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Abstract — We study error estimates for a finite volume discretization of an elliptic equation. We
prove that, for s ��� 0 � 1 � , if the exact solution belongs to H1 � s and the right-hand side is f � div 	 G 

with f � L2 and G ��	 Hs 
 N , then the solution of the finite volume scheme converges in discrete H1-
norm to the exact solution, with a rate of convergence of order hs (where h is the size of the mesh).
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1. INTRODUCTION

1.1. The problem

Let Ω be a polygonal open subset of � N (N  2 or 3). We study a finite volume
discretization of ���

∆u � div � vu ��� bu  f � div � G � in Ω �
u  0 on ∂Ω (1.1)

where v ��� C � Ω ��� N , b � L∞ � Ω � is nonnegative, f � L2 � Ω � and G ��� Hs � Ω ��� N with
s ��� 0 � 1 � (if s  0, H0 � Ω � is to be understood as L2 � Ω � ).

The solution to (1.1) is taken in a weak sense as in [6], that is to say u � H 1
0 � Ω �

and the partial differential equation is satisfied in the distributional sense.

Finite volume methods have been widely used to approximate the solutions of
convection-diffusion equations (see e.g. [9], [10], [8]...). The convergence of the
approximations is well-known (see e.g. [9] (Theorem 9.1)) and some error estimates
in the H2 framework have been obtained in [10] (Theorem 3.2).

These schemes have mainly been considered when the right-hand side of the el-
liptic equation belongs to L2 � Ω � (i.e. G  0 in (1.1)); but, recently, [8] has presented
a finite volume scheme capable of handling (1.1) with any G ��� L2 � Ω ��� N . The case
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34095 Montpellier cedex 5, France. email: droniou@math.univ-montp2.fr



2 J. Droniou

G � � H1 � Ω ��� N being (roughly speaking) the H2 framework studied in [10], it seems
natural to hope, via interpolation techniques, for error estimates when G belongs to
intermediate spaces between L2 � Ω � and H1 � Ω � (these estimates are well-known for
the finite element methods, see for example [3] (Theorem 5.1)). We prove here such
error estimates, thus filling a gap between finite volume methods and finite element
methods.

It can be interesting to notice that, in the case N  2 and for “finite volume ele-
ment” schemes (which are somewhat a mixing between the finite element methods
and the finite volume methods, and are different from the ones we present here),
some error estimates in the H1

�
s framework have been obtained in [5] (Theorem

4.1, p. 176), when s � � 1 �
2 � 1 � .

We also emphasize on a noticeable feature of (1.1): its non-coercivity. It is not
supposed that 1

2 div � v ��� b � 0, so that the bilinear form associated to (1.1) may be
non-coercive. However, under the sole hypotheses stated after (1.1), existence and
uniqueness of a solution to this equation is known (see [6] (Theorem 2.1)). The a
priori estimates on this equation and its discretization are harder to obtain than in
the coercive case, but the techniques that give such estimates are now well-known
(see [6], [8]).

In the following subsection, we present the finite volume scheme used to dis-
cretize (1.1); this scheme is in fact a simplified version of the one presented in [8]
(simplified because we take into account the additional regularity we have on v with
respect to [8]). In Section 2, we state the main result concerning estimates on the
difference between the approximate solution and the exact solution; notice that we
have to use a different discretization of the exact solution than in [10], because we
do not only intend to study the case when this solution belongs to H 2 � Ω � , but also
when it belongs to H1

�
s � Ω � for s � � 0 � 1 � ; hence we cannot, in contrary to [10],

discretize the solution by taking its values on points. In Section 3, we study the
case when the solution belongs to H1; in this case, the “error estimate” reduces to a
bound in � � 1 � . In Section 4, we prove a � � h � convergence when the exact solution
belongs to H2 � Ω � and G belongs to � H1 � Ω ��� N ; note that, since our discretization
of the solution is not the same as in [10], we cannot directly refer to this paper and
we must re-make the whole work (moreover, our scheme is different to the one pre-
sented in [10], because of the presence of G); in particular, it appears through this
study that the way we discretize the solution is crucial to obtain good error esti-
mates. In Section 5, we use the results of Sections 3 and Sections 4 to prove, via
interpolation results, the theorem stated in Section 2. Section 6 presents some nu-
merical results, and Section 7 is an appendix which gathers some technical lemmas
useful throughout the paper.

1.2. Definition of the scheme

We use meshes of Ω similar to the ones presented in [9].

Definition 1.1. An admissible mesh � of Ω is a finite family of polygonal open
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convex subsets of Ω (the “control volumes”), together with a finite family � of dis-
joint subsets of Ω consisting in non-empty open convex subsets of affine hyper-
planes (the “edges”) and a family �  � xK � K ��� of points in Ω such that

i) Ω �� K ��� K,

ii) each σ ��� is contained in ∂K for some K � � ,

iii) by denoting � K 
	 σ ���� σ � ∂K � , ∂K �� σ ��� K σ for all K � � ,

iv) for all K � L in � , either the � N � 1 � -dimensional measure of K � L is null,
or K � L  σ for some σ ��� , that we denote then σ  K � L,

v) for all K � � , xK � K,

vi) for all σ  K � L ��� , the line � xK � xL � intersects and is orthogonal to σ ,

vii) for all σ ��� , σ � ∂Ω � ∂K, the line which is orthogonal to σ and going
through xK intersects σ .

If K � � , hK denotes the diameter of K; the size of � is h �  supK ��� hK . The
unit normal to σ ��� K outward to K is denoted by nK � σ .

We define � int �	 σ ����� σ �� ∂Ω � (interior edges) and � ext ������ int. We
denote by m the � N � 1 � -dimensional measure on the edges of the mesh so that, if
σ � � , m � σ � is the � N � 1 � -dimensional measure of σ . If σ  K � L ��� int, dσ is
the Euclidean distance between the points � xK � xL � and dK � σ denotes the distance
between xK and σ ; if σ ��� ext �!� K , dσ  dK � σ is the distance between xK and σ .

If K � � and σ �"� K , the “half-diamond” # K � σ is defined by # K � σ $	 txK �� 1 � t � x � t � � 0 � 1 � � x � σ � (the convex hull of 	 xK �%� σ ). We notice that �&# K � σ � 
m � σ � dK � σ

�
N (where �(')� denotes the Lebesgue measure in � N ).

We also make the following hypotheses on the meshes:
*

ζ + 0 such that , K � � � dK � σ � ζdσ � (1.2)
*

α + 0 such that , K � � � B � xK � αhK �-� K � (1.3)
*

M + 0 such that , K � � � card �.� K �0/ M (1.4)

(B � x � η � denotes the ball of center x and radius η).
Hypothesis (1.2) is classical when discrete Sobolev inequalities are needed.

These inequalities are useful in a priori estimates on the scheme (to control the
convective term of the equation), which appear in [8] or [7]. Here, we will directly
use the results of [7], hence the need for (1.2) will not be glaring. Notice that if v  0
(or v is regular and div � v � � 0), then Hypothesis (1.2) can be dropped.

(1.3) and (1.4) appear in [9] for the same kind of results that we present here
(see Remarks 3.1 and 4.3).
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Remark 1.1. As an example of admissible meshes, we can take regular uniform
meshes as in Section 6, but also triangular meshes (provided that all angles of the
triangles are less than π

�
2 — this can be relaxed, see Example 9.1 in [9]) and most

of Vorono¨i meshes (see Example 9.2 in [9]).

The finite volume discretization is obtained by an integration of the equation on
a control volume K: with some integrates by parts, we formally obtain

∑
σ ��� K

���
σ

∇u ' nK � σ dm � ∑
σ ��� K

�
σ

uv ' nK � σ dm � �
K

bu

 �
K

f � ∑
σ ��� K

�
σ

G ' nK � σ dm �
To discretize this equation, we define, for K � � and σ ��� K ,

vK � σ �� 1
m � σ �

�
σ

v � ξ � dm � ξ ��� ' nK � σ � bK  1
�K �
�

K
b � x � dx �

fK  1
�K �
�

K
f � x � dx and GK � σ  � 1

� # K � σ �
���

K 	 σ G � x � dx � ' nK � σ �
which are approximate values of v ' nK � σ and G ' nK � σ on σ , and of b and f on K.

Then, letting uK and uσ be approximate values of u on K and σ , the finite volume
discretization of (1.1) is written

, K � � � ∑
σ ��� K

FK � σ � ∑
σ ��� K

m � σ � vK � σ uσ � � � �K � bKuK

$�K � fK � ∑
σ ��� K

m � σ � GK � σ � (1.5)

, K � � � , σ ��� K � FK � σ  � m 
 σ �
dK 	 σ � uσ

�
uK ��� (1.6)

, σ  K � L ��� int � FK � σ
�

m � σ � GK � σ  � � FL � σ
�

m � σ � GL � σ ���
, σ ��� ext � uσ  0 � (1.7)

, σ  K � L ��� int � uσ � �  uK if vK � σ � 0 � uσ � �  uL otherwise,
, σ ��� ext �!� K � uσ � �  uK if vK � σ � 0 � uσ � �  0 otherwise

(1.8)

(FK � σ is of course a discretization of
��

σ ∇u ' nK � σ dm).

Remark 1.2. (1.8) is a classical upwind choice of the discretization of the con-
vection term div � vu � (see [9], p. 766). This choice brings stability to the scheme
and allows unconditional a priori estimates (see [7] (Proposition 3.2, p. 72)); no-
tice however that, since our problem is non-coercive (i.e. div � v � is not supposed
nonnegative), the maximum principle on the scheme (1.5)—(1.8) is not known.
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The scheme (1.5)—(1.8) is not exactly the same as in [8], because v has not been
discretized the same way. In fact, in [8], v is less regular, so it must be discretized
using mean values on # K � σ , not on σ ; to obtain error estimates, we must assume
here that v is more regular than in [8], so it seems more natural (and easier!), since
the regularity of v allows it, to consider mean values of v on σ rather than # K � σ .

In fact, the unknowns � uσ � σ ��� in (1.5)—(1.8) can be immediately eliminated
thanks to (1.7), and (1.5)—(1.8) reduces thus to a system with unknowns � uK � K ��� ,
which reads

, K � � � ∑
σ ��� K

m � σ �
dσ

� uK

�
uL � � ∑

σ ��� K
m � σ � vK � σ uσ � � � �K � bKuK

 �K � fK � ∑
σ ��� K

m � σ � � dK � σ
dσ

GK � σ
� dL � σ

dσ
GL � σ �

(where σ  K � L if σ ��� K �!� int and
uL  dL � σ  GL � σ  0 if σ ��� K �!� ext) �

(1.9)

, σ  K � L ��� int � uσ � �  uK if vK � σ � 0 � uσ � �  uL otherwise,
, σ ��� ext � � K � uσ � �  uK if vK � σ � 0 � uσ � �  0 otherwise.

(1.10)

A priori estimates on (1.9)—(1.10) are then direct consequences of Proposition 3.2,
p.72, in [7] (see (3.5) in the proof of Corollary 3.1 below). These estimates show
that the linear system (1.9)—(1.10) is invertible and thus that there exists a unique
solution � uK � K ��� to this system.

Remark 1.3. In [12], some non-coercive problems are also handled from a nu-
merical point of view. However, the scheme used (namely a Finite Volume Element
scheme) is not a Finite Volume scheme as the one we present here, and the regular-
ity on the datas (v and the mesh) are quite stronger. Moreover, in this reference, the
existence of a solution to the Finite Volume Element scheme is obtained only for
h � small enough.

2. STATEMENT OF THE MAIN RESULT

The discretization u �  � uK � K ��� of the exact solution u on an admissible mesh �
is defined by

, K � � � uK  1
�B � xK � αhK � �

�
B 
 xK � αhK � u � x � dx � (2.1)

A more natural way to discretize the exact solution would perhaps be to take the
mean value of u on each cell K. This is not a problem when handling the H 1 case
(see Remark 3.1), but such a discretization would lead to bad constitency errors in
the H2 case (see Remark 4.1).

If � is an admissible mesh, we identify the elements � vK � K ��� � � Card 
 � � to
functions v � defined a.e. on Ω and constant on each cell K � � . We denote by
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X � � � this space of functions, and it is endowed with the discrete H 1-norm (which
is a natural norm when considering Finite Volume discretizations of elliptic equa-
tions):

� � v � � � 1 � � 
�

∑
σ ���

m � σ �
dσ

� Dσ v � � 2 � 1 � 2

where Dσ v �  � vK

�
vL � if σ  K � L ��� int and Dσ v �  � vK � if σ ��� K �!� ext.

In the sequel, all the estimates will be made through this norm. Notice that
� � ' � � L2 
 Ω � / diam � Ω � � � ' � � 1 � � on X � � � (see [9] (Lemma 9.1) for a proof of this), so
that an estimate in X � � � gives a similar estimate in L2 � Ω � .

The main result of this paper is the following theorem.

Theorem 2.1. We suppose that N  2 or that Ω is convex; we also assume
that div � v � � L2 � Ω � . Let s � � 0 � 1 � and � be an admissible mesh which satis-
fies Hypotheses (1.2), (1.3) and (1.4). Then there exists C only depending on� Ω � � � v � � 
 L∞ 
 Ω � � N � � � b � � L∞ 
 Ω � � ζ � α � M � such that, if G � � H s � Ω ��� N and if the solution
u to (1.1) belongs to H1

�
s � Ω � , we have

� � u �
�

u � � � 1 � � / C � � � u � � H1 � s 
 Ω � � � �G � � 
 Hs 
 Ω � � N � � � f � � L2 
 Ω ��� h � s

where u �  � uK � K ��� is defined by (2.1) and u �  � uK � K ��� is the solution to
(1.9)—(1.10).

Remark 2.1. The hypotheses “N  2 or Ω is convex” and “div � v � � L2 � Ω � ”
are technical hypotheses useful to identify interpolation spaces (see the proof of
Theorem 2.1 and Subsection 7.2). In fact, we believe that these hypotheses are not
necessary to compute the interpolation spaces that appear in our work, but we have
found no result in interpolation literature that allows to get rid of them (for example,
to be able to handle non-convex polygonal open sets in dimension 2, we use [2]
whose generalization to N  3 does not seem easy at all).

It is also to be noticed that these hypotheses are useless if s  1 (see Theorem
4.1).

Remark 2.2. Notice that, with our hypotheses, Ω can be a non-convex polyg-
onal open set of � 2 , so that assuming G � � H s � Ω ��� N does not necessarily implies
u � H1

�
s � Ω � .

3. THE H1 FRAMEWORK

Proposition 3.1. If � is an admissible mesh which satisfies Hypotheses (1.3)
and (1.4), there exists C only depending on � N � α � M � such that

� � u � � � 1 � � / C � � u � � H1
0 
 Ω � �
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Remark 3.1. In [9] (Lemma 9.4), a similar result is proved (also using Hy-
potheses (1.3) and (1.4)) with uK replaced by the mean value of u on K.

Proof of Proposition 3.1. Let K � � and σ ��� K . We have
�
�
�
�

1
�B � xK � αhK � �

�
B 
 xK � αhK � u � x � dx

� 1
m � σ �

�
σ

u � ξ � dm � ξ � ����
/

�
�
�
�

1
�B � xK � αhK � �

�
B 
 xK � αhK � u � x � dx

� 1
� # K � σ �

� �
K 	 σ u � y � dy

�
�
�
�

� �
�
�
�

1
� # K � σ �

� �
K 	 σ u � y � dy

� 1
m � σ �

�
σ

u � ξ � dm � ξ � ���� (3.1)

Since B � xK � αhK � and # K � σ are both contained in K which is convex and has
diameter hK , Lemma 7.1 in the Appendix allows to write

�
�
�
�

1
�B � xK � αhK � �

�
B 
 xK � αhK � u � x � dx

� 1
� # K � σ �

� �
K 	 σ u � y � dy

�
�
�
�

2

/ C1hN
�

2
K

�B � xK � αhK � �(� # K � σ �
�

co 
 B 
 xK � αhK ��� � K 	 σ � �∇u � z � � 2 dz

/ C2h2
K

� # K � σ �
�

K
�∇u � z � � 2 dz

with C1 and C2 only depending on � N � α � . Using this inequality and Lemma 7.2
(from the Appendix) in (3.1), we obtain

�
�
�
�

1
�B � xK � αhK � �

�
B 
 xK � αhK � u � x � dx

� 1
m � σ �

�
σ

u � ξ � dm � ξ � ���� 2

/ C3h2
K

� # K � σ �
�

K
�∇u � z � � 2 dz (3.2)

where C3 only depends on � N � α � .
Let σ �"� ext. Since u � H1

0 � Ω � , (3.2) shows that, denoting by K the cell such

that σ � � K , � Dσ u � � 2 / C3h2
K�

�
K 	 σ �
�

K �∇u � x � � 2 dx. We have � # K � σ �  m � σ � dσ
�
N (recall

that dK � σ  dσ since σ � � ext); moreover, by Hypothesis (1.3), αhK / dK � σ  dσ ;
thus,

m � σ �
dσ

� Dσ u � � 2 / NC3h2
K

d2
σ

�
K
�∇u � x � � 2 dx / NC3

α2

�
K
�∇u � x � � 2 dx � (3.3)
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Let σ  K � L ��� int. We have

Dσ u � /
�
�
�
�

1
�B � xK � αhK � �

�
B 
 xK � αhK � u � x � dx

� 1
m � σ �

�
σ

u � ξ � dm � ξ � ����
� �

�
�
�

1
m � σ �

�
σ

u � ξ � dm � ξ � � 1
�B � xL � αhL � �

�
B 
 xL � αhL � u � x � dx

�
�
�
�

and (3.2) gives thus

� Dσ u � � 2 / 2C3h2
K

� # K � σ �
�

K
�∇u � x � � 2 dx � 2C3h2

L

� # L � σ �
�

L
�∇u � x � � 2 dx �

We have � # K � σ �  m � σ � dK � σ
�
N and dσ � dK � σ � αhK (and the same properties

with K replaced by L), so that

m � σ �
dσ

� Dσ u � � 2 / 2C3N
α2 � �

K
�∇u � x � � 2 dx � �

L
�∇u � x � � 2 dx � (3.4)

(3.3) and (3.4) show that, for all σ ��� ,

m � σ �
dσ

� Dσ u � � 2 / C4 ∑
K ��� �

σ � � K
�

K
�∇u � x � � 2 dx

with C4 only depending on � N � α � . Summing these inequalities on σ ��� , we find

� � u � � � 21 � � / C4 ∑
σ � � ∑

K ��� �
σ � � K

�
K
�∇u � x � � 2 dx / C4 ∑

K ���
�

K
�∇u � x � � 2 dx card �.� K �

and (1.4) concludes the proof of the proposition. �

Corollary 3.1. Assume that � is an admissible mesh which satisfies (1.2), (1.3)
and (1.4). There exists C only depending on � Ω � � � v � � 
 L∞ 
 Ω � � N � ζ � α � M � such that, if u
is the variational solution to (1.1), u � is defined by (2.1) and u�  � uK � K ��� is the
solution to (1.9)—(1.10), then

� � u �
�

u � � � 1 � � / C � � � u � � H1
0 
 Ω � � � � f � � L2 
 Ω � � � �(�G �(� � L2 
 Ω � ���

Remark 3.2. By Theorem 2.1 in [6], � � u � � H1
0 
 Ω � is controlled by � � f � � L2 
 Ω � �

� �(�G �(� � L2 
 Ω � and we could thus drop it in the preceding inequality.
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Proof of Corollary 3.1. The right-hand side of (1.9) is written

�K � fK � ∑
σ ��� K

m � σ � QK � σ

with � QK � σ � K ����� σ ��� K which satisfies, for all σ  K � L � � int, QK � σ  � QL � σ (con-
servativity); thus, by Proposition 3.2, p.72, in [7], there exists C1 only depending on� Ω � � � v � � 
 L∞ 
 Ω � � N � ζ � such that

� � u � � � 1 � � / C1

�
∑

K ���
�K � f 2

K
� 1 � 2 � C1

�
∑

σ ���
m � σ � dσ Q2

σ
� 1 � 2

(3.5)

where Qσ $�QK � σ � for some K � � such that σ ��� K (by conservativity, this defi-
nition of Qσ does not depend on the choice of such a K).

Since � # K � σ �  m � σ � dK � σ
�
N for all K � � and σ ��� K , we have, by convexity

of X � X2 and for all σ  K � L ��� int,

Q2
σ / dK � σ

dσ

1
� # K � σ �

� �
K 	 σ �G � x � � 2 dx � dL � σ

dσ

1
� # L � σ �

� �
L 	 σ �G � x � � 2 dx

/ N
m � σ � dσ

� � �
K 	 σ �G � x � � 2 dx � ���

L 	 σ �G � x � � 2 dx �
(notice that, suppressing the term involving L, this estimate is still true if σ ��� K �
� ext). Thus,

∑
σ � �

m � σ � dσ Q2
σ / N ∑

σ ��� ∑
K ��� �

σ ��� K
���

K 	 σ �G � x � � 2 dx

/ N ∑
K ��� ∑

σ � � K
� �

K 	 σ �G � x � � 2 dx

 N ∑
K ���

�
K
�G � x � � 2 dx  N

�
Ω
�G � x � � 2 dx �

Moreover, f 2
K / 1�

K
�
�

K � f � x � � 2 dx and (3.5) gives then

� � u � � � 1 � � / C1 � � f � � L2 
 Ω � � C1

�
N � �(�G �(� � L2 
 Ω � �

Combined with Proposition 3.1, this concludes the proof. �

4. THE H2 FRAMEWORK

Proposition 4.1. Assume that � is an admissible mesh which satisfies Hypoth-
esis (1.3) and that u � H2 � Ω � � H1

0 � Ω � . Define, for σ  K � L ��� int,

RK � σ  uK

�
uL

dσ
� 1

m � σ �
�

σ
∇u � ξ � ' nK � σ dm � ξ ���
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and, for σ ��� ext �!� K ,

RK � σ  uK

dσ
� 1

m � σ �
�

σ
∇u � ξ � ' nK � σ dm � ξ ���

Then there exists C only depending on � N � α � such that

m � σ � dσ R2
K � σ / C ∑

L ��� �
σ ��� L

h2
L

�
L
�D2u � x � � 2 dx �

Remark 4.1. Notice that this result is false in general if we replace uK by the
mean value of u on K and if xK is not the gravity center of K (consider K �� 0 � h � 2,
L  � � h � 0 ��� � 0 � h � , xK  � 2h

�
3 � h �

2 � , xL  � � 2h
�
3 � h �

2 � and u � x � y �  x; we have
then RK � σ  � 1

�
4 but D2u  0).

Remark 4.2. It would be tempting to try to use the Bramble-Hilbert result (see
[4] (Theorem 2)) to obtain the estimate of Proposition 4.1 (and also in Proposition
3.1 and Lemmas 7.1, 7.2). This theorem can be used in Finite Element methods
thanks to a “reference finite element”: for example, in triangular meshes, each finite
element can be transformed, by some simple linear application, into some refer-
ence triangle; this allows to easily obtain estimates only depending on the size of
the element, not its geometry (because they all have the same geometry: that of a
triangle).

We do not have such reference control volume in our meshes (our control vol-
umes can have very different geometries); so, in order to prove that the estimates on
RK � σ only depend on the size of K and not on its geometry, Bramble-Hilbert’s result
is useless and we have to make the whole proof.

Proof of Proposition 4.1. Due to technical reasons, we must first replace the
mean value of u on B � xK � αhK � by the mean value on B � xK � αhK

�
2 � ; step 1 is the

study of the consistency error for σ � � int with these new mean values (and if u is
regular). In step 2, we prove that the error introduced by the use of the mean values
on B � xK � αhK

2 � can be controlled, and we conclude the proof for interior edges. In
step 3, the case of boundary edges is handled thanks to a symmetry trick which
brings us back to the case of interior edges.

Step 1: we suppose that u is regular and we take σ  K � L ��� int.
We define

R
�
K � σ  1

dσ

�
1

�B � xK � αhK
2 � �

�
B 
 xK � αhK

2 � u � x � dx
� 1

�B � xL � αhL
2 � �

�
B 
 xL � αhL

2 � u � y � dy �
� 1

m � σ �
�

σ
∇u � ξ � ' nK � σ dm � ξ ���
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Let ξ � σ . By Taylor’s expansions, we have, for all x � B � xK � αhK
�
2 � and all

y � B � xL � αhL
�
2 � ,

u � x �  u � ξ ��� ∇u � ξ � ' � x � ξ ��� � 1

0
� 1 � t � D2u � ξ � t � x � ξ ��� � x � ξ � ' � x � ξ � dt

u � y �  u � ξ � � ∇u � ξ � ' � y � ξ � � � 1

0
� 1 � t � D2u � ξ � t � y � ξ ��� � y � ξ � ' � y � ξ � dt �

Subtracting these equations and taking the mean value on ξ � σ , we find

u � x � � u � y �  1
m � σ �

�
σ

∇u � ξ � dm � ξ � ' � x � y �
� 1

m � σ �
�

σ

� 1

0
� 1 � t � D2u � ξ � t � x � ξ ��� � x � ξ � ' � x � ξ � dtdm � ξ �

� 1
m � σ �

�
σ

� 1

0
� 1 � t � D2u � ξ � t � y � ξ ��� � y � ξ � ' � y � ξ � dtdm � ξ ���

We now take the mean values on x � B � xK � αhK
�
2 � and y � B � xL � αhL

�
2 � ; since

the mean values of x � x and y � y on these sets are respectively xK and xL and
since xL

�
xK  dσ nK � σ , dividing by dσ , we obtain

R
�
K � σ  1

dσ m � σ � �B � xK � αhK
2 � �

�
B 
 xK � αhK

2 � � σ

� 1

0
F � t � x � ξ � dtdm � ξ � dx

� 1

dσ m � σ � �B � xL � αhL
2 � �

�
B 
 xL � αhL

2 � � σ

� 1

0
F � t � y � ξ � dtdm � ξ � dy

with F � t � x � ξ �  � 1 � t � D2u � ξ � t � x � ξ ��� � x � ξ � ' � x � ξ � .
For x � K and ξ � σ , we have � x � ξ � / hK , so that �F � t � x � ξ � � / h2

K � 1 �
t � �D2u � ξ � t � x � ξ ��� � ; Jensen’s inequality gives then

� R �
K � σ � 2 / 2h4

K

d2
σ m � σ � �B � xK � αhK

2 � � ��
B 
 xK � αhK

2 � � σ

� 1

0
� 1 � t � 2 �D2u � ξ � t � x � ξ ��� � 2 dtdm � ξ � dx

� 2h4
L

d2
σ m � σ � �B � xL � αhL

2 � � ��
B 
 xL � αhL

2 � � σ

� 1

0
� 1 � t � 2 �D2u � ξ � t � y � ξ ��� � 2 dtdm � ξ � dy � (4.1)

By translation, we can suppose that σ  	 0 � �
�

σ � 	 0 � � � N � 1 . Let x �
B � xK � αhK

�
2 � ; we use the change of variable � t � ξ � � � � 0 � 1 ��� �

σ � z  � 0 � ξ � � � t � x �
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� 0 � ξ � ��� � Vx � K (K is convex), whose jacobian determinant is � x1 � � 1 � t � N � 1 (where
x1 is the first component of x — we will see below that x1 � 0). Since N / 3, we
have, if t � � 0 � 1 � , � 1 � t � 2 / � 1 � t � N � 1 and we can thus write�

σ

� 1

0
� 1 � t � 2 �D2u � ξ � t � x � ξ ��� � 2 dtdm � ξ �

/ �
σ

� 1

0
� 1 � t � N � 1 �D2u � ξ � t � x � ξ ��� � 2 dtdm � ξ �

/ � x1 � � 1
�

K
�D2u � z � � 2 dz � (4.2)

Write xK  � a � b � with a � � and b � � N � 1 . The straight line going through
xK and orthogonal to σ ��	 0 � � � N � 1 , (i.e. the line � � 	 b � ) intersects σ (i.e.� 0 � b � � σ ). Thus, � a � �� � a � b � � � 0 � b � � � dist � xK � σ � � dist � xK � ∂K � � αhK (recall
that B � xK � αhK � � K). Thus, if x � B � xK � αhK

�
2 � , we have � x1 � �$� a � � � x1

�
a � �

αhK

� � x � xK � � αhK
2 and (4.2) gives then�

σ

� 1

0
� 1 � t � 2 �D2u � ξ � t � x � ξ ��� � 2 dtdm � ξ �-/ 2

αhK

�
K
�D2u � z � � 2 dz �

Therefore,

1

�B � xK � αhK
2 � �

�
B 
 xK � αhK

2 � � σ

� 1

0
� 1 � t � 2 �D2u � ξ � t � x � ξ ��� � 2 dtdm � ξ � dx

/ 2
αhK

�
K
�D2u � z � � 2 dz �

Coming back to (4.1) (and using the preceding inequality also with L instead of
K), we obtain

� R �
K � σ � 2 / 4h3

K

αd2
σ m � σ �

�
K
�D2u � z � � 2 dz � 4h3

L

αd2
σ m � σ �

�
L
�D2u � z � � 2 dz �

Since dσ � dK � σ � αhK , we deduce that

m � σ � dσ � R �
K � σ � 2 / 4h2

K

α2

�
K
�D2u � z � � 2 dz � 4h2

L

α2

�
L
�D2u � z � � 2 dz (4.3)

Step 2: we now estimate the difference between the mean values of u on
B � xK � αhK � and on B � xK � αhK

2 � , and we conclude for σ ��� int.

Let v � x �  u � x � � � 1�
B 
 xK � αhK � � � B 
 xK � αhK � ∇u � y � dy � ' � x � xK � . We have, for x �

B � 0 � αhK � ,
v � xK � x � � v � xK � x

2 �  � 1

0
∇v � xK � 1 � t

2
x ��' x

2
dt �
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Integrating on x � B � 0 � αhK � , dividing by �B � xK � αhK � � and thanks to the change of
variable y  xK � x

2 in the second integral, we find

1
�B � xK � αhK � �

�
B 
 xK � αhK � v � x � dx

� 1

�B � xK � αhK
2 � �

�
B 
 xK � αhK

2 � v � y � dy

 1
�B � xK � αhK � �

�
B 
 0 � αhK � � 1

0
∇v � xK � 1 � t

2
x � ' x

2
dtdx �

Since the mean values on B � xK � αhK � and on B � xK � αhK
2 � of x � x

�
xK are null,

the mean values of v on these sets are equal to the mean values of u on the same
sets. Thus, denoting

IK � σ  1
dσ

�
1

�B � xK � αhK � �
�

B 
 xK � αhK � u � x � dx
� 1

�B � xK � αhK
2 � �

�
B 
 xK � αhK

2 � u � y � dy � �
we have just proved that

� IK � σ � / αhK

2dσ �B � xK � αhK � �
�

B 
 0 � αhK � � 1

0

�
�
�
� ∇v � xK � 1 � t

2
x � �

�
�
� dtdx �

Using the change of variable x � z  xK � 1
�

t
2 x (which sends B � 0 � αhK � into

(but not onto) B � xK � αhK � ), we deduce

� IK � σ � 2 / α2h2
K

4d2
σ

�
1

�B � xK � αhK � �
�

B 
 xK � αhK � � 1

0
�∇v � z � � � 2

1 � t
� N

dtdz � 2

/ 22N � 2α2h2
K

d2
σ

� 1
�B � xK � αhK � �

�
B 
 xK � αhK � �∇v � z � � dz � 2 � (4.4)

We have ∇v � z �  ∇u � z � � 1�
B 
 xK � αhK � � � B 
 xK � αhK � ∇u � y � dy. Thus, thanks to Lemma

7.1,

� 1
�B � xK � αhK � �

�
B 
 xK � αhK � �∇v � z � � dz � 2

/ � 1
�B � xK � αhK � �(�B � xK � αhK � �

�
B 
 xK � αhK � � B 
 xK � αhK � �∇u � z � � ∇u � y � � dzdy � 2

/ C1hN
�

2
K

�B � xK � αhK � �(�B � xK � αhK � �
�

B 
 xK � αhK � �D2u � x � � 2 dx

/ C2h2
K

�B � xK � αhK � �
�

B 
 xK � αhK � �D2u � x � � 2 dx

where C1 and C2 only depend on � N � α � .
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Coming back to (4.4), we obtain C3 only depending on � N � α � such that

� IK � σ � 2 / C3h4
K

d2
σ �B � xK � αhK � �

�
B 
 xK � αhK � �D2u � x � � 2 dx �

σ is of diameter less than hK , so that m � σ � / C4hN � 1
K with C4 only depending on N.

Moreover, dσ � dK � σ � αhK ; hence,

m � σ � dσ � IK � σ � 2 / C5hN
�

3
K

αhK �B � xK � αhK � �
�

B 
 xK � αhK � �D2u � x � � 2 dx

/ C6h2
K

�
K
�D2u � x � � 2 dx (4.5)

with C5 and C6 only depending on � N � α � .
We have RK � σ  IK � σ � R

�
K � σ
�

IL � σ . Thanks to (4.3) and (4.5), we deduce

m � σ � dσ R2
K � σ / C7h2

K

�
K
�D2u � x � � 2 dx � C7h2

L

�
L
�D2u � x � � 2 dx (4.6)

with C7 only depending on � N � α � . This estimate has been obtained for u regular,
but, by the density result of Lemma 7.3 (found in the Appendix), it is also satisfied
by functions in H2 � K � σ � L � (thus by functions in H2 � Ω � ). This concludes the
proof if σ ��� int.

Step 3: suppose now that σ ��� ext �!� K .
Since u � H2 � Ω � � H1

0 � Ω � , we have u  0 on σ . Denoting by S the orthogonal
symmetry with respect to the hyperplane generated by σ , it is then well known that
the function

�
: K � σ � S � K � � � which is equal to u on K and to

�
u � S on S � K �

belongs to H2 � K � σ � S � K ��� .
We notice that all the hypotheses on � K � xK � σ � L � xL � used in Steps 1 and 2

(and in the proof of Lemma 7.3) are satisfied here by � K � xK � σ � S � K � � S � xK ��� (with
dist � xK � S � xK ���  2dist � xK � σ �  2dσ instead of dσ ).

The result (4.6) of Step 2 hence applies with
�

instead of u and we can write,
defining

�
K and

�
S 
 K � as the mean values of

�
on B � xK � αhK � and B � xS 
 K � � αhS 
 K � �

respectively,

2m � σ � dσ � �
K

� �
S 
 K �

2dσ
� 1

m � σ �
�

σ
∇

� � ξ � ' nK � σ dm � ξ ��� 2

/ C7h2
K

�
K
�D2 � � x � � 2 dx � C7h2

S 
 K � �
S 
 K � �D2 � � x � � 2 dx �

Since
�  u on K, we have

�
K  uK and, in the sense of the traces, ∇

�  ∇u on
σ . Moreover,

�  � u � S on S � K � , so that
�

S 
 K �  � uK (notice that hS 
 K �  hK ,
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which implies B � S � xK � � αhS 
 K � �  S � B � xK � αhK ��� ) and �D2 � � x � �  �D2u � S � x ��� � for
x � S � K � . Thus, the preceding estimate yields

2m � σ � dσ � uK

dσ
� 1

m � σ �
�

σ
∇u � ξ � ' nK � σ dm � ξ ��� 2

/ 2C7h2
K

�
K
�D2u � x � � 2 dx �

which is exactly the desired result for σ ��� ext. �

Theorem 4.1. Assume that G � � H1 � Ω ��� N and that the variational solution u to
(1.1) belongs to H2 � Ω � � H1

0 � Ω � . If � is an admissible mesh which satisfies (1.2),
(1.3) and (1.4), there exists C only depending on � Ω � � � v � � 
 L∞ 
 Ω � � N � � � b � � L∞ 
 Ω � � ζ � α � M �
such that, u � being defined by (2.1) and u �  � uK � K ��� being the solution to (1.9)—
(1.10),

� � u �
�

u � � � 1 � � / C � � � u � � H2 
 Ω � � � �(�∇G �(� � L2 
 Ω � � h � �
Remark 4.3. A similar result, with uK replaced by u � xK � and G  0, is proved

(using (1.3)) in [9] and [10] (Theorem 3.2). Here, we also need (1.4) because, uK
taking into account all the values of u on a ball around xK , we cannot control RK � σ
in Proposition 4.1 (for example) only by means of

� �
K 	 σ �D2u � 2, as it is done in [10].

Proof of Theorem 4.1. By (1.1), div � vu � � L2 � Ω �0� L1 � Ω � and, v and u being
continuous on Ω (because u � H2 � Ω � and N / 3), we can apply Lemma 7.4 (see the
Appendix) to compute the integral of div � vu � on a convex open subset of Ω. Thus,
integrating (1.1) on a control volume K � � , we obtain

�
∑

σ ��� K
�

σ
∇u � ξ � ' nK � σ dm � ξ � � ∑

σ ��� K
�

σ
v � ξ � ' nK � σ u � ξ � dm � ξ �

� �
K

b � x � u � x � dx  �K � fK � ∑
σ ��� K

�
σ

G � ξ � ' nK � σ dm � ξ ��� (4.7)

Denote, as in Proposition 4.1,

RK � σ  uK

�
uL

dσ

� � � 1
m � σ �

�
σ

∇u � ξ � ' nK � σ dm � ξ ���
with σ  K � L if σ ��� K �!� int and uL  0 if σ ��� K �!� ext.

Let

rK � σ  vK � σ uσ � �
� 1

m � σ �
�

σ
v � ξ � ' nK � σ u � ξ � dm � ξ �
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where uσ � �  uK if vK � σ � 0, uσ � �  uL if vK � σ � 0 and σ  K � L � � K � � int, and
uσ � �  0 if vK � σ � 0 and σ ��� K �!� ext.

Finally, define

ρK  bKuK

� 1
�K �
�

K
b � x � u � x � dx

and

MK � σ  1
m � σ �

�
σ

G � ξ � ' nK � σ dm � ξ � � � dK � σ
dσ

GK � σ
� dL � σ

dσ
GL � σ �

(with the convention that σ  K � L if σ � � K ��� int and that dL � σ  GL � σ  0 if
σ ��� K �!� ext).

(4.7) shows that � uK � K ��� satisfies (1.9)—(1.10), provided that we add

�K � ρK � ∑
σ ��� K

m � σ � � RK � σ � rK � σ � MK � σ �
to the right-hand side of (1.9). Therefore, subtracting the equations satisfied by� uK � K ��� to the equations satisfied by � uK � K ��� , we see that � eK � K ���  � uK

�
uK � K ��� satisfies

, K � � � ∑
σ ��� K

m � σ �
dσ

� eK

�
eL ��� ∑

σ ��� K
m � σ � vK � σ eσ � � � �K � bKeK

 �K � ρK � ∑
σ ��� K

m � σ � � RK � σ � rK � σ � MK � σ �
(where σ  K � L if σ ��� K �!� int and eL  dL � σ  GL � σ  0 if σ ��� K � � ext) �

, σ  K � L ��� int � eσ � �  eK if vK � σ � 0 � eσ � �  eL otherwise,
, σ ��� ext � � K � eσ � �  eK if vK � σ � 0 � eσ � �  0 otherwise.

By definition, � RK � σ � K ����� σ ��� K , � rK � σ � K ����� σ ��� K and � MK � σ � K ����� σ ��� K are con-
servative: for all σ  K � L ��� int, we have RK � σ  � RL � σ , rK � σ  � rL � σ and MK � σ �

ML � σ (notice that nK � σ  � nL � σ ). Hence, by Proposition 3.2 in [7], we deduce that
there exists C0 only depending on � Ω � � � v � � 
 L∞ 
 Ω � � N � ζ � such that

� � e � � � 1 � � / C0

�
∑

K ���
�K � ρ2

K
� 1 � 2 � C0

�
∑

σ ���
m � σ � dσ A2

σ
� 1 � 2 � (4.8)

where we have denoted Aσ ��RK � σ � rK � σ � MK � σ � for some K � � such that σ � � K
(by conservativity of these quantities, this definition does not depend on the choice
of such a K).

We have

� ρK � 
�
�
�
�

1
�K �
�

K
b � x � � uK

�
u � x ��� dx

�
�
�
�

/ � � b � � L∞ 
 Ω �
�K �(�B � xK � αhK � �

�
K

�
B 
 xK � αhK � � u � y � � u � x � � dydx �
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Therefore, by Lemma 7.1, there exists C1 only depending on � N � � � b � � L∞ 
 Ω � � α � such
that

�K � ρ2
K / C1h2

K

�
K
�∇u � x � � 2 dx � (4.9)

By definition,

� rK � σ � 
�
�
�
�

1
m � σ �

�
σ

v � ξ � ' nK � σ � uσ � �
�

u � ξ ��� dm � ξ � ����
/ � �(� v �(� � L∞ 
 Ω �

m � σ �
�

σ
� uσ � �

�
u � ξ � � dm � ξ � (4.10)

and either uσ � �  uL for some L � � such that σ � � L, or uσ � �  0 and σ � � ext.
In the second case, since u � H1

0 � Ω � , we obtain � rK � σ ��/ 0 (i.e. rK � σ  0). In the first
case, we define v  � uL

�
u � � H1 � Ω � and, using Lemma 7.2, we see that

� 1
m � σ �

�
σ
� uL

�
u � ξ � � dm � ξ � � 2

 � 1
m � σ �

�
σ

v � ξ � dm � ξ � � 2

/ 2 � 1
m � σ �

�
σ

v � ξ � dm � ξ � � 1
� # L � σ �

� �
L 	 σ v � x � dx � 2

� 2 � 1
� # L � σ �

���
L 	 σ v � x � dx � 2

/ C2h2
L

� # L � σ �
� �

L 	 σ �∇v � x � � 2 dx � 2 � 1
� # L � σ �

� �
L 	 σ v � x � dx � 2

with C2 only depending on � N � α � . But ∇v  sgn � uL

�
u � ∇u and

v � x �  �
�
�
�

1
�B � xL � αhL � �

�
B 
 xL � αhL � u � y � dy

�
u � x � ����

/ 1
�B � xL � αhL � �

�
B 
 xL � αhL � � u � y � � u � x � � dy �
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so that, by Lemma 7.1,

� 1
m � σ �

�
σ
� uL

�
u � ξ � � dm � ξ � � 2

/ C2h2
L

� # L � σ �
� �

L 	 σ �∇u � x � � 2 dx

� 2 � 1
� # L � σ �(�B � xL � αhL � �

���
L 	 σ � B 
 xL � αhL � � u � y � � u � x � � dydx � 2

/ C3h2
L

� # L � σ �
�

L
�∇u � x � � 2 dx

where C3 only depends on � N � α � . Using this in (4.10), and since

� # L � σ �  m � σ � dL � σ
�
N � αm � σ � hL

�
N

(because dL � σ  dist � xL � σ � � dist � xL � ∂L � and B � xL � αhL � � L), we deduce that there
exists C4 only depending on � N � � � v � � 
 L∞ 
 Ω � � N � α � such that

m � σ � dσ r2
K � σ / C3 � � v � � 2
 L∞ 
 Ω � � N m � σ � dσ h2

L

� # L � σ �
�

L
�∇u � x � � 2 dx

/ C4h � hL

�
L
�∇u � x � � 2 dx (4.11)

for some L � � such that σ �!� L (we have used the fact that dσ / 2h � ). Notice that
this estimate is also true (for any L � � ...) in the case where uσ � �  0 with σ � � ext,
since rK � σ is then null.

We have, for σ  K � L ��� int, since dK � σ � dL � σ  dσ ,

MK � σ  dK � σ
dσ

� 1
m � σ �

�
σ

G � ξ � ' nK � σ dm � ξ � � 1
� # K � σ �

� �
K 	 σ G � x � ' nK � σ dx �

� dL � σ
dσ

� 1
m � σ �

�
σ

G � ξ � ' nK � σ dm � ξ � � 1
� # L � σ �

� �
L 	 σ G � x � ' nL � σ dx �

 dK � σ
dσ

� 1
m � σ �

�
σ

G � ξ � dm � ξ � � 1
� # K � σ �

� �
K 	 σ G � x � dx � ' nK � σ

� dL � σ
dσ

� 1
m � σ �

�
σ

G � ξ � dm � ξ � � 1
� # L � σ �

� �
L 	 σ G � x � dx � ' nK � σ �

Hence, X � X2 being convex, Lemma 7.2 gives C5 only depending on � N � α � such
that

M2
K � σ / C5

dK � σ
dσ

h2
K

� # K � σ �
���

K 	 σ �∇G � x � � 2 dx � C5
dL � σ
dσ

h2
L

� # L � σ �
� �

L 	 σ �∇G � x � � 2 dx �
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But � # K � σ �  m � σ � dK � σ
�
N and � # L � σ �  m � σ � dL � σ

�
N, so that

m � σ � dσ M2
K � σ / C5N � h2

K

� �
K 	 σ �∇G � x � � 2 dx � h2

L

� �
L 	 σ �∇G � x � � 2 dx � � (4.12)

Notice that, suppressing the term involving L, this estimate is still true if σ � � K �
� ext.

We now gather (4.9), (4.11), (4.12) and the estimates of Proposition 4.1 in (4.8);
using Hypothesis (1.4), we find thus C6 only depending on

� Ω � � � v � � 
 L∞ 
 Ω � � N � � � b � � L∞ 
 Ω � � ζ � α �
such that

� � e � � � 1 � �

/ C6h �
�

∑
K ���

�
K
�∇u � x � � 2 dx � 1 � 2

� C6h �
�

∑
σ ��� ∑

L ��� �
σ � � L

�
L
�D2u � x � � 2 dx � �

L
�∇u � x � � 2 dx

� �
L
�∇G � x � � 2 dx � 1 � 2

/ C6h � � �(�∇u �(� � L2 
 Ω �
� C6h �

�
M ∑

L ���
�

L
�D2u � x � � 2 dx � �

L
�∇u � x � � 2 dx � �

L
�∇G � x � � 2 dx � 1 � 2

/ C6h � � �(�∇u �(� � L2 
 Ω � � �
MC6h � � �

Ω
�D2u � x � � 2 � �∇u � x � � 2 � �∇G � x � � 2 dx � 1 � 2

and the proof is concluded. �

5. PROOF OF THE MAIN RESULT

We can now prove, using interpolation techniques, Theorem 2.1.

Proof of Theorem 2.1. Let

B  	�� u � G � f � � H1
0 � Ω � � � L2 � Ω ��� N � L2 � Ω �-� ∆u

�
div � vu � � bu � div � G � � f  0 �

(endowed with the norm of H1
0 � Ω � � � L2 � Ω ��� N � L2 � Ω � ) and define T : B � X � � �

by T � u � G � f �  � uK

�
uK � K ��� , where � uK � K ��� is the solution to (1.9)—(1.10).
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Corollary 3.1 shows that, if X � � � is endowed with the discrete H 1-norm, T is
linear and continuous with a norm bounded by C0 � Ω � � � v � � 
 L∞ 
 Ω � � N � α � M � .

If we define

A  	�� u � G � f � ��� H2 � Ω � � H1
0 � Ω ��� � � H1 � Ω ��� N � L2 � Ω � �

∆u
�

div � vu � � bu � div � G ��� f  0 �
(endowed with the norm of � H2 � Ω � � H1

0 � Ω ��� � � H1 � Ω ��� N � L2 � Ω � ), Theorem
4.1 shows that, X � � � still being endowed with the discrete H 1-norm, T : A �
X � � � is continuous with a norm bounded by C1h � , where C1 only depends on� Ω � � � v � � 
 L∞ 
 Ω � � N � � � b � � L∞ 
 Ω � � ζ � α � M � .

Thus, by classical interpolation results (see e.g. [1], Theorem 4.1.2, p.88), T is
linear continuous � A � B � 1 � s � X � � � with a norm bounded by

C1 � s
0 � C1h � � s / max � C0 � 1 � max � C1 � 1 � hs� �

Subsection 7.2 in the Appendix shows that

�A � B � 1 � s  	�� u � G � f � ���H2 � Ω � � H1
0 � Ω � � H1

0 � Ω � � 1 � s � � Hs � Ω ��� N � L2 � Ω � �
∆u
�

div � vu � � bu � div � G � � f  0 �
(with equivalent norms). To conclude the proof of the theorem, it remains therefore
to see that �H2 � Ω � � H1

0 � Ω � � H1
0 � Ω � � 1 � s  H1

�
s � Ω � � H1

0 � Ω � .
In the case N  2, i.e. if Ω is a polygonal open subset of � 2 , this result is proved

in [2] (Theorem 3.1).
If Ω is convex, we propose the following simple proof (which do not uses the

fact that Ω is polygonal). First of all, notice that we have, by definition, �H2 � Ω � �
H1

0 � Ω � � H1
0 � Ω � � 1 � s � � H1

0 � Ω � and, since the inclusions

H2 � Ω � � H1
0 � Ω � � � H2 � Ω � and H1

0 � Ω � � � H1 � Ω �
are continuous, by interpolation, there is a continuous inclusion

�H2 � Ω � � H1
0 � Ω � � H1

0 � Ω � � 1 � s � � �H2 � Ω � � H1 � Ω � � 1 � s  H1
�

s � Ω ���
This shows that �H2 � Ω � � H1

0 � Ω � � H1
0 � Ω � � 1 � s � � H1

�
s � Ω � � H1

0 � Ω � .
To prove the reverse inclusion, denote S  ∆ � 1 with Dirichlet boundary condi-

tions. Since Ω is convex, S is linear continuous

H
� 1 � Ω � � H1

0 � Ω � and L2 � Ω � � H2 � Ω � � H1
0 � Ω ���

∆ being linear continuous

H1 � Ω � � H
� 1 � Ω � and H2 � Ω � � L2 � Ω � �
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we deduce that S � ∆ is linear continuous

H1 � Ω � � H1
0 � Ω � and H2 � Ω � � H2 � Ω � � H1

0 � Ω ���
By interpolation, S � ∆ is thus linear continuous

�H2 � Ω � � H1 � Ω � � 1 � s  H1
�

s � Ω � � �H2 � Ω � � H1
0 � Ω � � H1

0 � Ω � � 1 � s �
But S � ∆  Id on H1

0 � Ω � , and this shows therefore that H1
�

s � Ω ��� H1
0 � Ω � is contin-

uously imbedded in �H2 � Ω � � H1
0 � Ω � � H1

0 � Ω � � 1 � s, which concludes the proof of the
theorem. �

6. NUMERICAL RESULTS

We present here a few numerical results which illustrate the convergence results we
have just proved.

In all these tests, the open set is Ω �� � 1 � 1 � 2 and we have taken no lower order
term, i.e. v  0 and b  0 in (1.1); as a right-hand side, we have let f  0 and G �

∇u (some tests have also been made with G  � ∇u � W where W is divergence
free, and the results are similar, provided that W has the required regularity). The
meshes used are regular cartesian grids, and we analyse the rate of convergence by
showing, in each case, the discrete H1 norm of the error versus the size of the mesh,
in log-log scale.

Our first test function is a pyramid, based on the function � x � y � � � 1 � � x � � � 1 �
� y � � that we have twisted in order that the peak be at � 1 � �

2 � 1 � �
2 � instead of � 0 � 0 �

(this has been done to avoid too good convergence results due to symetries between
the function and the mesh). The results are shown in Figure 1. The dots on this
figure indicates a reference slope; as we can see, the rate of convergence is roughly
0 � 5, which is the expected result since the function is here in H 3 � 2 � ε for all ε + 0.

10
−3

10
−2

10
−1

10
−2

10
−1

10
0

disc. H1 norm of the error         
Reference: Y=2 x X 0.55         

Figure 1. “Pyramid function”; reference slope: 0.55

Then, we have taken � x � y � � � 1 � x2 � � 1 � y2 � � � x � y � � s, which belongs (if s �� 0 � 1 � ) to H1
�

s � ε for all ε + 0. Figure 2 shows different cases for s which confirm
the result of Theorem 2.1.
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disc. H1 norm of the error            
Reference: Y=0.008 x X 0.2         
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disc. H1 norm of the error           
Reference: Y=0.03 x X 0.5         
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disc. H1 norm of the error           
Reference: Y=0.06 x X 0.7         

Figure 2.
� 	 x � y 
 � s singularity; cases s � 0 � 2 (reference slope: 0.2), s � 0 � 5 (reference slope: 0.5),

s � 0 � 7 (reference slope: 0.7)

If we add a convection term, with negative divergence, which provokes the loss
of coercivity in (1.1), the results are similar to the preceding ones, the only dif-
ference being that the constant “C” appearing in Theorem 2.1 is much bigger. For
example, coming back to the first test function, the constant in the reference slope
of figure 1 is 2 whereas, if we add a convection term with v  � 10 � x � y � , it becomes
80 (and the slope does not change).

7. APPENDIX

7.1. Technical lemmas

Lemma 7.1. There exists C + 0 only depending on N such that, if U and V are
non-empty open subsets of � N contained in a same ball of radius R, we have, for all
v � H1 � co � U � V ��� ,

�
�
�
�

1
�U �

�
U

v � x � dx
� 1
�V �
�

V
v � y � dy

�
�
�
�

2

/ � 1
�U �(�V �

�
U

�
V
� v � x � � v � y � � dxdy � 2

/ CRN
�

2

�U �(�V �
�

co 
 U � V � �∇v � z � � 2 dz �
Proof of Lemma 7.1. co � U � V � is a convex open set of � N . Thus, its boundary
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is Lipschitz-continuous and the regular functions are dense in H 1 � co � U � V ��� . We
therefore just have to prove the lemma for regular functions.

The first inequality is obvious. Let us prove the second. If v is regular, we have,
for all x � U and all y � V , v � x � � v � y �  � 1

0 ∇v � tx � � 1 � t � y � ' � x � y � dt. This implies

1
�U �(�V �

�
U

�
V
� v � x � � v � y � � dxdy / 1

�U �(�V �
�

U

�
V

� 1

0
�∇v � tx � � 1 � t � y � �(� x � y � dtdydx

and, since � x � y ��/ 2R for all x � U and all y � V (U and V are contained in a same
ball of radius R), Jensen’s inequality gives

� 1
�U �(�V �

�
U

�
V
� v � x � � v � y � � dxdy � 2

/ 4R2

�U �(�V �
�

U

�
V

� 1

0
�∇v � tx � � 1 � t � y � � 2 dtdydx � (7.1)

Let y � V . Using the change of variable x � U � z  tx � � 1 � t � y � tU � � 1 �
t � y � co � U � V � and Fubini’s theorem, we find�

U

�
V

� 1

0
�∇v � tx � � 1 � t � y � � 2 dtdxdy / �

co 
 U � V � �∇v � z � � 2 �
V

�
I 
 z � y � t � N dtdydz (7.2)

where I � z � y �  	 t � � 0 � 1 � � * x � U � tx � � 1 � t � y  z � . If t � I � z � y � , then t � x � y � 
z
�

y for some x � U ; since U and V are contained in a same ball of radius R, we
have then 2Rt � t � x � y �  � z � y � and thus I � z � y � � � � z � y

�

2R � 1 � . We deduce that�
I 
 z � y � t � N dt / � 1

�
z � y

�

2R

t
� N dt / 1

N
�

1
� 2R � N � 1

� z � y � N � 1 �
Thus, there exists C0 only depending on N such that, for all z � co � U � V � ,�

V

�
I 
 z � y � t � N dtdy / C0RN � 1

�
V

1
� z � y � N � 1 dy  C0RN � 1

�
z � V

1
� ξ � N � 1 dξ �

U and V are included in a same ball of radius R; thus, co � U � V � is also included in
this ball and, for all z � co � U � V � , z

�
V is therefore contained in B � 0 � 2R � , which

allows to write, using polar coordinates,�
V

�
I 
 z � y � t � N dtdy / C0RN � 1

�
B 
 0 � 2R � 1

� ξ � N � 1 dξ

 C0RN � 1C1

� 2R

0

1
ρN � 1 ρN � 1 dρ

 2C0C1RN

where C1 is the � N � 1 � -dimensional measure of ∂B � 0 � 1 � (C1 only depends on N).
Gathering this last inequality, (7.2) and (7.1), we conclude the proof of the

lemma. �
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Lemma 7.2. If � is an admissible mesh which satisfies Hypothesis (1.3), there
exists C only depending on � N � α � such that, if v � H 1 � Ω � , then, for all K � � and
all σ ��� K ,

�
�
�
�

1
� # K � σ �

� �
K 	 σ v � x � dx

� 1
m � σ �

�
σ

v � ξ � dm � ξ � ���� 2 / Cd2
K � σ

� # K � σ �
���

K 	 σ �∇v � x � � 2 dx �
Proof of Lemma 7.2. The regular functions being dense in H 1 � Ω � , it is suffi-

cient to prove the lemma for v � C1 � � N � .
By translation and rotation, we can suppose that σ 	 0 � �

�

σ with
�

σ � � N � 1

and that xK  � dK � σ � 0 � .
For a � � 0 � dK � σ � , we denote

�

σa  	 y ��� N � 1 � � a � y � �!# K � σ � . By definition,� a � y � � # K � σ if and only if there exists t � � 0 � 1 � and z � �

σ such that t � dK � σ � 0 � � � 1 �
t � � 0 � z �  � a � y � ; this is equivalent to t  a

�
dK � σ and y  � 1 � t � z  � 1 � a

�
dK � σ � z.

Thus,
�

σa  � 1 � a
�
dK � σ � �

σ .

For all y � �

σ and all a ��� 0 � dK � σ � , we have

v � 0 � y � � v � a � � 1
� a

dK � σ � y �  � 1

0
∇v � ta � � 1

�
t

a
dK � σ � y � ' � � a � a

dK � σ y � dt �
Integrating on y � �

σ and using the change of variable z  � 1 � a
�
dK � σ � y, we find�

σ
v � ξ � dm � ξ � � 1� 1

�
a

dK 	 σ � N � 1

� �
σa

v � a � z � dz

 � �
σ

� 1

0
∇v � ta � � 1

�
t

a
dK � σ � y � ' � � a � a

dK � σ y � dtdy �
Multiplying by � 1 � a

�
dK � σ � N � 1 and integrating on a ��� 0 � dK � σ � , we obtain�

σ
v � ξ � dm � ξ � � dK 	 σ

0
� 1
� a

dK � σ � N � 1

da
� � dK 	 σ

0

� �
σa

v � a � z � dzda

 � dK 	 σ
0

� � 1
� a

dK � σ � N � 1

�� �
σ

� 1

0
∇v � ta � � 1

�
t

a
dK � σ � y ��' � � a � a

dK � σ y ��� dtdyda � (7.3)

But
� dK 	 σ

0 � 1 � a
�
dK � σ � N � 1 da  dK � σ

�
N and � # K � σ �  m � σ � dK � σ

�
N; therefore, (7.3)
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gives, thanks to Fubini’s theorem,

� # K � σ �
m � σ �

�
σ

v � ξ � dm � ξ � � � �
K 	 σ v � x � dx

 � dK 	 σ
0

� � 1
� a

dK � σ � N � 1

�� �
σ

� 1

0
∇v � ta � � 1

�
t

a
dK � σ � y � ' � � a � a

dK � σ y ��� dtdyda � (7.4)

By definition of an admissible mesh, the straight line going through xK � dK � σ � 0 � and orthogonal to σ �	 0 � � � N � 1 intersects σ ; this means that 0 � �

σ .
Moreover, σ is contained in K which has diameter hK ; thus,

�

σ has diameter less
than or equal to hK . By Hypothesis (1.3), dK � σ  dist � xK � σ � � dist � xK � ∂K � � αhK .

We deduce that, for all y � �

σ , � y � $� y � 0 ��/ diam � �

σ �0/ hK / 1
α dK � σ . Thus,

�
�
�
�
�

� dK 	 σ
0

� � 1
� a

dK � σ � N � 1

�� �
σ

� 1

0
∇v � ta � � 1

�
t

a
dK � σ � y � ' � � a � a

dK � σ y � � dtdyda

�
�
�
�

/ C0
� dK 	 σ

0

� � 1
� a

dK � σ � N � 1

�� �
σ

� 1

0

�
�
�
� ∇v � ta � � 1

�
t

a
dK � σ � y � �

�
�
� � adtdyda (7.5)

where C0 only depends on α .
Let a � � 0 � dK � σ � . By the change of variable

ϕa : � t � y � � � 0 � 1 ��� �

σ � z  � ta � � 1
�

t
a

dK � σ � y � � ϕa � � 0 � 1 ��� �

σ �
(whose Jacobian determinant is a � 1 � ta

�
dK � σ � N � 1  a � 1 � z1

�
dK � σ � N � 1 since z1 

ta), we have � �
σ

� 1

0

�
�
�
� ∇v � ta � � 1

�
t

a
dK � σ � y � �

�
�
� dtdy

 �
ϕa 
 � 0 � 1 ��� �σ � �∇v � z � � a � 1 � 1

� z1

dK � σ � � N
�

1

dz �
But, since � ta � � 1

�
t a

dK 	 σ � y �  ta
dK 	 σ � dK � σ � 0 ��� � 1

�
ta

dK 	 σ � � 0 � y � , we have

ϕa � � 0 � 1 ��� �

σ �0��# K � σ
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and Fubini’s theorem allows thus to write� dK 	 σ
0

� 1
� a

dK � σ � N � 1 � �
σ

� 1

0

�
�
�
� ∇v � ta � � 1

�
t

a
dK � σ � y � �

�
�
� adtdyda

 � dK 	 σ
0

�
ϕa 
 � 0 � 1 � � �σ � �∇v � z � � � 1

� z1

dK � σ � � N
�

1 � 1
� a

dK � σ � N � 1

dzda

/ ���
K 	 σ �∇v � z � � �

a � � 0 � dK 	 σ � �
z � ϕa 
 � 0 � 1 ��� �σ �

�
1
�

a
dK 	 σ

1
�

z1
dK 	 σ � N � 1

dadz �
If z � ϕa � � 0 � 1 ��� �

σ � , we have z1  ta for some t � � 0 � 1 � , i.e. 0 / z1 / a. Therefore,
1
�

a
dK 	 σ / 1

�
z1

dK 	 σ and

�
a � � 0 � dK 	 σ � �

z � ϕa 
 � 0 � 1 ��� �σ �
�

1
�

a
dK 	 σ

1
�

z1
dK 	 σ � N � 1

da / dK � σ �
We deduce that� dK 	 σ

0
� 1
� a

dK � σ � N � 1 � �
σ

� 1

0

�
�
�
� ∇v � ta � � 1

�
t

a
dK � σ � y � �

�
�
� adtdyda

/ dK � σ
���

K 	 σ �∇v � z � � dz �
We now use this inequality in (7.5) and introduce the resulting estimate in (7.4) to
obtain

�
�
�
�

1
� # K � σ �

���
K 	 σ v � x � dx

� 1
m � σ �

�
σ

v � ξ � dm � ξ � ���� / C0dK � σ
� # K � σ �

���
K 	 σ �∇v � x � � dx �

Jensen’s inequality concludes then the proof of the lemma. �

Lemma 7.3. Let � be an admissible mesh, σ  K � L ��� int and U  K � σ � L.
Then U is an open subset of � N and C∞ � U � is dense in H2 � U � .

Proof of Lemma 7.3. Step 1: we prove that U is open.
By translation and rotation, we can suppose that σ 	 0 � �

�

σ with
�

σ � � N � 1

and, since the line going through � xK � xL � is orthogonal to σ , that 0 � σ , xK  � b � 0 � �� 0 � ∞ ��� 	 0 � and xL  � a � 0 � � � � ∞ � 0 ��� 	 0 � . Define then ϕ : � t � y � � � � 1 � 1 ��� � N � 1 �� t �

a � t
�

b � � 1 � � t � � y � � � a � b ��� � N � 1 (where t
�  max � 0 � t � and t

�  max � 0 � � t � );
ϕ is an homeomorphism (the inverse mapping is ψ � z1 � z � �  � z �1b � z �

1
a � � 1 � z �1

b

�
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z �
1
a � � 1z

� � ). It is easy to see that ϕ � � � 1 � 1 ��� �

σ �  # K � σ � σ � # L � σ ; indeed, ϕ � 0 � �

σ � 
σ , ϕ � � 0 � 1 ��� �

σ � �# K � σ (recall that xK  � b � 0 � ) and ϕ � � � 1 � 0 � � �

σ � �# L � σ (recall that
xL  � a � 0 � ); by hypothesis on the egdes,

�

σ is open in � N � 1 and ϕ � � � 1 � 1 ��� �

σ � 
# K � σ � σ � # L � σ is thus open in � a � b ��� � N � 1 , i.e. in � N .

We have U  K � σ � L  K � # K � σ � σ ��# L � σ � L (because # K � σ � K and
# L � σ � L by convexity of K and L), and this proves that U is open in � N (K and L
are open in � N ).

Step 2: we prove that, for all λ + 1, U � λU (recall that 0 � σ � U ).
To see this, it is sufficient to show that, for all z � U , � 0 � z �&� U ; indeed, once we

have obtained this result, we write, for z � U � 	 0 � (the case z  0 is obvious) and
λ + 1, z  λ � 1

λ z � and, since 1
λ z  1

λ z � � 1 � 1
λ � � 0 � � 0 � z �&� U (because 1

λ � � 0 � 1 � ),
we deduce that z � λU .

Let us take z � U  L � σ � K.

Assume first that z � σ . Then, since σ is an open convex subset of 	 0 � � � N � 1

and 0 � σ , a classical convexity lemma tells us that � 0 � z �&� σ � U , which concludes
this case.

Assume now that z � K � σ (the case z � L � σ being treated the same way).
If z � K, then by the same convexity lemma as before, since 0 � K and K is

convex and open, we have � 0 � z �&� K � U . We can thus suppose that z � ∂K � σ .

Let us stop a moment to prove the following geometrical fact: ∂K � � 	 0 � �� N � 1 �  σ .
We first notice that K ��� 	 0 � � � N � 1 �  /0: indeed, if it is not the case, then,

taking a � K � � 	 0 � � � N � 1 � , since 0 � K, we have � 0 � a � � K; but 0 � σ which is
open in 	 0 � � � N � 1 and, since � 0 � a � �
	 0 � � � N � 1 with a � 0 (because 0 � ∂K,
which does not intersects K), we can find b � � 0 � a � � σ ; this means that b � ∂K � K,
which is not possible.

Thus, A :  ∂K ��� 	 0 � � � N � 1 � is equal to K ��� 	 0 � � � N � 1 � and is therefore
convex (because K and 	 0 � � � N � 1 are convex).

We have σ � A (and thus σ � A, A being closed); take c � A �
	 0 � � � N � 1 .
Since A is convex, the set O �� 0

�
t � 1 � tc � � 1 � t � σ � is contained in A; we want to

show that O � σ  /0.
σ being open in 	 0 � � � N � 1 , O and thus O � σ are also open in 	 0 � � � N � 1 .

We have O � σ � ∂K, which implies O � σ � ��� σ � ��� K � σ ���� σ � σ
�
. Suppose that O � σ is

not empty; then, since it is an open subset of 	 0 � � � N � 1 and 	 σ � � � K � σ
� � σ � is

finite, there exists σ
� � � K � 	 σ � whose adherence contains N points of O � σ ��	 0 � �� N � 1 in general position. Thus, the hyperplane containing σ

�
is the affine space

generated by these points, that is to say 	 0 � � � N � 1 . By hypothesis on the edges,
the intersection of 	 0 � � � N � 1 and of the line going through xK and orthogonal to
	 0 � � � N � 1 belongs to both σ and σ

�
(since σ and σ

�
both generate 	 0 � � � N � 1 ),

which is a contradiction with the fact that σ and σ
�
are disjoint.
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Thus, O � σ is empty, and O � σ . Since c � O, we deduce that c � σ , and this
concludes the proof that A � σ , i.e. that ∂K � � 	 0 � � � N � 1 �  σ .

We also notice that, since K ��� 	 0 � � � N � 1 �  /0 (see above) and since xK �� 0 � ∞ ��� � N � 1 , by connexity of K, we have K � � 0 � ∞ ��� � N � 1 . We prove the same
way that L � � � ∞ � 0 ��� � N � 1 .

Let us now return to the proof that, if z � ∂K � σ , then � 0 � z �&� U .
As we have seen before, # K � σ � σ � # L � σ is an open set and, since 0 belongs

to this open set (and z � 0), � 0 � z � � � # K � σ � σ � # L � σ � is not empty. We have z �
K � � 0 � ∞ ��� � N � 1 ; since z � ∂K � σ and ∂K � � 	 0 � � � N � 1 �  σ , this implies z ��
	 0 � � � N � 1 and thus z � � 0 � ∞ ��� � N � 1 . Hence, � 0 � z �&� � 0 � ∞ ��� � N � 1 .

But # L � σ � L � � � ∞ � 0 ��� � N � 1 and σ � 	 0 � � � N � 1 ; therefore, � 0 � z � � � # K � σ �
σ � # L � σ �  � 0 � z � � # K � σ . This set being non-empty, we can take c � � 0 � z � � # K � σ � K.
Since 0 and z belong to K, � 0 � c � and � c � z � are contained in K, which implies that� 0 � z �  � 0 � c �)� � c � z �&� K and concludes this step.

Step 3: we prove the density result.
Take v � H2 � U � and define, for λ + 1, vλ � x �  v � x �

λ � ; vλ belongs to H2 � λU �
and the restriction of vλ to U � λU converges, as λ � 1, to v in H2 � U � .

Indeed, to see the convergence in L2 � U � , we take ε + 0 and w � Cc � U � such
that � � v � w � � L2 
 U � � ε ; we then write, with wλ � x �  w � x �

λ � , � � vλ
�

v � � L2 
 U � / � � vλ
�

wλ � � L2 
 U � � � �wλ
�

w � � L2 
 U � � � �w � v � � L2 
 U � . By a change of variable, we have � � vλ
�

wλ � � L2 
 U � /�� � vλ
�

wλ � � L2 
 λU �  λ N � 2 � � v � w � � L2 
 U � / λ N � 2ε , so that � � vλ
�

v � � L2 
 U � /� λ N � 2 � 1 � ε ��� �wλ
�

w � � L2 
 U � . Since w � Cc � U � , the dominated convergence theorem
(for example) gives � �wλ

�
w � � L2 
 U � � 0 as λ � 1 and this concludes the proof of the

L2 convergence. The first and second derivatives of vλ being (with evident notations)
λ � 1 � ∇v � λ and λ � 2 � D2v � λ , the H2 convergence is an immediate consequence of the
L2 convergence showed above.

To approximate v in H2 � U � by regular function, we thus just need to approx-
imate vλ in this space. We extend vλ to � N by 0 outside λU and take � ρn � n � 1 a
smoothing kernel; vλ � ρn � C∞

c � � N � and, since U is relatively compact in λU and
vλ � H2 � λU � , we have vλ � ρn � vλ in H2 � U � as n � ∞ (because, for n large
enough — such that U � supp � ρn � � λU —, we have ∇ � vλ � ρn �  � ∇vλ � � ρn and
D2 � vλ � ρn �  � D2vλ � � ρn on U ). This concludes the proof of the lemma. �

Lemma 7.4. If U is a convex open bounded set in � N and W � � C � U ��� N is such
that div � W � � L1 � U � , then�

U
div � W � � x � dx  �

∂U
W � ξ � ' n � ξ � dm � ξ �

(m denotes here the � N � 1 � -dimensional measure on ∂U and n is the unit normal
to ∂U outward to U— notice that, since U is convex, it has a Lipschitz-continuous
boundary).
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Proof of Lemma 7.4. By translation, we can suppose that 0 � U . Then, for all
z � U , since U is convex, � 0 � z � � U ; as we have seen in step 2 of the proof of Lemma
7.3, this implies that, for all λ + 1, U � λU .

Let Wλ � x �  W � x �
λ � ; we have Wλ � � C � λU ��� N and Wλ � W uniformly on

U (and thus on ∂U ) as λ � 1 (this is due to the uniform continuity of W on this
set). Moreover, div �Wλ �  λ � 1 � div � W ��� λ � L1 � λU � and, as in step 3 of the proof
of Lemma 7.3, we deduce that div � Wλ � � div � W � in L1 � U � as λ � 1. It is thus
sufficient to prove that, for all λ + 1, Wλ satisfies the result of the Lemma.

Let � ρn � n � 1 be a smoothing kernel. Extend Wλ to � N by 0 outside λU and
define Wn � λ  Wλ � ρn � C∞

c � � N � . By regularity of Wn � λ , we have�
U

div � Wn � λ � � x � dx  �
∂U

Wn � λ � ξ � ' n � ξ � dm � ξ ��� (7.6)

But Wλ is uniformly continuous on the open set λU , which contains the compact
set ∂U ; thus, Wn � λ � Wλ uniformly on ∂U .

We have, in the sense of the distributions on � N , div � Wn � λ �  div � Wλ � � ρn.
Since div � Wλ � � L1 � λU � and U is relatively compact in λU , we deduce that
div � Wn � λ � � div � Wλ � in L1 � U � as n � ∞.

These convergences allow to pass to the limit in (7.6) to see that Wλ satisfies
the result of the lemma, which concludes the proof. �

7.2. Interpolation

We prove in this subsection that, if Ω is a bounded open subset of � N (N  2 or
3) with a Lipschitz-continous boundary and v � � C � Ω ��� N satisfies div � v � � L2 � Ω � ,
then, for all ϑ � � 0 � 1 � , the interpolate space of order ϑ between

A  	�� u � G � f � ��� H2 � Ω � � H1
0 � Ω ��� � � H1 � Ω ��� N � L2 � Ω � �

∆u
�

div � vu � � bu � div � G ��� f  0 �

and

B  	�� u � G � f � � H1
0 � Ω � � � L2 � Ω ��� N � L2 � Ω �-� ∆u

�
div � vu � � bu � div � G � � f  0 �

is (with equivalent norms)

C  	�� u � G � f � ���H2 � Ω � � H1
0 � Ω � � H1

0 � Ω � � ϑ � � H1 � ϑ � Ω ��� N � L2 � Ω � �
∆u
�

div � vu � � bu � div � G � � f  0 � �
each of these spaces being endowed by its natural norm (notice that the interpolate
space of order ϑ between H1 � Ω � and L2 � Ω � is H1 � ϑ � Ω � ).

This result is quite natural, but not so easy to prove.
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To simplify the notations, we let V  H1
0 � Ω � and W  H2 � Ω � � H1

0 � Ω � . The
proof relies on a result in [11]. Define the linear application

T ��� � V � � L2 � Ω ��� N � L2 � Ω � ;H
� 1 � Ω ��� ��� �W � � H1 � Ω ��� N � L2 � Ω � ;L2 � Ω ���

by T � u � G � f �  ∆u
�

div � vu � � bu � div � G � � f ; this application is continuous W �� H1 � Ω ��� N � L2 � Ω � � L2 � Ω � because, since div � v � � L2 � Ω � — this is the only place
where we need this hypothesis — and W � C � Ω � — recall that N / 3 —, we have
div � vu �  div � v � u � v ' ∇u � L2 � Ω � when u � W . Then

A  	 x � W � � H1 � Ω ��� N � L2 � Ω � � T � x �  0 � �
B  	 x � V � � L2 � Ω ��� N � L2 � Ω � � T � x �  0 �

and Theorem 14.3 in [11] � allows to see that

�A � B � ϑ 
	 x ���W � � H1 � Ω ��� N � L2 � Ω � � V � � L2 � Ω ��� N � L2 � Ω � � ϑ � T � x �  0 �  C

with equivalent norms (notice that this last space is equal to C because the inter-
polate space of a product of spaces is the product of the corresponding interpolate
spaces), provided that we can construct an application

R ��� � H � 1 � Ω ��� ;V � � L2 � Ω ��� N � L2 � Ω ��� ��� � L2 � Ω � ;W � � H1 � Ω ��� N � L2 � Ω ���
such that T � R  Id on H

� 1 � Ω � .
The rest of this subsection is devoted to the construction of such a R.

The main difficulty in constructing this application is the lack of regularity of
∂Ω. If Ω is a regular (or convex) open set and v � � C1 � Ω ��� N (for example), then R is
quite easy to build: take, for L � H

� 1 � Ω � , R � L �  � u � 0 � 0 � where u is the variational
solution of ∆u

�
div � vu � � bu  L with Dirichlet boundary conditions; the regularity

of ∂Ω ensures then that R is continuous L2 � Ω � � W � � H1 � Ω ��� N � L2 � Ω � .
If Ω is a polygonal non-convex open set, we must find another way to construct

R. The main idea is to get rid of Ω and to bring ourselves back to � N .

Following an idea of [3], we first build

r ��� � L2 � � N � ;L2 � Ω ��� ��� � H1 � � N � ;H1
0 � Ω ���

such that r � ϕ �  ϕ for all ϕ ��� � Ω � .
To do so, we notice that, since Ω has a bounded Lipschitz boundary, so does� N � Ω; there exists thus an extension operator E which is continuous H 1 � � N � Ω � �

H1 � � N � and L2 � � N � Ω � � L2 � � N � (the classical extension operators constructed
�
In fact, this theorem concerns the interpolation of complex banach spaces, and we consider here

spaces of real-valued functions; but it is not very difficult to see, since we handle spaces of functions,
that the result of this theorem is also valid in our case of real interpolation.
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via symetries satisfy these continuities). We define r by r � ϕ �  � ϕ � E � ϕ� �
N � Ω ��� � Ω.

Since ϕ
�

E � ϕ � �
N � Ω �  0 on � N � Ω, we clearly have r � ϕ � � H1

0 � Ω � if ϕ � H1 � � N � ;
moreover, if ϕ � � � Ω � , ϕ � �

N � Ω  0 so that r � ϕ �  ϕ , and r has thus the desired
properties.

r allows us to extend elements of H
� 1 � Ω � into elements of H

� 1 � � N � , in such a
way that elements of L2 � Ω �-� H

� 1 � Ω � are extented into elements of L2 � � N � .
Indeed, r � : H

� 1 � Ω � � H
� 1 � � N � is linear continuous and, since r : L2 � � N � �

L2 � Ω � is continuous, r � is also continuous L2 � Ω � � L2 � � N � (we have identified, as
usual, the dual space of L2 to L2 itself). Moreover, if L � H

� 1 � Ω � , one has L  r � � L �
in �

� � Ω � : indeed, for all ϕ � ��� Ω � , r � � L � � ϕ �  L � r � ϕ ���  L � ϕ � .
Let L � H

� 1 � Ω � ; since r � � L � � H
� 1 � � N � , we can define wL � H1 � � N � as

the variational solution of
�

∆wL � wL  r � � L � on � N , and, since r � : H
� 1 � Ω � �

H
� 1 � � N � is linear continuous, the application L � H

� 1 � Ω � � wL � H1 � � N � is
linear continuous. Moreover, r � is also linear continuous L2 � Ω � � L2 � � N � so
that, by the regularity properties of

�
∆ � Id on � N , L � wL is linear continuous

L2 � Ω � � H2 � � N � .
Define now R � L �  � 0 � � ∇ � wL�

Ω � � wL
Ω � . Since the restriction to Ω is linear contin-

uous L2 � � N � � L2 � Ω � , H1 � � N � � H1 � Ω � and H2 � � N � � H2 � Ω � , R is linear con-
tinuous H

� 1 � Ω � � V � � L2 � Ω ��� N � L2 � Ω � and L2 � Ω � � W � � H1 � Ω ��� N � L2 � Ω � .
Moreover, for all L � H

� 1 � Ω � , T � R � L �  div � � ∇ � wL�
Ω ��� � wL�

Ω  � ∆ � wL�
Ω � �

wL�
Ω  r � � L � � Ω  L in �

� � Ω � (by properties of r � ), thus also in H
� 1 � Ω � . This con-

cludes the construction of R and this appendix.
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