A density result in Sobolev spaces

Jérome Droniou 1.
Abstract We prove, for 1 < p < oo and € a polygonal or regular open subset of RY, the density in
WhP(Q) of a set of regular functions satisfying a homogeneous Neumann condition on the boundary of
Q. We also give applications of this result and a generalization to mixed Dirichlet-Neumann boundary
conditions.

1 Main results

1.1 Introduction

We consider, in the following, a bounded open subset € of RV with a Lipschitz-continuous boundary (see
[10]); we denote by o the (N — 1)-dimensional measure on 92 and by n the unit normal to 9 outward
to Q. For p € [1,00[, WHP(Q) is the usual Sobolev space.

Under such hypotheses, it is well-known (see e.g. [1]) that the space of restrictions to €2 of regular functions
on RY is dense in W1?(Q). In this article, we intend to prove that, under additional hypotheses on €,
the space of regular functions which satisfy a homogeneous Neumann condition on 0f2, that is to say
functions ¢ such that Vi -n = 0 g-a.e. on 05, is also dense in WP(Q). The results we obtain are
precisely stated in the two following subsections.

In Section 2, we consider the case when 2 is a polygonal open subset of RY; the proof strongly relies on
the fact that 9 is then made of pieces of hyperplanes. In Section 3, we prove the density result when 2
has a “regular” boundary; the proof, in this case, is based on a lemma which makes sure that, given a
function g on 9, we can find a function ¢ on RY that is small in W?(Q2) and such that Vi -n = g on
0f). Section 4 gives two applications of our main theorems, one to the weak formulation of the Neumann
problem, the other to the convergence of a finite volume scheme; we shall also prove a generalization of
the density result to mixed Dirichlet-Neumann boundary conditions.

1.2 The polygonal case

We assume first that 2 is a polygonal open subset of RV (that is to say, {2 has a Lipschitz-continuous
boundary and 92 is contained in a finite union of hyperplanes); such open sets are of major interest when
studying numerical schemes for partial differential equations (see [5] and Section 4.2). Our main result
in this case is the following.

Theorem 1.1 If Q is a polygonal open bounded subset of RN and 1 < p < oo, then
{oo : € CERY), Vo-n=00c-a.e ondQ}
is dense in W1HP(L2).

Remark 1.1 The Lipschitz-continuity hypothesis on OS) is only used, in the proof of this theorem, to
make sure of the density of regular functions in WYP(Q). Thus, this theorem is also valid for open sets
which are not Lipschitz-continuous in the sense of [10], but such that we can define a unit normal to OS2,
such that the reqular functions are dense in WHP(Q) and which have a boundary contained in a finite
union of hyperplanes (see [3] for an example of such a set).

Notice that, though polygonal open sets are not regular, the singularities of their boundaries are very
specific; this is what allows us to prove this theorem. Indeed, we cannot hope to obtain such a result for
general open sets with Lipschitz-continuous boundary; the reason is the following: in dimension N = 2,

LUMPA, ENS Lyon, 46 allée d’Ttalie, 69364 Lyon cedex 07, France. Email: jdroniou@umpa.ens-lyon.fr



we can construct an open set {2 such that the outer normal oscillates everywhere between two independent
directions; thus, if ¢ is a regular function which satisfies Vio-n = 0 on 91, the regular function Vi, being
orthogonal to n (which oscillates everywhere between two independent directions), must vanish on 9f;
this means that ¢ must be constant on 9 and that any limit of such regular functions is also constant
on Jf).

Let us construct more precisely such a counter-example. We denote by (sp)n>1 an enumeration of the
rational numbers in |1, 1[ and take n(s) = >, o, 27" sup(0, s—s,); 1 is Lipschitz-continuous on | -1, 1|
and its derivative is 7'(s) = 32, (=, 277~ Tet Q be an open set of R? with a Lipschitz-continuous
boundary and such that QN] — 1, 1[? is the epigraph of 7.

Let ¢ € C1(RY) satisty Vo -n = 0 o-a.e. on 2. We have then, for a.e. s €] —1,1],

T2 (50(5) — 52 (s01(5)) =0, (L.1)

For all n > 1, we can approximate s, from above and from below by sequences (¢ ),>1 and (¢ )g>1 of
real numbers satisfying (1.1). We notice then that

lim 7/'(tf) — lim o/(t;)=2""""1
k—oo k—o0

is not null; thus, passing to the limit in (1.1) applied to (t:)kzl and to (t, )x>1, we obtain %(sn, n(sy)) =

0. (sn)n>1 being dense in | —1, 1], we deduce that the continuous function %ﬁl(-, 7(+)) vanishes on | — 1,1

and, thanks to (1.1), that g—é(-,n(-)) also vanishes on | — 1,1[. Thus, ¢(-,7(-)) is constant on ] — 1, 1[.
Any limit in W1P(Q) of functions ¢ € CH(RY) satisfying Vi -n = 0 on 99 is thus constant o-a.e. on
00N — 1,1[%, and {¢q : ¢ € CYRY), Vo -n =0 c-a.e. on 9} cannot be dense in WHP(Q).

1.3 The regular case

The preceding counter-example is based on the irregularity of the domain. In fact, assuming that the
boundary of 2 is a bit more regular than just Lipschitz-continuous, we can prove a result similar to
Theorem 1.1.

For k € N, we recall the usual defintion: a function is C*!-continuous if it is k-times continuously
derivable and if its k-th derivative is Lipschitz-continuous. We say that a function is C°!-continuous if
it is C*1-continuous for all k € N (2).

Definition 1.1 Let k € NU {oo}. A bounded open subset Q of RN has a C**-continuous boundary if,
for all a € 0N, there exists an orthonormal coordinate system R centered at a, an open set V of RV
containing a, such that V = V'x] — a,a[ in R, and a C*-continuous function n: V' —] — a, a[ such
that, in R, 02NV ={(y',n(y"), ¥ € V'} and QN V ={(v',yn) € V | yn > n(y)}.

Notice that, if & = 0, this definition corresponds to an open set with a Lipschitz-continuous boundary as
in [10].
For ¢ : RV — R and a € 912, we denote, if such a limit exists,

de . . pla+tn(a)) — p(a)
on(@ = im t '

Our second main result is the following,.

2That is, the function is indefinitely derivable and all its derivatives are bounded.



Theorem 1.2 Let k € NU{oo} and 1 < p < co. If Q2 is an open subset of RN with a C*+1:1-continuous
boundary, then

, 0
{909 : o e CPYRY)Y, 6_i =0 on 89}

is dense in WHP(Q).

Remark 1.2 i) An alternate proof of this result can be found in [9]. However, the technique used
in this reference (which consists in transporting the problem with well-chosen diffeomorphisms) can
only be applied to open sets with at least C*'-continuous boundaries.

ii) Notice the loss of a derivative: Q has a C*11-continuous boundary, but we only obtain the den-
sity of C*'-continuous functions. This phenomenon can be correlated with the counter-example
introduced in subsection 1.2.

iii) (Thierry Gallouét [6]) There is an alternate result to Theorem 1.2 which avoids this loss of a
derivative: if Q has a CY'-continuous boundary or is convex, then for all u € H*(Q), there exists
(un)n>1 € H3(Q) satisfying, for alln > 1, Vu, -n = 0 o-a.e. on 9Q and such that u,, — u in
HY(Q).

The idea is to solve the following Neumann problem

{ Ve — AV, = U in €, (1.2)

Vv, -n=0 on Of).

Since Q has a CV'-continuous boundary or is convez, the variational solution to this problem is in
H?(Q) (see [7]); multiplying the equation by Av., we notice that (ve)esq is bounded in H*(Q) and
that it weakly converges in this space to u; by Mazur’s lemma, a convex combination of the (ve)e>o
strongly converges to u.

With this technique, we do not lose a derivative (we get the density of H? functions if Q has a C1-
continuous boundary), in contrary to Theorem 1.2 (density of CY1-continuous functions under the
same hypothesis); however, the derivatives are far less regular than in Theorem 1.2 (in L* instead
of L*°). Moreover, in the case of a polygonal open set, Theorem 1.1 gives a far better result than
the method up above.

2 Proof of the density result in the polygonal case

Let © be a bounded polygonal open subset of RY; the boudary of © is made of vertices, edges, etc... up
to pieces of hyperplanes; that is to say, there is a partition

lo In_1
8Q:<|_|Fi°>|_|---|_| L 7M.
i=1 i=1

where each F{ is of dimension d (3).

The idea, to prove Theorem 1.1, is to approximate any regular function by functions that, on a neighbor-
hood of each part F} of 92, only depend on the coordinates along this affine part (on a neighborhood of
a vertex of 0f), the approximating functions will be constant; on a neighborhood of an edge of 0f), they

3The Fid can be formally defined the following way: we take H1, ..., H;,, , some pairwise disjoint affine hyperplanes, the
union of which contains 092 and such that, for all i, H; N 02 has dimension N — 1; we define (Gg)ie[l,ld] as the non-empty
intersections of N — d distinct (Hj N OQ)jc(1,1n_1]5 F¢ is then Gf\(u;d;ll G?il) ifd > 1 and GY if d = 0. We leave the
interested reader check on that this precise definition allows to justify the few intuitive facts we use about the F ik in the
following proofs.



will only depend on the 1-dimensional coordinate along this edge; etc...). This approximation is done by
induction: we first approximate a given regular function by functions that are constant on neighborhoods
of the vertices of €); then we approximate a function which is constant on neighborhoods of the vertices
by functions which, on neighborhoods of the edges of 2, only depend on the coordinate along this edge;
and so on...

This process is described by Lemma 2.1, which we state after having introduced a few notations.

Ifd € [0,N —1] and i € [1,14], P? denotes the orthogonal projection on the affine space A¢ generated by
Fe.

For d € [0,N — 1], we say that a function u € C°(RY) satisfies the property By if, for all i € [1,1,],
U=1uo Pz-d on a neighborhood of Fl-d; this exactly means that, on a neighborhood of Fl-d, u only depends
on the coordinates along Ff. To simplify the statement of the following lemma, we take as a convention
that B_; is the “empty” property, i.e. that any function in C°(R”) satisfies B_;.

Lemma 2.1 Letp € [1,00] andd € [-1,N —2]. Ifu € C(RYN) satisfies By, then there exists a sequence
of functions u,, € C2°(RN) such that u,, — u in WHP(Q) as n — oo and, for alln > 1, u,, satisfies Byi1.
Moreover, if u has its support in the interior of some compact subset K of RN, then the functions (un)n>1
can be chosen with supports in the interior of K.

Remark 2.1 The additional conclusion concerning the supports of u and u, will be useful in Section

4.8.

Proof of Lemma 2.1

We denote by By (d) the Euclidean open ball in RY of center 0 and radius 6.

Before beginning the proof, we make two easy remarks (immediate consequences of the definition of an
orthogonal projection):

If 7" C FF and € FJ" + Bn(8), then Pf(z) € Fj* 4+ By (9). (2.1)
If F* C FF, then PJ" o Pf = P o P" = P}". (2.2)

Let us now prove the lemma. We take v € C°°(R") with support in the interior of some compact subset
K of RV and satisfying By; we will construct a sequence of functions u, € C*(R¥) with supports in the
interior of K and satisfying Bgy1.

Step 1: we define a sequence of functions (v, )n>1 which are, up to a localization in K, (4 — tp)n>1-
If d > 0, we take § > 0 such that, for all [ € [1,1,], u = uo P on F + Byx(8). If d = —1, the choice of §
does not matter (we take for example ¢ = 1).

Let i € [1,141]. F2* is linked to the others (F;”l)j# via the (Fj);; that is, for all j # i, there exists
[ € [1,14] such that Fn F;Hl C F ¢ Ff (with the convention F;~* = (). Thus, if we denote by J;
the set of [ such that Ft ¢ F{ (4), the distance &; ; between Ff© ™\ (Ue s, Fft + By (6/2)) and F]‘.iJrl is
positive (for j # ).

We define dy = inf(4,inf;2; §; ;) and we take, for all i € [1,1411], 0; € C° (Ff + Bn(d0/2)) such that
0; =1 on F™ 4 By (80/4).

Let v € C(] — 2,2[) such that v = 1 on | — 1,1[; we denote v,(t) = ~v(nt) (notice that v,(| - |) is
C*>°-continuous, since v, is constant on a neighborhood of 0); denoting by Id the identity mapping of
RV, we let

lat1
Uy = Z 0ivn (‘Id — Pid+1|) (u—uo Pid+1) € C(RM).
=1

4J; is also the set such that UlEJiFﬂ is the boundary of Fid+1 relatively to A;“'l



Step 2: we prove that v, — 0 in WH?(Q) as n — oc.

We have, as n — oo and for all i € [1,1441], Va(lz — PP(x)]) — 0 if 2 # P (z), that is to say if =
does not belong to the space A;-”l; this space being of null measure (it is of dimension d+1 < N — 1),
we deduce that v, — 0 a.e. on €. v, being bounded on 2 uniformly with respect to n, the dominated
convergence theorem shows that v, — 0 in LP(Q) as n — occ.

The gradient of v,, is the sum of

la41
> (|Id = PEH) V(6 (u—wo PHY) (2.3)
=1
and
lay1
> 0 (u—uo PHY) L ([Id — PFY|) V(|Id — PFY). (2.4)
=1

By the same argument as before, the term (2.3) tends to 0 in LP(Q2) as n — oc.
The function |Id — PidH| being Lipschitz-continuous on RY, its gradient is bounded on R (in fact, we
can see that it is bounded by 1). The norm, in LP(2), of (2.4) is thus bounded by

lat1

Z ||91'||L°°(Q) H(U —uo Pz‘d+1)'7; (|Id_ Pid+1|)”L;D(Q) .

i=1

But v, |z — P (x)|) = 0 if |z — P! (z)| > 2/n, that is to say if = does not belong to A¢™! + By (2/n)
(recall that |z — P?"1(z)| is the distance between z and A?™); thus, using the Lipschitz-continuity

property of u and the estimate ||v;, ||z ®) < n|[7||L~®), we bound the norm in LP(Q) of (2.4) by

la+1

. 1
2017/ Loe rylip(u) Y [163]] 1 (ymeas (2 N (AL + By (2/n)))

i=1

. (2.5)

Since the measure of Q is finite and Ny>1 (AT + By(2/n)) = AT is a non-increasing intersection of
null measure, (2.5) tends to 0 as n — oc.

Both terms (2.3) and (2.4) going to 0 in LP(£2) as n — oo, we deduce the desired convergence of (vp,)n>1
to 0 in WhHP(Q).

Step 3: study of v,, on a neighborhood of FZ+1.
Let i € [1,1441] and U;,, be the open set F*™ + By (inf(d9/4,1/n)). If x € Uy, then |z — P (z)| =
dist(x, A1) < dist(z, F4™) < 1/n, so that v,(Jz — P! (x)|) = 1. Thus, on Uj ,,

vy =u—uo P 4 Z O (|1d — de+1|)(u —uo de+1).
#i

Let j # i and z € U, ,, be such that 6;(x) # 0. We have then z € (Fid+1+BN(5O/4))ﬂ(FJ‘.”1+BN(50/2));
we write = z + h with z € F*™ and || < 8p/4, so that z € F™ 0 (F;Hl + Bn(3d0/4)); by definition
of 8y < §;,;, this implies z € Uje s, (F{! + Bn(5/2)), and thus (since 8y < §), z € F + By(6) for some
l € Jj. By (2.1), and since F_ld C FjdH, we get then (x,PJf”l(m)) € (Fe + Bn(6))?, which gives, by
definition of § and by (2.2), u(z) = u(P¢(x)) and u(PJf”l(:z:)) = u(Pld(de“(:r))) = u(P¢(x)). We deduce
then u(z) — u(P]fH'l(a:)) = 0.

Thus, on U; ,, we have v,, =u—uo Pf“.

Step 4: conclusion.
Let © € C°(int(K)) and € > 0 such that © = 1 on supp(u) + By ().



Define u,, = u — Ov,, € C=°(RY); u,, — u in WP(Q) as n — 0o, the support of u, is contained in the
interior of K and, for all ¢ € [1,1441], we have, on Uj p,

Uy =1 —Ou+ O(uo P = (1 - 0)u+ O(uo P = O(uo P

(because 1 — © = 0 on supp(u)).
Let i € [1,1q41] and U; ,, = FO 4 By (inf(50/4,1/n,¢€)) C Uy .-

o If z € Ui, N (supp(u) + By (g)), then u,(z) = O(z)u(P(x)) = u(PI(x)).

o If z € U, \(supp(u) + By(e)) € F*** + By(e), we have |z — PP (z)| < e (lz — PA(2)] is
the distance between z and A™ > F4™) and thus P (z) ¢ supp(u), which gives u,(z) =
O(x)u(PH!(z)) = 0 = u(P(z)).

Thus, in either case,

u, =uo P on U, = F + By(inf(5o/4,1/n,¢)). (2.6)
If 2 € Uj , then, by (2.1), P () € U, so that, by (2.6) and (2.2),

un (P (2)) = u(PH (P (@) = u(PE(2) = w(a).
Thus, %, = un o PidJr1 on a neighborhood of Fi‘”l, and the lemma is proved. B

Proof of Theorem 1.1
Q) having a Lipschitz-continuous boundary, the space of the restrictions to  of functions in C°(RY) is
dense in WP(Q). An easy induction based on Lemma 2.1 allows to see then that the space

E={pq :p€C RY), p=ypo PN=1 on a neighborhood of FN ! (Vi € [1,1y_1])}

is dense in W1P(Q).

To prove Theorem 1.1, we just need to prove that the functions in E satisty the homogeneous Neumann
boundary condition on 0f2.

But, if ¢ € E, we have, for all ¢ € [1,ly_1], on a neighborhood of FiNfl, V= Lﬁ\Lchp o PiNfl, where
Lfvfl is the transpose of the linear part of PZ-Nfl, that is, Llel is the orthogonal projection on the vector
space ViN ~1 parallel to AZN -1 (an orthogonal projection is always self-adjoint). On a neighborhood of
FZ.N ~1, the gradient of ¢ is thus an element of ViN -1

But it is quite easy to see that, on FZ-N ~1, the unit normal to 9 outward to € is defined and orthogonal
to VN1 (because F¥ ! is a (N — 1)-dimensional piece of 99).

Thus, Vi -n = 0 on FZ-N*1 for all i € [1,iy—1]. Since Uie[l,leﬂFiNfl covers 0N up to a set of null
o-measure (the remaining set is of dimension N — 2), this concludes the proof of the theorem.

Remark 2.2 If Q) is a bounded open set with singularities of the same kind as the singularities of poly-
gonal open sets, a result similar to Theorem 1.1 can be proved for €.
For example, if there ewists, locally, a C™'-diffeomorphism (r > 1) which preserves the outer normal
(°) and tranforms the singularities of 2 into the singularities of a polygonal open set, we can prove the
density in WHP(Q) of

{p0 : p€ C"Y(RY), Vp-n=0c-a.e. on .}

This gives in fact another proof (the one in [9]) of Theorem 1.2, but only for k > 1.
A crucial example of this is Q = Ox]0,T[, where O is an open set of RN=1 with a C"™+11-continuous
boundary. Though € has a boundary which is only Lipschitz-continuous, the singularities of this boundary
are, up to a C™'-diffeomorphism, similar to the singularities of a polygonal open set.

5Such diffeomorphisms can be constructed, for example, thanks to the flow of a vector field which is, on 99, equal to
the unit normal.



3 Proof of the density result in the regular case

We assume here that (2 is a bounded open set with a C**1:1-continuous boundary (for a k € NU {oo}).
The regular functions being dense in W1?(Q), Theorem 1.2 is an immediate consequence of the following
proposition. We state this proposition to show that, as in the polygonal case, our technique of approxi-
mation is local (that is, the supports of the approximating functions are not far from the support of the
function to approximate).

Proposition 3.1 Let p € [1,0¢[, k € NU {oc} and Q be an open set of RN with a C*+t1:1-continuous
boundary. If u € C=(RYN), then there exists a sequence of functions (up)n>1 € C*H(RN) such that
U — u in WHP(Q) as n — oo and, for alln > 1 and all a € 99, %= (a) = 0.

Moreover, if u has its support in the interior of some compact subset K of RN, then the functions (un)n>1
can be chosen with supports in the interior of K.

Remark 3.1 i) If k=0, it is not true that, for a given ¢ € CH1(RN), %f(a) exists for some a € 02,
let alone for all a € 0S). We shall however see that the sequence (uy)n>1 is really such that 9% (a)
exists and is null for all a € 0§). Notice that this is what we have announced in Theorem 1.2.

it) A close examination of the proofs which follow also shows that, if @ has a Lipschitz-continuous
boundary which is C*t11-continuous “in an open set O”(%), then we can approzimate a given
function in WHP(Q) by C*1-continuous functions which satisfy a homogeneous Neumann boundary
condition on 02 N O. Although the problem is not easily localizable (if ¢ satisfies a homogeneous
Neumann boundary condition and v is a reqular function, vp does not necessarily satisfies a homo-
geneous Neumann boundary condition), our techniques are however local ones.

The idea to prove Proposition 3.1 is the following: the function ¢ = Vu - n is C*!-continuous on 9€); we
construct a sequence (v, )n>1 € CFHRN) which converges to 0 in W1P(Q) and such that, for all n > 1,
%;T" = g on 99; the sequence u,, = u — 7, converges then to u in W1?(Q) and satisfies the homogeneous
Neumann boundary condition on 9.

The only difficulty in this proof is the construction of the sequence (7, )n>1.

The first lemma, which states the existence of a local projection on 9f2, is quite classical when 02 is a
regular submanifold of RY. We however prove it completely because, when 9Q is only C':!-continuous,
the main tool of the proof is not so usual.

Lemma 3.1 Let k € NU {oo} and Q be an open set of RN with a C*+1:1-continuous boundary. There
exists an open set U of RN containing 9 and a C*'-continuous application P : U — 9 such that

i) for ally € U, P(y) is the unique x € 0 satisfying dist(y, 0Q) = |y — x|,
ii) for all a € 0N, there exists tq > 0 such that, for all |t| < tq, P(a+tn(a)) = a,

iii) for all y € U\OQ, n(P(y)) - (y — P(y)) # 0.

Proof of Lemma 3.1

Step 1: local construction.

We prove in this step that, for all a € 99, there exists an open set U, of RY containing a and a C*1-
continuous application P, : U, — 09 such that, for all y € U,, P,(y) is the unique = € I satisfying
dist(y, 00) = |y — z|.

6That is to say, Definition 1.1 holds for all a € 9Q N O.



Let a € 99 and take R, V =V’'x]| — «,af and n : V' —] — «, ¢ given for a by Definition 1.1. From now
on in this step, we use R as a system for all our coordinates (notice that the norm and the distance are
not modified by this change of coordinates).

Let us first study, for a given y = (', yn), the solutions 2’ to 2’ — ¢’ + (n(2’) — yn)Vn(z') = 0.

F(z',y) = 2’ — ¥ + (n(z') — yn)Vn(z') is C*¥1-continuous on V' x RN and is null at (z',y) = (0,0).
Moreover, when it exists, %(x’, y) = Id+ V(") V(2T + (n(2") — yn)n" (2') (where n”(2") is confused
with the Hessian matrix of 7).

If K > 1 then, F being C*- 9L.(0,0) = Id + Vn(0)Vn(0)? being definite positive, the
classical implicit function theorem gives an open set W C V’ of RN ! containing 0, an open set U of RV
containing 0 and a C*-continuous application f : U — W such that, for all (z’,y) € W xU, F(z',y) = 0 if
and only if 2/ = f(y). Moreover, since f'(y) = — (gf, (f(y),y))7 %’; (f(y),y) and F is C*'-continuous,
f is in fact C*!'-continuous (we reduce U if necessary).

If kK = 0, then V7 is Lipschitz-continuous on V’; there exists thus C' > 0 such that, for all 2’ € V’, if
n”(2') exists, then ||n”(z')|] < C (|| - || denotes the norm on the space of (N — 1) x (N — 1) matrices
induced by the Euclidean norm in R¥=1). Thus, for all ¢ € RN=1,if (2/,y) is such that 25 (2', y) exists,
we have

oF

o (&Y€ (€17 + (Vn(2")T€)? = Cln(a") — yw|l€[*.

Assuming that (x y) — (0,0) and that lim g ) (o,

lim )0, Kfaf 2’,y) is a 1-coercive matrix (that is to say a (N — 1) x (N — 1) matrix A such that,
A

for all ¢ € R £-€>|€)%). Thus, any convex combination of such limits is also 1-coercive; denoting
by S the set of (sc ,y) € V/ x RY such that F is differentiable with respect to 2’ at (2’,y), we have thus

proven that the set
co lim a—F(:r' ), (2 y) €S
@'y ' P Y

0) 3E (2/,y) exists, this inequality lets us see that

is made of invertible matrices. The Lipschitz implicit function theorem of [2] gives then an open set
W C V' of RN~! containing 0, an open set U of RY containing 0 and a Lipschitz-continuous application
f:U — W such that, for all (z/,y) € W x U, F(z',y) = 0 if and only if 2’ = f(y).

Let 3 > 0 such that By(8) C V, Bn_1(8) C W and Bn(3/2) C U; let y € By(3/2). By compacity of
09, there exists some points in 9 that are at distance dist(y, 9Q) of y. Moreover, since 0 € 99, if z is
such a point, we have |z| < |y| + |z —y| < |y| + |y — 0] < B, that is to say © € By(8) C V.

x can thus be written as (2/,n(z’)) for a 2’ € By_1(8) C W; 2’ is then a minimum of the C''-continuous
function | - —y/|> + [n(-) — yn|? on V' and we deduce that 2’ — ¢’ + (n(2’) — yn)Vn(z') = 0.

Since (2/,y) € W x U, 2’ is unique and 2’ = f(y) (f has been constructed up above).

There can thus be only one projection of y on 9€; it is given by a function of y which is C*:1-continuous
on By (d/2). This concludes this step (with U, = By (6/2) and P,(y) = (f(v),n(f(y))) in R).

Step 2: we cover the compact set 02 by a finite number of U,,, i = 1,...,[, constructed in step 1.
UL_,U,, being an open set of RY containing J, there exists an open set U of RY containing dQ and
relatively compact in U!_,U,,. Define P : U — 9Q by: Yy € U, P(y) is the unique point of 99 at distance
dist(y, 0Q) of y (since y € U, for a certain i € [1,1], we know that such a point exists and is unique).
By construction of P and of the (P, )ie[1,, and by uniqueness of the point at distance dist(y,d9) of y
when y € U, we have P = P,, on U,, NU. P is thus C*"'-continuous on U.

Let us now check that, for all a € 02 and t small enough, we have P(a + tn(a)) = a. Since the
projection of a point of U on 9€) is unique, we have, on a neighborhood of a, P = P,. By the
study made in step 1, and using the notations introduced in this step (in which case the expression
of n(a) is (1/1+|Vn(0)[2)"1(Vn(0), -1)T), we see that, for ¢ small enough, P(a + tn(a)) = (z/,n(z"))
where 7’ is the unique solution on a neighborhood of 0 to z’ — t(1/1 + |[Vn(0)|2)~1Vn(0) + (n(z’) +



t(y/1+ |Vn(0)]2)~1)Vn(z") = 0; but 2’ = 0 is a solution to this equation. This means that P(a+tn(a)) =
(0,1m(0)) = 0 in R, that is to say P(a +tn(a)) = a.

To conclude this proof, it remains to see that the open set U given above satisfies item iii) of the lemma.
Let y € U; there exists ¢ € [1,I] such that y € Ua by the Study made in step 1, and with the
same notations, we have P(y) = (2/,n(2’)) where 2’ € V' satisfies 2’ — ¢’ + (n(z’) — yN)Vn( ) = 0.
It n(P(y) - (v — P(y) = 0, then (Vi('),—)T - (' — /syn — n(@)T = 0 (because n(P(y)) =
(VIF V@B (Vi(a'), 1)), so that (5 — &) - Vn(s') — (yy — n(a’)) = 0. By using the equa-
tion satisfied by z’, we deduce that (n(z’) — yn)(|Vn(z')|? + 1) = 0, that is to say yny = n(z’) and, once
again thanks to the equation satisfied by 2/, 2’ = y/. This gives y = P(y) € 0Q.

Thus, if y € U\9Q, we have n(P(y)) - (y — P(y)) #0. &

The following lemma gives the existence of the (y,)n>1 needed in the proof of Proposition 3.1.

Lemma 3.2 Let p € [1,4+o00[, k € NU {oo} and Q be an open set of RN with a C*+11-continuous
boundary. If g € CHL(RYN) has its support in the interior of a compact subset K of RN, then for all
e > 0 there exists v € C*(RYN) with support in the interior of K such that ||v|lw1»() < € and, for all

a € 09, 8n( a) = g(a).

Proof of Lemma 3.2

Let U and P given by Lemma 3.1; we can suppose that U is bounded. Let 6 € CS°(int(K) NU) such
that & =1 on a neighborhood of supp(g) N 9.

Let h € C°(] — 1, 1[) such that h(0) = 0 and h’(0) = 1; for § > 0, we denote hs(z) = dh(z/J).

Define v5(y) = 0(y)g(P(y))hs(n(P(y)) - (y — P(y))); this function is well defined and C*!-continuous on
U; since its support is a compact subset of int(K)NU, its extension to RY by 0 outside U is in C*1(RY)
and has a compact support in the interior of K.

Let us first check that, for all a € 909, 375( ) exists and is equal to g(a). We study different cases,
depending on the position of a on 9f).

e If a € 9O\ K, the result is quite clear because, for ¢ small enough, (a,a + tn(a)) & supp(#) so that
25+ tn(a)) = 5(a) = 0 = g(a).

o If a € 90 N (K\supp(g)), we have, by Lemma 3.1, P(a + tn(a)) = a for t small enough, so that
g(P(a+tn(a))) = g(a) = 0; this implies vs(a + tn(a)) = vs(a) = 0 = g(a).

e If a € 90 Nsupp(g), then, for ¢ small enough, #(a +tn(a)) = O(a) =1 (6 = 1 on a neighborhood of
supp(g) N 9Q) and P(a + tn(a)) = a, so that
v5(a +1tn(a)) —ys(a) = g(a)hs(n(a) - (a +in(a) — a)) — g(a)hs(n(a) - (a — a)) = g(a)hs().

Since hs(0) = 0 and hj(0) = 1, we deduce that %Z%(a) exists and is equal to g(a).

Let us now prove that s — 0 in W?(€2) as § — 0; this will conclude the proof of the lemma.

Notice first that, for all x € Q, |[ys(x)| < ||h]|pe®)||0]] Lo @) ||g| Lo (rr); thus, as § — 0, s — 0 in
L>(Q) (and also in LP(Q)).

Since hg is regular and 6g o P, no P - (Id — P) are Lipschitz-continuous, we have, on U,

Vvs = hs(noP-(Id— P))V(fgo P)
+60g o Phy(no P-(Id— P))V(no P-(Id— P)).

But ||hs(no P - (Id— P))V(0g o P)||pe< ) < 6||h]|Lm®)||V(0g o P)||Le< ) — 0 as 6 — 0. Moreover, by
item iii) of Lemma 3.1, for ally € UNQ, n(P(y))- (y— P(y)) # 0, so that hi(n(P(y))- (y— P(y))) — 0 as



d — 0 (the support of hj is included in | — 4, §); thus, go Phl(no P-(Id— P))V(noP-(Id—P)) — 0 on
§; since ||hg]|poe®) < |[W|[Lo(r), We deduce, by the dominated convergence theorem, that fg o Phi(n o
P.(Id—P))V(noP-(Id—P)) — 0in LP(2) (no P - (Id — P) is Lipschitz-continuous on U, thus its
gradient is essentially bounded on U).

Proof of Proposition 3.1

Take U an open set containing 9 such that the projection P : U — 0 is well-defined and C*'-
continuous. We also choose © € C2°(int(K) NU) such that © = 1 on a neighborhood of supp(u) N OS2.
We define then, on U, g(x) = O(z)(Vu - n)(P(x)).

g is well-defined and C*!-continuous on U; since its support is a compact subset of U, extending ¢ by 0
outside U, we can suppose that ¢ is well-defined and C*'-continuous on RY. We also have gjoe = Vu-n.

By Lemma 3.2, we can find, for all n > 1, v, € C»!'(RY) with support in the interior of K such that

[[vnllwie@) < 1/n and %ir:‘ =g = Vu-n on JQ. The sequence (u — 7, ),>1 satisfies the conclusions of
the proposition. B

4 Two applications and a generalization

4.1 Application to the weak formulation of Neumann problems

The classical variational formulation of the Neumann problem

—Au=1L in Q,
{ Vu-n=0 on 0f), (4.1)
is the following;:
u€ HY(Q),
1 (4.2)
Vu - V(p = <L, 90>(H1(Q))’,H1(Q) s V(p eH (Q)
Q

With Theorem 1.2 or 1.1 and an integrate by parts, we see that (4.2) is equivalent, if Q has a C*+11
continuous boundary (with & € N\{0} or ¥ = o0) or is polygonal (in which case we take k = o0),
to

u € HY(Q),

—/ ulp = (L, o) (a1 ()5 (2) VP € C*Y(RYN) such that Vo -n =0 on 9.
Q

(4.3)

Theorems 1.2 and 1.1 allow thus, exactly as for the Dirichlet problem, to write, in certain cases, a
formulation of (4.1) — equivalent to the variational formulation, thus leading to existence and uniqueness
of a solution — in which all the derivatives appear on the test functions.

This formulation can be useful, for example, to simplify the convergence proof of the finite volume
discretization of the Neumann problem on polygonal open sets (see [5]): (4.3) allows to prove that the
finite volume approximation converges to the variational solution without using a discrete trace theorem,
with the same methods as in the Dirichlet case (notice however that a discrete trace theorem is needed
to obtain estimates on the solution of the dicretized Neumann problem).

With Theorem 4.1 below, we can do the same for mixed Dirichlet-Neumann boundary problems.

4.2 Application to the convergence of a finite volume scheme

In [8], the authors prove the convergence of a finite volume scheme for a diffusion problem with mixed
Dirichlet-Neumann-Signorini boundary conditions. It is classical, when studying finite volume schemes,
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to consider polygonal open sets of RY (see [5]); in [8], the authors must however make an additional
hypothesis on the open set: they must assume that it is convex.

This restriction comes from the same restriction as in item iii) of Remark 1.2: the authors need to make
sure that an element of a Hodge decomposition is in H?2, thus the assumption on the convexity of the
open set (this element comes from the resolution of a Neumann problem).

Theorem 1.1 allows to see that the results of [8] are still true without the convexity hypothesis on
the open set; moreover, it also simplifies quite a lot the proof of the result in [8] in which the Hodge
decomposition is involved (with Theorem 1.1, the functions appearing in this proof are not only in H?,
but also C°°-continuous, and the error estimates are thus much easier to obtain).

We shall outline another application of our results to finite volume scheme in item ii) of Remark 4.1.

4.3 Generalization to mixed Dirichlet-Neumann boundary conditions

We now consider the case of mixed homogeneous Dirichlet-Neumann boundary conditions. We take thus
a measurable subset I' of 92 and we consider regular functions which vanish on I' and whose normal
derivatives vanish on 9Q\T.

The trace operator on 92 being continuous on W1P(Q), if a function w is a limit in W?(Q) of regular
functions which vanish on T, u must also vanish on I'.- We denote by Wy (£2) the subset of W12(Q)
made of the functions which vanish o-a.e. on I'.

We can now wonder if a space of regular functions which vanish on I' and whose normal derivatives vanish
on GO\T is dense in WP ().

The answer to this question is, for a general I', no. Indeed, there exists (see [4], subsection 2.2.1) regular
open sets 2 such that, for some measurable I' C 012,

e there exists u € Wp?(Q) such that u does not vanish o-a.e. on 99,
e any continuous function on 92 which vanishes on I' also vanishes on 0f2.

For such 2 and I', a space of continuous functions which vanish on I' cannot be dense in Wll ’Q(Q).
We have thus, in order to find a generalization of Theorems 1.1 and 1.2 to mixed Dirichlet-Neumann
boundary conditions, to impose some hypotheses on T'.

The assumption we make on I' is that I" and IQ\I" are “well separated” (the counter-example of [4] is
based on a I' which is a dense open subset of 92 of very small o-measure).
The precise formulation of this hypothesis (H) is the following: by denoting

By ={(¥,yn) € Bn(1) | yxn >0}, D ={(y',0) € Bn(1)},
Byt ={(y",yn-1,yn) € B4 |yn-1 >0} and Dy ={(y",yn-1,0) € D | yny_1 >0}

(see figures 1 and 2), we assume that I' is closed and that, for all @ € I', there exists an open U of RY
containing ¢ and a Lipschitz-continuous homeomorphism ¢ : U — By(1) with a Lipschitz-continuous
inverse mapping such that one of the following situation happens:

HUNT =UN, ¢(UNKQ) =By and ¢(UNIN) = D: in U, we only see the Dirichlet condition
and the geometry is equivalent to that of a half-ball (see figure 1),

ii) 9UNQ) =By, p(UNIN) =D U{(y",0,yn) € B~y(1) | yny >0} and ¢(UNT) = Dy: in U, we
see both the Neumann and the Dirichlet boundary conditions, but the geometry is equivalent to
that of one-fourth of a ball, with the Neumann and Dirichlet conditions on orthogonal hyperplanes
(see figure 2).
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Pure Dirichlet condition

Figure 1 : mapping in the case of non-mixed boundary conditions

Dirichlet condition

* Neumann condition

Figure 2 : mapping in the case of mixed boundary conditions
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A fundamental example of such a situation is the following: 2 = 0x]0,T[, where O is an open set of
RN ! with a Lipschitz-continuous boundary, and T' = O x {T'}.

We can now state the generalization of Theorems 1.1 and 1.2.

Theorem 4.1 Let p € [1,+o00]. We suppose that 0 is an open set of RN with a C*+t1:1-continuous
boundary (for a k € NU {oo}) or that Q is a polygonal open set of RN (in which case we let k = oo). If
' C 9Q satisfies hypothesis (H), then

9

{(pQ c e CPYRY), ¢ =0 on a neighborhood of T, In

=0 o0-a.e. on GQ}

is dense in WP (Q).

Remark 4.1 i) The same kind of results are true for (Q,T') that can be locally transformed, by a
diffeomorphism preserving the outer normal, into (Q2,T') satisfying the hypotheses of Theorem 4.1
(see Remark 2.2). For example, if Q@ = Ox]0,T|, where O is an open set of RN~1 with a CF+11.

continuous boundary (k > 1), and T = O x {T}, the result of Theorem 4.1 holds.

it) In [9], the author uses a similar result to prove the convergence of a finite volume scheme for a
diffusion and non-instantaneous dissolution problem in porous medium, when the medium is repre-
sented by an open set with regular boundary (at least C*1-continuous, see item i) of Remark 1.2).
Theorem 4.1 allows to extend the results of [9] to polygonal open sets, which are the most natural
when dealing with finite volume schemes.

Proof of Theorem 4.1
Step 1: we prove that any function u € Wll’p (2) can be approximated in W1?(Q) by functions in
C>°(RY) whose supports do not intersect I

We cover the compact set I' by a finite number of mappings (U, ¢:)ic1, given by hypothesis (H). We

take, for i € [1,1], §; € C°(U;) such that Eﬁ:l 0; = 1 on the neighborhood of T.
Since u = Eé:l Oiu+ (1 — Zi‘:l 0;)u, it is sufficient, to conclude this step, to approximate each 6;u
(i=1,...,0)and (1 — Zizl 0;)u by regular functions whose supports do not intersect I'.

Let us first handle the case of (1 — Zi:l 0;)u. We take w, € C=°(RY) which converges to u in W?(Q).

Then, (1 — 22:1 0w, — (1 — 22:1 0;)u in Whr(Q), (1 — Zé:l 0;)w, € C(RY) and the support of

l

(1— 22:1 0;)wy, does not intersect I', since Zé:l 6; = 1 on a neighborhood of I'. Thus, (1 — >, 6;)u

can be approximated by regular functions whose supports do not intersect I'.

Let us now prove that the same result holds true for u; = 6;u (i = 1,...,1). The function v; = u; o gbi_l
is in W(;’I(’U ﬁF)(qﬁi(Ui NQ)) and its support is relatively compact in By (1) (it is included in the support
of 0; 0 ¢; '). We will now handle separately the cases i) or ii) in hypothesis (H).

e Case i): in this case, ¢;(U; N Q) = By, ¢;(U; NT) = D and v; € WHP(B,). v; vanishing on
D, we can extend it to By(1) by 0 outside B: this gives a function V; € WHP(By(1)) with
compact support in By (1) and which vanishes on By (1)\B4. A small translation of V; in direction
(0,...,0,1) creates a function of WP(By(1)), with compact support in By (1), which vanishes on
a neighborhood of D and which is as close to V; (in W1P(By(1))) as we want.

e Caseii): in this case, ¢;(U;NQ) = By, ¢;(U;NT) = Dy and v; € Wé’f (B1+). We extend v; to By
by making an even reflection with respect to the hyperplane yy_1 = 0; this gives W, € er,’p (B4).
Then, as in case i), we can find a function in W1P(By (1)), with compact support in By(1),
vanishing on a neighborhood of D and which is as close to W; (in W1P(B,)) as we want.
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In both cases, we see that v; can be approximated by restrictions to ¢; (U;N€2) of elements in WP (By(1))
which have compact supports in By(1) and vanish on neighborhoods of ¢;(U; N T'). Transporting this
result by ¢;, we deduce that we can approximate u; by restrictions to U; N € of functions in WP(U;)
which have compact supports in U; and vanish on neighborhoods of U; N T.

Since these approximating functions have compact supports in U;, we can extend them by 0 outside
U;. The convolution of the resulting functions with smoothing kernels give regular functions which
approximate u; and have compact supports that do not intersect I'.

Step 2: To prove the theorem, it is thus sufficient to approximate, in W1?(Q), any function v € C°(RY)
whose support does not intersect I'.

Let K be a compact subset of RY containing supp(u) in its interior and such that K N T = ().

If Q has a C**11_continuous boundary (for a k& > 0), Proposition 3.1 concludes the proof.

If Q is a polygonal open set, Lemma 2.1 allows to see, by induction, that there exists a sequence of
functions u,, € C°(int(K)) satisfying By _1 and converging to u in W1P(Q). As we have seen in the
proof of Theorem 1.1, regular functions satisfying By _1 also satisfy the homogeneous Neumann boundary
condition on 02, and the proof is thus completed. B

References

[1] ApDAMS R.A., Sobolev Spaces, Academic Press (1975).
[2] CLARKE F., Optimisation and Nonsmooth Analysis, Université de Montréal (1989).

[3] DrRONTOU J., Quelques résultats sur les espaces de Sobolev, Polycopié de I'Ecole Doctorale de Maths-
Info de Marseille, http://www-gm3.univ-mrs.fr/polys/.

[4] DroNTOU J., Ph.D. Thesis, Université de Provence,
http://www-gm3.univ-mrs.fr/~droniou/these/index-en.html.

[5] EYMARD R., GALLOUET T., HERBIN R., Finite Volume Methods, Handbook of Numerical Analysis,
Vol VII, pp 713-1020. Edited by P.G. Ciarlet and J.L. Lions (North Holland).

[6] GALLOUET T., private communication.
[7] GrisvARD P., Elliptic problems in nonsmooth domains, Pitman 1985.

[8] HERBIN R., MARCHAND E., Finite Volume approxzimation of a class of variational inequalities, IMA
Journal of Numerical Analysis (2001) 21, 553-585.

(9] MAINGUY M., These, ENPC, 1999.

[10] NECAS J., Les méthodes directes en théorie des équations elliptiques, Masson (1967).

14



