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Abstract : This paper gives a proof of convergence for the approximate solution
of an elliptic-hyperbolic system, describing the conservation of two immiscible incom-
pressible phases flowing in a porous medium. The approximate solution is obtained by
a mixed finite element method on a large class of meshes for the elliptic equation and a
finite volume method for the hyperbolic equation. Since the considered meshes are not
necessarily structured, the proof uses a weak total variation inequality, which cannot
yield a BV-estimate. We thus prove, under an L*° estimate, the weak convergence of
the finite volume approximation. The strong convergence proof is then sketched under
regularity assumptions which ensure that the flux is Lipschitz-continuous.

1. Introduction

The purpose of oil reservoir simulation is to account for several phenomena
such as chemical reactions, thermodynamical equilibrium and polyphasic flows.
Since the full model is too complex, a simplified model, describing the flow
of two incompressible immiscible fluids through a porous medium, has been
extensively studied. In this simplified model, two fluid phases, oil and water,
flow through the pores of some possibly heterogeneous and anisotropic porous
medium; water is injected through injection wells in order to displace the oil
towards production wells. Here we neglect the gravity effects as well as the
capillary pressure. Assuming the total mobility of the two phases to be constant
and the mobility of water to be linear, the conservation equations of the two
phases in a domain €2 yield the following system of equations:

ut(x> t) - diV(U(% t)A(x)Vp(x)) = 5($7 t)er(m) o ’LL(.%‘, t)ff(l'),



(I=u)e(z, t)=div((1—u(z, 1)) A(2)Vp(z)) = (1=s(z, 1)) f " (2) = (1-u(z, 1)) [~ (2),

for (z,t) € Q x RT. In the above equations, the saturation of the water phase
is denoted by wu, the common pressure of both phases is denoted by p. The
absolute permeability A is a symmetric positive definite matrix (in anisotropic
media the eigenvalues of the matrix A are not all identical) which depends on the
space variable in heterogeneous media. The function f represents the internal
source terms, corresponding to the presence of wells drilled into the reservoir
(fT = max(f,0) and f~ = max(—f,0) denote the positive and negative parts
of f). The positive source term corresponds to an injection well, the negative
one corresponds to a production well. The function s represents the fraction of
the water phase in the injected source term, and the saturation u of the water
in place is the fraction of water in the produced source term. This problem,
completed with initial and boundary conditions, is rewritten as follows:

i, 1) + div(ua) () + u(z, 1)~ () = s(z,6)f*(2)
for a.e. (x,t) € Q x RY,

(1.1)

A(z)'q(x) + Vp(z) = 0 for ae. z € Q, (1.2)
divq(z) = f(z) for ae. z € Q, (1.3)

qQ(x) - npa(z) = g(z) for ae. z € O, (1.4)
u(z,t) = 1(x,t) for ae. (z,t) € 90 x R, (1.5)
u(z,0) = () for ae. x € Q, (1.6)

Notice that the boundary condition for the saturation is only given on the
part €2~ of the boundary where the flow enters into the domain, that is, where

q(z) - moq(z) = g(x) < 0.
In Egs (1.1)-(1.6) (referred in the following as Problem (P)) the following
hypotheses (referred in the following as Hypotheses (H)) are used.

Hypotheses (H):

1. Q is an open bounded subset of R (d = 2 or 3 in practical) such that,
locally, Q0 either has a CY reqular boundary or is conve.

2. A is a measurable mapping from Q to the set of symmetric real d x d ma-
trices, such that there exist Ay > 0 and Ay > 0 satisfying M |z| < |A(z)z] <
Xo|z| for almost every x € Q and all z € RY.



3. f € L*Q).
4. g =qo-naq for some qo € (H*(Q))? and

IREE /6 g(a)dr(a) =0

5. € L>®(00 x RT) where 00~ = {x € 99, g(x) < 0}.
0. Ug € LOO(Q)
7. s € L%(Q x RY).

Here and in the following, when U is an open subset of R? with a sufficiently
regular boundary (see Definition 2), we denote by ngy the unit outward normal
to OU and by v the (d — 1)-dimensional measure on 9U. | - | is the Euclidean
norm in R? and z - y denotes the Euclidean scalar product of (z,y) € R? x R%.
When X is a subset of R? §(X) denotes the diameter of X, that is to say
0(X) = sup(, yexz |7 — y|. B(z,7) denotes the Euclidean ball of center z € R?
and radius 7 > 0.

REMARK 1: Since we allow Q2 to have a non-reqular boundary, there is no con-
venient way to characterize the reqularity condition on g. Indeed, if Q has a C11-
reqular boundary, it is easy to see that g = qo - ngq if and only if g € Hl/Q(aﬁ),
but on the non-regular parts of OS2, this condition is not necessary and it is
not even obvious that it is sufficient. For example, take Q =]0,1[%>, g = 1 on

({0} x]0,1) U ({1}x]0,1[) and g = 0 on (]0,1[x{0}) U (J0,1[x{1}); then g
does not belong to HY?(0Q), but g can be written as qo - Ngg with qo(z,y) =
(—1+2x,0) € (HY(Q))?.

A weak solution of Problem (P) is defined by :

DEFINITION 1: Under Hypotheses (H), a weak solution of (P) is (u,p,q) €
L®(Q x RY) x L*(Q) x H,(div, Q) such that

/]R+ / w(z,1) (%W) +a(z) - Vo(r,t) - ab(x,t)f(x)) da dt =
/ o(z)p(z,0) d:zt—l—/]R+ /69 (x,t)p(x,t)g(x) dy(x) dt )

/w/(pxt )s(z, t) f(x) dx dt

Vo € CHR? x R) such that ¢ =0 on 90T x Rt = (9Q\ 0027) x R,
/y(x) -A(x)*q(x) dx — / p(z) divy(z)de =0 Vy € Hy(div,Q?), (1.8)
Q Q

/Q (x)divq(z d:v—/f z)dr Vv e L*(Q), (1.9)



and

/Qp($) dx =0, (1.10)

where the function spaces H(div,<?), Hy(div,Q) and H,(div,2) are defined by
H(div,Q) = {q € (L*(Q))¢, divq € L3(Q)}, Hy(div,Q) = {q € H(div,Q),
q-npo =0 on 0N}, and Hy(div, ) = {q € H(div,Q), q - ngo = g on 0}.

The existence and uniqueness of (p,q) € L*(Q) x H,(div, ), the solution of
(1.8)-(1.10) under Hypotheses (H), is a classical result as long as the equations
(1.8)-(1.10) do not depend on u. We could consider the much more complex
problem where the function A depends on z and u in (1.8); such a problem
would be more general than Problem (P), which can only model the case of oil
reservoirs in which the viscosity of the oil phase is comparable to that of the water
phase (such reservoirs indeed exist). However, it seems that in the case where A
depends on x and wu, it is not yet possible to identify an appropriate weak sense in
which the limit of a sequence of numerical approximations can satisfy equation
(1.1) (see [Eymard-Gallouét (2002)]). We therefore restrict the present paper to
the case where A only depends on x. Assuming that the flux q is given by (1.8)-
(1.10) and under Hypotheses (H), the existence of a weak solution u to (1.7)
is not standard: indeed, the classical existence and uniqueness theorems for the
weak solution of a scalar hyperbolic equation only hold in the case of a Lipschitz
continuous flux (the extension of the uniqueness result to more general cases is an
open problem). Thus the existence of a solution, in this particular case, appears
to be a consequence of the convergence result given in the present paper, and
the uniqueness result, sketched in this paper as a necessary step in the direction
of a strong convergence property, only holds under additional hypotheses which
ensure that q is Lipschitz continuous. In this last case, we could also handle the
case of the problem u,(x,t)+div(F (u)q)(z,t)+u(z,t) f~(x) = s(z,t) fT(x) with
a possibly nonlinear function F' (the so-called “fractional flow” function). But
this would be somewhat artificial since physical data which lead to a nonlinear
fractional flow function also yield dependence of A on w.

A number of numerical schemes for this problem in the case of A = Id have
already been discussed in the literature. Nevertheless, the numerical schemes
used to approximate the solution of this simplified model have only recently
been studied from a convergence point of view. In particular, the convergence
of a numerical scheme, involving a finite volume method for the computation
of the saturation u and a standard finite element method for the computation
of the pressure p, is proven in [Eymard-Gallouét (1993)], whereas a convergence
proof for a finite volume method for the discretization of both equations is given
in [Vignal (1996)]. Here we also discretize the conservation law for the satura-
tion by means of a finite volume method but apply the mixed finite element
method to discretize the elliptic equation. Error estimates have been derived in
[Jaffré-Roberts (1985)] for a semi-discretized problem in the simulation of mis-
cible displacements involving an elliptic equation for the pressure coupled to a
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parabolic equation for saturation. For the numerical discretization they combine
the mixed finite element method with an upstream weighting scheme. More re-
cently, in the case where the finite volume method is applied for the discretization
of a parabolic equation instead of the first order conservation law (1.1), error
estimates have been proven in [Ohlberger (1997)].

Here we deal with a mixed finite element method with an original basis for the
elliptic equation. We use a partition of the domain with very undemanding hy-
potheses (the elements do not need to be convex, their boundaries do not need to
be the union of piecewise planar surfaces), on which we define the generalization
of the Raviart-Thomas space. The proof of the “inf-sup” condition and that the
interpolation error of regular functions tends to zero with the space step makes
use of Lipschitz-continuous homeomorphisms (with Lipschitz-continuous inverse
mappings) and of some trace inequalities, for which the constants are given as
functions of the size of the domain (the classical proofs, by means of contra-
diction, of trace inequalities for functions with null averages do not provide the
dependence of the trace inequality constants on the domain). An advantage of
this framework is that it handles simultaneously the case of domains with piece-
wise planar or smooth boundary (note that in this paper, some smoothness of
the boundary is required in order to ensure the necessary regularity properties
of the continuous solution). Note also that the work presented here allows us
to handle the case of nonconvex domains with smooth boundary, which is not
possible in classical frameworks (because all the meshes on such domains include
non convex elements).

The hyperbolic equation is then discretized by the classical upstream weighting
scheme. Under a CFL condition, we prove an L% estimate which allows, up
to a subsequence, to pass to the limit in L*° weak-*; though the hyperbolic
equation is linear, such a convergence is not sufficient in order to identify the
limit function as a weak solution to (1.1) : we need an additional “weak BV”
inequality. Such inequalities have only recently been introduced and used for
the proof of convergence of finite volume schemes on unstructured meshes for
hyperbolic equations (see e.g. [Eymard-Gallouét-Herbin (2001)])

We note that, in contrast to classical BV estimates on discrete solutions (such
as in [Godlewski-Raviart (1991)]) — which cannot be obtained here, since our
meshes are not structured and the initial condition does not necessarily have a
bounded variation —, the “weak BV” inequality is not a compactness tool; it
does not strengthen the L*° weak-* convergence: it is only useful for proving
that the weak limit is a solution to the continuous hyperbolic equation.

Thus this paper completes a number of previous numerical works in which
this scheme has been used on particular meshes (generally triangular meshes).

The organization of this paper is as follows. In Section 2, we present the
numerical scheme that we use. In Section 3, we prove a convergence result for
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the mixed finite element method. In Section 4, we deal with the finite volume
scheme, concluding the weak convergence of a subsequence without additional
regularity hypotheses on the data, and the strong convergence otherwise.

2. The discretization
2.1. Admissible discretizations

In order to define the scheme, a notion of admissible discretization is given, which
is used below in the definition of approximate discrete solutions.

DEFINITION 2: (Admissible discretization of ) Let €2 be an open bounded sub-
set of RY with weakly Lipschitz-continuous boundary (see [Droniou (1999)]). An
admissible discretization D of 2 is given by a finite set M of open subsets K C 2
with weakly Lipschitz-continuous boundaries and a finite set A of disjoint subsets
a C Q such that:

(Z) UKEMK - ﬁ7

(ii) For all K € M, there exists a Lipschitz-continuous homeomorphism L
from K to B(0,6(K)) such that the inverse mapping is Lipschitz-continuous as
well.

(iii) For all (K, L) € M?* with K # L, one has K N L = ().

(iv) For all a € A, there ezists K € M such that a is a non-empty open subset
of OK. By denoting Ax = {a € A|a C 0K}, we assume that OK = Uye 4, .

(v) The sets A; C A (the interior faces) and A. C A (the exterior faces) are
defined by A; = {a € A,I(K,L) e M* K # L,a CIOKNIL} and A, = {a €
A, AK € M,a C 0K NIN}. One assumes that (A;, Ae) forms a partition of A.

(vi) For all K € M and all a € Ak, one assumes that there erists Tk, € a
and (ko > 0 such that a D 0K N B(Tk a, Crad(K)).

We denote by m the Lebesgue measure of K and by m,, the (d—1)-dimensio-
nal measure of a.

Under Properties (iii) and (iv), we can show that, for all a € A;, there exists
exactly two different control volumes whose boundaries contain a. We select one
of these control volumes, that we denote K(a), the other being denoted L(a),
and an orientation on the edge a is defined by €x(a)o = 1, €1(a),a = —1; and, for
T € a, Ng(T) = Nk (a)(T) = —Nyr@a)(T).

We can also prove that, if a € A., there exists exactly one control volume,
denoted K(a), whose boundary contains a. We then let ex(), = 1 and, for
T € a, Ng(x) = Nk (a)(T) = Do ().

Denoting by n, the mean value of n, on a, the thinness of the discretization
D (controling the size of D and the behaviour of the faces of D) is defined by

(@) = g (305, s (=l -l ) ) 2

KeMm acAgk a
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and a geometrical factor, linked to the regularity of the discretization, is defined
by

regul(D) = mas (hp<.cK),np(.cK1), max ( ! >) | (2.2)

a€AKk K,a

REMARK 2: The definition of an open set with weakly Lipschitz - continuous
boundary is given in [Droniou (1999)] (or in [Grisvard (1985)] under the name
“d-dimensional Lipschitz-continuous submanifold of RY”). It is weaker than the
definition of Lipschitz-continuous boundary given in [Necas (1967)].

REMARK 3: The above definition is easily satisfied for a large variety of meshes.
In the case d = 2, if we take subsets K such that OK is defined in polar coor-
dinates from an origin Mg € K by a 2m- periodic continuous piecewise C!
function, then these subsets satisfy condition (ii). This is the case for convex
polyhedra, such as triangles or parallelograms for example.

REMARK 4: According to the above definition, thin(D) — 0 means that the size
of the discretization tends to 0 and that the faces become more and more planar.
Therefore the faces of the discretization cannot be simply defined by the sets
OK NOL or 0K N 0NY, which can be highly nonplanar surfaces; in such cases
it suffices to cut these surfaces by different faces. Notice that if ) is polyhedral
and the faces are planes, then thin(D) = maxgenm 0(K) is simply the size of the
discretization.

REMARK 5: Hypothesis (vi) is only used for the study of the convergence of the
finite volume scheme to the solution of the hyperbolic equation. It is not used
in the proof of convergence of the mized finite element method. Notice that this
hypothesis, along with Hypothesis (ii) and Lemma 11, implies m, > C5(K)* 1,
where C' only depends on d and regul(D).

2.2. Discrete function spaces

One now defines the set of basis functions for the mixed finite element method,
which is a generalization of the Raviart-Thomas space RT{ (M) (see [Brezzi-
Fortin (1991)], [Raviart-Thomas (1977)] or [Nédélec (1980)]); indeed, one can
verify that, if D is made of triangles (for example), then the following definition
gives back the classical Raviart-Thomas space.

DEFINITION 3: (Discrete function spaces) Let Q be an open bounded subset of R?
with weakly Lipschitz-continuous boundary. Let D be an admissible discretization
of  in the sense of Definition 2. For all K € M and all a € Ak, one denotes
by wg,. € H'(K) the unique variational solution, with [, wk .(x)dx =0, of the
Neumann problem

m
Awg q(x) = m—a fora.e. x € K,
K



and
Vwg(z) -ngg(z) =1 for a.e. x € a,
Vwgq(z) -ngg(r) =0  for a.e. x € 0K \ a.

We then define the function Wi, from Q to R? by wi .(x) = Vwg .(x) for
a.e. v € K and wi () =0 for allz € Q\ K.

We also define, for all a € A;, Wy = Wi(a)a — Wi(a)a 0nd, for all a € A,
W, = Wik(a)a- LThen one gets w, € H(div,Q). The set Qp C H(div,Q) is the
space generated by the functions (Wq)eea; the set Qpo C Hoy(div, 2) is the space
generated by the functions (W,)aea,; for any b € L*(0R), the set Qpy C Qp is

1
the space  q + Z m—/b(m) dy(z) wa, 9 € Qpyo p-

aE.Ae

Vp € L*(Q) is the space of functions f = o\ @k XK (where, for all K €
M, ax € R and xx is the characteristic function of K) such that [, f(x)dz =

ZKGM mgag = 0.

2.3. The mixed finite element scheme

The mixed finite element approximation of (1.2)-(1.4) is a pair of functions

(pp,ap) € Vp X Qp,
satisfying
/v(a:)divqp(x) dx = / fx)v(x)dx Vv e Vp, (2.3)
Q Q

and
/y(x) - A(2)*qp(z) dx — / pp(z) divy(z)de =0 Vy € Qpyp. (2.4)
Q Q
The unknown functions can be written as

dp = Z qaWa

acA

Pp = Z PK XK-

KeM

and

Then equations (2.3) and (2.4) lead to the following system of linear equations,
with unknowns (¢, )eea and (px)xem:

Z Qo /wa(x) cA(2) 'wor(2) dr — ma(pr@) — Pr@) =0 Va € A;,
a’cA Q

o= ¢go Vae A,



Z MaGa €K,a = fK VK € MJ (25)
a€EAK
Z Mmgpk = 07
KeM
where we denote
fK:/ f(x)der VK e M, (2.6)
K
and 1
go= / o(z) dv(z) Va € A, (2.7)

The existence and uniqueness of a solution (pp,qp) to system (2.3)-(2.4) is
stated in the following lemma.

LEMMA 1: (Existence and uniqueness of the discrete approximation) Let us as-
sume hypotheses (H). Let D be an admissible discretization of Q0 in the sense
of Definition 2. Then system (2.3)-(2.4) defines one and only one approzimate

solution (pp,qp) € Vp X Qp .

Proof: Since Lemma 4 (which is proved below) shows that the only solution of
a linear system with the same matrix as (2.3)-(2.4) and a zero right-hand side is
zero, this matrix is invertible. This proves the lemma.

2.4. The finite volume scheme

We denote, for all K € M and a € Ax, Fr o = MaGafk,a (then Fro) o+ Fria),a =
0 holds for all a € A;).

We now discretize the hyperbolic problem. Let ¢ > 0 be a constant time step.
Let us define the discrete source term

1
Ath

Sh =

(n+1)A¢
/ / s(x,t)dedt VK € M, Vn e N. (2.8)
nNt K

Extending by 0 the function @ on 9Q" x R, , we define

1 (n+1)A¢
uy = N /nAt /CLH(Q:) dy(z)dt Yae A, VneN. (2.9)
The discretization of the initial value (Eq. (1.6)) is given by
1
ul = —/ ug(r)der VK € M. (2.10)
MK Jk

The finite volume scheme discretization of equation (1.1) is written:

n+1

uR — u'
mg L+ Y upFia = sicfi —uicfi VK€M, ¥n €N, (2.11)

a€EAK
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where u is defined by :

Uk (a) if g, > 0, else v = UT () Va € A;, Vn e N
. =" Va € A., Vn € N.

a

Z (2.12)

Q393

n n
K a
u}"‘{( ) it g, > 0, else u!
For a given discretization D and a time step ¢, we can define the approximate

solution by:

upne(x,t) = ug, for ae. (z,t) € K x [n, (n+ 1))

VK € M, ¥n € N. (2.13)

3. The convergence of the mixed method

We have the following result.

THEOREM 1: (Convergence of the mixed finite element scheme) Under Hypothe-
ses (H), let € be a fized positive real value and let D be a discretization of € in
the sense of Definition 2 such that regul(D) < €. Let (p,q) € L*(Q2) x H,(div, Q)
be the unique weak solution of the problem (1.8) and (1.9) with the condition

(1.10) and (pp,dp) € Vb x Qp4 be given by (2.3)-(2.4).

Then .
lim  ||q — apllz@v.e = 0,
thln(D)—»O (3 1)
li — = 0. ’
thin(lg;—d) ||p pD”LQ(Q)

In order to prove Theorem 1, some lemmata must be previously shown. The
next lemma deals with an interpolation result for regular functions.

LEMMA 2: (Interpolation of regular functions) Let €2 be an open bounded subset
of R® with weakly Lipschitz-continuous boundary, let D be an admissible dis-
cretization of Q in the sense of Definition 2 and let & > regul(D). Let q €
(HY(2)). Let y € H(div,Q) be defined by

1
=YL 4@ @) dre)w,.
y ;ma /Gq g

Then we have divy = > .o\ m—lK S diva(z)dz xx and there exists Cy > 0
which only depends on d and & such that

la = yllz2@) < Cithin(D) |||z ) (3.2)

One can notice then that, when thin(D) — 0, the function y so defined tends
to ¢ in H(div, ).



11

Proof: In the following proof, C; denotes different positive real values which only
depend on £ and d.

The proof of divy = >,y # [ diva(z) dz xx is straightforward, since
divw, = 0 on K if K ¢ {K(a),L(a)} and divw, = egqp on K if K €
[K(a), L(a)}.

Let K € M. Let us define the function w € H*(K) by

w— Z (mi/q@).n%(x) dv(x)) WK,a,

a€EAK aJa

Which is such that Vw(x) = y(x) for a.e. x € K. Similarly, denoting q =
o Jic alz) dz, we define w € H'(K) by

=% (o [amar@) v

We get
la — YH%Q(K) <3lla-— 61”%2(1() +3[la — V’J}H%%K) + 3|V — Vw”%w()-

Let us first deal with A = ||q — QHQLQ(K). Thanks to the Cauchy-Schwarz

inequality, one has
A<—/ / la(z) — q(y)|* da dy,

which yields, using (A.12) proved in Lemma 13,
la = allZzx) < Co0(K) [l sey)e- (3.3)

We now turn to the study of B = ||q — VUNJH%Q(K). We define the function
h € H2(K) by h(z) = q-x— le [5(@-y) dy. This function thus satisfies Vh = q
and [ h « M(x) dx = 0. Since h—10 is the variational solution of a Neumann problem
on K Wlth null average and A(h — w) is constant, we get

1 -
5= 3 [ - 0) (a-nac) - - [@ o)) o)
a€AK @
Thanks to the Cauchy-Schwarz inequality, we deduce that
B*<B > / (w(x )2 dry(z),
a€EAK
where

=3 [ (@ marte) ~ - @ noxt) sty >) d(a).

a€EAK
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We use (A.5) proved in Lemma 12. It yields

> [ (o) - bia)? dr(@) < Co3(K)B.

a€EAK a

and thus we obtain

B < C36(K)B. (3.4)

We have, by definition of thin(D),

SOB < Sl Y [ (o) - m) dita)

a€EAK a

< %‘3 /K @)z Y thin(D)*m,

a€AK
5(K)m3[{
mg '

<y thin(D)? / lq(2)[2 da
K

Using my > C50(K)? and myx < Cgd(K)%! (hypothesis (ii) of Definition 2
and Lemma 11), relation (3.4) gives

1 — V|| 725y < Crthin(D)?||ql|72 k). (3.5)

We finally study the term C' = ||V — Vw||7, . We have
- 1 -
C= > [(() —w@) (-~ [(@-a) nxy)dyy) ) dy).
a€Ag V@ @ Ja

Thanks to the Cauchy-Schwarz inequality, we get

2z Y () - wla) dr(e),

a€Ag ' ?

where

=Y /(mL /Q(d—q(y))-nax(y) dv(y)>2 dy(z)

ac€Ag Y

Thanks again to (A.5) given by Lemma 12, we get

which leads to
C <C36(K)C. (3.6)
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Turning to the study of C’, and using the Cauchy-Schwarz inequality, we have

c o< Y /q aly (y)—/aK(d—q(y))de(y)

a€EAK

< /a = /K (a(z) — a(y))? dz dy(v). (3.7)

Thanks again to Lemma 12, we get
C" < Coy 6(K)lallta sy
and therefore, thanks to (3.6) and (3.7), there exists Cs > 0 such that
IV — Vwl[Zae) < Cs 6(K)?lallEs: e (3.8)
Summing relations (3.3), (3.5) and (3.8) on K € M gives (3.2).

LEMMA 3: Under Hypotheses (H), let D be an admissible discretization of § in
the sense of Definition 2 and & > regul(D). Let v € Vp and let h € H*(QY) be the
variational solution of —Ah = v on Q, with a homogeneous Neumann boundary
condition and fQ x)dx = 0 (the existence of such a function results from the
regularity hypotheses on Q, see [Grisvard (1985)]). Let us define’y € Qp by

y= Z( / )-nadwx)das)wa. (3.9)

acA

Then there exists Co, only depending on 2, d and & such that ||y||(2@)e <
Co [[v][ 2@

Proof: Using ”yH(L2(Q))d < Hy—VhH(Lz(Q))d—i—HVhH(Lz(Q))d, we apply Lemma 2 for
q = Vh, since h € H*(Q) implies Vh € (H'(Q))%. We thus obtain ||y||z2(q)e <
(Cy thin(D) + 1)||2|| g2()- By hypothesis (H), we have ||h||g2@) < OQHU“LQ
which concludes the proof since thin(D) < max(J§(€2),2).

By noticing that the y defined by (3.9) satisfies divy = —wv, this lemma can
also be stated in terms of an “inf-sup” condition.

COROLLARY 1: (Discrete “inf-sup” condition) Under Hypotheses (H), let D be
an admissible discretization in the sense of Definition 2 and let & > regul(D).
Then there exists Cy > 0, only depending on €2, d and & such that

/Q o(w) divy(a)de

inf sup > —.
vEVD yeQp o ||U||L2(Q) ||Y||(L2(Q))d Co
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The following lemmata express the classical proof of the convergence of mixed
finite element methods under an “inf-sup” condition and an interpolation re-
sult (discussed in [Brezzi-Fortin (1991)] or [Nédélec (1980)] for example). We
prove them for the sake of completeness, thus verifying that our hypotheses are
sufficient to apply this convergence proof.

LEMMA 4: (Estimate on the discrete approximations) Under Hypotheses (H),
let D be an admissible discretization of ) in the sense of Definition 2 and let
€ >regul(D). Let h € L*(Q2) and r € (L*(Q2))¢ be given.

Then, there ezists one and only one solution (pp,dp) € Vp X Qpo of

/Qdivqp(x) v(x)dx = /Qh(:c) v(z)dx Yv e Vp, (3.10)
and
/Qy(a:) -A(z) tap(x) dor — /Qpp(x) divy(z)dr = /Qr(:c) y(z)dx (3.11)
Vy € Qpy,

and there exists Chg, only depending on 2, d, &, Ay and Ao such that

lanlltzzye + 1Pl 72@) < Cro (Iellfzz e + 121172(0))- (3.12)

Proof: We first remark that proving (3.12) for any solution (pp,qp) € Vp x
Qpo to (3.10)-(3.11) is sufficient to prove that for a zero right-hand side, the
discrete unknowns are zero, and therefore that the matrix of the linear system
is invertible. For the proof of (3.12), we choose, in (3.11), y = gp, and in (3.10),
v = pp. It leads to

HqDH 2@t < Iellzz@pellanllzz@ye + 1Al 2@ lpoll 2 @) (3.13)

We then apply Lemma 3, which gives the existence of yo € Qpo such that
divyo = pp a.e. in ) and

lyoll(z2pe < Collppllz2@)- (3.14)

Introducing y in (3.11), we get
||pDH%2(Q) < HI“H(L2 ||YO|| L2(Q))d + _HCIDH L2(Q )d||}’oH(L2(Q))d
which gives, thanks to (3.14),
Ioollizey < Ca (Ielzsons + 5 laollaaye)- (3.15)

Thanks to (3.13) and (3.15), we get (3.12).
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LEMMA 5: (Bound on the approximation error by the interpolation error) Under
Hypotheses (H), let £ > 0 and D be a discretization of Q in the sense of Definition
2 such that regul(D) < . Let (p,q) € L*(Q) x Hy(div,Q) be the unique weak
solution of the problem (1.8) and (1.9) with the condition (1.10) and (pp,qp) €

Vb X Qp4 be given by (2.3) and (2.4). Let qp € Qp,4 be given and let pp € Vp
1
be defined by pp = Z —/ p(z)dr xk.

m
Kem K JK

Then there exists C1, only depending on 2, d, &, A\ and Ay such that
la — a2y + 1P —=poll720) < Crillla — Aol Faiv.0) + 1P = Poll72()- (3.16)

Proof: We get, using the variational formulations (1.8)-(1.9) and (2.3)-(2.4):

/Q div(ap(r) — do(x))o(z) dz = / div(q(x) — do(a))o(z) dz Vo € Vo,

and

/Qy(fﬂ) - A(z) " (ap (@) —flp($))d$—/(PD(x) — pp(x))divy(z) de

Z/§ZY($)'A(9U)_1(Q($) —flp(x))dx—/g(p(x) — pp(x))divy(z) dz
Vy € Qpyo.

For all y € Qp,, thanks to the definition of pp, we have

/Q(p(l‘) — pp(x))divy(x) dz = 0.

Thus (pp—pPp, qp—Qp) is the solution of (3.10) and (3.11) withr = A~} (q—qp)
and h = div(q — qp). Applying Lemma 4 yields
lap — aoll{z2ye + Ipp — bollz2
(L2(92)) L2(Q)
1 - : ..
< Cho (A—lﬂq — ap||{r20ye + ldiva - leqDH%Q(Q)) :
Using the Cauchy-Schwarz inequality, this leads to
la — anl[tr2ye + P = o720
Cho - : -
< 2 ()\—1 -+ 1) Hq - qD”%LQ(Q))d + 2010”leq —div (IDH%%Q)
+2||p — poll 72,
which gives (3.16).

Proof of Theorem 1. We apply Lemma 5. On the one hand, thanks again
to (A.13) proved in Lemma 13, the following inequality holds:
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lp— ﬁDH%Q(Q) < % thin(D)QHVPH%%Q),

(notice that, when p € L?*(2) satisfies (1.8), we have, in fact, p € H'(2)) and
therefore ||p — ﬁDHiQ(Q) tends to 0 as thin(D) tends to 0. On the other hand, it
suffices to prove that one can choose qp € Qp 4 such that ||q — Qp||#(aiv,0) is as
small as desired. Notice that, in general, the statement q € (H'(Q2))¢NH,(div, ()
is false. Therefore, we take qo € (H'(Q))¢ such that qg-ngg = g; then, q — qq €
Hy(div, Q) and since Hypotheses (H) are sufficient to prove that € is locally
star-shaped, we can approximate q — qq in Hy(div, Q) by regular functions with
compact support in Q (see [Temam (1979)]); thus, q can be approximated in
H,(div,Q) by q € (H*(Q))* N H,(div,Q). Then, applying Lemma 2, we can
approximate q by gp € Qp, as close as demanded by letting thin(D) tend to
Zero.

4. The convergence of the finite volume method

We now show the following theorem.

THEOREM 2: (Convergence of the finite volume scheme) Under Hypotheses (H),
let & and o € (0,1) be fized positive real values. Let (p,q) € L*(2) x Hy(div, ) be
the unique weak solution of the problem (1.8) and (1.9) with the condition (1.10).
Let (D) men be a sequence of discretizations of 2 in the sense of Definition 2
such that for all m € N, regul(D,,) < & and ml_i)r}?m thin(D,,,) = 0. For a given

m € N, let us denote by (pm,dm) the solution (pp,ap) € Vp X Qp,4 given by
(2.8) and (2.4) where D stands for D,,. Let N, > 0, denoted XX, be such that
the condition -
A < (1—a) inf

KeM Z ma(QaeK,a)+ + f[;

a€EAK

holds. Let u,, € L>(2 x R*) denote the function up n defined by (2.8)-(2.13).

Then, there exists a subsequence of (Upy)men, Still denoted (up)men, which
converges in the weak-x topology of L>(2 x RY) to a function u € L®(2 x RT)
that is a solution of (1.7).

If we add some hypotheses to ensure that q is Lipschitz continuous on Q (for
example, O is of class C?%, A is of class C?, f is of class C* and g is of class
C?) then:

- the function u is unique;

- the whole sequence (U, )men converges to w in LP(2x]0,T[) for all p € [1, 00)
and all T > 0.

(4.1)

The proof of Theorem 2 is classical, and has been developed for various
choices of the discretization of the flux q (see [Champier-Gallouét-Herbin (1993)],
[Eymard-Gallouét (1993)] and [Vignal (1996)]). The originality of this proof is
the use of the technical Lemma 14, which is nonstandard.
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4.1. L™ estimate
The purpose of this section is to prove the following result.
LEMMA 6: (L stability of the finite volume scheme) Under hypotheses (H), let

& >0 and let D be an admissible discretization in the sense of Definition 2 such

that &€ > regul(D). Let (pp,dp) € Vp X Qp,4 be given by (2.3) and (2.4) and let
A > 0 be such that

N < inf LS . (4.2)
KeM ma(QagK,a)+ + f}}
a€EAK
Then the approzimate solution up n given by (2.8)-(2.13) is such that
[up,atll ooy < max({|uoll oo (), [0l e 0o xmt)s I8l Le@xrs)). (4:3)
Proof: According to the scheme (2.11), we have
n n N n n - n
u = ul — o < Z Uy Fic o + Ug fre — 51(]%) ;
K a€EAK
which gives
n+1 n At + —
Up = Uk 1—m— ZFK,a_I_fK
 \aedi (4.4)
+ N Z Fo ou™+ N + .n
— up + — fs,
My e K,a"a My K°K
The discrete elliptic scheme (2.5) is used to get
Y R tfe=> Frat /I (4.5)

a€Agk a€AK

Thanks to this equation and the stability condition (4.2), (4.4) expresses /!
as a convex combination of the values uf}, ul', s}%. An easy proof by induction
concludes the proof of the lemma.

REMARK 6: If the data are regular enough, the term Y, 4. Mal|qa| behaves like

size(D)41 as size(D) tends to 0, and the condition (4.2) takes the form N <
Csize(D) (where size(D) = maxgem 0(K)).
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4.2. A weak bound on the spatial variations

LEMMA 7: (Weak bound on spatial variations) Under hypotheses (H), let £ > 0,

€ (0,1), T > 0, and let D be an admissible discretization in the sense of
Definition 2 such that & > regul(D). Let (pp,qp) € Vp X Qp 4 be given by (2.3)
and (2.4) and let & > 0 such that the condition (4.1) holds. Let Nt be such
that Nyt < T < (Np+ 1) and let (W) kem, nens (UL )aca, nen be defined by
(2.8)-(2.12).

Then there exists Clo, which only depends on d, Q, T, &, a, f, s, g, u and ug
(but not on D or ), such that

ZT:At Z <Z Ma(Qurca)” (up —uK)2> < Chs. (4.6)

n=0 KeM \acAgk

REMARK 7: In [Champier-Gallouét-Herbin (1993)], [Eymard-Gallouét (1993)]
and [Vignal (1996)], a weak BV-estimate is obtained from (4.6). We do not do
so here, since in the convergence proof, the use of Lemma 14 takes advantage
of a local bound of the diameter of each control volume. Otherwise, we should
assume the existence of some 3 > 0 with

I(K) > B size(D) VYK € M.
Proof: Thanks to (4.5), the scheme (2.11) can be rewritten as
mac(ut =) + ( S Fialug — ) + fiu - s&@)) =0 o
a€AK ’

VK € M, Vn € N.

For all n € N and K € M, let us multiply the equation (4.7) by u}, and sum
the result over K € M and n =0,..., Np. It gives T} + Ty = 0 with

n+1 n n
g g mp (U — ug)uf

n=0 KeM
and
Say (z P~ )+ S~ 0 )
= KeM \acAgk
Writing ufuf = — 1w — wl)? + (i h)? + L(ul)?, we get
Ty =T + Ty,
where
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and

Tip = (Z mg NTH (u?()Q)) .

KeM

Using (4.7) and the Cauchy-Schwarz inequality gives, for all K € M and all
n €N,

mi (U —ug)® < A (Z Fra fz?)

a€AK
x (At D P (up —ul)® + fi(sh — u;z)?) .
a€EAK

Using condition (4.1) and equation (4.5), we get, for all K € M and n € N,

m (U = uj)?

(1-a) (At S Frlu %)2+f§(s’}<—U?<)2>-

a€AK

(4.8)

Let us consider T5. We have T, = T5; + Ty with
Ty = ZAt > ( D P (up —ul)® + fi(sh — ugg)Q)
= KeM \aceAg
and
Ty = ZN > ( > Fra (W) = (up)?) + fre((up)® - (S??V)) :
= KeM a€EAK

We thus get, thanks to (4.8),
T+ 15 > oTy.
According to (4.5), the term Ty can be rewritten as

Ty = ZN > (Z Frea(ul)? + fr(uf)? —f;?(s}‘()g)-

= KeM \acAg
Thus, gathering by faces, we get
a3 (3 '+ X st - ) )
acA. KeM

Since terms 7115 and Ty can easily be bounded using Lemma 6 (since condition
(4.2) is weaker than (4.1)), we thus get (4.6).
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4.3. The proof of the convergence theorem, Theorem 2

We first notice that Lemma 6 gives the existence of a subsequence u,, and of a
function u € L>(Q2 x R") such that u,, converges to u in the weak-* topology of
L>(2 x RY) as m — +o00. Recall that we have proved above (Theorem 1) that
Q. tends to q in H(div,2) as m — +4o00. This section is devoted to the proof
that u satisfies (1.7) (the uniqueness part of the proof being studied in the next
section).

Let ¢ € C1(R? x R) be such that ¢ = 0 on 92\~ x RF. Let T > 0 be such
that
p=0 on RYx[T,+oof. (4.9)

In this proof, we denote by C; various positive real values which only depend
ond, Q, ¢, T,& a, s, f, g, u, ug and not on D or V.

In the following, we use the notations D = D,,, and & = /¢,,,. Let us denote
by Nr the integer such that NoAt < T < (Np + 1), Setting

1 (n+1)¢
no— xr,t)dedt VK € M, Vn € N,
Vi N me /K/nAt #at)

we multiply the equality (4.7) by ¢% and sum over K € M and n € N. We
obtain £ + Fy = 0 with

Nt
By =" > my(uft —uf)o,
n=0 KeM
and
Nt
BNy (z Rl — )6+ it — s}?)d)}?) |
n=0 KeM \acAgk

We also define

1 (n+1)¢
= [ [ s na@

Let us study Ey. Thanks to (4.9), for all K € M, ¢h™*" = 0 holds and
therefore

Nr+1
Ev= ) D mxuj(dy ' —dk) = Y mxufdi
n=1 KeM KeM

Using the weak-* convergence of (t,)men to u, we deduce the convergence of
El to
99

[ G ded— [ w@o.0)ds

Q
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Next we consider the term FEs. It can be written, using (2.12) and gathering

by faces, as
Ey = Z A Z maQa¢ - u?{(a))
= acA;

+ZAt Z maQa¢Kd U - UK )) (410)

acAe
+ Z N (u — k),
n=0 KeM

where we define, for all a € A;, K4(a) (the “downstream” control volume) by
Kq(a) = K(a) if g, <0, else K4(a) = L(a), and for all a € A,, K4(a) = K(a).
We set

fo(z) = —fk, forae. xze€K VK eM,
spa(x,t) =5y, forae (z,t)e K x[nA, (n+1)NM) VK e M, VneN,
upn(z,t) =1u), forae. (x,t)€ax[ni,(n+1)A) Vac A, VneN,

a’

gp(z) =g,, forae. x€a VaceA,

where fr, ga, s% and u! are respectively defined by (2.6), (2.7), (2.8) and (2.9).
We define E3 by

Ey = —/Q R+uD7N(z,t)qD(:E)-qu(:r,t)c&dt
+/as2 . Up n(x,t)gp(x)p(2,t) dy(x) dt
[ e 05 (0) = spsla ) @), 0 do .

Since up n converges to u in the weak-* topology of L>(£2 x R*) and since
gp converges strongly to q in L%*() as m — oo, in view of the definitions of
up n and gp, we deduce the convergence, as m — oo, of I3 to

—/Q . u(z, t)q(z) - Vo(z,t) de dt + / u(z, t)g(x)p(z,t) dy(z) dt

00— xRt

" /Q R+ (u(z,t)f(2) — s(z,t) f7(2))d(, 1) du dt.
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Using (2.5) and the definition of wg ,, we can rewrite Ej as

E3 = ZuzmaQaqb uL _UK )

= acA;
—I—ZAthaqagb Uy — Uk (a)) (4.11)
acA.
+ZA2€ Z % — Sk [l
n=0 KeM

From (4.10) and (4.11), we deduce that
|E3 — Ey| < Ey + B,

with
ZN Z Ma|qal|Og ||y — ug
aGAe
and
T
Es = N Z ma‘qa‘ |¢Z - (b?{d(a)l ’u?{(a) - uz(a)l
n=0 a€A;
+Z& > maldal 107 = Oyl 114G — v
aE.Ae

Let us first study Ej4. Since, for all a € A,, relation (2.12) implies u] = @
when ¢, < 0, we can write

Nr
E=Yn S mdalerlm —
n=0

acAe 5 Qa>0

For all a € A, such that g, = m;"' [ g(z)dy(z) > 0, we have 90T Na # 0
(recall that 00T = {x € 9Q | g(x) > 0}); thus, since ¢ = 0 on 9N x RT, there
exists € a such that ¢(z,t) = 0 for all ¢ > 0. Denoting by Ci3 the Llpschltz
constant of ¢, we then have |¢(y,t)| < Ci3d(a) for all y € a and ¢ > 0, which
implies || < Ci36(a). Using (4.3), we then deduce

E4 S 014 thln Z N Z ma|qa

aE.Ae

< Cuthin®@)T+2) Y [l di(2)

acA. v @

= Cuthin(D)(T'+ At) o |9 ()] dy (),
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which shows that E, tends to 0 as m — +o00.
We turn now to the study of Es. Thanks to the Cauchy-Schwarz inequality,
we obtain

Ey < C (Zﬂtzma!qal5(Kd(a))2>

n=0 acA
(ZN Z Z Ma(qaErca)” (up —uK)2> )
= KeMac Ak

This gives, using Lemma 7 and the Cauchy-Schwarz inequality,

1/2 1/2
E? < Oy thin(D) (Z maq§5(Kd(a))> (Z maé(Kd(a))> .

acA acA
We can then apply Lemma 14, which yields

S mug?5(Kala))

acA

<Ciy ( /K | abla)d 4 5(Kf)’ /

acA Kq4(a)

(divap(z))? d:c> :

Under Hypotheses (H) and the item (vi) of Definition 2, we get that card Ax <
C17. Therefore, since qp converges to q in H(div, §2), it is bounded and

Zmaq2(5 Kd < Clg.
acA

Item (ii) of Definition 2 allows to write &(K)mar < Cig0(K)? < Coy mx (see
also Remark 8) . Thus,

Zma (Ka(a Z S(K)max < Cyo Z mg = Cymq.

acA KeM KeM

Therefore, we can conclude that
E5 S 021 tth(D),

which shows that E» tends to

—/Q . u(z, t)q(z) - Vo(z,t) de dt + / u(z,t)g(x)o(z,t) dy(z) dt

o0~ xRt

b @) s @) e

as m — +o00. That concludes the proof of Theorem 2.
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5. Uniqueness of the weak solution under regularity on
the data

We do not discuss in detail this part, since it does not involve the particular
discrete framework we have developed in this paper. Some details can be found in
[Eymard-Gallouét-Ghilani-Herbin (1998)], [Chainais (1999)], [Eymard-Gallouét-
Herbin (2001)], for example. We first state the following result.

LEMMA 8: Under hypotheses (H), let & > 0 and let D be an admissible dis-
cretization in the sense of Definition 2 such that & > regul(D). Let (pp,qp) €
Vb X Qp,4 be given by (2.3) and (2.4) and let Nt > 0 such that the CFL condition
(4.2) holds.

Then, the approzimate solution up n given by (2.8)-(2.13) is such that

mac(n(ug) — n(uk))+

A (Z Fic a(n(ue) = n(ug)) + Fe (ue) (u K—s@) <0
a€EAK
VK € M, Vn e N, Vn e CHR,R) with " > 0.
The proof of this lemma is easy, starting from the discrete relation (4.7) and
multiplying it by 7/(u%). From this lemma, we get, letting thin(D) — 0, the
following result, which proves the convergence of the scheme to a solution of

the hyperbolic problem in a very weak sense ([Eymard-Gallouét-Herbin (1995)],
[DiPerna (1985)]).

LEMMA 9: (Convergence of the finite volume scheme to an entropy process so-
lution) Under Hypotheses (H), let &€ > 0 and o € (0,1) be fized real values. Let
(p,q) € L*(Q) x Hy(div,Q) be the unique weak solution of the problem (1.8)
and (1.9) with the condition (1.10). Let (Dp)men be a sequence of discretiza-
tions of 1 in the sense of Definition 2 such that for all m € N, regul(D,,) < ¢
and lim thin(D,,) = 0. For a given m € N, let us denote by (pm,qm) the

m—-+00

solution (pp,ap) € Vp x Qp, given by (2.3) and (2.4) where D stands for
Dy,. Let M, > 0, denoted X, such that the CFL condition (4.1) holds. Let
Um € L®(Q x RT) denote the function up n defined by (2.8)-(2.13).

Then there exists a subsequence of (U )men, again denoted (Uny,)men, which
converges in the nonlinear weak-x topology of L>®(Q x RY) to a function u €
L>®(Q x RT x (0,1)), that is a solution of

[ [ (ntwte o) %20 4ttt apaiviste nate)
o (u(z, ) (e, ) f (@) (s(e, ) — ulz, t a))) da dz dt

+/(( xodx—/ /8(2 u(x,t))p(x, t)g(x) dy(z) dt >0

Vo € CHRY x R,R") such that ¢ =0 on 9O x RT,
vn € CY(R,R) with n”" > 0.

(5.1)
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The proof of the above lemma is completely similar to the one which is given
in Section 4.3. Use of the classical “variable doubling technique” and Krushkov
entropies (Krushkov, 1970) lead to a uniqueness result, under sufficiently strong
hypotheses on the data giving that q is Lipschitz-continuous (see [Otto (1996)] or
[Vovelle (2001)] for the particular problem of handling the boundary conditions).

LEMMA 10: (Uniqueness of the entropy process solution) Under Hypotheses
(H), and the additional hypotheses that OS) is of class C*, A is of class C?, f is
of class C* and g is of class C* (for example), let (p,q) € L*(Q) x Hy(div, Q)
be the unique weak solution of the problem (1.8) and (1.9) with the condition
(1.10).

Then, q is Lipschitz-continuous in S, there exists one, and only one, function
u € L>®(Q x RT x (0,1)) that is a solution of (5.1), and there exists one, and
only one, u € L*>®( x RY) solution of (1.7), such that, for a.e. (z,t,a) €
QxR x(0,1), u(z,t,a) = u(z,t).

This result of uniqueness yields the convergence in LP(Q2x]0,T7), for all p €
[1,00) and T > 0, of (u,)men to the unique solution @ of the problem.

A. Technical lemmata

LEMMA 11: Let K be an open subset of R? with weakly Lipschitz-continuous
boundary, such that there exists a Lipschitz-continuous homeomorphism ¢ from
Qsry = | — 0(K),6(K)[* to K with Lipschitz-continuous inverse mapping; we
denote by & an upper bound of the Lipschitz constants of ¢ and ¢~'.

Then there exists Cos > 0 only depending on & and d such that, for all f €
LY9K), f =0,

! Jood(w)dva) < [ f(a)dy(z) < Ca / fod(e)dy(z). (A1)

Ca2 Jagsx, oK 0Qs(x)

Notice that a Lipschitz-continuous homeomorphism with Lipschitz-continuous
inverse mapping between two open sets has a unique extension as a Lipschitz-
continuous homeomorphism with Lipschitz-continuous inverse mapping between
the closures of the open sets, and that this extension defines a Lipschitz-conti-
nuous homeomorphism with Lipschitz-continuous inverse mapping between the
boundaries of the open sets.

REMARK 8: The most useful inequality (and the easiest to obtain) in the follow-
ing will be the second one of (A.1). We have also stated the first one in order
that (A.1) allows to see that, when A is a measurable subset of 0K, v(A) and
(¢~ (A)) are comparable, with constants only depending on an upper bound
on the Lipschitz constants of ¢ and ¢~ (recall that v denotes the (d — 1)-
dimensional measure on the boundary of any open subset of RY with weakly
Lipschitz-continuous boundary).
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Proof: We denote § = §(K).
It is well known (see e.g. [Droniou (1999)]) that the mapping

fe LY 9K)— fo¢pe LY(IQs) (A.2)

is an isomorphism; here we want to estimate the norm of this mapping (and of
its inverse mapping) only in terms of ¢ and ¢! (with bounds not depending on
J).
Let us first recall the definition of the integral on 0K when K is an open
set with weakly Lipschitz-continuous boundary: if V is an open set of R% and
7:]—1,1[¢"1— 0K NV is a Lipschitz-continuous homeomorphism with Lipschitz-
continuous inverse mapping, then for f € L'(0K), we have

/ f(x)dy () —/ for()|Oir A--- A Bgr7|(2) da,
OKNV ]-1,1[¢-1

where 0;7 denotes the i-th partial derivative of 7 (which is, by the Rademacher
Theorem, a function in (L>(] — 1,1[¢71))¢ and is essentially bounded by lip(7))
and A is the vector product of d — 1 elements of R%.

With this definition, we can verify that the (d — 1)-dimensional measure on
0Qs is the (d — 1)-Lebesgue measure on all the hyperplane pieces the union of
which is 0Q)s. We can also notice that

8Q5 =AU (l—lzc'lzl(] - 57 5[i71><{_5}><] - 57 5[dii|—|] - 57 5[1'71 X{(S}X] - 57 5[d71>)

where 7(A) = 0 (A is made of sets of dimension d — 2).
Since (A.2) is an isomorphism, the sets of zero measure on 0Qs are mapped
by ¢ on sets of zero measure on K. Thus, by denoting

Hiy =] — 6,6 x{£d}x] — 9,8,
we have, up to a set of zero measure,
0K = UL, (¢(Hiv) Ud(H;-)).

If f e LYOK), f > 0, the integral of f on OK can thus be estimated if we
estimate the integrals of f on all ¢(H; 1).
Let us do this for H; , the other terms being dealt with in the same way.

Define 7 :] — 1,1[%'— 0K N ¢(H, 1) by 7(x) = ¢(d,0z). 7 is a Lipschitz-
continuous homeomorphism with Lipschitz-continuous inverse mapping; thus,
by definition of the integral on 0K,

/ f(z) dy(z)
OKN$(H1,4)

= / for(x)|OrT A~ ADg_17|(x) dz (A.3)
J—1,1[d—1

_ o 1|99 A9
_ /}mdl o 6(8,62)3" " | Z5(6.8) A+ A 58 0,6 (x) dar
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Thus, by a change of variable,

¢ 0¢
/a K%(Hw)f (z) dv() /}(wwf ¢(0,y) ’ Dy DY) N A g (0, 0) () dy

Since ¢ is Lipschitz-continuous, we have, for all i € [2,d],

9¢

15

|| o (1, 4y < lip(@)

and there exists thus Cy3 only depending on & and d such that

/ flz)dvy(z) < 023/ foo(d,y)dy.
OKN$(H1,4)

]_5’5[1171

But, as we previously noticed, the (d — 1)-dimensional measure on H; ; is the
(d — 1)-Lebesgue measure on this piece of hyperplane, and thus

/]_Wl fod@yydy= [ = fod(z)dy(x),

Hi 4

which proves the second inequality of (A.1).

The proof of the first inequality of (A.1) relies on a lemma (mainly algebraic)
stating that there exists Cyy only depending on d such that

1007 A -+ A Bgr7| > Co(lip(r~ 1))~ (A.4)

(see [Droniou (1999)]). Since 771(2) = 6 ((¢7(2))2, .-, (¢7(2))a), we have
lip(77!') < &671; using this in (A.4) and returning to (A.3) we get, thanks again
to a change of variable, the first inequality of (A.1).

LEMMA 12: Let K be an open subset of R? with weakly Lipschitz-continuous
boundary; we denote by my the measure of K. One assumes that there exists
a Lipschitz-continuous homeomorphism L from K to B(0,d(K)) with Lipschitz-
continuous inverse mapping. Let & be a real value greater than the Lipschitz
constants of L and L. Let g € H'(K). The trace of g on OK is still denoted
by g.

Then there exists C's > 0, only depending on & and d, such that

mLK/aK/K(g(y)—g(x))zdxdv(y) SOga(K)/ (Vo(@))? da.

K

Thus, if [, g(x)dz =0 holds, we have

| atrin) < casw) [ (Vo2 (A5)

K
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Proof: In the following proof, C; denotes real values which only depend on d and
&; 0 denotes §(K).

The mapping F': z — (|z[/sup;eq1 g |7i| )7 is a Lipschitz-continuous homeo-
morphism with Lipschitz continuous inverse mapping between B(0, ) and @ =
] — 4,6[¢ moreover, the Lipschitz constants of F' and F~! only depend on d.
Thus, there exists a Lipschitz-continuous homeomorphism ¢ from @ to K, with
Lipschitz continuous inverse mapping, such that the Lipschitz constants of ¢ and
¢! are bounded by Cb5 only depending on d and .

According to Lemma 11, there exists Cys only depending on d and £ such that

[ -
026/8Q/ (2))? dz dy(y)

— Oy / / (G(6()) — g(d@))* Taa(a’) da’ dy(y),
oR JQ

where J, 4(2") is the absolute value of the jacobian in the change of variable
¢. Setting h = g o ¢, we have h € H'(Q). Thus we conclude the existence of
Cy7 > 0, only depending on d and &, such that

/aK/ V2 dx dry(y <C27/8Q/ )2 dx dy(y).

The change of variable z = ¢~!(2’) proves the existence of Cy > 0, only
depending on d and £ such that

/ (Vh(x))? dz < Cos / (Vg(z'))* da'. (A.6)
Q K

Therefore, if we prove the existence of Cy > 0, only depending on d and &,
such that

/ / )2 dx dy(y) < Cyy 5011 / (Vh(z))? dz, (A7)
0Q Q
we get (12) from (A.6) and (A.7) and the fact that the existence of £ ensures
that there exists Cy > 0 with mg > C50¢.

In order to prove (A.7), we may assume by a classical argument of density that
h € C*(Q). Since @ is a cube with 2d faces, it suffices to prove the existence of
C30 > 0, only depending on d and &, such that

/ / )2 da dy(y) < Cyo 6% /Q (Vh(z))? d, (A.8)

where o = {—§} x [=6,8]77%, to get (A.7) with Cog = 2dC3. Let H = [—§,]97?
and QT =1[0,4] x H.
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We can now write, for all z € Q,

// Y dedy(y) < 2// )? da dry(y)
+2// )2 de dy (y).

An integration with respect to z € Q" leads to

15 / / 12 da dy(y) < 2(26)°A + 2(26)1 B, (A.9)

//Q 2 dz da(y),
po [ [ apanis

Let us first study A. By definition,

-] (h(=5.9)) — h((a,5)))? dadby,

and therefore, A is equal to

/H/H/O(S (/01 Vh((=d+0(a+0),y+0(b—y))) - (a+0,b—y) d9)2 da dbdy.

Using the Cauchy-Schwarz inequality, we get

with

and

A< (25)2d/H/H/:/01 (VR((=5 + 0(a+ 8),y + (b — y))))* d0 dadbdy.

Using the Fubini Theorem and the two changes of variable b — 0 =b—y €
Hy =[-26,28]"Y, y — ¢/ =y + 01 € H, we then obtain

A< (25)%1/]{2 /Oé/gl/H(Vh((—5+9(a+5),y’)))2 dy d6 da dV.

We now change the variable 6 into ¢t = — + 6(a + 0). This yields:
5 ra ) 1
A< (25)2(45)d_1d/ / / (Vh((t,y")))" —— dy' dt da.
0o J-sJu a+o
Since, for all a € [0, d], a+r6 < %, we get, setting = = (¢,y),

A < 2%5itlg /Q (Vh(x))® dz. (A.10)
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Let us now study B. We have

B< (26)2d/Q+/Q/01 (Vh(z +0(z — x)))? df dz dz.

Using the Fubini Theorem and the two changes of variable z — 2/ =z —x €
Qy = [-20,20]¢, 2 — ' =2+ 02 € Q, we get

B< (25)%/2/@(%(:5’))2 dz' d,

B < 222502 / (Vh(z'))? da'. (A.11)
Q

Thus, using (A.9), (A.10) and (A.11), we conclude the proof of (A.8).

which gives

Assuming now [, g(z)dx = 0, the proof of (A.5) is then a direct consequence

of
[ sapira) - / (0 ——/ i) i)
< e /E)K/ )? dx dy(y).

LEMMA 13: Let K be an open subset of R? with weakly Lipschitz-continuous
boundary; we denote the measure of K by myg. We assume that there exists
a Lipschitz-continuous homeomorphism with Lipschitz-continuous inverse map-
ping L from B(0,6(K)) to K. Let & be a real number greater than the Lipschitz
constants of L and L. Let g € H'(K).

Then, there exists Cy > 0, only depending on & and d, such that

- / / V2 da dy < Cy 5(K)? /K (Vg(x))? dz. (A12)
In particular, if [, g(x)dx =0 holds, then
/K () dz < Cy 5(K)? /K (Vg(x))? dz. (A.13)

Proof: We denote § = 0(K). Using the change of variables 2’ = L(z) and ' =
L(y), and writing for simplicity of notation B = B(0,0), we get the existence of
(31, only depending on d and &, such that

/ / 2dzdy < Cay / / g(L(x)))2 d’ dy .
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Setting h = g o L, we have h € H'(B). Then we deduce the existence of
C30 > 0, only depending on d and &, such that

/ (Vh(2))? dz < Cs / (Vo(z'))? da'. (A.14)
B K
Thus, if we prove the existence of C33 > 0, only depending on d and &, such

that
/ / )2 da dy < Cias 69442 / (Vh(z)) dz, (A.15)

B

we then get (13) from (A.14), (A.15) and the fact that the existence of £ ensures
that there exists C5 with mg > C5 §?. In order to prove (A.15), one may assume
by a classical argument of density that h € C*(B). We set

A= [ [ (1) = hw)? o

Using the Cauchy-Schwarz inequality, we get

A< (25)%/3 /B /01 (Vh(z +0(z — x)))* d dz dz.

Using the Fubini Theorem and the changes of variable z — 2/ = z—x € By :=
B(0,2)), x — 2’ =x + 02’ € B, we get

A < (26)%d /B /B (Vh(z))? dz' d2’,

which gives the existence of some Cj34, only depending on d, such that
A < Cyy 6412 / (Vh(zx))® da.
B
This concludes the proof of (A.15).
Assuming now [, g(z) dx = 0, the proof of (A.13) follows, remarking that in

such a case
| s /(g<x>—i/ <>dy>2dx
mK// dxdy

LEMMA 14: Let K be an open subset of R with weakly Lipschitz-continuous
boundary, such that there exists a Lipschitz-continuous homeomorphism with
Lipschitz-continuous inverse mapping L from K to B(0,d(K)). We denote by &
an upper bound on both Lipschitz constants. Let a C 0K, such that there exists
xo € a and ¢ > 0 with

0K N B(x0,(0(K)) Ca
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Let m, denote the d — 1 Lebesque measure of a. Let q € H(div, K) such that
q-npx € L*(0K) and there exists q, € R with q(z) - npg (x) = q, for a.e. x € a.
Then there exists Cg, only depending on d, & and (, such that

ma? < Cio (@ /K o(z) dz + () /K (divq(x))de) (A.16)

Proof: Denoting 6 = §(K), let X € 0B(0,0) and n € (0,1]. We have
{Z€0B(0,0)| Z-X >(1-n)6*} =0B(0,6) N B(X, \/210).

Indeed, take Z € B(0,d) and denote h = Z — X. We have, since |Z]* = | X|? =
52, |h|2 202 — 27 - X; thus, |h|? < 2né? if and only if Z - X > (1 —n)d2.
Deﬁne

B, ={y € 0K | L(y) - L(z0) > (1 — )82} = L7(IB(0,6) N B(L(x0),/2n9)).

Let F(z) = (|x]/sup;cp q |zil)z. £L75 0 F~' is a Lipschitz continuous home-
omorphism with Lipschitz-continuous inverse mapping between K and Qs =
] — 4, 6[¢; moreover, the Lipschitz constants of £71o F'~! and its inverse mapping
are bounded by a real number only depending on d and &. Thus, by Lemma 11

applied to f = x3,,
’7(677) 2 035 ’Y(FOE(BH)) = 035 ’7( (@B(O 5 N B {L‘O \/ 5
with C35 only depending on d and £. It is easy to see that
( (83(0 5 ﬂB .130 \/ 5 > Cg@édil,

where C3¢ only depends on d and 7 (the set F(9B(0,d) N B(L(xo),/210)) con-
tains a significant part of a (d — 1)-dimensional ball on 0Qs with radius of order
9). Thus, we have

v(B,) > Cs37 %7, (A.17)

where C'3; only depends on d, ¢ and 7.
Now, let 1o = inf(1, (¢/£)?/2) € (0,1] (1o only depends on ¢ and £); since £
is Lipschitz-continuous with constant &, we have

B,, C 0K N B(x,¢d) C a. (A.18)

Let us define the function v € H'(K) by

PR CLECE) R

where the function ¢ € C([—1,1],[0,1]) is defined by (s) = 0 for all s €
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[—1,1 — o), ¢¥(s) = % for all s € [1 —no,1 —no/2], ¥(s) = 1 for all
s € [1 —no/2,1]. We have therefore v(z) € [0,1] for all z € K, v = 1 on By, 2
and v =0 on 0K \ B,, D 0K \ a and

W (cm(—szz:(zo))
Vole) = — L (DL(@) L),
Thus, since |£(zo)| < 6, we have ||[Vvl|reo(x) < <2 where Css only depends
on d, £ and (. For all z € 0K \ a, v(z) = 0, and therefore the following relation

holds
/K Vo(z) - qlz) de = — /K o(z) divq(z) de + g, / o(z) dy(z).

We have [ v(z)dy(z) > v(B,,2) (because v is non-negative and has value 1
on B,,2) and thus by (A17), [ v(z)dy(x) > Cs9 6% with Cyy only depending
on d, £ and (. Since ||Vo(2)|[reox) < €2 and my < Cyo6?, one therefore gets

< Cu (342200 [ apar 57200 [ (diva)?d)
K K

which leads to (A.16), since m, < Cjp 641
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