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Abstract : This paper gives a proof of convergence for the approximate solution
of an elliptic-hyperbolic system, describing the conservation of two immiscible incom-
pressible phases flowing in a porous medium. The approximate solution is obtained by
a mixed finite element method on a large class of meshes for the elliptic equation and a
finite volume method for the hyperbolic equation. Since the considered meshes are not
necessarily structured, the proof uses a weak total variation inequality, which cannot
yield a BV-estimate. We thus prove, under an L∞ estimate, the weak convergence of
the finite volume approximation. The strong convergence proof is then sketched under
regularity assumptions which ensure that the flux is Lipschitz-continuous.

1. Introduction

The purpose of oil reservoir simulation is to account for several phenomena
such as chemical reactions, thermodynamical equilibrium and polyphasic flows.
Since the full model is too complex, a simplified model, describing the flow
of two incompressible immiscible fluids through a porous medium, has been
extensively studied. In this simplified model, two fluid phases, oil and water,
flow through the pores of some possibly heterogeneous and anisotropic porous
medium; water is injected through injection wells in order to displace the oil
towards production wells. Here we neglect the gravity effects as well as the
capillary pressure. Assuming the total mobility of the two phases to be constant
and the mobility of water to be linear, the conservation equations of the two
phases in a domain Ω yield the following system of equations:

ut(x, t)− div(u(x, t)Λ(x)∇p(x)) = s(x, t)f+(x)− u(x, t)f−(x),
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(1−u)t(x, t)−div((1−u(x, t))Λ(x)∇p(x)) = (1−s(x, t))f+(x)−(1−u(x, t))f−(x),

for (x, t) ∈ Ω × R+. In the above equations, the saturation of the water phase
is denoted by u, the common pressure of both phases is denoted by p. The
absolute permeability Λ is a symmetric positive definite matrix (in anisotropic
media the eigenvalues of the matrix Λ are not all identical) which depends on the
space variable in heterogeneous media. The function f represents the internal
source terms, corresponding to the presence of wells drilled into the reservoir
(f+ = max(f, 0) and f− = max(−f, 0) denote the positive and negative parts
of f). The positive source term corresponds to an injection well, the negative
one corresponds to a production well. The function s represents the fraction of
the water phase in the injected source term, and the saturation u of the water
in place is the fraction of water in the produced source term. This problem,
completed with initial and boundary conditions, is rewritten as follows:

ut(x, t) + div(uq)(x, t) + u(x, t)f−(x) = s(x, t)f+(x)

for a.e. (x, t) ∈ Ω× R+,
(1.1)

Λ(x)−1q(x) +∇p(x) = 0 for a.e. x ∈ Ω, (1.2)

divq(x) = f(x) for a.e. x ∈ Ω, (1.3)

q(x) · n∂Ω(x) = g(x) for a.e. x ∈ ∂Ω, (1.4)

u(x, t) = u(x, t) for a.e. (x, t) ∈ ∂Ω− × R+, (1.5)

u(x, 0) = u0(x) for a.e. x ∈ Ω, (1.6)

Notice that the boundary condition for the saturation is only given on the
part ∂Ω− of the boundary where the flow enters into the domain, that is, where
q(x) · n∂Ω(x) = g(x) ≤ 0.

In Eqs (1.1)-(1.6) (referred in the following as Problem (P)) the following
hypotheses (referred in the following as Hypotheses (H)) are used.

Hypotheses (H):

1. Ω is an open bounded subset of Rd (d = 2 or 3 in practical) such that,
locally, Ω either has a C1,1 regular boundary or is convex.

2. Λ is a measurable mapping from Ω to the set of symmetric real d× d ma-
trices, such that there exist λ1 > 0 and λ2 > 0 satisfying λ1|z| ≤ |Λ(x)z| ≤
λ2|z| for almost every x ∈ Ω and all z ∈ Rd.
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3. f ∈ L2(Ω).

4. g = q0 · n∂Ω for some q0 ∈ (H1(Ω))d and∫
Ω

f(x) dx−
∫

∂Ω

g(x) dγ(x) = 0.

5. u ∈ L∞(∂Ω− × R+) where ∂Ω− = {x ∈ ∂Ω, g(x) ≤ 0}.
6. u0 ∈ L∞(Ω).

7. s ∈ L∞(Ω× R+).

Here and in the following, when U is an open subset of Rd with a sufficiently
regular boundary (see Definition 2), we denote by n∂U the unit outward normal
to ∂U and by γ the (d − 1)-dimensional measure on ∂U . | · | is the Euclidean
norm in Rd and x · y denotes the Euclidean scalar product of (x, y) ∈ Rd × Rd.
When X is a subset of Rd, δ(X) denotes the diameter of X, that is to say
δ(X) = sup(x,y)∈X2 |x − y|. B(z, r) denotes the Euclidean ball of center z ∈ Rd

and radius r > 0.

Remark 1: Since we allow Ω to have a non-regular boundary, there is no con-
venient way to characterize the regularity condition on g. Indeed, if Ω has a C1,1-
regular boundary, it is easy to see that g = q0 · n∂Ω if and only if g ∈ H1/2(∂Ω),
but on the non-regular parts of ∂Ω, this condition is not necessary and it is
not even obvious that it is sufficient. For example, take Ω =]0, 1[2, g = 1 on
({0}×]0, 1[) ∪ ({1}×]0, 1[) and g = 0 on (]0, 1[×{0}) ∪ (]0, 1[×{1}); then g
does not belong to H1/2(∂Ω), but g can be written as q0 · n∂Ω with q0(x, y) =
(−1 + 2x, 0) ∈ (H1(Ω))2.

A weak solution of Problem (P) is defined by :

Definition 1: Under Hypotheses (H), a weak solution of (P) is (u, p,q) ∈
L∞(Ω× R+)× L2(Ω)×Hg(div,Ω) such that∫

R+

∫
Ω

u(x, t)

(
∂φ

∂t
(x, t) + q(x) · ∇φ(x, t)− φ(x, t)f−(x)

)
dx dt =

−
∫

Ω

u0(x)φ(x, 0) dx+

∫
R+

∫
∂Ω−

u(x, t)φ(x, t)g(x) dγ(x) dt

−
∫

R+

∫
Ω

φ(x, t)s(x, t)f+(x) dx dt

∀φ ∈ C1
c (Rd × R) such that φ = 0 on ∂Ω+ × R+ = (∂Ω \ ∂Ω−)× R+,

(1.7)

∫
Ω

y(x) ·Λ(x)−1q(x) dx−
∫

Ω

p(x) divy(x) dx = 0 ∀y ∈ H0(div,Ω), (1.8)∫
Ω

v(x)divq(x) dx =

∫
Ω

f(x)v(x) dx ∀v ∈ L2(Ω), (1.9)
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and ∫
Ω

p(x) dx = 0, (1.10)

where the function spaces H(div,Ω), H0(div,Ω) and Hg(div,Ω) are defined by
H(div,Ω) = {q ∈ (L2(Ω))d, divq ∈ L2(Ω)}, H0(div,Ω) = {q ∈ H(div,Ω),
q · n∂Ω = 0 on ∂Ω}, and Hg(div,Ω) = {q ∈ H(div,Ω), q · n∂Ω = g on ∂Ω}.

The existence and uniqueness of (p,q) ∈ L2(Ω) ×Hg(div,Ω), the solution of
(1.8)-(1.10) under Hypotheses (H), is a classical result as long as the equations
(1.8)-(1.10) do not depend on u. We could consider the much more complex
problem where the function Λ depends on x and u in (1.8); such a problem
would be more general than Problem (P), which can only model the case of oil
reservoirs in which the viscosity of the oil phase is comparable to that of the water
phase (such reservoirs indeed exist). However, it seems that in the case where Λ
depends on x and u, it is not yet possible to identify an appropriate weak sense in
which the limit of a sequence of numerical approximations can satisfy equation
(1.1) (see [Eymard-Gallouët (2002)]). We therefore restrict the present paper to
the case where Λ only depends on x. Assuming that the flux q is given by (1.8)-
(1.10) and under Hypotheses (H), the existence of a weak solution u to (1.7)
is not standard: indeed, the classical existence and uniqueness theorems for the
weak solution of a scalar hyperbolic equation only hold in the case of a Lipschitz
continuous flux (the extension of the uniqueness result to more general cases is an
open problem). Thus the existence of a solution, in this particular case, appears
to be a consequence of the convergence result given in the present paper, and
the uniqueness result, sketched in this paper as a necessary step in the direction
of a strong convergence property, only holds under additional hypotheses which
ensure that q is Lipschitz continuous. In this last case, we could also handle the
case of the problem ut(x, t)+div(F (u)q)(x, t)+u(x, t)f−(x) = s(x, t)f+(x) with
a possibly nonlinear function F (the so-called “fractional flow” function). But
this would be somewhat artificial since physical data which lead to a nonlinear
fractional flow function also yield dependence of Λ on u.

A number of numerical schemes for this problem in the case of Λ = Id have
already been discussed in the literature. Nevertheless, the numerical schemes
used to approximate the solution of this simplified model have only recently
been studied from a convergence point of view. In particular, the convergence
of a numerical scheme, involving a finite volume method for the computation
of the saturation u and a standard finite element method for the computation
of the pressure p, is proven in [Eymard-Gallouët (1993)], whereas a convergence
proof for a finite volume method for the discretization of both equations is given
in [Vignal (1996)]. Here we also discretize the conservation law for the satura-
tion by means of a finite volume method but apply the mixed finite element
method to discretize the elliptic equation. Error estimates have been derived in
[Jaffré-Roberts (1985)] for a semi-discretized problem in the simulation of mis-
cible displacements involving an elliptic equation for the pressure coupled to a
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parabolic equation for saturation. For the numerical discretization they combine
the mixed finite element method with an upstream weighting scheme. More re-
cently, in the case where the finite volume method is applied for the discretization
of a parabolic equation instead of the first order conservation law (1.1), error
estimates have been proven in [Ohlberger (1997)].

Here we deal with a mixed finite element method with an original basis for the
elliptic equation. We use a partition of the domain with very undemanding hy-
potheses (the elements do not need to be convex, their boundaries do not need to
be the union of piecewise planar surfaces), on which we define the generalization
of the Raviart-Thomas space. The proof of the “inf-sup” condition and that the
interpolation error of regular functions tends to zero with the space step makes
use of Lipschitz-continuous homeomorphisms (with Lipschitz-continuous inverse
mappings) and of some trace inequalities, for which the constants are given as
functions of the size of the domain (the classical proofs, by means of contra-
diction, of trace inequalities for functions with null averages do not provide the
dependence of the trace inequality constants on the domain). An advantage of
this framework is that it handles simultaneously the case of domains with piece-
wise planar or smooth boundary (note that in this paper, some smoothness of
the boundary is required in order to ensure the necessary regularity properties
of the continuous solution). Note also that the work presented here allows us
to handle the case of nonconvex domains with smooth boundary, which is not
possible in classical frameworks (because all the meshes on such domains include
non convex elements).

The hyperbolic equation is then discretized by the classical upstream weighting
scheme. Under a CFL condition, we prove an L∞ estimate which allows, up
to a subsequence, to pass to the limit in L∞ weak-∗; though the hyperbolic
equation is linear, such a convergence is not sufficient in order to identify the
limit function as a weak solution to (1.1) : we need an additional “weak BV”
inequality. Such inequalities have only recently been introduced and used for
the proof of convergence of finite volume schemes on unstructured meshes for
hyperbolic equations (see e.g. [Eymard-Gallouët-Herbin (2001)])

We note that, in contrast to classical BV estimates on discrete solutions (such
as in [Godlewski-Raviart (1991)]) — which cannot be obtained here, since our
meshes are not structured and the initial condition does not necessarily have a
bounded variation —, the “weak BV” inequality is not a compactness tool; it
does not strengthen the L∞ weak-∗ convergence: it is only useful for proving
that the weak limit is a solution to the continuous hyperbolic equation.

Thus this paper completes a number of previous numerical works in which
this scheme has been used on particular meshes (generally triangular meshes).

The organization of this paper is as follows. In Section 2, we present the
numerical scheme that we use. In Section 3, we prove a convergence result for
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the mixed finite element method. In Section 4, we deal with the finite volume
scheme, concluding the weak convergence of a subsequence without additional
regularity hypotheses on the data, and the strong convergence otherwise.

2. The discretization

2.1. Admissible discretizations

In order to define the scheme, a notion of admissible discretization is given, which
is used below in the definition of approximate discrete solutions.

Definition 2: (Admissible discretization of Ω) Let Ω be an open bounded sub-
set of Rd with weakly Lipschitz-continuous boundary (see [Droniou (1999)]). An
admissible discretization D of Ω is given by a finite set M of open subsets K ⊂ Ω
with weakly Lipschitz-continuous boundaries and a finite set A of disjoint subsets
a ⊂ Ω such that:

(i) ∪K∈MK = Ω,

(ii) For all K ∈ M, there exists a Lipschitz-continuous homeomorphism LK

from K to B(0, δ(K)) such that the inverse mapping is Lipschitz-continuous as
well.

(iii) For all (K,L) ∈M2 with K 6= L, one has K ∩ L = ∅.
(iv) For all a ∈ A, there exists K ∈M such that a is a non-empty open subset

of ∂K. By denoting AK = {a ∈ A | a ⊂ ∂K}, we assume that ∂K = ∪a∈AK
a.

(v) The sets Ai ⊂ A (the interior faces) and Ae ⊂ A (the exterior faces) are
defined by Ai = {a ∈ A,∃(K,L) ∈ M2, K 6= L, a ⊂ ∂K ∩ ∂L} and Ae = {a ∈
A,∃K ∈M, a ⊂ ∂K ∩ ∂Ω}. One assumes that (Ai,Ae) forms a partition of A.

(vi) For all K ∈ M and all a ∈ AK, one assumes that there exists xK,a ∈ a
and ζK,a > 0 such that a ⊃ ∂K ∩B(xK,a, ζK,aδ(K)).

We denote by mK the Lebesgue measure of K and by ma the (d−1)-dimensio-
nal measure of a.

Under Properties (iii) and (iv), we can show that, for all a ∈ Ai, there exists
exactly two different control volumes whose boundaries contain a. We select one
of these control volumes, that we denote K(a), the other being denoted L(a),
and an orientation on the edge a is defined by εK(a),a = 1, εL(a),a = −1; and, for
x ∈ a, na(x) = n∂K(a)(x) = −n∂L(a)(x).

We can also prove that, if a ∈ Ae, there exists exactly one control volume,
denoted K(a), whose boundary contains a. We then let εK(a),a = 1 and, for
x ∈ a, na(x) = n∂K(a)(x) = n∂Ω(x).

Denoting by na the mean value of na on a, the thinness of the discretization
D (controling the size of D and the behaviour of the faces of D) is defined by

thin(D) = max
K∈M

(
δ(K), max

a∈AK

(
1

√
ma

||na − na||L2(a)

))
(2.1)
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and a geometrical factor, linked to the regularity of the discretization, is defined
by

regul(D) = max
K∈M

(
lip(LK), lip(L−1

K ), max
a∈AK

(
1

ζK,a

))
. (2.2)

Remark 2: The definition of an open set with weakly Lipschitz - continuous
boundary is given in [Droniou (1999)] (or in [Grisvard (1985)] under the name
“d-dimensional Lipschitz-continuous submanifold of Rd”). It is weaker than the
definition of Lipschitz-continuous boundary given in [Nečas (1967)].

Remark 3: The above definition is easily satisfied for a large variety of meshes.
In the case d = 2, if we take subsets K such that ∂K is defined in polar coor-
dinates from an origin MK ∈ K by a 2π- periodic continuous piecewise C1

function, then these subsets satisfy condition (ii). This is the case for convex
polyhedra, such as triangles or parallelograms for example.

Remark 4: According to the above definition, thin(D) → 0 means that the size
of the discretization tends to 0 and that the faces become more and more planar.
Therefore the faces of the discretization cannot be simply defined by the sets
∂K ∩ ∂L or ∂K ∩ ∂Ω, which can be highly nonplanar surfaces; in such cases
it suffices to cut these surfaces by different faces. Notice that if Ω is polyhedral
and the faces are planes, then thin(D) = maxK∈M δ(K) is simply the size of the
discretization.

Remark 5: Hypothesis (vi) is only used for the study of the convergence of the
finite volume scheme to the solution of the hyperbolic equation. It is not used
in the proof of convergence of the mixed finite element method. Notice that this
hypothesis, along with Hypothesis (ii) and Lemma 11, implies ma ≥ Cδ(K)d−1,
where C only depends on d and regul(D).

2.2. Discrete function spaces

One now defines the set of basis functions for the mixed finite element method,
which is a generalization of the Raviart-Thomas space RT 0

0 (M) (see [Brezzi-
Fortin (1991)], [Raviart-Thomas (1977)] or [Nédélec (1980)]); indeed, one can
verify that, if D is made of triangles (for example), then the following definition
gives back the classical Raviart-Thomas space.

Definition 3: (Discrete function spaces) Let Ω be an open bounded subset of Rd

with weakly Lipschitz-continuous boundary. Let D be an admissible discretization
of Ω in the sense of Definition 2. For all K ∈ M and all a ∈ AK, one denotes
by wK,a ∈ H1(K) the unique variational solution, with

∫
K
wK,a(x) dx = 0, of the

Neumann problem

∆wK,a(x) =
ma

mK

for a.e. x ∈ K,
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and

∇wK,a(x) · n∂K(x) = 1 for a.e. x ∈ a,
∇wK,a(x) · n∂K(x) = 0 for a.e. x ∈ ∂K \ a.

We then define the function wK,a from Ω to Rd by wK,a(x) = ∇wK,a(x) for
a.e. x ∈ K and wK,a(x) = 0 for all x ∈ Ω \K.

We also define, for all a ∈ Ai, wa = wK(a),a − wL(a),a and, for all a ∈ Ae,
wa = wK(a),a. Then one gets wa ∈ H(div,Ω). The set QD ⊂ H(div,Ω) is the
space generated by the functions (wa)a∈A; the set QD,0 ⊂ H0(div,Ω) is the space
generated by the functions (wa)a∈Ai

; for any b ∈ L2(∂Ω), the set QD,b ⊂ QD is

the space

{
q +

∑
a∈Ae

1

ma

∫
a

b(x) dγ(x) wa , q ∈ QD,0

}
.

VD ∈ L2(Ω) is the space of functions f =
∑

K∈M αK χK (where, for all K ∈
M, αK ∈ R and χK is the characteristic function of K) such that

∫
Ω
f(x) dx =∑

K∈MmKαK = 0.

2.3. The mixed finite element scheme

The mixed finite element approximation of (1.2)-(1.4) is a pair of functions

(pD,qD) ∈ VD ×QD,g,

satisfying ∫
Ω

v(x)divqD(x) dx =

∫
Ω

f(x)v(x) dx ∀v ∈ VD, (2.3)

and ∫
Ω

y(x) ·Λ(x)−1qD(x) dx−
∫

Ω

pD(x) divy(x) dx = 0 ∀y ∈ QD,0. (2.4)

The unknown functions can be written as

qD =
∑
a∈A

qawa

and
pD =

∑
K∈M

pK χK .

Then equations (2.3) and (2.4) lead to the following system of linear equations,
with unknowns (qa)a∈A and (pK)K∈M:∑

a′∈A

qa′

∫
Ω

wa(x) ·Λ(x)−1wa′(x) dx−ma(pK(a) − pL(a)) = 0 ∀a ∈ Ai,

qa = ga ∀a ∈ Ae,
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maqa εK,a = fK ∀K ∈M, (2.5)

∑
K∈M

mKpK = 0,

where we denote

fK =

∫
K

f(x) dx ∀K ∈M, (2.6)

and

ga =
1

ma

∫
a

g(x) dγ(x) ∀a ∈ Ae. (2.7)

The existence and uniqueness of a solution (pD,qD) to system (2.3)-(2.4) is
stated in the following lemma.

Lemma 1: (Existence and uniqueness of the discrete approximation) Let us as-
sume hypotheses (H). Let D be an admissible discretization of Ω in the sense
of Definition 2. Then system (2.3)-(2.4) defines one and only one approximate
solution (pD,qD) ∈ VD ×QD,g.

Proof: Since Lemma 4 (which is proved below) shows that the only solution of
a linear system with the same matrix as (2.3)-(2.4) and a zero right-hand side is
zero, this matrix is invertible. This proves the lemma.

2.4. The finite volume scheme

We denote, for all K ∈M and a ∈ AK , FK,a = maqaεK,a (then FK(a),a+FL(a),a =
0 holds for all a ∈ Ai).

We now discretize the hyperbolic problem. Let ∆t > 0 be a constant time step.
Let us define the discrete source term

sn
K =

1

∆tmK

∫ (n+1)∆t

n∆t

∫
K

s(x, t) dx dt ∀K ∈M, ∀n ∈ N. (2.8)

Extending by 0 the function u on ∂Ω+ × R+, we define

un
a =

1

∆tma

∫ (n+1)∆t

n∆t

∫
a

u(x) dγ(x) dt ∀a ∈ Ae, ∀n ∈ N. (2.9)

The discretization of the initial value (Eq. (1.6)) is given by

u0
K =

1

mK

∫
K

u0(x)dx ∀K ∈M. (2.10)

The finite volume scheme discretization of equation (1.1) is written:

mK
un+1

K − un
K

∆t
+
∑

a∈AK

un
aFK,a = sn

Kf
+
K − un

Kf
−
K ∀K ∈M, ∀n ∈ N, (2.11)
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where un
a is defined by :

un
a = un

K(a) if qa > 0, else un
a = un

L(a) ∀a ∈ Ai, ∀n ∈ N
un

a = un
K(a) if qa > 0, else un

a = un
a ∀a ∈ Ae, ∀n ∈ N. (2.12)

For a given discretization D and a time step ∆t, we can define the approximate
solution by:

uD,∆t(x, t) = un
K , for a.e. (x, t) ∈ K × [n∆t, (n+ 1)∆t)

∀K ∈M, ∀n ∈ N. (2.13)

3. The convergence of the mixed method

We have the following result.

Theorem 1: (Convergence of the mixed finite element scheme) Under Hypothe-
ses (H), let ξ be a fixed positive real value and let D be a discretization of Ω in
the sense of Definition 2 such that regul(D) ≤ ξ. Let (p,q) ∈ L2(Ω)×Hg(div,Ω)
be the unique weak solution of the problem (1.8) and (1.9) with the condition
(1.10) and (pD,qD) ∈ VD ×QD,g be given by (2.3)-(2.4).

Then
lim

thin(D)→0
‖q− qD‖H(div,Ω) = 0,

lim
thin(D)→0

‖p− pD‖L2(Ω) = 0.
(3.1)

In order to prove Theorem 1, some lemmata must be previously shown. The
next lemma deals with an interpolation result for regular functions.

Lemma 2: (Interpolation of regular functions) Let Ω be an open bounded subset
of Rd with weakly Lipschitz-continuous boundary, let D be an admissible dis-
cretization of Ω in the sense of Definition 2 and let ξ ≥ regul(D). Let q ∈
(H1(Ω))d. Let y ∈ H(div,Ω) be defined by

y =
∑
a∈A

1

ma

∫
a

q(x) · na(x) dγ(x)wa.

Then we have divy =
∑

K∈M
1

mK

∫
K

divq(x) dx χK and there exists C1 > 0
which only depends on d and ξ such that

‖q− y‖L2(Ω) ≤ C1 thin(D)‖q‖(H1(Ω))d . (3.2)

One can notice then that, when thin(D) → 0, the function y so defined tends
to q in H(div,Ω).
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Proof: In the following proof, Ci denotes different positive real values which only
depend on ξ and d.

The proof of divy =
∑

K∈M
1

mK

∫
K

divq(x) dx χK is straightforward, since
divwa = 0 on K if K 6∈ {K(a), L(a)} and divwa = εK,a

ma

mK
on K if K ∈

{K(a), L(a)}.
Let K ∈M. Let us define the function w ∈ H1(K) by

w =
∑

a∈AK

(
1

ma

∫
a

q(x) · n∂K(x) dγ(x)

)
wK,a,

which is such that ∇w(x) = y(x) for a.e. x ∈ K. Similarly, denoting q̃ =
1

mK

∫
K

q(x) dx, we define w̃ ∈ H1(K) by

w̃ =
∑

a∈AK

(
1

ma

∫
a

q̃ · n∂K(x) dγ(x)

)
wK,a.

We get

‖q− y‖2
L2(K) ≤ 3‖q− q̃‖2

L2(K) + 3‖q̃−∇w̃‖2
L2(K) + 3‖∇w̃ −∇w‖2

L2(K).

Let us first deal with A = ‖q − q̃‖2
L2(K). Thanks to the Cauchy-Schwarz

inequality, one has

A ≤ 1

mK

∫
K

∫
K

|q(x)− q(y)|2 dx dy,

which yields, using (A.12) proved in Lemma 13,

‖q− q̃‖2
L2(K) ≤ C2 δ(K)2‖q‖2

(H1(K))d . (3.3)

We now turn to the study of B = ‖q̃ − ∇w̃‖2
L2(K). We define the function

h ∈ H2(K) by h(x) = q̃ ·x− 1
mK

∫
K

(q̃ ·y) dy. This function thus satisfies ∇h = q̃

and
∫

K
h(x) dx = 0. Since h−w̃ is the variational solution of a Neumann problem

on K with null average and ∆(h− w̃) is constant, we get

B =
∑

a∈AK

∫
a

(h(x)− w̃(x))

(
q̃ · n∂K(x)− 1

ma

∫
a

q̃ · n∂K(y) dγ(y)

)
dγ(x).

Thanks to the Cauchy-Schwarz inequality, we deduce that

B2 ≤ B′
∑

a∈AK

∫
a

(w̃(x)− h(x))2 dγ(x),

where

B′ =
∑

a∈AK

∫
a

(
q̃ · n∂K(x)− 1

ma

∫
a

q̃ · n∂K(y) dγ(y)

)2

dγ(x).
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We use (A.5) proved in Lemma 12. It yields∑
a∈AK

∫
a

(w̃(x)− h(x))2 dγ(x) ≤ C3 δ(K)B,

and thus we obtain
B ≤ C3 δ(K)B′. (3.4)

We have, by definition of thin(D),

δ(K)B′ ≤ δ(K)|q̃|2
∑

a∈AK

∫
a

(na(x)− na)
2 dγ(x)

≤ δ(K)

mK

∫
K

|q(x)|2 dx
∑

a∈AK

thin(D)2ma

≤ C4 thin(D)2

∫
K

|q(x)|2 dx× δ(K)m∂K

mK

.

Using mK ≥ C5 δ(K)d and m∂K ≤ C6 δ(K)d−1 (hypothesis (ii) of Definition 2
and Lemma 11), relation (3.4) gives

‖q̃−∇w̃‖2
L2(K) ≤ C7 thin(D)2‖q‖2

L2(K). (3.5)

We finally study the term C = ‖∇w̃ −∇w‖2
L2(K). We have

C =
∑

a∈AK

∫
a

(w̃(x)− w(x))

(
1

ma

∫
a

(q̃− q(y)) · n∂K(y) dγ(y)

)
dγ(x).

Thanks to the Cauchy-Schwarz inequality, we get

C2 ≤ C ′
∑

a∈AK

∫
a

(w̃(x)− w(x))2 dγ(x),

where

C ′ =
∑

a∈AK

∫
a

(
1

ma

∫
a

(q̃− q(y)) · n∂K(y) dγ(y)

)2

dγ(x)

Thanks again to (A.5) given by Lemma 12, we get∑
a∈AK

∫
a

(w̃(x)− w(x))2 dγ(x) ≤ C3 δ(K)C,

which leads to
C ≤ C3 δ(K)C ′. (3.6)
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Turning to the study of C ′, and using the Cauchy-Schwarz inequality, we have

C ′ ≤
∑

a∈AK

∫
a

(q̃− q(y))2 dγ(y) =

∫
∂K

(q̃− q(y))2 dγ(y)

≤
∫

∂K

1

mK

∫
K

(q(z)− q(y))2 dz dγ(y). (3.7)

Thanks again to Lemma 12, we get

C ′ ≤ C2 δ(K)‖q‖2
(H1(K))d ,

and therefore, thanks to (3.6) and (3.7), there exists C8 > 0 such that

‖∇w̃ −∇w‖2
L2(K) ≤ C8 δ(K)2‖q‖2

(H1(K))d . (3.8)

Summing relations (3.3), (3.5) and (3.8) on K ∈M gives (3.2).

Lemma 3: Under Hypotheses (H), let D be an admissible discretization of Ω in
the sense of Definition 2 and ξ ≥ regul(D). Let v ∈ VD and let h ∈ H2(Ω) be the
variational solution of −∆h = v on Ω, with a homogeneous Neumann boundary
condition and

∫
Ω
h(x) dx = 0 (the existence of such a function results from the

regularity hypotheses on Ω, see [Grisvard (1985)]). Let us define y ∈ QD,0 by

y =
∑
a∈A

(
1

ma

∫
a

∇h(x) · na dγ(x)dx

)
wa. (3.9)

Then there exists C9, only depending on Ω, d and ξ such that ‖y‖(L2(Ω))d ≤
C9 ‖v‖L2(Ω).

Proof: Using ‖y‖(L2(Ω))d ≤ ‖y−∇h‖(L2(Ω))d+‖∇h‖(L2(Ω))d , we apply Lemma 2 for
q = ∇h, since h ∈ H2(Ω) implies ∇h ∈ (H1(Ω))d. We thus obtain ‖y‖(L2(Ω))d ≤
(C1 thin(D) + 1)‖h‖H2(Ω). By hypothesis (H), we have ‖h‖H2(Ω) ≤ CΩ‖v‖L2(Ω),
which concludes the proof since thin(D) ≤ max(δ(Ω), 2).

By noticing that the y defined by (3.9) satisfies divy = −v, this lemma can
also be stated in terms of an “inf-sup” condition.

Corollary 1: (Discrete “inf-sup” condition) Under Hypotheses (H), let D be
an admissible discretization in the sense of Definition 2 and let ξ ≥ regul(D).
Then there exists C9 > 0, only depending on Ω, d and ξ such that

inf
v∈VD

sup
y∈QD,0

∫
Ω

v(x) divy(x) dx

‖v‖L2(Ω) ‖y‖(L2(Ω))d

≥ 1

C9

.
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The following lemmata express the classical proof of the convergence of mixed
finite element methods under an “inf-sup” condition and an interpolation re-
sult (discussed in [Brezzi-Fortin (1991)] or [Nédélec (1980)] for example). We
prove them for the sake of completeness, thus verifying that our hypotheses are
sufficient to apply this convergence proof.

Lemma 4: (Estimate on the discrete approximations) Under Hypotheses (H),
let D be an admissible discretization of Ω in the sense of Definition 2 and let
ξ ≥ regul(D). Let h ∈ L2(Ω) and r ∈ (L2(Ω))d be given.

Then, there exists one and only one solution (pD,qD) ∈ VD ×QD,0 of∫
Ω

divqD(x) v(x) dx =

∫
Ω

h(x) v(x) dx ∀v ∈ VD, (3.10)

and∫
Ω

y(x) ·Λ(x)−1qD(x) dx−
∫

Ω

pD(x) divy(x) dx =

∫
Ω

r(x) · y(x) dx

∀y ∈ QD,0,

(3.11)

and there exists C10, only depending on Ω, d, ξ, λ1 and λ2 such that

‖qD‖2
(L2(Ω))d + ‖pD‖2

L2(Ω) ≤ C10 (‖r‖2
(L2(Ω))d + ‖h‖2

L2(Ω)). (3.12)

Proof: We first remark that proving (3.12) for any solution (pD,qD) ∈ VD ×
QD,0 to (3.10)-(3.11) is sufficient to prove that for a zero right-hand side, the
discrete unknowns are zero, and therefore that the matrix of the linear system
is invertible. For the proof of (3.12), we choose, in (3.11), y = qD, and in (3.10),
v = pD. It leads to

1

λ2

‖qD‖2
(L2(Ω))d ≤ ‖r‖(L2(Ω))d‖qD‖(L2(Ω))d + ‖h‖L2(Ω)‖pD‖L2(Ω). (3.13)

We then apply Lemma 3, which gives the existence of y0 ∈ QD,0 such that
divy0 = pD a.e. in Ω and

‖y0‖(L2(Ω))d ≤ C9 ‖pD‖L2(Ω). (3.14)

Introducing y0 in (3.11), we get

‖pD‖2
L2(Ω) ≤ ‖r‖(L2(Ω))d‖y0‖(L2(Ω))d +

1

λ1

‖qD‖(L2(Ω))d‖y0‖(L2(Ω))d ,

which gives, thanks to (3.14),

‖pD‖L2(Ω) ≤ C9

(
‖r‖(L2(Ω))d +

1

λ1

‖qD‖(L2(Ω))d

)
. (3.15)

Thanks to (3.13) and (3.15), we get (3.12).
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Lemma 5: (Bound on the approximation error by the interpolation error) Under
Hypotheses (H), let ξ > 0 and D be a discretization of Ω in the sense of Definition
2 such that regul(D) ≤ ξ. Let (p,q) ∈ L2(Ω) × Hg(div,Ω) be the unique weak
solution of the problem (1.8) and (1.9) with the condition (1.10) and (pD,qD) ∈
VD ×QD,g be given by (2.3) and (2.4). Let q̃D ∈ QD,g be given and let p̃D ∈ VD
be defined by p̃D =

∑
K∈M

1

mK

∫
K

p(x) dx χK.

Then there exists C11, only depending on Ω, d, ξ, λ1 and λ2 such that

‖q−qD‖2
(L2(Ω))d +‖p−pD‖2

L2(Ω) ≤ C11(‖q− q̃D‖2
H(div,Ω) +‖p− p̃D‖2

L2(Ω)). (3.16)

Proof: We get, using the variational formulations (1.8)-(1.9) and (2.3)-(2.4):∫
Ω

div(qD(x)− q̃D(x))v(x) dx =

∫
Ω

div(q(x)− q̃D(x))v(x) dx ∀v ∈ VD,

and ∫
Ω

y(x) ·Λ(x)−1(qD(x)− q̃D(x)) dx−
∫

Ω

(pD(x)− p̃D(x))divy(x) dx

=

∫
Ω

y(x) ·Λ(x)−1(q(x)− q̃D(x)) dx−
∫

Ω

(p(x)− p̃D(x))divy(x) dx

∀y ∈ QD,0.

For all y ∈ QD,0, thanks to the definition of p̃D, we have∫
Ω

(p(x)− p̃D(x))divy(x) dx = 0.

Thus (pD−p̃D,qD−q̃D) is the solution of (3.10) and (3.11) with r = Λ−1(q−q̃D)
and h = div(q− q̃D). Applying Lemma 4 yields

‖qD − q̃D‖2
(L2(Ω))d + ‖pD − p̃D‖2

L2(Ω)

≤ C10

(
1

λ1

‖q− q̃D‖2
(L2(Ω))d + ‖divq− div q̃D‖2

L2(Ω)

)
.

Using the Cauchy-Schwarz inequality, this leads to

‖q− qD‖2
(L2(Ω))d + ‖p− pD‖2

L2(Ω)

≤ 2

(
C10

λ1

+ 1

)
‖q− q̃D‖2

(L2(Ω))d + 2C10‖divq− div q̃D‖2
L2(Ω)

+2‖p− p̃D‖2
L2(Ω),

which gives (3.16).

Proof of Theorem 1. We apply Lemma 5. On the one hand, thanks again
to (A.13) proved in Lemma 13, the following inequality holds:
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‖p− p̃D‖2
L2(Ω) ≤ C2 thin(D)2‖∇p‖2

L2(Ω),

(notice that, when p ∈ L2(Ω) satisfies (1.8), we have, in fact, p ∈ H1(Ω)) and
therefore ‖p− p̃D‖2

L2(Ω) tends to 0 as thin(D) tends to 0. On the other hand, it

suffices to prove that one can choose q̃D ∈ QD,g such that ‖q− q̃D‖H(div,Ω) is as
small as desired. Notice that, in general, the statement q ∈ (H1(Ω))d∩Hg(div,Ω)
is false. Therefore, we take q0 ∈ (H1(Ω))d such that q0 ·n∂Ω = g; then, q−q0 ∈
H0(div,Ω) and since Hypotheses (H) are sufficient to prove that Ω is locally
star-shaped, we can approximate q− q0 in H0(div,Ω) by regular functions with
compact support in Ω (see [Temam (1979)]); thus, q can be approximated in
Hg(div,Ω) by q̃ ∈ (H1(Ω))d ∩ Hg(div,Ω). Then, applying Lemma 2, we can
approximate q̃ by q̃D ∈ QD,g as close as demanded by letting thin(D) tend to
zero.

4. The convergence of the finite volume method

We now show the following theorem.

Theorem 2: (Convergence of the finite volume scheme) Under Hypotheses (H),
let ξ and α ∈ (0, 1) be fixed positive real values. Let (p,q) ∈ L2(Ω)×Hg(div,Ω) be
the unique weak solution of the problem (1.8) and (1.9) with the condition (1.10).
Let (Dm)m∈N be a sequence of discretizations of Ω in the sense of Definition 2
such that for all m ∈ N, regul(Dm) ≤ ξ and lim

m→+∞
thin(Dm) = 0. For a given

m ∈ N, let us denote by (pm,qm) the solution (pD,qD) ∈ VD × QD,g given by
(2.3) and (2.4) where D stands for Dm. Let ∆tm > 0, denoted ∆t, be such that
the condition

∆t ≤ (1− α) inf
K∈M

mK∑
a∈AK

ma(qaεK,a)
+ + f−K

(4.1)

holds. Let um ∈ L∞(Ω×R+) denote the function uD,∆t defined by (2.8)-(2.13).

Then, there exists a subsequence of (um)m∈N, still denoted (um)m∈N, which
converges in the weak-∗ topology of L∞(Ω×R+) to a function u ∈ L∞(Ω×R+)
that is a solution of (1.7).

If we add some hypotheses to ensure that q is Lipschitz continuous on Ω (for
example, ∂Ω is of class C2, Λ is of class C2, f is of class C1 and g is of class
C2) then:

- the function u is unique;
- the whole sequence (um)m∈N converges to u in Lp(Ω×]0, T [) for all p ∈ [1,∞)

and all T > 0.

The proof of Theorem 2 is classical, and has been developed for various
choices of the discretization of the flux q (see [Champier-Gallouët-Herbin (1993)],
[Eymard-Gallouët (1993)] and [Vignal (1996)]). The originality of this proof is
the use of the technical Lemma 14, which is nonstandard.
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4.1. L∞ estimate

The purpose of this section is to prove the following result.

Lemma 6: (L∞ stability of the finite volume scheme) Under hypotheses (H), let
ξ > 0 and let D be an admissible discretization in the sense of Definition 2 such
that ξ ≥ regul(D). Let (pD,qD) ∈ VD ×QD,g be given by (2.3) and (2.4) and let
∆t > 0 be such that

∆t ≤ inf
K∈M

mK∑
a∈AK

ma(qaεK,a)
+ + f−K

. (4.2)

Then the approximate solution uD,∆t given by (2.8)-(2.13) is such that

‖uD,∆t‖L∞(Ω×R+) ≤ max(‖u0‖L∞(Ω), ‖u‖L∞(∂Ω−×R+), ‖s‖L∞(Ω×R+)). (4.3)

Proof: According to the scheme (2.11), we have

un+1
K = un

K − ∆t

mK

(∑
a∈AK

un
aFK,a + un

Kf
−
K − sn

Kf
+
K

)
,

which gives

un+1
K = un

K

(
1− ∆t

mK

(∑
a∈AK

F+
K,a + f−K

))
+

∆t

mK

∑
a∈AK

F−K,au
n
a +

∆t

mK

f+
Ks

n
K ,

(4.4)

The discrete elliptic scheme (2.5) is used to get∑
a∈AK

F+
K,a + f−K =

∑
a∈AK

F−K,a + f+
K , (4.5)

Thanks to this equation and the stability condition (4.2), (4.4) expresses un+1
K

as a convex combination of the values un
K , un

a , sn
K . An easy proof by induction

concludes the proof of the lemma.

Remark 6: If the data are regular enough, the term
∑

a∈AK
ma|qa| behaves like

size(D)d−1 as size(D) tends to 0, and the condition (4.2) takes the form ∆t ≤
Csize(D) (where size(D) = maxK∈M δ(K)).
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4.2. A weak bound on the spatial variations

Lemma 7: (Weak bound on spatial variations) Under hypotheses (H), let ξ > 0,
α ∈ (0, 1), T > 0, and let D be an admissible discretization in the sense of
Definition 2 such that ξ ≥ regul(D). Let (pD,qD) ∈ VD ×QD,g be given by (2.3)
and (2.4) and let ∆t > 0 such that the condition (4.1) holds. Let NT be such
that NT ∆t ≤ T < (NT + 1)∆t and let (un

K)K∈M, n∈N, (un
a)a∈A, n∈N be defined by

(2.8)-(2.12).

Then there exists C12, which only depends on d, Ω, T , ξ, α, f , s, g, u and u0

(but not on D or ∆t), such that

NT∑
n=0

∆t
∑

K∈M

(∑
a∈AK

ma(qaεK,a)
−(un

a − un
K)2

)
≤ C12. (4.6)

Remark 7: In [Champier-Gallouët-Herbin (1993)], [Eymard-Gallouët (1993)]
and [Vignal (1996)], a weak BV-estimate is obtained from (4.6). We do not do
so here, since in the convergence proof, the use of Lemma 14 takes advantage
of a local bound of the diameter of each control volume. Otherwise, we should
assume the existence of some β > 0 with

δ(K) ≥ β size(D) ∀K ∈M.

Proof: Thanks to (4.5), the scheme (2.11) can be rewritten as

mK(un+1
K − un

K) + ∆t

(∑
a∈AK

F−K,a(u
n
K − un

a) + f+
K(un

K − sn
K)

)
= 0

∀K ∈M, ∀n ∈ N.
(4.7)

For all n ∈ N and K ∈M, let us multiply the equation (4.7) by un
K and sum

the result over K ∈M and n = 0, . . . , NT . It gives T1 + T2 = 0 with

T1 =

NT∑
n=0

∑
K∈M

mK(un+1
K − un

K)un
K

and

T2 =

NT∑
n=0

∆t
∑

K∈M

(∑
a∈AK

F−K,a(u
n
K − un

a)un
K + f+

K(un
K − sn

K)un
K

)
.

Writing un+1
K un

K = −1
2
(un+1

K − un
K)2 + 1

2
(un+1

K )2 + 1
2
(un

K)2, we get

T1 = T11 + T12,

where

T11 = −1

2

NT∑
n=0

∑
K∈M

mK(un+1
K − un

K)2
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and

T12 =
1

2

(∑
K∈M

mK((uNT +1
K )2 − (u0

K)2)

)
.

Using (4.7) and the Cauchy-Schwarz inequality gives, for all K ∈ M and all
n ∈ N,

m2
K(un+1

K − un
K)2 ≤ ∆t

(∑
a∈AK

F−K,a + f+
K

)

×

(
∆t
∑

a∈AK

F−K,a(u
n
a − un

K)2 + f+
K(sn

K − un
K)2

)
.

Using condition (4.1) and equation (4.5), we get, for all K ∈M and n ∈ N,

mK(un+1
K − un

K)2

≤ (1− α)

(
∆t
∑

a∈AK

F−K,a(u
n
a − un

K)2 + f+
K(sn

K − un
K)2

)
.

(4.8)

Let us consider T2. We have T2 = T21 + T22 with

T21 =
1

2

NT∑
n=0

∆t
∑

K∈M

(∑
a∈AK

F−K,a(u
n
a − un

K)2 + f+
K(sn

K − un
K)2

)

and

T22 =
1

2

NT∑
n=0

∆t
∑

K∈M

(∑
a∈AK

F−K,a((u
n
K)2 − (un

a)2) + f+
K((un

K)2 − (sn
K)2)

)
.

We thus get, thanks to (4.8),

T11 + T21 ≥ αT21.

According to (4.5), the term T22 can be rewritten as

T22 =
1

2

NT∑
n=0

∆t
∑

K∈M

(∑
a∈AK

FK,a(u
n
a)2 + f−K(un

K)2 − f+
K(sn

K)2

)
.

Thus, gathering by faces, we get

T22 =
1

2

NT∑
n=0

∆t

(∑
a∈Ae

maga(u
n
a)2 +

∑
K∈M

(f−K(un
K)2 − f+

K(sn
K)2)

)
.

Since terms T12 and T22 can easily be bounded using Lemma 6 (since condition
(4.2) is weaker than (4.1)), we thus get (4.6).
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4.3. The proof of the convergence theorem, Theorem 2

We first notice that Lemma 6 gives the existence of a subsequence um and of a
function u ∈ L∞(Ω×R+) such that um converges to u in the weak-∗ topology of
L∞(Ω× R+) as m→ +∞. Recall that we have proved above (Theorem 1) that
qm tends to q in H(div,Ω) as m → +∞. This section is devoted to the proof
that u satisfies (1.7) (the uniqueness part of the proof being studied in the next
section).

Let φ ∈ C1
c (Rd ×R) be such that φ = 0 on ∂Ω\∂Ω− ×R+. Let T > 0 be such

that
φ = 0 on Rd × [T,+∞[. (4.9)

In this proof, we denote by Ci various positive real values which only depend
on d, Ω, φ, T , ξ, α, s, f , g, u, u0 and not on D or ∆t.

In the following, we use the notations D = Dm and ∆t = ∆tm. Let us denote
by NT the integer such that NT ∆t ≤ T < (NT + 1)∆t. Setting

φn
K =

1

∆t mK

∫
K

∫ (n+1)∆t

n∆t

φ(x, t) dx dt ∀K ∈M, ∀n ∈ N,

we multiply the equality (4.7) by φn
K and sum over K ∈ M and n ∈ N. We

obtain E1 + E2 = 0 with

E1 =

NT∑
n=0

∑
K∈M

mK(un+1
K − un

K)φn
K ,

and

E2 =

NT∑
n=0

∆t
∑

K∈M

(∑
a∈AK

F−K,a(u
n
K − un

a)φn
K + f+

K(un
K − sn

K)φn
K

)
.

We also define

φn
a =

1

∆t ma

∫
a

∫ (n+1)∆t

n∆t

φ(x, t) dγ(x) dt.

Let us study E1. Thanks to (4.9), for all K ∈ M, φNT +1
K = 0 holds and

therefore

E1 =

NT +1∑
n=1

∑
K∈M

mKu
n
K(φn−1

K − φn
K)−

∑
K∈M

mKu
0
Kφ

0
K .

Using the weak-∗ convergence of (um)m∈N to u, we deduce the convergence of
E1 to

−
∫

Ω×R+

u(x, t)
∂φ

∂t
(x, t) dx dt−

∫
Ω

u0(x)φ(x, 0) dx.
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Next we consider the term E2. It can be written, using (2.12) and gathering
by faces, as

E2 =

NT∑
n=0

∆t
∑
a∈Ai

maqaφ
n
Kd(a)(u

n
L(a) − un

K(a))

+

NT∑
n=0

∆t
∑
a∈Ae

maqaφ
n
Kd(a)(u

n
a − un

K(a))

+

NT∑
n=0

∆t
∑

K∈M

f+
Kφ

n
K(un

K − sn
K),

(4.10)

where we define, for all a ∈ Ai, Kd(a) (the “downstream” control volume) by
Kd(a) = K(a) if qa ≤ 0, else Kd(a) = L(a), and for all a ∈ Ae, Kd(a) = K(a).
We set

fD(x) =
1

mK

fK , for a.e. x ∈ K ∀K ∈M,

sD,∆t(x, t) = sn
K , for a.e. (x, t) ∈ K × [n∆t, (n+ 1)∆t) ∀K ∈M, ∀n ∈ N,

uD,∆t(x, t) = un
a , for a.e. (x, t) ∈ a× [n∆t, (n+ 1)∆t) ∀a ∈ Ae, ∀n ∈ N,

gD(x) = ga, for a.e. x ∈ a ∀a ∈ Ae,

where fK , ga, s
n
K and un

a are respectively defined by (2.6), (2.7), (2.8) and (2.9).
We define E3 by

E3 = −
∫

Ω×R+

uD,∆t(x, t)qD(x) · ∇φ(x, t) dx dt

+

∫
∂Ω×R+

uD,∆t(x, t)gD(x)φ(x, t) dγ(x) dt

+

∫
Ω×R+

(uD,∆t(x, t)f
−
D (x)− sD,∆t(x, t)f

+
D (x))φ(x, t) dx dt.

Since uD,∆t converges to u in the weak-∗ topology of L∞(Ω × R+) and since
qD converges strongly to q in L2(Ω) as m → +∞, in view of the definitions of
uD,∆t and gD, we deduce the convergence, as m→∞, of E3 to

−
∫

Ω×R+

u(x, t)q(x) · ∇φ(x, t) dx dt+

∫
∂Ω−×R+

u(x, t)g(x)φ(x, t) dγ(x) dt

+

∫
Ω×R+

(u(x, t)f−(x)− s(x, t)f+(x))φ(x, t) dx dt.
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Using (2.5) and the definition of wK,a, we can rewrite E3 as

E3 =

NT∑
n=0

∆t
∑
a∈Ai

maqaφ
n
a(un

L(a) − un
K(a))

+

NT∑
n=0

∆t
∑
a∈Ae

maqaφ
n
a(un

a − un
K(a))

+

NT∑
n=0

∆t
∑

K∈M

(un
K − sn

K)f+
Kφ

n
K .

(4.11)

From (4.10) and (4.11), we deduce that

|E3 − E2| ≤ E4 + E5,

with

E4 =

NT∑
n=0

∆t
∑
a∈Ae

ma|qa||φn
a ||un

a − un
a |

and

E5 =

NT∑
n=0

∆t
∑
a∈Ai

ma|qa| |φn
a − φn

Kd(a)| |un
K(a) − un

L(a)|

+

NT∑
n=0

∆t
∑
a∈Ae

ma|qa| |φn
a − φn

Kd(a)| |un
a − un

K(a)|.

Let us first study E4. Since, for all a ∈ Ae, relation (2.12) implies un
a = un

a

when qa ≤ 0, we can write

E4 =

NT∑
n=0

∆t
∑

a∈Ae , qa>0

ma|qa||φn
a ||un

a − un
a |.

For all a ∈ Ae such that qa = m−1
a

∫
a
g(x) dγ(x) > 0, we have ∂Ω+ ∩ a 6= ∅

(recall that ∂Ω+ = {x ∈ ∂Ω | g(x) > 0}); thus, since φ = 0 on ∂Ω+ × R+, there
exists x ∈ a such that φ(x, t) = 0 for all t ≥ 0. Denoting by C13 the Lipschitz
constant of φ, we then have |φ(y, t)| ≤ C13 δ(a) for all y ∈ a and t ≥ 0, which
implies |φn

a | ≤ C13 δ(a). Using (4.3), we then deduce

E4 ≤ C14 thin(D)

NT∑
n=0

∆t
∑
a∈Ae

ma|qa|

≤ C14 thin(D)(T + ∆t)
∑
a∈Ae

∫
a

|g(x)| dγ(x)

= C14 thin(D)(T + ∆t)

∫
∂Ω

|g(x)| dγ(x),
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which shows that E4 tends to 0 as m→ +∞.
We turn now to the study of E5. Thanks to the Cauchy-Schwarz inequality,

we obtain

E2
5 ≤ C2

13

(
NT∑
n=0

∆t
∑
a∈A

ma|qa|δ(Kd(a))
2

)

×

(
NT∑
n=0

∆t
∑

K∈M

∑
a∈AK

ma(qaεK,a)
−(un

a − un
K)2

)
.

This gives, using Lemma 7 and the Cauchy-Schwarz inequality,

E2
5 ≤ C15 thin(D)

(∑
a∈A

maq
2
aδ(Kd(a))

)1/2(∑
a∈A

maδ(Kd(a))

)1/2

.

We can then apply Lemma 14, which yields∑
a∈A

maq
2
aδ(Kd(a))

≤ C16

∑
a∈A

(∫
Kd(a)

q2
D(x) dx+ δ(Kd(a))

2

∫
Kd(a)

(divqD(x))2 dx

)
.

Under Hypotheses (H) and the item (vi) of Definition 2, we get that cardAK ≤
C17. Therefore, since qD converges to q in H(div,Ω), it is bounded and∑

a∈A

maq
2
aδ(Kd(a)) ≤ C18.

Item (ii) of Definition 2 allows to write δ(K)m∂K ≤ C19 δ(K)d ≤ C20 mK (see
also Remark 8) . Thus,∑

a∈A

maδ(Kd(a)) ≤
∑

K∈M

δ(K)m∂K ≤ C20

∑
K∈M

mK = C20mΩ.

Therefore, we can conclude that

E5 ≤ C21

√
thin(D),

which shows that E2 tends to

−
∫

Ω×R+

u(x, t)q(x) · ∇φ(x, t) dx dt+

∫
∂Ω−×R+

u(x, t)g(x)φ(x, t) dγ(x) dt

+

∫
Ω×R+

(u(x, t)f−(x)− s(x, t)f+(x))φ(x, t) dx dt

as m→ +∞. That concludes the proof of Theorem 2.
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5. Uniqueness of the weak solution under regularity on
the data

We do not discuss in detail this part, since it does not involve the particular
discrete framework we have developed in this paper. Some details can be found in
[Eymard-Gallouët-Ghilani-Herbin (1998)], [Chainais (1999)], [Eymard-Gallouët-
Herbin (2001)], for example. We first state the following result.

Lemma 8: Under hypotheses (H), let ξ > 0 and let D be an admissible dis-
cretization in the sense of Definition 2 such that ξ ≥ regul(D). Let (pD,qD) ∈
VD×QD,g be given by (2.3) and (2.4) and let ∆t > 0 such that the CFL condition
(4.2) holds.

Then, the approximate solution uD,∆t given by (2.8)-(2.13) is such that

mK(η(un+1
K )− η(un

K))+

∆t

(∑
a∈AK

F−K,a(η(u
n
K)− η(un

a)) + f+
Kη

′(un
K)(un

K − sn
K)

)
≤ 0

∀K ∈M, ∀n ∈ N, ∀η ∈ C1(R,R) with η′′ ≥ 0.

The proof of this lemma is easy, starting from the discrete relation (4.7) and
multiplying it by η′(un

K). From this lemma, we get, letting thin(D) → 0, the
following result, which proves the convergence of the scheme to a solution of
the hyperbolic problem in a very weak sense ([Eymard-Gallouët-Herbin (1995)],
[DiPerna (1985)]).

Lemma 9: (Convergence of the finite volume scheme to an entropy process so-
lution) Under Hypotheses (H), let ξ > 0 and α ∈ (0, 1) be fixed real values. Let
(p,q) ∈ L2(Ω) × Hg(div,Ω) be the unique weak solution of the problem (1.8)
and (1.9) with the condition (1.10). Let (Dm)m∈N be a sequence of discretiza-
tions of Ω in the sense of Definition 2 such that for all m ∈ N, regul(Dm) ≤ ξ
and lim

m→+∞
thin(Dm) = 0. For a given m ∈ N, let us denote by (pm,qm) the

solution (pD,qD) ∈ VD × QD,g given by (2.3) and (2.4) where D stands for
Dm. Let ∆tm > 0, denoted ∆t, such that the CFL condition (4.1) holds. Let
um ∈ L∞(Ω× R+) denote the function uD,∆t defined by (2.8)-(2.13).

Then there exists a subsequence of (um)m∈N, again denoted (um)m∈N, which
converges in the nonlinear weak-∗ topology of L∞(Ω × R+) to a function u ∈
L∞(Ω× R+ × (0, 1)), that is a solution of∫

R+

∫
Ω

∫ 1

0

(
η(u(x, t, α))

∂φ

∂t
(x, t) + η(u(x, t, α))div(φ(x, t)q(x))

+η′(u(x, t, α))φ(x, t)f+(x)(s(x, t)− u(x, t, α))
)
dα dx dt

+

∫
Ω

η(u0(x))φ(x, 0) dx−
∫

R+

∫
∂Ω−

η(u(x, t))φ(x, t)g(x) dγ(x) dt ≥ 0

∀φ ∈ C1
c (Rd × R,R+) such that φ = 0 on ∂Ω+ × R+,

∀η ∈ C1(R,R) with η′′ ≥ 0.

(5.1)
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The proof of the above lemma is completely similar to the one which is given
in Section 4.3. Use of the classical “variable doubling technique” and Krushkov
entropies (Krushkov, 1970) lead to a uniqueness result, under sufficiently strong
hypotheses on the data giving that q is Lipschitz-continuous (see [Otto (1996)] or
[Vovelle (2001)] for the particular problem of handling the boundary conditions).

Lemma 10: (Uniqueness of the entropy process solution) Under Hypotheses
(H), and the additional hypotheses that ∂Ω is of class C2, Λ is of class C2, f is
of class C1 and g is of class C2 (for example), let (p,q) ∈ L2(Ω) × Hg(div,Ω)
be the unique weak solution of the problem (1.8) and (1.9) with the condition
(1.10).

Then, q is Lipschitz-continuous in Ω, there exists one, and only one, function
u ∈ L∞(Ω × R+ × (0, 1)) that is a solution of (5.1), and there exists one, and
only one, ũ ∈ L∞(Ω × R+) solution of (1.7), such that, for a.e. (x, t, α) ∈
Ω× R+ × (0, 1), u(x, t, α) = ũ(x, t).

This result of uniqueness yields the convergence in Lp(Ω×]0, T [), for all p ∈
[1,∞) and T > 0, of (um)m∈N to the unique solution ũ of the problem.

A. Technical lemmata

Lemma 11: Let K be an open subset of Rd with weakly Lipschitz-continuous
boundary, such that there exists a Lipschitz-continuous homeomorphism φ from
Qδ(K) = ] − δ(K), δ(K)[d to K with Lipschitz-continuous inverse mapping; we
denote by ξ an upper bound of the Lipschitz constants of φ and φ−1.

Then there exists C22 > 0 only depending on ξ and d such that, for all f ∈
L1(∂K), f ≥ 0,

1

C22

∫
∂Qδ(K)

f ◦ φ(x) dγ(x) ≤
∫

∂K

f(x) dγ(x) ≤ C22

∫
∂Qδ(K)

f ◦ φ(x) dγ(x). (A.1)

Notice that a Lipschitz-continuous homeomorphism with Lipschitz-continuous
inverse mapping between two open sets has a unique extension as a Lipschitz-
continuous homeomorphism with Lipschitz-continuous inverse mapping between
the closures of the open sets, and that this extension defines a Lipschitz-conti-
nuous homeomorphism with Lipschitz-continuous inverse mapping between the
boundaries of the open sets.

Remark 8: The most useful inequality (and the easiest to obtain) in the follow-
ing will be the second one of (A.1). We have also stated the first one in order
that (A.1) allows to see that, when A is a measurable subset of ∂K, γ(A) and
γ(φ−1(A)) are comparable, with constants only depending on an upper bound
on the Lipschitz constants of φ and φ−1 (recall that γ denotes the (d − 1)-
dimensional measure on the boundary of any open subset of Rd with weakly
Lipschitz-continuous boundary).
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Proof: We denote δ = δ(K).
It is well known (see e.g. [Droniou (1999)]) that the mapping

f ∈ L1(∂K) → f ◦ φ ∈ L1(∂Qδ) (A.2)

is an isomorphism; here we want to estimate the norm of this mapping (and of
its inverse mapping) only in terms of φ and φ−1 (with bounds not depending on
δ).

Let us first recall the definition of the integral on ∂K when K is an open
set with weakly Lipschitz-continuous boundary: if V is an open set of Rd and
τ :]−1, 1[d−1→ ∂K∩V is a Lipschitz-continuous homeomorphism with Lipschitz-
continuous inverse mapping, then for f ∈ L1(∂K), we have∫

∂K∩V

f(x) dγ(x) =

∫
]−1,1[d−1

f ◦ τ(x)|∂1τ ∧ · · · ∧ ∂d−1τ |(x) dx,

where ∂iτ denotes the i-th partial derivative of τ (which is, by the Rademacher
Theorem, a function in (L∞(]− 1, 1[d−1))d and is essentially bounded by lip(τ))
and ∧ is the vector product of d− 1 elements of Rd.

With this definition, we can verify that the (d − 1)-dimensional measure on
∂Qδ is the (d − 1)-Lebesgue measure on all the hyperplane pieces the union of
which is ∂Qδ. We can also notice that

∂Qδ = A t
(
td

i=1(]− δ, δ[i−1×{−δ}×]− δ, δ[d−it]− δ, δ[i−1×{δ}×]− δ, δ[d−i)
)

where γ(A) = 0 (A is made of sets of dimension d− 2).
Since (A.2) is an isomorphism, the sets of zero measure on ∂Qδ are mapped

by φ on sets of zero measure on ∂K. Thus, by denoting

Hi,± =]− δ, δ[i−1×{±δ}×]− δ, δ[d−i,

we have, up to a set of zero measure,

∂K = td
i=1(φ(Hi,+) t φ(Hi,−)).

If f ∈ L1(∂K), f ≥ 0, the integral of f on ∂K can thus be estimated if we
estimate the integrals of f on all φ(Hi,±).

Let us do this for H1,+, the other terms being dealt with in the same way.

Define τ :] − 1, 1[d−1→ ∂K ∩ φ(H1,+) by τ(x) = φ(δ, δx). τ is a Lipschitz-
continuous homeomorphism with Lipschitz-continuous inverse mapping; thus,
by definition of the integral on ∂K,∫

∂K∩φ(H1,+)

f(x) dγ(x)

=

∫
]−1,1[d−1

f ◦ τ(x)|∂1τ ∧ · · · ∧ ∂d−1τ |(x) dx (A.3)

=

∫
]−1,1[d−1

f ◦ φ(δ, δx)δd−1

∣∣∣∣ ∂φ∂y2

(δ, δx) ∧ · · · ∧ ∂φ

∂yd

(δ, δx)

∣∣∣∣ (x) dx.
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Thus, by a change of variable,∫
∂K∩φ(H1,+)

f(x) dγ(x) =

∫
]−δ,δ[d−1

f ◦ φ(δ, y)

∣∣∣∣ ∂φ∂y2

(δ, y) ∧ · · · ∧ ∂φ

∂yd

(δ, y)

∣∣∣∣ (y) dy.
Since φ is Lipschitz-continuous, we have, for all i ∈ [2, d],

|| ∂φ
∂yi

||L∞(H1,+) ≤ lip(φ)

and there exists thus C23 only depending on ξ and d such that∫
∂K∩φ(H1,+)

f(x) dγ(x) ≤ C23

∫
]−δ,δ[d−1

f ◦ φ(δ, y) dy.

But, as we previously noticed, the (d− 1)-dimensional measure on H1,+ is the
(d− 1)-Lebesgue measure on this piece of hyperplane, and thus∫

]−δ,δ[d−1

f ◦ φ(δ, y) dy =

∫
H1,+

f ◦ φ(x) dγ(x),

which proves the second inequality of (A.1).

The proof of the first inequality of (A.1) relies on a lemma (mainly algebraic)
stating that there exists C24 only depending on d such that

|∂1τ ∧ · · · ∧ ∂d−1τ | ≥ C24(lip(τ−1))−(d−1) (A.4)

(see [Droniou (1999)]). Since τ−1(z) = δ−1((φ−1(z))2, . . . , (φ
−1(z))d), we have

lip(τ−1) ≤ ξδ−1; using this in (A.4) and returning to (A.3) we get, thanks again
to a change of variable, the first inequality of (A.1).

Lemma 12: Let K be an open subset of Rd with weakly Lipschitz-continuous
boundary; we denote by mK the measure of K. One assumes that there exists
a Lipschitz-continuous homeomorphism L from K to B(0, δ(K)) with Lipschitz-
continuous inverse mapping. Let ξ be a real value greater than the Lipschitz
constants of L and L−1. Let g ∈ H1(K). The trace of g on ∂K is still denoted
by g.

Then there exists C3 > 0, only depending on ξ and d, such that

1

mK

∫
∂K

∫
K

(g(y)− g(x))2 dx dγ(y) ≤ C3 δ(K)

∫
K

(∇g(x))2 dx.

Thus, if
∫

K
g(x) dx = 0 holds, we have∫

∂K

g(x)2 dγ(x) ≤ C3 δ(K)

∫
K

(∇g(x))2 dx. (A.5)
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Proof: In the following proof, Ci denotes real values which only depend on d and
ξ; δ denotes δ(K).

The mapping F : x → (|x|/ supi∈[1,d] |xi|)x is a Lipschitz-continuous homeo-
morphism with Lipschitz continuous inverse mapping between B(0, δ) and Q =
] − δ, δ[d; moreover, the Lipschitz constants of F and F−1 only depend on d.
Thus, there exists a Lipschitz-continuous homeomorphism φ from Q to K, with
Lipschitz continuous inverse mapping, such that the Lipschitz constants of φ and
φ−1 are bounded by C25 only depending on d and ξ.

According to Lemma 11, there exists C26 only depending on d and ξ such that∫
∂K

∫
K

(g(y)− g(x))2 dx dγ(y)

≤ C26

∫
∂Q

∫
K

(g(φ(y′))− g(x))2 dx dγ(y′)

= C26

∫
∂Q

∫
Q

(g(φ(y′))− g(φ(x′)))2Jφ,d(x
′) dx′ dγ(y′),

where Jφ,d(x
′) is the absolute value of the jacobian in the change of variable

φ. Setting h = g ◦ φ, we have h ∈ H1(Q). Thus we conclude the existence of
C27 > 0, only depending on d and ξ, such that∫

∂K

∫
K

(g(y)− g(x))2 dx dγ(y) ≤ C27

∫
∂Q

∫
Q

(h(y)− h(x))2 dx dγ(y).

The change of variable x = φ−1(x′) proves the existence of C28 > 0, only
depending on d and ξ such that∫

Q

(∇h(x))2 dx ≤ C28

∫
K

(∇g(x′))2
dx′. (A.6)

Therefore, if we prove the existence of C29 > 0, only depending on d and ξ,
such that ∫

∂Q

∫
Q

(h(y)− h(x))2 dx dγ(y) ≤ C29 δ
d+1

∫
Q

(∇h(x))2 dx, (A.7)

we get (12) from (A.6) and (A.7) and the fact that the existence of L ensures
that there exists C5 > 0 with mK ≥ C5δ

d.
In order to prove (A.7), we may assume by a classical argument of density that

h ∈ C1(Q). Since Q is a cube with 2d faces, it suffices to prove the existence of
C30 > 0, only depending on d and ξ, such that∫

σ

∫
Q

(h(y)− h(x))2 dx dγ(y) ≤ C30 δ
d+1

∫
Q

(∇h(x))2 dx, (A.8)

where σ = {−δ} × [−δ, δ]d−1, to get (A.7) with C29 = 2dC30. Let H = [−δ, δ]d−1

and Q+ = [0, δ]×H.
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We can now write, for all z ∈ Q+,∫
σ

∫
Q

(h(y)− h(x))2 dx dγ(y) ≤ 2

∫
σ

∫
Q

(h(y)− h(z))2 dx dγ(y)

+2

∫
σ

∫
Q

(h(z)− h(x))2 dx dγ(y).

An integration with respect to z ∈ Q+ leads to

2d−1δd

∫
σ

∫
Q

(h(y)− h(x))2 dx dγ(y) ≤ 2(2δ)dA+ 2(2δ)d−1B, (A.9)

with

A =

∫
σ

∫
Q+

(h(y)− h(z))2 dz dγ(y),

and

B =

∫
Q+

∫
Q

(h(z)− h(x))2 dx dz.

Let us first study A. By definition,

A =

∫
H

∫
H

∫ δ

0

(h((−δ, y))− h((a, b)))2 da db dy,

and therefore, A is equal to∫
H

∫
H

∫ δ

0

(∫ 1

0

∇h((−δ + θ(a+ δ), y + θ(b− y))) · (a+ δ, b− y) dθ

)2

da db dy.

Using the Cauchy-Schwarz inequality, we get

A ≤ (2δ)2d

∫
H

∫
H

∫ δ

0

∫ 1

0

(∇h((−δ + θ(a+ δ), y + θ(b− y))))2 dθ da db dy.

Using the Fubini Theorem and the two changes of variable b → b′ = b − y ∈
H2 = [−2δ, 2δ]d−1, y → y′ = y + θb′ ∈ H, we then obtain

A ≤ (2δ)2d

∫
H2

∫ δ

0

∫ 1

0

∫
H

(∇h((−δ + θ(a+ δ), y′)))
2
dy′ dθ da db′.

We now change the variable θ into t = −δ + θ(a+ δ). This yields:

A ≤ (2δ)2(4δ)d−1d

∫ δ

0

∫ a

−δ

∫
H

(∇h((t, y′)))2 1

a+ δ
dy′ dt da.

Since, for all a ∈ [0, δ], 1
a+δ

≤ 1
δ
, we get, setting x = (t, y),

A ≤ 22dδd+1d

∫
Q

(∇h(x))2 dx. (A.10)
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Let us now study B. We have

B ≤ (2δ)2d

∫
Q+

∫
Q

∫ 1

0

(∇h(x+ θ(z − x)))2 dθ dx dz.

Using the Fubini Theorem and the two changes of variable z → z′ = z − x ∈
Q2 = [−2δ, 2δ]d, x→ x′ = x+ θz′ ∈ Q, we get

B ≤ (2δ)2d

∫
Q2

∫
Q

(∇h(x′))2
dx′ dz′,

which gives

B ≤ 22d+2δd+2d

∫
Q

(∇h(x′))2
dx′. (A.11)

Thus, using (A.9), (A.10) and (A.11), we conclude the proof of (A.8).

Assuming now
∫

K
g(x) dx = 0, the proof of (A.5) is then a direct consequence

of ∫
∂K

g(x)2 dγ(x) =

∫
∂K

(
g(x)2 − 1

mK

∫
K

g(y) dy

)
dγ(x)

≤ 1

mK

∫
∂K

∫
K

(g(x)− g(y))2 dx dγ(y).

Lemma 13: Let K be an open subset of Rd with weakly Lipschitz-continuous
boundary; we denote the measure of K by mK. We assume that there exists
a Lipschitz-continuous homeomorphism with Lipschitz-continuous inverse map-
ping L from B(0, δ(K)) to K. Let ξ be a real number greater than the Lipschitz
constants of L and L−1. Let g ∈ H1(K).

Then, there exists C2 > 0, only depending on ξ and d, such that

1

mK

∫
K

∫
K

(g(y)− g(x))2 dx dy ≤ C2 δ(K)2

∫
K

(∇g(x))2 dx. (A.12)

In particular, if
∫

K
g(x) dx = 0 holds, then∫
K

g2(x) dx ≤ C2 δ(K)2

∫
K

(∇g(x))2 dx. (A.13)

Proof: We denote δ = δ(K). Using the change of variables x′ = L(x) and y′ =
L(y), and writing for simplicity of notation B = B(0, δ), we get the existence of
C31, only depending on d and ξ, such that∫

K

∫
K

(g(y)− g(x))2 dx dy ≤ C31

∫
B

∫
B

(g(L(y′))− g(L(x′)))2 dx′ dy′.
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Setting h = g ◦ L, we have h ∈ H1(B). Then we deduce the existence of
C32 > 0, only depending on d and ξ, such that∫

B

(∇h(x))2 dx ≤ C32

∫
K

(∇g(x′))2
dx′. (A.14)

Thus, if we prove the existence of C33 > 0, only depending on d and ξ, such
that ∫

B

∫
B

(h(y)− h(x))2 dx dy ≤ C33 δ
d+2

∫
B

(∇h(x))2 dx, (A.15)

we then get (13) from (A.14), (A.15) and the fact that the existence of L ensures
that there exists C5 with mK ≥ C5 δ

d. In order to prove (A.15), one may assume
by a classical argument of density that h ∈ C1(B). We set

A =

∫
B

∫
B

(h(z)− h(x))2 dx dz.

Using the Cauchy-Schwarz inequality, we get

A ≤ (2δ)2d

∫
B

∫
B

∫ 1

0

(∇h(x+ θ(z − x)))2 dθ dx dz.

Using the Fubini Theorem and the changes of variable z → z′ = z−x ∈ B2 :=
B(0, 2δ), x→ x′ = x+ θz′ ∈ B, we get

A ≤ (2δ)2d

∫
B2

∫
B

(∇h(x))2 dx′ dz′,

which gives the existence of some C34, only depending on d, such that

A ≤ C34 δ
d+2

∫
B

(∇h(x))2 dx.

This concludes the proof of (A.15).

Assuming now
∫

K
g(x) dx = 0, the proof of (A.13) follows, remarking that in

such a case ∫
K

g2(x) dx =

∫
K

(
g(x)− 1

mK

∫
K

g(y) dy

)2

dx

≤ 1

mK

∫
K

∫
K

(g(x)− g(y))2 dx dy.

Lemma 14: Let K be an open subset of Rd with weakly Lipschitz-continuous
boundary, such that there exists a Lipschitz-continuous homeomorphism with
Lipschitz-continuous inverse mapping L from K to B(0, δ(K)). We denote by ξ
an upper bound on both Lipschitz constants. Let a ⊂ ∂K, such that there exists
x0 ∈ a and ζ > 0 with

∂K ∩B(x0, ζδ(K)) ⊂ a
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Let ma denote the d− 1 Lebesque measure of a. Let q ∈ H(div, K) such that
q ·n∂K ∈ L2(∂K) and there exists qa ∈ R with q(x) ·n∂K(x) = qa for a.e. x ∈ a.

Then there exists C16, only depending on d, ξ and ζ, such that

maq
2
a ≤ C16

(
1

δ(K)

∫
K

q2(x) dx+ δ(K)

∫
K

(divq(x))2 dx

)
(A.16)

Proof: Denoting δ = δ(K), let X ∈ ∂B(0, δ) and η ∈ (0, 1]. We have

{Z ∈ ∂B(0, δ) | Z ·X ≥ (1− η)δ2} = ∂B(0, δ) ∩B(X,
√

2ηδ).

Indeed, take Z ∈ ∂B(0, δ) and denote h = Z −X. We have, since |Z|2 = |X|2 =
δ2, |h|2 = 2δ2 − 2Z ·X; thus, |h|2 ≤ 2ηδ2 if and only if Z ·X ≥ (1− η)δ2.

Define

Bη = {y ∈ ∂K | L(y) · L(x0) ≥ (1− η)δ2} = L−1(∂B(0, δ) ∩B(L(x0),
√

2ηδ)).

Let F (x) = (|x|/ supi∈[1,d] |xi|)x. L−1 ◦ F−1 is a Lipschitz continuous home-
omorphism with Lipschitz-continuous inverse mapping between K and Qδ =
]− δ, δ[d; moreover, the Lipschitz constants of L−1 ◦F−1 and its inverse mapping
are bounded by a real number only depending on d and ξ. Thus, by Lemma 11
applied to f = χBη ,

γ(Bη) ≥ C35 γ(F ◦ L(Bη)) = C35 γ(F (∂B(0, δ) ∩B(L(x0),
√

2ηδ))),

with C35 only depending on d and ξ. It is easy to see that

γ(F (∂B(0, δ) ∩B(L(x0),
√

2ηδ))) ≥ C36 δ
d−1,

where C36 only depends on d and η (the set F (∂B(0, δ) ∩B(L(x0),
√

2ηδ)) con-
tains a significant part of a (d− 1)-dimensional ball on ∂Qδ with radius of order
δ). Thus, we have

γ(Bη) ≥ C37 δ
d−1, (A.17)

where C37 only depends on d, ξ and η.
Now, let η0 = inf(1, (ζ/ξ)2/2) ∈ (0, 1] (η0 only depends on ζ and ξ); since L−1

is Lipschitz-continuous with constant ξ, we have

Bη0 ⊂ ∂K ∩B(x0, ζδ) ⊂ a. (A.18)

Let us define the function v ∈ H1(K) by

v(x) = ψ

(
L(x) · L(x0)

δ2

)
∀x ∈ K,

where the function ψ ∈ C([−1, 1], [0, 1]) is defined by ψ(s) = 0 for all s ∈
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[−1, 1 − η0], ψ(s) = 2(s+η0−1)
η0

for all s ∈ [1 − η0, 1 − η0/2], ψ(s) = 1 for all

s ∈ [1 − η0/2, 1]. We have therefore v(x) ∈ [0, 1] for all x ∈ K, v = 1 on Bη0/2

and v = 0 on ∂K \ Bη0 ⊃ ∂K \ a and

∇v(x) =
ψ′
(
L(x)·L(x0)

δ2

)
δ2

(DL(x))TL(x0).

Thus, since |L(x0)| ≤ δ, we have ‖∇v‖L∞(K) ≤ C38

δ
where C38 only depends

on d, ξ and ζ. For all x ∈ ∂K \ a, v(x) = 0, and therefore the following relation
holds ∫

K

∇v(x) · q(x) dx = −
∫

K

v(x) divq(x) dx+ qa

∫
a

v(x) dγ(x).

We have
∫

a
v(x) dγ(x) ≥ γ(Bη0/2) (because v is non-negative and has value 1

on Bη0/2) and thus, by (A.17),
∫

a
v(x) dγ(x) ≥ C39 δ

d−1 with C39 only depending
on d, ξ and ζ. Since ||∇v(x)||L∞(K) ≤ C38

δ
and mK ≤ C40δ

d, one therefore gets

q2
a ≤ C41

(
δd−2−2(d−1)

∫
K

q(x)2 dx + δd−2(d−1)

∫
K

(divq(x))2 dx

)
,

which leads to (A.16), since ma ≤ C42 δ
d−1.

References

Brezzi F., Fortin M., (1991). Mixed and Hybrid Finite Element Methods ,
Springer-Verlag, New York, 350 p.

Chainais-Hillairet C., (1999). Finite volume schemes for a nonlinear hyper-
bolic equation. Convergence towards the entropy solution and error estimate,
M2AN , 33, 129–156.
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Eymard R., Gallouët T., Herbin R., (2000). Finite Volume Methods, Hand-
book of Numerical Analysis , P.G. Ciarlet, J.L. Lions eds., North-Holland,
Amsterdam, 7, 713–1020.

Godlewski E., Raviart P.A., (1991). Hyperbolic systems of conservation laws ,
Ellipses, Paris, 252 p.

Grisvard P., (1985). Elliptic Problems in Nonsmooth Domains , Pitman, Lon-
don, 410 p.
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