂(t), t)

ϕ(x̂(t))
, x̂(t(n+1)) = x. (6)

This obviously requires to reconstruct a Darcy velocity u(n+1) everywhere. Two
important features of this velocity need to be accounted for: the no-flow boundary
conditions u(n+1) ·n = 0 on ∂Ω , which ensures that the solutions to (6) do not exit
the computational domain, and the preservation of the divergence in (1a), to avoid
creating regions with artificial wells or sinks (which lead to non-physical flows).

Preserving these features is done by using the technique of [7]. Each cell K ∈M
is split into triangles (see Fig. 1), and an oriented interior flux Fσ∗ is computed on
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each internal edge created by this subdivision. Then, u(n+1) is the RT0 function
reconstructed from these fluxes on the triangular subdivision. This function belongs
to Hdiv(Ω) and, to ensure that its divergence is as dictated by (1a), the internal fluxes
Fσ∗ are constructed so that their balance (along with the fluxes FK,σ at the boundary
of K) in each triangle corresponds to the balance over the cell K:

∀σ ∈ EK ,
1
|TK,σ |

(
∑

σ∗∈E ∗,int
K,σ

sσ
σ∗Fσ∗ +FK,σ

)
=

1
|K| ∑

σ ′∈EK

FK,σ ′ ,

where sσ
σ∗ = 1 if Fσ∗ is oriented outside TK,σ and −1 otherwise. This local system

of equations is underdetermined. The chosen solution is that of minimal l2 norm.

Fig. 1: Triangulation of a generic cell. Here, sσ
σ∗ =+1 and sσ

σ∗∗ =−1.

TK,σ

σ
FK,σ

Fσ∗∗

Fσ∗

σ∗
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xK

2.3 Numerical Scheme for the Concentration Equation

As with the pressure equation, we multiply the concentration equation (1b) by a test
function v and perform integration by parts to obtain

∫ tn+1

tn

∫
Ω

(
ϕ

∂ (cv)
∂ t

+D∇c ·∇v
)
−
∫ tn+1

tn

∫
Ω

c(ϕvt +u ·∇v) =
∫ tn+1

tn

∫
Ω

qcv. (7)

The test functions are then selected to eliminate the advective term, and to match
the piecewise constant functions at the core of the HMM method. We therefore take
v such that ϕvt +un+1 ·∇v = 0 in the sense of distributions, and v(t(n+1), ·) = 1K =
1 on K and 0 outside K. With characteristics computed through (6), this leads to
v(t(n),x) = 1K(x̂) = 1K̂(x), where K̂ is K traced back from t(n+1) to t(n) through (6).

The diffusion term is discretised separately from the advective term, by using an
implicit scheme. Fluxes DK,σ are defined as for the pressure equation (1a), using
a piecewise Darcy velocity u(n+1) given by the reconstructed pressure gradient (3)
and the viscosity at c(n). For the source term, we also treat c implicitly. Without
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discretising the source term, this leads to the following scheme for (7):

ϕ

∫
K

cn+1−ϕ

∫
K̂

cn +∆ t ∑
σ∈EK

DK,σ =
∫ tn+1

tn

∫
Ω

qcn+1v.

For each cell K, the traceback region K̂ is approximated in the following manner:
for each of the vertices and edge midpoints of K, we solve (6) starting from x =
that vertex or midpoint, we then compute x̂(t(n)) and we approximate K̂ by the
polygon defined by these points x̂(t(n)). The integrals are then computed by writing
ϕ
∫

K cn+1 = ϕ|K|cn+1
K and

∫
K̂ cn = ∑M∈M |K̂ ∩M|cn

M, which leads to the following
discretised form of the concentration equation

ϕ|K|cn+1
K +∆ t ∑

σ∈EK

DK,σ = ϕ ∑
M∈M

|K̂∩M|cn
M +

∫ tn+1

tn

∫
qcn+1 .

2.4 The Integral of the Source Term qcn+1

For the integral involving the source term, we use a weighted trapezoid rule in time∫ tn+1

tn
∫

qcn+1 = w
∫

K̂ qcn+1 +(1−w)
∫

K qcn+1 . The left and right rules correspond to
w = 1 and w = 0, respectively. Let E be an injection cell. A proper weight that will
yield mass conservation has been derived for Cartesian meshes on [1]. The weight
w = (1− e−α)−1−α−1, where α = ∆ t

∫
E qn+1/

∫
E ϕ , can easily be generalized for

arbitrary meshes. A separate treatment will be made for cells that trace back into the
injection well. These integrals will be computed using a forward tracing algorithm
as described in [2].

3 Numerical results

We take: Ω = (0,1000)× (0,1000) ft2; timestep of ∆ t = 36 days; injection well at
(1000,1000) and production well at (0,0), both with flow rate of 30ft2/day; con-
stant porosity ϕ=0.1; constant permeability tensor K = 80I; oil viscosity µ(0) = 1.0
cp; mobility ratio M = 41; ϕdm = 0.0ft2/day, ϕdl = 5.0ft, and ϕdt = 0.5ft.

Figures 2 and 3 show the numerical solution for the concentration at t = 3 years
on a Cartesian mesh using the left and the right rule, respectively. As can be seen
here, the left rule provides us with an underestimate of the concentration at the injec-
tion well, and an overestimate somewhere along the neighborhood of the injection
well. The right rule, implemented in [10], is also a bad choice since it provides us
with an overshoot of the concentration at the injection well, as already proved for
the MFEM-ELLAM in [9]. This is due to the fact that all of the source has been
dumped into the injection well in one time step.
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Fig. 2: Cartesian mesh, t = 3 years, left
rule for source terms.

Fig. 3: Cartesian mesh, t = 3 years,
right rule for source terms.

Figures 4 and 5 show the numerical solution for the concentration using the
proper weight for the trapezoidal rule, as described in the previous section. These
results present a significant improvement from those obtained through the right and
left rule. Numerical results using Hexahedral meshes are presented in Figures 6 and

Fig. 4: Cartesian mesh, t = 3 years,
weighted trapezoid rule for source
terms.

Fig. 5: Cartesian mesh, t = 10 years,
weighted trapezoid rule for source
terms.

7. The concentration spikes up along the boundary at t = 10 years. To mitigate this,
the approximation of the traceback region is improved by using 3 points per edge
(instead of only the edge midpoints); Figures 8 and 9 show the significant improve-
ment this enables. To understand more generally how many points to choose to ob-
tain acceptable approximate traceback regions, we introduce the regularity param-
eter mreg = maxK∈M (diam(K)2/|K|) of the mesh. It is then observed a reasonable
numerical solution (overshoot ≤ 10%) is obtained by taking dlog2(mreg)e points
along each edge, see Table 1. Further increasing the number of points per edge
does not provide any significant improvement to our numerical solution. Finally, we
show the numerical solutions for “Kershaw” meshes [6] on figures 10 and 11. We
used here a proper quadrature rule for the source term, and an appropriate number
of points per edge (see Table 1). The solutions on both Cartesian and hexahedral
meshes are very similar, showing a certain robustness of the method with respect to
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Fig. 6: Hexahedral mesh, t = 3 years,
weighted trapezoid rule for source
terms.

Fig. 7: Hexahedral mesh, t = 10 years,
weighted trapezoid rule for source
terms.

Fig. 8: Hexahedral mesh, t = 3 years,
3 points per edge, weighted trapezoid
rule for source terms.

Fig. 9: Hexahedral mesh, t = 10 years,
3 points per edge, weighted trapezoid
rule for source terms.

Mesh mreg log2(mreg) points per edge
Cartesian 2 1 1

Hexahedral 5.4772 2.4534 3
Kershaw 32.0274 5.0012 6

Table 1: Regularity parameter of the meshes and nb of points to approximate the trace-back cells.

the choice of mesh. The solution on the Kershaw mesh is noticeably different, due
to the mesh being very distorted; this leads to a skewed approximation of the Darcy
velocity, and thus a skewed advection of the fluid.

4 Summary

In previous work, the pressure equation (1a) and the concentration equation (1b) are
often treated separately. This work presents a complete scheme for both equations,
which is usable on generic meshes as encountered in real-world applications – with
the usual caveats on distorted meshes. Our analysis demonstrates the importance of
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Fig. 10: Kershaw mesh, t = 3 years,
6 points per edge, weighted trapezoid
rule for source terms.

Fig. 11: Kershaw mesh, t = 10 years,
6 points per edge, weighted trapezoid
rule for source terms.

choosing a proper quadrature rule for integrating the source terms, and of selecting a
correct number of approximation points – depending on the regularity of the mesh –
to trace the cells. Further research will focus on reducing the grid effects on skewed
meshes, and on finding better quadrature rules to deal with larger time steps.
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