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Abstract An asymmetric version of the gradient discretisation method is developed
for linear anisotropic elliptic equations. Error estimates and convergence are proved
for this method, which is showed to cover all finite volume methods.
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1 Introduction

The gradient discretisation method (GDM) is a recent framework for the numeri-
cal discretisation and analysis of elliptic and parabolic PDEs. The GDM consists in
writing the weak formulation of the PDEs with a discrete space of DOFs, and func-
tions and gradients reconstructed from these DOFs. The choice of these space and
reconstructions form what is a called a gradient discretisation (GD), and the scheme
obtained is a gradient scheme (GS). For many classical schemes, we can find a
specific GD such that the corresponding GS is the considered scheme [7]: conform-
ing and non-conforming (“Crouzeix–Raviart”) finite element methods, RTk mixed
finite elements, the multi-point flux approximation-O on rectangles and triangles,
mimetic finite differences, and hybrid mimetic mixed methods. The GDM enables
a complete and unified convergence analysis of these schemes for linear and non-
linear models of elliptic and parabolic problems, including degenerate equations
[3, 4, 6, 8, 9, 11, 12]. The monograph [5] gives a complete presentation of the GDM.
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For all its flexibility, the GDM does not seem to cover some important families
of numerical methods, in particular some finite volume schemes such as the two-
point flux approximation (TPFA) and the multi-point flux approximation MPFA-
L/G schemes. We present here an extension of the GDM that encompasses all finite
volume schemes – and possibly others. On the contrary to the usual GDM, this
extension uses two different gradient reconstructions. For this reason, we call this
method the asymmetric GDM (aGDM). This paper is organised as follows. In the
following section, we recall the the usual GDM and the corresponding error esti-
mates. Section 3 presents the asymmetric gradient discretisation method and the
corresponding error estimate. Section 4 shows that all finite volume methods fit into
this framework, and Section 5 gives a conclusion.

2 The (usual) gradient discretisation method

Throughout this paper we consider the standard linear elliptic equation

−div(Λ∇u) = f in Ω , u = 0 on ∂Ω , (1)

where Ω is a bounded open set of Rd (d ≥ 1), f ∈ L2(Ω) and Λ : Ω →Sd(R) is a
function on Ω with co-domain the set of symmetric d×d matrices on R, such that

∃λ ,λ ∈ (0,+∞) s.t., for a.e. xxx ∈Ω , ∀ξ ∈ Rd , λ |ξ |2 ≤Λ(xxx)ξ ·ξ ≤ λ |ξ |2. (2)

The weak formulation of (1) is

Find u ∈ H1
0 (Ω) such that, ∀v ∈ H1

0 (Ω),
∫

Ω

Λ∇u ·∇v =
∫

Ω

f v. (3)

A gradient discretisation is the choice of a discrete space (the space of DOFs)
and rules to reconstruct functions and gradients from the DOFs.

Definition 1 (Gradient discretisation). A gradient discretisation (GD) for homo-
geneous Dirichlet BCs is D = (XD ,0,ΠD ,∇D ), where

• XD ,0 is a finite-dimensional space,
• the linear mapping ΠD : XD ,0→ L2(Ω) reconstructs functions,
• the linear mapping ∇D : XD ,0→ L2(Ω)d reconstruct gradients, and must be cho-

sen such that ‖∇D · ‖L2 is a norm on XD ,0.

The corresponding gradient scheme consists in replacing, in (3), the continuous
elements with the discrete ones coming from D :

Find u ∈ XD ,0 such that, ∀v ∈ XD ,0,
∫

Ω

Λ∇Du ·∇Dv =
∫

Ω

f ΠDv. (4)

The accuracy of a gradient scheme for a linear equation is measured through
three indicators: a coercivity measure CD ; a GD-consistency (or consistency, for
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short) measure SD , similar to an interpolation error in the context of finite element
methods; and a limit-conformity measure WD , indicating how well ΠD and ∇D sat-
isfy a discrete divergence theorem.

CD = max
v∈XD ,0\{0}

‖ΠDv‖L2

‖∇Dv‖L2
, (5)

∀ϕ ∈ H1
0 (Ω) , SD (ϕ) = min

v∈XD ,0
(‖ΠDv−ϕ‖L2 +‖∇Dv−∇ϕ‖L2) , (6)

∀ξξξ ∈ Hdiv(Ω) , WD (ξξξ ) = max
v∈XD ,0\{0}

∫
Ω

(∇Dv ·ξξξ +ΠDvdiv(ξξξ )) dxxx

‖∇Dv‖L2
. (7)

If u solves (1) and u solves (4) then the following error estimate holds [5, 10]:

‖ΠDu−u‖L2 +‖∇Du−∇u‖L2 ≤C(1+CD )(SD (u)+WD (Λ∇u)) (8)

where C depends only on λ and λ . As seen in this estimate, a sequence of GDs gives
rise to converging GSs if, along the sequence, CD remains bounded and SD ,WD→ 0.

The notations SD and WD have been used since the very first articles on gradient
schemes [10, 12], and come from a realisation, at the very onset of the GDM, that
two kinds of properties had to be verified by the gradient reconstruction: a strong
convergence property (the interpolation error goes to 0 in norm), and a weak con-
vergence property. This latter property is encoded in the requirement “WD (ξξξ )→ 0”,
which imposes in a sense that a formal dual (with respect to ΠD ) of ∇D converges to
the continuous divergence in a weak sense. Understanding that each of these prop-
erties is respectively only required for the gradient on the test function and on the
unknown function is at the core of the asymmetric GDM we now present.

3 The asymmetric gradient discretisation method

The asymmetric GDM is built from asymmetric GD (aGD), which define two dif-
ferent gradient reconstructions.

Definition 2 (Asymmetric GD and GS). An asymmetric gradient discretisation for
homogeneous Dirichlet BCs is Das = (XDas,0,ΠDas , ∇̂Das ,∇Das), where

• XDas,0 is a finite dimensional space,
• the linear mapping ΠDas : XDas,0→ L2(Ω) reconstructs functions,
• the linear mappings ∇̂Das ,∇Das : XDas,0→ L2(Ω)d reconstructs gradients and are

chosen such that ‖∇̂Das · ‖L2 and ‖∇Das · ‖L2 are norms on XDas,0.

The corresponding asymmetric gradient scheme (aGS) is

Find u ∈ XDas,0 such that, ∀v ∈ XDas,0,
∫

Ω

Λ ∇̂Dasu ·∇Dasv =
∫

Ω

f ΠDas v. (9)
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An aGS’s matrix can be symmetric (see the TPFA scheme below). “Asymmetric”
refers to the usage of two different gradients, not to the scheme’s properties. The
measures CD , SD and WD are defined as for GD, but the former two use ∇̂Das while
the latter is based on ∇Das .

ĈDas = max
v∈XDas,0\{0}

‖ΠDas v‖L2

‖∇̂Das v‖L2

, (10)

∀ϕ ∈ H1
0 (Ω) , ŜDas(ϕ) = min

v∈XDas,0

(
‖ΠDasv−ϕ‖L2 +‖∇̂Das v−∇ϕ‖L2

)
, (11)

∀ξξξ ∈ Hdiv(Ω) , WDas(ξξξ ) = max
v∈XDas,0

∫
Ω

(
∇Dasv ·ξξξ +ΠDasvdiv(ξξξ )

)
dxxx

‖∇Dasv‖L2
. (12)

Due to the presence of two different gradient reconstructions, the coercivity of an
aGD (and thus well-posedness of the aGS) cannot be solely measured through ĈDas .
An additional compatibility condition, involving Λ , is required.

Definition 3 (Λ -compatibility of aGD). An asymmetric gradient discretisation Das
is Λ -compatible if

ζ
Λ
Das

:= min
v∈XDas,0\{0}

∫
Ω

Λ ∇̂Dasv ·∇Das vdxxx

‖∇̂Dv‖L2(Ω)‖∇Dv‖L2(Ω)

> 0. (13)

Our main results are the following error estimates.

Theorem 1 (Error estimate for the aGDM). Let Das be a Λ -compatible aGD.
Then the aGS (9) has a unique solution u and, if u solves (3),

‖∇̂Das u−∇u‖L2 ≤
1

ζΛ
Das

(
ŜDas(u)+WDas(Λ∇u)

)
+ ŜDas(u) , (14)

‖ΠDas u−u‖L2 ≤
ĈDas

ζΛ
Das

(
ŜDas(u)+WDas(Λ∇u)

)
+ ŜDas(u). (15)

Proof. The error estimates prove the existence and uniqueness of the solution to (9).
Indeed, this equation is a square linear system, and (14) shows that its only solution
is u = 0 whenever its right-hand side is zero.

We now establish (14) and (15). Let v ∈ XDas,0. By definition of WDas with ξξξ =
Λ∇u, since div(Λu) =− f ,∣∣∣∣∫

Ω

∇Das v ·Λ∇u−ΠDasv f dxxx
∣∣∣∣ ≤ ‖∇Dasv‖L2WDas(Λ∇u).

Since u solves (9), this gives
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Ω

Λ∇Dasv · (∇u− ∇̂Dasu)dxxx
∣∣∣∣≤ ‖∇Dasv‖L2WDas(Λ∇u).

For ϕ ∈ H1
0 (Ω), take PDas ϕ ∈ XDas,0 such that SD (ϕ) = ‖ΠDas(PDasϕ)−ϕ‖L2 +

‖∇̂Das(PDasϕ)−∇ϕ‖L2 . The triangle inequality yields∣∣∣∣∫
Ω

Λ∇Dasv · (∇̂DasPDu− ∇̂Dasu)dxxx
∣∣∣∣≤ ‖∇Dasv‖L2

(
WDas(Λ∇u)+λ ŜDas(u)

)
.

Make v = PDas u−u and use the Λ -compatibility to deduce

ζ
Λ
Das
‖∇̂Das(PDasu−u)‖L2 ≤WDas(Λ∇u)+ ŜDas(u). (16)

Estimate (14) follows from the triangle inequality and ‖∇̂Das(PDasu)−∇u‖L2 ≤
ŜDas(u). Equations (10) and (16) yield ‖ΠDas(PDasu− u)‖L2 ≤ ĈDas

ζΛ
Das

(WDas(Λ∇u)+

ŜDas(u)). Estimate (15) follows from the triangle inequality.

We now consider the “dual” scheme of (9), obtained by switching the gradients:

Find u ∈ XDas,0 such that, ∀v ∈ XDas,0,
∫

Ω

Λ∇Dasu · ∇̂Dasv =
∫

Ω

f ΠDas v. (17)

A weak convergence result can be established for this scheme, by slightly strength-
ening the definition of ĈDas into

C̃Das = max
v∈XDas,0\{0}

(
‖ΠDas v‖L2

‖∇̂Das v‖L2

+
‖ΠDas v‖L2

‖∇Das v‖L2

)

Theorem 2 (Weak convergence of the dual aGS). Let (Dm
as)m be a sequence of

Λ -compatible aGDs such that (C̃Dm
as + ζΛ

Dm
as
)m is bounded, ŜDm

as(ϕ)→ 0 for all ϕ ∈
H1

0 (Ω), and WDm
as(ξξξ )→ 0 for all ξξξ ∈ Hdiv(Ω) (these properties are respectively

called the coercivity, consistency and limit-conformity of (Dm
as)m). Then there exists

a unique um solution to (17) with Das = Dm
as and, as m→ ∞, ΠDm

asum → u and
∇Dm

asum→ ∇u weakly in L2(Ω).

Proof. Make v = um in (17) and use the definition of C̃Dm
as and ζΛ

Dm
as

to write

ζΛ
Dm

as
‖∇̂Das um‖L2‖∇Dasum‖L2(Ω) ≤ C̃Dm

as‖ f‖L2‖∇̂Das um‖L2 . Hence, (‖∇Dasum‖L2)m is
bounded and each dual aGS has a unique solution (since these problems boil
down to square linear systems). Use then the limit-conformity property as in [5,
Lemma 2.12] to infer the existence of u ∈ H1

0 (Ω) such that, up to a subsequence,
ΠDm

asum → u and ∇Dm
asum → ∇u weakly in L2(Ω). Define PDm

as as in the proof of
Theorem 1 and, for a generic ϕ ∈ H1

0 (Ω), take v = PDm
asϕ in (17). The consistency

property and the reasoning in [5, Step 3, proof of Theorem 3.16] show that u is the
solution to (3). By uniqueness of this solution, the above-mentioned convergences
apply to the whole sequence.
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4 Application to finite volume schemes

Consider a polytopal mesh T = (M ,F ,P) in the sense of [5, Definition 7.2]: M
is the set of cells (generic notation: K), F is the set of faces (generic notation: σ )
and P is a set made of one point per cell (generic notation: xxxK). We further let
Fint = {σ ∈F : σ ⊂ Ω} be the set of interior faces and Fext = F \Fint be the
set of boundary faces. For K ∈M , FK is the set of faces of K. If σ ∈ FK , xxxσ

is the center of mass of σ , nnnK,σ is the outer normal to K on σ , and DK,σ is the
convex hull of σ and xxxK . Denoting by |E| the d- or (d−1)-dimensional measure of
E (depending on the Haussdorff dimension of E), we have |DK,σ | =

|σ |dK,σ

d , where
dK,σ is the orthogonal distance between xxxK and σ . As a generic notation, if σ ∈Fint,
K and L are the two cells on each side of σ . We assume in the following that Λ is
constant, equal to ΛK , in each cell K.

Generic FV scheme, and assumptions. We consider here generic finite volume
schemes [2]. The space of cell and face DOFs is XDas,0 = {v=((vK)K∈M ,(vσ )σ∈F ) :
vσ = 0 if σ ∈Fext} (1), and an FV volume scheme is defined from numerical fluxes
FK,σ : XDas,0→ R in the following way:

∀K ∈M , ∑
σ∈FK

FK,σ (u) =
∫

K
f and ∀σ ∈Fint , FK,σ (u)+FL,σ (u) = 0. (18)

Multiplying the cell equations by a generic vK , the edge equations by a generic vσ ,
and summing the resulting equations, this scheme can be recast as

∀v ∈ XDas,0 , ∑
K∈M

∑
σ∈FK

FK,σ (u)(vK− vσ ) = ∑
K∈M

∫
K

f vK . (19)

Define the discrete H1
0 norm on XDas,0 by ‖v‖2

1,T = ∑K∈M ∑σ∈FK |DK,σ |
∣∣∣ vK−vσ

dK,σ

∣∣∣2,

and the interpolant IDas : ϕ ∈ C(Ω) ∩H1
0 (Ω) 7→ ((ϕ(xxxK))K∈M ,(ϕ(xxxσ ))σ∈F ) ∈

XDas,0. We assume that the fluxes satisfy the following properties.

1. P1-exactness: for all K ∈M , there is IK ⊂P ∪{xxxσ : σ ∈F} such that, if ϕ

is affine on a neighbourhood U of IK , for all σ ∈ FK we have FK,σ (IDas ϕ) =
−|σ |ΛK(∇ϕ)|U ·nnnK,σ .

2. Stability: there is Cstab > 0 such that

∀v ∈ XDas,0 , ∑
K∈M

∑
σ∈FK

|DK,σ |
(

FK,σ (v)
|σ |

)2

≤Cstab‖v‖2
1,T. (20)

3. Coercivity: there is Ccoer > 0 such that, for all v ∈ XDas,0,

∑
K∈M

∑
σ∈FK

FK,σ (v)(vK− vσ )≥Ccoer‖v‖2
1,T. (21)

1 Vertex-centered FV methods can easily be considered by changing the DOFs.
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The FV scheme (18) is an aGS of the form (9). For v ∈ XDas,0, let ΠDasv ∈ L2(Ω)

be defined by (ΠDasv)|K = vK for all K ∈M . Define ∇Dasv ∈ L2(Ω)d and ∇̂Dasv ∈
L2(Ω)d as the piecewise constant functions such that, for all K ∈M and σ ∈FK ,

(∇̂Das v)|DK,σ
=

FK,σ (v)
|σ |

Λ
−1
K nnnK,σ +(∇̂Das v)K,σ ,⊥ and (∇Dasv)|DK,σ

= d
vσ − vK

dK,σ
nnnK,σ ,

with (∇̂Das v)K,σ ,⊥⊥ΛKnnnK,σ chosen to be P1-exact and stable, that is:{
∀ϕ ∈C(Ω)∩H1

0 (Ω) ,∀K ∈M , if ϕ is affine on a neighbourhood U of IK

then (∇̂Das IDas ϕ)K,σ ,⊥ is the component on (ΛKnnnK,σ )
⊥ of (∇ϕ)|U ,

∃C′stab > 0 , ∀v ∈ XDas,0 , ∑
K∈M

∑
σ∈FK

|DK,σ | |(∇̂Dasv)K,σ ,⊥|2 ≤C′stab‖v‖2
1,T. (22)

By definition of ∇̂Das and ∇Das , ΛK(∇̂Dasu)|DK,σ
·nnnK,σ = 1

|σ |FK,σ (u) and (∇Dasv)|DK,σ
·

ΛK(∇̂Dasu)K,σ ,⊥ = 0. Thus, owing to |DK,σ |= |σ |dK,σ/d,∫
Ω

Λ ∇̂Dasu ·∇Das vdxxx = ∑
K∈M

∑
σ∈FK

|DK,σ |ΛK(∇̂Dasu)|DK,σ
·
(

d
vσ − vK

dK,σ
nnnK,σ

)
= ∑

K∈M
∑

σ∈FK

FK,σ (u)(vK− vσ ). (23)

This shows that the aGS (9) with Das constructed above is the FV scheme (19).
Let us now check that, under standard regularity assumptions on the mesh, Das

satisfies the coercivity, consistency, limit-conformity and Λ -compatibility prop-
erties. From the definition of ∇Das and the stability properties (20) and (22),
‖∇Das v‖L2 + ‖∇̂Das v‖L2 ≤ CS‖v‖1,T. Hence, plugging v = u in (23) and using the
coercivity (21), we find C0 and C1 not depending on u such that

C0‖∇̂Dasu‖L2‖∇Dasu‖L2 ≥
∫

Ω

Λ ∇̂Dasu ·∇Das udxxx≥C1‖u‖2
1,T. (24)

Since ‖u‖2
1,T ≥ C−2

S ‖∇̂Das u‖L2‖∇Dasu‖L2 , (24) proves the Λ -compatibility, with
ζΛ

Das
= C1C−2

S . Using now ‖u‖2
1,T ≥ C−1

S ‖u‖1,T‖∇Das u‖L2 , Equation (24) yields

‖∇̂Das u‖L2 ≥C−1
0 C1C−1

S ‖u‖1,T. Invoking then [5, Lemma B.11] gives the coerciv-
ity, i.e. a bound on CDas (C̃Das can be bounded similarly). The consistency, i.e. the
convergence to 0 of ŜDas(ϕ) as hM → 0, follows from [5, Lemma 7.28 and 7.31] by
the stability and P1-exactness of FK,σ (·) and of (∇̂Das ·)K,σ ,⊥. The limit-conformity
follows from 1

|K|
∫

K ∇Dasvdxxx = ∇Kv (see [5, Eq. (7.7e)] for the definition of ∇K) and
from [5, Lemma B.8].

The form (18) is the very definition of a FV scheme [2]. For a number of these
schemes, such that the TPFA scheme or MPFA schemes, the P1-exactness and sta-
bility of the fluxes are trivial. The coercivity of the fluxes is either easy and well-
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known (e.g., for TPFA), or a required assumption to analyse the method (e.g., for
MPFA [1]).

5 Conclusion

We developed a generalisation of the gradient discretisation method, which allows
for the usage of two different gradients to design numerical schemes for diffusion
problems. We showed that this generalisation is adapted to all finite volume meth-
ods. Error estimates are obtained in this asymmetric GDM framework. Due to the
Λ -compatibility requirement, the aGDM doesn’t present all the flexibility of the
GDM when it comes to dealing with fully non-linear problems, but it does accom-
modate some – provided that the non-linearity is isotropic in the diffusion matrix,
or in the source/reaction terms.

Acknowledgements This work was supported by the ARC DP scheme (project DP170100605).

References
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