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Abstract

We study optimal control problems for semilinear parabolic equations with pointwise
controls in a bounded domain of RY. When the nonlinear term in the state equation is of
the form |y|Y~1y, we prove the existence of solutions for such equations when 1 < v < %
We next study a control problem with a terminal observation. We prove existence of optimal
controls and a Pontryagin principle for these problems.
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1 Introduction

Let Q be a bounded open subset in RN (N > 2) with a boundary T' of class C? and A be a

second order differential operator defined by Ay = — 2%21 D;(a;j(x)Djy)+ao(x)y, (D; denotes

the partial derivative with respect to z;). We consider the following boundary value problem :
Jdy . Jy .

— + Ay + ®(z,t,y) = u(t)dy, in Q, —— =0 (or y=0) on 3, y(0) =yo in Q, (1)
ot on g

where @ = 2x]0,T[, ¥ =I'x]0, T, d, denotes the Dirac measure at xo € €2, the control variable

u belongs to some subset Ky of L9(0,T), ® is a Carathéodory function from @ x R into R. We

are interested in the control problem
(Pa) inf{I(y,u) | (y,u) € L1(0,T; WHL(Q) x Ky, (3,u) satisfies (1)},

where

T
I(y,u) = By /Q |y — 24| dwdt + B /Q y(T) — yal*dz + Bs /0 [ul? ()t

(6; > 0 for i = 1,2,3). For a linear equation (when ® = 0) and for ¢ = s = 2, 8; = 0, this
problem has been studied by J. -L. Lions in [9], [10]. A characterization of controls u for which
yu(T) (yu is the solution of (1) corresponding to u) belongs to L?(€2) is given in [10], [15]. Still
in the case when ® = 0, this problem has also been studied by S. Anita [3] for 2 = 3 = 0,
g =00, =1, and Ky is a closed convex bounded subset of L>°(0,7") (the existence and the
characterization of solutions are established). The case of a nonlinear equation corresponding
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to ®(x,t,y) = y> is addressed in [10], an approximate problem is considered (in which the
Dirac mass d,, is replaced by the characteristic function of some ball B(xg,¢)), but optimality
conditions for solutions of (Pg) by a passage to the limit are not carried out. Moreover, from

[5] we known that if u = 1 and if ®(z,¢,y) = |y|*"'y, then equation (1) admits a weak solution
N
N-2-
than |y|7~ !y, for clarity we consider only this case, with 1 <y < %, and we treat the case of

if and only if v < Even if what follows can be extended to nonlinearities more general
homogeneous Neumann boundary conditions (the results of this paper can be easily adapted to
homogeneous Dirichlet boundary conditions). Thus the state equation is

9y

+ Ay + [y 'y = u(t)dy, in Q, s = 0onZ (0 =y in Q. (2)

%
ot

To well define the control problem we must indicate in which space y and y(7") may be observed.

The answer clearly depends on ¢ [10], [15]. We prove that if ¢ > max(1, %f—lﬁm)’ then y(7)
Nq'

N3 (¢' is the conjugate exponent to ¢). For
simplicity, we only consider a terminal observation. Thus we study the control problem

can be observed in L*(Q2) for every 1 < s <

(P) inf{J(y,u) | (y,u) € L0, T; WH(Q)) x Ky, (y,u) satisfies (2)},

where -
Tow) = [ 10(D) = yildz+ 5 [ Jul(t)de

(6> 0 and yg4 is a given function in L*(€2)).

Even if, at least in the case u € L*°(0,T), the existence result for (2) can be deduced from
[5], the estimates and the regularity results of Theorem 2.1 seems to be new. Moreover our proof
is different. By using estimates on analytic semigroups (Lemma 2.1), we first prove estimates in
L9(0,T;C(Q)) for linear equations (Propositions 2.3, 2.5). Next with the so-called transposition
method and by taking advantage of the structure of the measure u(t)d,,, we obtain estimates
for linear equations with right hand side of the form u(t)d,, (Propositions 2.1, 2.2). Existence
and regularity results for (2) are stated in Theorem 2.1. Some results concerning the adjoint
equation are established in Section 3. The existence of solutions for the control problem and
optimality conditions are established in Section 4.

2 State Equation

In all the sequel for Ay > 0 and Ay nonnegative, we set % = oo if Ay = 0. Some constants C; in
estimates in propositions depend on different exponents. Since the constant C; may intervene in
a proof for different exponents, for clarity we sometimes indicate this dependence. The constants
K, and Ky are the ones which intervene in semigroup estimates (Lemma 2.1).

(A1) - The coefficient ag of A is positive and belongs to C(€2). The coefficients a;; belong to
Chv(Q) with 0 < v < 1, a;; = aj;, and they satisfy (for some mg > 0)

N
Z aij(2)&& > mol€)? for every ¢ € RY and every 2 € Q.

ij=1

(A2) - Ky is a closed convex subset of L4(0,T"), max(1, Mﬁ) <g<oandl < s < %.



Remark 2.1. It is well known that the condition ag > 0 is not restrictive. Indeed if y is a
solution of (1), then z = e~y is the solution of

%—FAZ—{—)\Z—{—BM(I)(CC,t, eMz) = e Mu(t)d,, in Q, a(?_z =0(orz=0)onY, 2(0)=ypin.
nAa

Remark 2.2. When 1 < v < & and 1 < ¢, we can easily verify that the condition

N-2
2 : . N+2)q' 2
m < q 18 equlvalent to vo< (Nq’—)g and also to q/ < m (Where ()Jr =

Max (0, -)). Thus the inequality v < min(+, (%;?g/) is assumed throughout the paper.

In the sequel we consider equations of the form (1) for ®(z,t,y) = |y[""'y or ®(z,t,y) =
a(x,t)y (where a belongs to some space L¥(0,T;L*(Q))), and when ud,, is replaced by f €
L0, T; Myp(Q)), £ > 1. For all these equations, we consider solutions in the sense of the follow-
ing definition.

Definition 2.1 Let f be in LY(0,T; My (). We shall say that y € L*(0,T; WV1(Q)) is a weak

solution of the equation

@+Ay+¢>(w,t,y)=fm@, & _ onX,  y(0)=yo inQ,
ot on 4

if ®(-,y(-)) belongs to L'(Q) and if

/(— 9 ﬁfj a:;(2) Dy Dicp + ®(x, t )gb)dwdt—/T(f(t) 6(1)) dt+/ $(0)yod
9 yat ij YL ULy = 0 ) Mp(Q)xCh(Q) 0 Yo

ij=1

Jfor every ¢ € CHQ) such that $(T) =0 on Q. ((f(t), p(t)) m,)xc, (@) denotes the integral over
Q of ¢(t) for the measure f(t).)

To prove the existence of a weak solution for equation (2), we need some estimates for linear
equations established below.

2.1 Estimates for Linear Equations

First recall some results for analytic semigroups. We denote by A the operator defined by

D(A) = {y € C*(Q) | 9y =0onT}, Ay=Ay.

Oona
For 1 < £ < 0o, we denote by Ay the closure of A in LY(Q). The operator — A is the generator of
a strongly continuous analytic semigroup Sp(t);>0 in L*(Q) [1]. For 1 < £ < co the domain of Ay
is D(Ag) = {y € W24Q) | a—‘?% =0on I'}. For 1 =/, D(A;) is the set of functions y in L!(€2)
such that there exists z € L'(Q) satisfying [, z(z)v(z)dr = [, y(z)Av(x)dz for all v € D(A).
For any 1 < ¢ < o0, 0 belongs to the resolvent of —A, and there exists § > 0 such Reo(A4;) >
(it is a consequence of (A1) and of the fact that o(A) is independent of £). Therefore, for o > 0,
there exists a constant Ky = Ky(¢, a) such that

A7 Se(t) el e ) < Kot~ (el Le(a)

for every t > 0 and every ¢ € LY(Q) (see [8], [12], A% is the a-power of Ay). Thanks to this
result the following lemma can be established. The first part of Lemma 2.1 is stated in [1], the
second part is established in [14].



Lemma 2.1 For every 1 < £ < X < oo with { < oo, there exists a constant K1 = K1(\,{) such
that

1Bl @) < Kt~ = )]l ey (3)

for every ¢ € LY(Q) and every t > 0. For every 1 <2< A< o0 wzth { < o0, and every a > 0,
there exists a constant Ko = Ka(\, ¢, ) such that

N1_1y_,
[AZSe@) el ) < Kat™ 3G-%) ol e (4)
for every ¢ € LY(Q) and every t > 0.

We consider the linear equation

Wiayroy=fnQ S0 y0)=pino, (5)
where f belongs to L(0,T; My(Q2)), and a belongs to L];(O, T; L¥(Q)) for every (k, k) satisfying
¢ - N N 1 N 1
—— <k<oo, 1<k<—F"7F7——, —<-=-+ + = ify>1, (6
71 W60 2 7 ook T Goop 7O
and 1§]~€<OO, 1<k< if y=1.

We look for estimates for the solution y of (5) in L"(0,T; L"(£2)) with

d N - 1 n N n 1
and — < —+4+—+-=.
N -2 2 q 2r r
The following lemma will be often used in calculations throughout the paper.

Lemma 2.2 If a function a belongs to L];(O T:L¥(Q)) for every (k,k) satisfying (6), and if
y belongs to L7 (0,T;L"()) fm’ every (7,r) satisfying (7), then ay belongs to LP(Q) for every
1 <p< z'nf(,y(]é\im, ((]X;;,z) 2)). If a sequence (an)n is bounded in Lk(O T; L*(Q)) for every
(k,k) satisfying (6), and if (yn)n is bounded in L™(0,T}; Lr( )) for every (7,r) satisfying (7),

then (anyn)n is bounded in LP(Q) for every 1 < p < inf( (V+2)g ).

“/(N 2)’ v(N¢'-2)
Proof. If ¢ > N 5, then for k= %, 7 = ¢, we can verify that ay belongs to L?(0,T; L°(Q))

for p=41 and for every 1 < p < 7 ]\][\22). Therefore the first part of the lemma is proved in this

case. If q < m, then we can verify that ay belongs to LP(Q) for every 1 < p < ,Y(gVJ;?qu/) The

g<1r<00, 1<r<

(7)

second part of the lemma can be proved in the same way.

Proposition 2.1 If a is a nonnegative function belonging to L];(O,T; L¥(Q)) for every (k, k)
N /

satisfying (6), if f belongs to L1(0,T; My(2)) and if yo belongs to ¥ (Q), then equation

(5) admits a unique weak solution in L'(0,T; WHL(R)), this solution belongs to L7 (0,T; L (12))

for every (7,r) satisfying (7) and there exists a constant C1 = C1(T,r,q), not depending on the

function a, such that

19l 70,7072y < Crlll fllLaco,rsn,02)) + Yol ). (8)
LF (o)

In particular for 7 = oo and for every 1 <r < NL%’ y belongs to C(]0,TY; L;,()) and we have

1Yl oo (0,757 (2)) < C1(00, 7, @) ([ £l La0,15Mm, 2)) + 190l )- 9)
LR 2(Q)

(C([0,T]; L7,(2)) denotes the space of continuous functions from [0,T] into L"(Q2) endowed with
its weak topology.)



Proposition 2.2 Let f be in LY(0,T; My(Q)). The equation

%—l—Ay:me, aan—yA:()onE, y(0) =0 in Q. (10)
admits a unique solution in L' (0, T; WH(Q)), it belongs to LY (0,T; W4 (Q)) for every (6, d, ()
satisfying

N 1 1 1
1<6<l < N <d R T G R 11
<§ </l < oo, <d < o0, SRR (11)
and there exists a constant Cy = Cs(0,d, l) such that
Hy”Lé’(QT;WLd’(Q)) < CZ”f”L‘Z(O,T;Mb(Q))- (12)
Nq/
For every yo in LNI-2(Q), the equation
0 0
a—Z—l—Ay:Om Q, %:O on X, y(0) = yo in Q, (13)

admits a unique solution in L*(0,T; WY1(Q)), it belongs to L° (0, T; W4 () for every (5,d)
satisfying

N¢ N 1 1.1 (14)
27 2d 6 2 ¢’

and there exists a constant Cs = C3(0,d, q) such that

2<d<o0, l<d<

||yHL5/(07T;W17d’(Q)) < Csllyoll g : (15)
LNd =2 (Q)
Propositions 2.1 and 2.2 are proved thanks to the so-called transposition method. For this, we
prove some estimates in the propositions below.

Proposition 2.3 Consider the following terminal boundary value problem

0z , 0z :
—E—{—Az—l—az—ng, %—Oonz, 2(T) =0 in Q. (16)

We suppose that a is a nonnegative function belonging to LE(O,T; L¥(Q)) for every (k,k) satis-
fying (6), and g belongs to L(0,T; L%(Q)). Then the weak solution of equation (16) belongs to
LY(0,T;C(Q)) for every (8,d,0) satisfying

1 1

N N
1<6 <V < oo, 5<d<oo, ﬁ+5<1+?, (17)

and there exists a constant Cy = Cy(¢,9,d) not depending on the function a such that

121l e 0,7 100 02)) < Callglls 07,140 (18)

Proof. 1 - We first consider the case when a = 0 and when ¢ is regular. We denote by Z the
solution of (16) corresponding to a = 0. As in [13], [14], we use a duality method. Let ¢ be in
D(Q) and y be the solution of the Cauchy problem

Yy

+ Ay =0in Q, %:00n2, y(T) = ¢ in Q.

%y
ot

5



Since g is regular, by a straightforward calculation we obtain
T d
/ (x)5 (z, t)dw = —/ —(/ y(@, T+t — 7)2(x, 7)dz)dr
Q ¢ drJo
T T
:/ /(Ay(x,T—l—t—T);%(x,T)—y(m,T+t—7')A:2(x,7'))dach—|—/ /y(m,T+t—7)g(x,T)dxdT
t Q t Q

= /tT /Q y(x, T+t —71)g9(z, 7)dxdr. (19)

Thanks to (3) we have

N
[yl Lo () < Ki(d', 1)(T — t) ™24 |||l 1 (20)

for all 1 <d < oo and all ¢ € D(Q2). From (19) and (20), it follows
T N
12@) ]| oo ) = Sup{/Q ¢(@)2(z,t)dx | |9llpr @) =1} < Kl/t (T +t—7)"2g(7) a()dr.

Notice that t — [|g(t)[/e(q) belongs to L°(0,T) and t — t2a belongs to L(0,T) for every
1 <i<2d/N. If we set §(t) = [g(t)]| L4 () X)—o0,77 (1) h(t) = (T + t)i%X]—OO,T}(T +t) (where
X]—oo,7] 18 the characteristic function of | —oo, T1), then ftT(T—Hf—T)*% 19(T) La(oydr = gxh(t).
Thus t — ftT(T +t-— 'T)_%Hg(’r)HLd(Q)dT belongs to LY (0,T) if + =%+ 1 —1. Therefore, 2
belongs to L (0, T; L>®(Q)) for every ¢ satisfying (17) and we have

12 e (07,100 (02)) < Cllgll s 0,290

for some constant C' = C(¢,d,d). The same estimate can be obtained if ¢ is not regular. For
that it is sufficient to use an approximation process.

2 - Now we suppose that a is regular and nonnegative. We set g+ = max(0, g), g~ = max(0, —g),
we denote by 21 (resp. 22) the solution of (16) corresponding to a = 0 and to g* (resp. g~ ) and
by 21 (resp. z2) the solution of (16) corresponding to g% (resp. ¢~). The function w = z; — 21
is the solution of

—%—Z}%—Aw—l—aw:—afélinQ, ;L—wA:OonE, w(T) =01n Q.

Since a2 belongs to L'(Q) and is nonnegative, thanks to a classical comparison theorem, we
obtain 0 < z; < %7 a.e. on ), and with Step 1 we have

21l o e ey < W21l e 0 s () < Cllg™ oo misacey)-

We can prove a similar estimate for zo and we have
”ZHLZ’(QT;LOO(Q)) < QCHQHL‘S(O,T;Ld(Q))-

Notice that C' is the constant of Step 1 and it is independent of a. Moreover we can easily
verify that z belongs to LY (0,T;C(Q)). Indeed if g is regular the result is obvious, if not, we
can consider a sequence (g,), of regular functions converging to g in L%(0,T; L(Q)). If z, is
the solution of (16) corresponding to g, then with the previous estimate we see that (z,), is a



Cauchy sequence in LY (0,T; C(Q)), converging to z (the solution of (16) corresponding to g) in
LY(0,T;C(Q)).

3 - We suppose that g belongs to L>°(Q2) and that a belongs to L’E(O, T: L¥(Q)) for every (k, k)
satisfying (6). Let (an), be a sequence of nonnegative regular functions converging to a in
LF(0,T; L*(Q)) for every (k, k) satisfying (6). Denote by 2™ the solution of

_%+Az+anz:gin Q, %:Oon %, 2(T) = 0. (21)
The sequence (z,)y is bounded in L (0,T; L>°()). The sequence (z,), is bounded in L>(Q)
(because g € L>®(Q)), the sequence (anzp)n is bounded in L*(0,T; L*(Q)) for every (k,k)
satisfying (6). The sequence (zy), is also bounded in L*(0,T; Wi(Q)) for & + 3 < 14 %
[13], therefore the vector distribution %2 is bounded in L*(0,T; (W19 (Q))’) for o > 1 big
enough and some A > 1. Thus from Aubin Theorem ([11] Theorem 1.5.1), we deduce that (),
is relatively compact in L'(Q). Thus we can pass to the limit in the variational formulation
satisfied by z, and we see that (z,), converges to the weak solution z of (16) for the weak-star
topology of LY (0,T; L>°(Q)), and that z satisfies (18) with Cy = 2C. To prove that z belongs
to LY (0,T;C(f2)), we notice that z € L®(Q) (because g € L®(Q)) and that

_%+Az:—az+gin Q, %:Oon %, 2(T) = 0. (22)
Thanks to Step 1, z belongs to L*(0,T; C(Q)) for every A > 1 satisfying % + % <1+ %, where
(k, k) satisfies (6) and k& < X (the triplet (k,k, \) exists because v < & ). We have proved
that z belongs to L(0,T;C(Q)) N L (0, T; L>(2)), therefore z belongs to L (0,T;C(2)).

4 - We suppose that g belongs to L°(0,T;L%(Q)) and that a belongs to LF(0,T;L*(Q)) for
every (k,k) satisfying (6). Let (gn)n be a sequence of regular functions converging to g in
L°(0,T; L4(2)) for every (6,d,¢) satisfying (17). Let 2™ be the solution of (16) corresponding
to gn. Thanks to estimate (18) proved in Step 3 for 2™, we can prove that (2"), is a Cauchy
sequence in LY (0,T;C(Q)), that it converges in LY (0,T;C(Q)) to the weak solution z of (16)
and that (18) is satisfied.

Proposition 2.4 Consider the following equation

—%—l—Az:—divf in @, 0z =0 on X, 2(T) =0 in Q. (23)
Ona

Suppose that € € (D(Q))N. Then the weak solution of equation (23) belongs to L* (0,T;C())
for every (9,d,£) satisfying (11), and there exists a constant Cs = Cg(q, d,d) not depending on
a such that

120l e (0,722 () < C6ll€l Lo 0.75La(@))™) (24)
for every € € (D(Q))V.

Proof. We denote by y the solution of the Cauchy problem

+ Ay =0in Q, %:00112, y(0) = ¢ in Q.

%y
ot

7



As in the proof of Proposition 2.3, by a direct calculation we have

/Q¢(x)z(x,t) = /tT /Q Dy(z, T+t —71)&(x, 7)dxdr. (25)

From [8], Theorem 1.6.1, we know that the domain of A is continuously imbedded in W' (Q)
if a > £. Thus from (4) we deduce

~ ~ _N_,
IOl @y < ClAGYOll oy < CE2d', )T — )36 10y (26)

for every 3 < o < 1. From (25) and (26), it follows

. T N
2Ol < CKa [ (T4 = 1) F () paqayyn dr

Notice that t — [[§(t)[|(za(q))v belongs to L°(0,T) and that, for every 1 < i < NQ—id, we can
choose a > % such that ¢ — t~2i belongs to L(0,T). Therefore, still by using integrability
results for convolution products (as in the proof of Proposition 2.3), we claim that ¢ — ftT(T +
t— T)_%_a|’g(7')H(Ld(Q))NdT belongs to L (0,T) for every ¢’ > § satisfying 2 + £ > 3 + & and
that

”ZHLZ’(O,T;LOO(Q)) < CGHS”Lé(o,T;(Ld(Q))N)

for C = Cg(¢,8,d). Since ¢ is regular, it is clear that z belongs to L¥ (0, T;C(Q)).

Proof of Proposition 2.1. 1 - We first prove the estimate in L™(0,7;L"(92)) in the case

when f is regular (for example f € C(Q)) and yo = 0. Let z be the solution of (16) correspond-
ingto g € L7 (0,T; L" (Q)). If (7,r) satisfies (7), we see that 7 < ¢/, 7/ > & and 1—}—% >4+ L
and Proposition 2.3 yields

||ZHLQ/(O7T;LOO(Q)) < C4H9||LW(O7T;LT/(Q))'

Let y be the solution of (5) corresponding to yp = 0, by a Green formula, we have

/ygdwdt:/ fzdxdt.
Q Q

For every (7,r) verifying (7), we have
Yl 70, () = SUP{|/Qy9d$df| M9l 0.1 () = 1} < Call fllzago,r,n1@)

for every f € C(Q). In particular for 7 = co and every r < % we obtain

1yl 0,757 92)) < Call fll o101 (0))-

2 - Suppose that f belongs to L1(0,T; M(2)), and let (f,,), be a sequence of regular functions
converging to f in the following sense

T _
1imn/an¢d$dt :/0 (f(), (), () xcp(@dt  for every ¢ € C(Q),



limy|| follao,rnr @) = 1fleamimy @) and ([ Ffa(®llLr@) < 1), ) on [0,T7.
Let y,, be the solution of

%—FAy—i—ay:fninQ, %:OOHZ, y(0) =0 in Q. (27)
Thanks to the estimate in Step 1, we obtain
ynllzs 0,17 2)) < Call fallao, 0 (@) (28)

From (y,)n, we can extract a subsequence, still indexed by n, such that (y,), converges to y
for the weak-star topology of L”(0,T; L"(Q)) for every (7,r) satisfying (7). By passing to the
limit in the variational formulation of (27), we can easily verify that y is the solution of (5)
corresponding to yg = 0. By passing to the limit in (28), we obtain (8). Since the solution of (5)
is unique, the original sequence (y,), converges to y weakly-star in L7(0,T; L"(Q)), for every
(7, ) satisfying (7).

3 - Now we prove that the solution y of (5) corresponding to yo = 0 belongs to C([0,T]; L7, (2)).
Since y is the weak-star limit of (yy,), in L*>(0,7; L"(Q2)) for every 1 <r < %, and since

[ @llr ) < 1Ol vy 0

for almost every ¢ € [0,7] and every n, thanks to [4] Theorem 2, we can prove that y €
C([0,T); L' (2)). We already know that y belongs to L>(0,T; L"(Q)) for every 1 < r < %,

therefore y belongs to belongs to C([0,T]; L;,(€2)) for every 1 < r < NJ(\;[/({z (see for example [7],
Chapter 18, Lemma 5.6).
4 - If g is the solution of

0 0

a—z—i—Ay:Oin Q, ﬁ:OOH z, y(0) = yo in Q, (29)
then N

R q ,ﬂ(ﬁ,_)
)l < K1 (r, 2 (TNa v ,
3010y < K ) ol sz,

for every % < r < oo. Therefore § belongs to L"(0,T; L"(Q)) for every (7,r) satisfying

together % <r < oo and (7), and we have

HZ?HLF(O,T;LT(Q)) < Cllyoll _ny
LNd-2(Q)
N/

for some C' = C(7,r,¢q). Moreover g belongs to C([0,T; L~ (2)). Thus the estimate

HZ?HLF(O,T;LT(Q)) < Cllyoll _ng
LNd-2(Q)

is true for all (7, r) satisfying (7).

5 - The estimate of Step 4 can be proved in the case when a # 0 and a is regular, by using a
comparison principle, as in Step 2 of the proof of Proposition 2.3.



6 - Now, we suppose that a belongs to L*(0,T; L*(Q)) for every (k, k) satisfying (6), and that

yo belongs to C(Q). Let (a,), be a sequence of nonnegative regular functions, converging to a

for every (k, k) satisfying (6). Let y, be the solution of (5) corresponding to a, and to f = 0,

and let y be the solution of (5) corresponding to a and to f = 0. By arguing as in Step 3 of the

proof of Proposition 2.3, we can verify that (y,), converges to y for the weak-star topology of

L7(0,T; L"()) for every (7,7) satisfying (7), and that (15) is satisfied. Therefore y belongs to
Ng’

L*>(0,T; LN/-2(Q2)). We notice that (yn), obeies

Oyn,
ona

0 .
% + Ayn + ayn = (a - an)yn in @,

=0on X, yn(0) = yo in Q

and that ((a — an)yn)n tends to zero in LP(Q) for some p > 1 (it is a consequence of Lemma
2.2). As in Step 3, we can prove that y belongs to C([0,T]; L*(£2)). Therefore y belongs to

Nq

C([0,TT; L™~ (2)).

Remark 2.3. With the notation of step 6 in the previous proof, we can write

OYn, — Ym |
% + A(Yn — Ym) + an(Yn — Ym) = (am — an)ym in Q,
anA =0on 2’ (yn ym)(o) =0in Q

Thanks to the method developed in the proof of Proposition 2.3, we can prove that

Yn = Ymll oo, 0 @) < Cllian — am)ymllLe 0,10 )

Withagp,&gﬁafld%—i—% < %—i—%—i—l. In particular for g = oo, %—i—%:%, %—i—%:%,
o< ﬁ, where (k, k) obeies (6) and (7,r) obeies (7), we obtain

lyn — ymHC([QT};LP(Q)) < Cl|(an — am)HLfC(O’T;Lk(Q))HymHL’:(O,T;LT(Q))?
with % — 7 < Xirlc % + 1. Therefore (y,,), is a Cauchy sequence in C([0,T]; LP(2)), when

% —J < % + 1. This condition is in particular satisfied for p = 1 (because v < q;\(,]q\ffg)) but
not in general for p = N]Z'q—/z'

Proof of Proposition 2.2. 1 - We first prove the estimate (12) in the case when f € C(Q).
Let z be the solution of (23). If (4, d,¢) satisfies (11), from Proposition 2.4, we obtain

12| e 0.T:L(Q)) = CGHfHLé(o,T;(Ld(Q))N)
( ()

for every ¢ € (D(Q))"N. Let y be the solution of (10), with a Green formula we have

/ Dyédxdt = / fzdxdt.
Q Q
It follows

HDZ/HLé’(o,T;(Ld’(Q))N) = Yisupf]| /Q Diy&idadt| | 1Sl s o,mpa)) = 1} < NCslfllLeo. 11 )

10



for every f € C(Q). We finally obtain (12) with this estimate and with Proposition 2.1.

2 - Suppose that f belongs to L(0,T; My(Q)). Let (fn)n be a sequence of regular functions
converging to f in the following sense

T _
1imn/an¢d$dt :/0 (f(t), (1)) My ) xcy)dt  for every ¢ € C(Q)

and  limy || foll e,z @)) = 1 2eo,mnm, @)

Let ¥, be the solution of

Wiay=fiinQ gL -0 y0)=0m g (30)

Thanks to estimate (12) proved in Step 1 for regular functions, we obtain

Hyn ||L6’ 0,T;Wd’ () <Oy ||fn HLZ(O,T;Ll(Q)) : (31)

From (y,)n, we can extract a subsequence, still indexed by n, such that (y,), converges to y for
the weak-star topology of LY (0, T; Wh? (Q)) for every (4, d) satisfying (11). By passing to the
limit in the variational formulation of (30), we can easily verify that y is the solution of (10).
We obtain (12) by passing to the limit in (31).

3 - Let y be the solution of

0 0

a—zt/—i—Ay:OinQ, %zOonE, y(0) = yp in Q.

From [8] Theorem 1.6.1, the domain of A is continuously imbedded in W4 (Q) if o > . With
Lemma 2.1, we obtain

_N(Ng=2 1y
(&) @y < CIAGSEol oo < CEat™ FEFT =2y,
LNd-2(Q)
if % < d' < oo. For every (d,0) satisfying (14), we can choose o > % to have
1 + N 1 <a+t N 1 < N n 1
—t——=<at+——-—=< —+ =.
2 2 ( 2 ¢ 24 ¢

Therefore

Hy”Lé’(QT;WLd’(Q)) < Cllyoll ¢
LNd 3 (Q)

This completes the proof.

2.2 State Equation

Theorem 2.1 The state equation (2) admits a unique solution, it belongs to L™(0,T; L" (2)) for
every (7,r) satisfying (7) and

Hy”LF(o,T;Lr(Q)) < Cl(”uHLq(o,T) + lyoll _no )
LNd-2(Q)

11



(where Cy = Cy (7, , q) is the constant in (8)). The solution of (2) also belongs to C([0,T); L%, ()
for every 1 <r < NN, 5 and we have

1Yl oo (0,757 () < C1(00, 7, @) ([[wl| a0,y + HyOH _Q(Q))-

It also belongs to Lo (0, T; Wh (Q)) + L9%2(0, T; Wh%(Q)) for every (61,d1) satisfying

q N 1 3 NHr-1) ~v
l1<f<——, N<d S O St R
<1_q_7, < dy < 00, 2d1+51<2 5 +q"

and every (02,ds) satisfying (14). There exists a constant C7 = C7(61,d1,q) such that

lly =<l oWy T [ 0.7 W% ()

< Cr(||ullLao,ry + HuHLq o) T llyol” Ny )+ Csllyoll g ;
LN =2 (Q) LNd'=2()

where Cs is the constant in estimate (15) and ¢ is the solution of

¢ 0C

at+AC—OZ n Q, o =0 on X, ¢(0) = yo in .

Remark 2.4. Since v < 25 < £, we have % <3- w + %. Therefore the set of pairs
(61,dy) satisfying (32) is nonempty.

Proof. First notice that the uniqueness can be proved as in [6]. Indeed, since the coefficients of
the operator A are regular, if y is a solution of (2) in the sense of Definition 2.1, it also satisfies

o T
| (v +vao+ i yo)dzat = [ utotwo. e+ [ 6(0)nd

for every ¢ € C%1(Q) such that ¢(T') = 0 on Q and aﬁn‘% =0on X.

Let (u,)n be a sequence of regular functions converging to u in L9(0,T") such that [[u,[zq01) <
lullLa(o,1), let (vn)n be a sequence of nonnegative regular functions converging to &, for the
narrow topology of My(€2) and such that [[v,[[r1q) = 1. We denote by y, the solution of (2)
corresponding to uy,vy,.

1 - Estimate in L7(0,T; L™ (2)). By setting a,, = |y,|7~!, Proposition 2.1 yields

ynll 2 0,7;r ) < Crlllullzao,r)y + llvoll )
v 2(9)

for every n and every (r,7) satisfying (7). In particular, the sequence (y,,), is bounded in L"(Q)

for all 1 < r < inf( (%;2_)3,,%) (see Lemma 2.2). Since 7 < inf( E%;@%,%), for every

1<p< inf(v(gvz?fé)a y(]f,v_z) ), (¥))n is bounded in LP(Q) and

lynllze @) < CC1(vp, 70, @) (lull oo,y + llvoll )7, (33)
LN 2(9)

where the constant C only depends on the measure of Q. Moreover, still with Proposition 2.1,
for every ¢ > 1 satisfying v¢ > ¢ and % + % > N(;;l), we have

lyallzeo, @)y < Cr(vl v, @) (lullzaory + lvoll _~g )7 (34)
LT3 (Q)

12



2 - Estimate in L% (0, T; Wh% (Q)) 4+ L% (0, T; Wh%(Q)). Let &, be the solution of

n 0&n
3t on

Then we have y, = &, + (. With Proposition 2.2, for every (01, d1,¢) satisfying (11), we obtain

+ Ay = up vy — |yn|" "y, in Q, =0on Y, £,(0) =0 in Q.

160l 54 0 ot oy < C20605, Ol ey + Il zecorrinr o) (35)

for every n. If v < %, we have 1+ —;7 — w > Q_;“L‘ Therefore, if (32) is satisfied, there

existsﬁzgsuchthat%+%—MZ%—%=%+%>%+% and 1 < §; Sﬁ'gﬁ.
Thanks to (34), (35), for every (d1,d;) satisfying (32), there exists a constant C7; = C7(d1,d1,q)
such that
Hgn”L(sll(QT;Wl’dll(Q)) S C’?(HUHLQ(O’T) + HUHZQ(O T) + HyOH,y _Nq' )
LNd=2(Q)

for every n. With Proposition 2.2, we also have

< Csllyoll

HCHLa’Q (O,T;Wl,dé ) LNq’—2 @

for every (02, ds) satisfying (14).

3 - Estimates of dy". From the previous estimates we can prove that ﬂ is a distribution with
values in (Wl"(Q)) and that (dy" )n is bounded in L0, T; (W1 (Q)) ) for some ¢ > 1 and for
o big enough. Thus, from Aubin Theorem [11] Theorem 1.5.1, the sequence (yy), is relatively
compact in L1(Q).

4 - Passage to the limit. From (y,), we can extract a subsequence, still denoted by (yy, )., weakly-
star convergent to y in L7(0,T; L"(Q2)) for every (r,7) satisfying (7), and such that (y, — ()
weakly converges to y — ¢ in L91(0,T; W1 (Q)) for every (8,,d;) satisfying (32). Since (yy,)y, is
relatively compact in L'(Q), we can also suppose that (y,), converges to y almost everywhere
in ). Because of (33), we can easily prove (with Holder’s inequality and Vitali’s Theorem) that
(|1yn|" "Ly )n converges to |y|* 1y in LP(Q) for all 1 < p < inf(y((NZ,Z) %) N 2)) Now by passing
to the limit in the variational formulation satisfied by y,,, we see that y is a solution of (2). The

estimates on y clearly follow from estimates on ¥, proved in Step 1 and Step 2.
3 Adjoint Equation

3.1 Adjoint Equation

We consider the following terminal boundary value problem

Bp 3]9

A =0i

=0on X, p(T) = pr in Q. (36)
If u is a solution of (P), if y, is the solution of (2) corresponding to u, if we set a = 7|y, |7~}
and pr = s|yu(T) — ya|* 2(yu(T) — ya), then equation (36) corresponds to the adjoint equation
for (P) associated with (u,y,). Since y,(T) belongs to L"(Q2) for all 1 <r < %, we have to

study (36) for pp € L7(Q) with o < %.
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Theorem 3.1 Suppose that a is nonnegative and belongs to Lk(O T; L () for every (/;:, k)
satisfying (6). If pr belongs to L7 () for all1 < o < (N,Nm the weak solution of (36)

belongs to L*(0,T;C(Q)) for every { < W Moreover, for every £ < 22, there exists a
constant Cg = Cs(¢,0), not depending on the function a such that

1Pl Leo,mo@) < Csllprllre@)- (37)

Proof.
1 - We first prove the result for ¢ = 0 by using estimates on analytic semigroups. We denote by
p the weak solution of (36) corresponding to @ = 0. From Lemma 2.1, we deduce

R _N
1) Lo (0) < Ki(00,0)(T" = 1) 27 [|pr| 1o (0)

Therefore p belongs to L*(0,T; L>(R)) if £ < 22 and we have

16l Leo, 75100 )) < CsllprliLe o)

for some Cg = Cs(¢, o). Thanks to this estimate and by using approximation arguments, we can
easily prove that p belongs to L*(0,T;C(Q)).

2 - We suppose that a # 0 and a is regular. If p is the weak solution of (36), then w = p — p
satisfies
ow ow
———i—Aw—l—aw——ame, =0on X, w(T) = 0. (38)
ot na
Since p belongs to L*(0,T;C()) for every £ < 22 and a belongs to L>(Q), then ap belongs to
LY(Q). As in the proof of Proposition 2.3, we can use a comparison principle to prove that p

belongs to L*(0,T; L>°(2)) and that (37) is satisfied.

3 - Now, we suppose that a belongs to L];(O,T; L*(Q)) for every (k, k) satisfying (6), and that
pr belongs to C(Q). Let (ay), be a sequence of regular functions, converging to a for every
(k, k) satisfying (6). Let p,, be the solution of (36) corresponding to a,, and let p be the solution
of (36) corresponding to a. By arguing as in Step 3 of the proof of Proposition 2.3, we can
verify that, for every 1 < £ < (M;/—%%? (pn)n converges to p for the weak-star topology of

L(0,T; L>(2)) and that Pl e,z )y < Csllprlie o) Is satisfied if £ < % < WS

To prove that p belongs to Lf(0,T;C(Q)), we notice that p € L>(Q) (because pr belongs to
C(Q)) and

Op

L Ap= —

Y Ly dp=—apinQ, oA

Thanks to Step 1 and to Proposition 2. 3 we can prove that p belongs to LM0,T;C(Q)) for every

A > k, where k is chosen so that X —|— < 1+ % and so that (k, k) obeies (6) (since v < =

such a X exists). We already know that p belongs to L(0,T; L>=(f2)), therefore p belongs to

L0, T;C(Q)) for every 1 < £ <

=0on X, p(T) = pr in Q. (39)

(Nq'— 2)(5 DN

4 - Now, we suppose that pr belongs to L7(€2). We denote by (p%), a sequence of bounded
functions converging to pr in L7(€2). Let p,, be the solution of (36) corresponding to p%. Thanks
to the estimate (37) established for p,, in Step 3, we can prove that (p,), is a Cauchy sequence
in L(0,T;C(Q)), that it converges to p in L*(0,T;C()) and that (37) is satisfied by p.
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3.2 Green Formula

Lemma 3.1 Let (ay), be a sequence of nonnegative functions converging to a in Lk (0, T; LF(%2))
for every (k, k) satisfying (6). Let z, be the solution of

0z d
— + Az 4 apz = vdy, in Q, “ —0on X, 2(0) =0 in Q, (40)
ot 8 n A
and let z be the solution of
0z : 0z :
N + Az + az = viy, in Q, pE 0 on %, 2(0) =0 in Q. (41)

Then (zp)n converges to z for the weak-star topology of L7 (0,T;L"(Q)) for all (7,7) satzsfymg
(7), and (z,(T"))n converges to z(T') for the weak topology of L"(2) for all 1 < r < NN, 5

Proof. Thanks to Proposition 2.1, (z,), is bounded in L”(O T; L () for all (7,r) satisfying
(7), and (2, (7)), is bounded in L"(2) for all 1 < r < N 7. The sequence (a,2y), is bounded
in L(Q) for some p > 1 (see Lemma 2.2). Therefore (2, )y is also bounded in L% (0, T; W14 (2))
for every 6 > 1, d > 1 such that 2—]\3 + $ < 3 ([13] Theorem 4.2). From (z,),, we can extract a
subsequence, still indexed by n, weakly star converging to some z in L"(0,7; L"(€2)) for all (7,7)
satisfying (7) and weakly star converging to z in L% (0, T; W4 (Q)) for every 6 > 1, d > 1 such
that N "+ 3 < 3. Moreover, we can suppose that (z,(T)), converges to some Z for the weak
topology of LT(Q) forall 1 < r < N];[,q_IQ. By passing to the limit in the Green formula ([13],
Theorem 4.2)

N

/Q Z 2)D; 20 Dith + anzmd)dadt = /0 " o6 (o, t)dt /Q $(T) 2 (T)dz

satisfied for every ¢ € C1(Q), we see that z is the solution of (41) and that Z = 2(T).

Theorem 3.2 Let p be the solution of (36) (with pr € L7 () for every 1 < o < ﬁ)
and z be the solution of

% + Az + az = viy, in Q, 8(?1—1 =0 on X, 2(0) =0 in Q. (42)
Suppose that a belongs to L];(O,T; L*(Q)) for every (k,k) satisfying (6) and that v belongs to
L9(0,T), then we have the Green formula

T
/ (0, Ho(t)dt = / pr(2)2(z, T)dz. (43)
0

Proof.
1 - If a is regular and pr € C(Q), the result can be deduced from Theorem 4.2 in [13].

2 - First suppose that pr € C(Q) and v € L>(0,T). Let (a,), be a sequence of regular func-
tions converging to a for every (k,k) satisfying (6). Let p, (resp. p) be the solution of (36)
corresponding to a, (resp. a). Thanks to Proposition 2.3 we can prove that (p,), is a Cauchy
sequence in L1(0,7;C(f2)) and that (p,), converges to p in L'(0,T;C(Q)). If 2, (resp. z) is the
solution of (42) corresponding to a,, (resp. a), then (z,(T")), converges to z(T) for the weak-star
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topology of L"(Q) for all 1 < r < Ng N 5

(Lemma 3.1). Therefore we can pass to the limit in the
Green formula satisfied by (pp, zn) and (43) is satisfied by (p, 2).

3 - Let us still suppose that v € L*>°(0,T'). Let (p), be a sequence of regular functions converg-

ing to pr in L7(2) for all 1 <o < (M],sz,

to p"(T') = p. From Theorem 3.1, we deduce that (p,), converges to the solution p of (36) in

L0, T; C(Q)) forall1 </ < W, thus (p, (o)), converges to p(xo) in L7 (0,T) (indeed

1<s< Nq, 2) Thanks to Proposition 2.1, z(T") belongs to L"(€2) for every 1 < r < Nq, 3

and let p™ be the solution of (36) corresponding

Since 1 < s < Nq/_lz, (2(T)ph)n, converges to z(T)pr in L'(Q). Thus, to complete the proof in
the case when a is not regular but when v € L*(0,7T), we can pass to the limit in the Green
formula satisfied by p,,.

4 - Now we consider a sequence (vy,), of regular functions converging to v in L9(0,7). If z,
(resp. z) is the solution of (42) corresponding to v, (resp. v), thanks to Proposition 2.1, we see
that (z,,(T)), converges to z(T') in L"(Q) for every 1 < r < %. We can pass to the limit in
the Green formula satisfied by z, and the proof is complete.

4 The Control Problem

4.1 Existence of solutions

Lemma 4.1 If (y,)n is a sequence bounded in L7 (0,T; L"(Q)) for every (7,r) satisfying (7),
and if (Yyn)n converges to y in LY(Q), then (yn)n converges to y in L7(0,T;L"(Q)) for every
(7, 1) satisfying together (7) and 7 < oo.

Proof. Let n > 0 and A be a measurable subset of ) with meas(A) = n. Let (7, r) satisfying
together (7) and 7 < co. Let (71,71) satisfying (7) and such that

. 1 1 1 1
r<mry, r<mr, ———=—<——.
T T T T

Let us set A(t) = AN (Q x {t}), |A(t)| = LY(A(t)), where LV is the N-dimensional Lebesgue
measure, and denote by x4 the characteristic function of A. Thanks to Holder’s inequality and
to the equality satisfied by r, 7, r1, 71, we have

[ttt - \xa>mfmu:424@mao—mmwmwﬁ

S/ OF ([ 19a(0) = (O] de)/"
T —_
< (/ ’ ( ’dt 7:1 / / ‘yn _ ‘mdx)m/ndt)r/m
0

<n 7H ”yn - y”iﬁ(o,T;Lrl(Q))'

With this estimate, the lemma can be proved with Egorov’s Theorem.

Theorem 4.1 Let us suppose that either 3> 0 or Ky is bounded in L1(0,T). Then the control
problem (P) admits solutions.
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Proof. Let (uy), be a minimizing sequence in Ky. It is clear that (uy,), is bounded in L?(0,T).
We can suppose that (uy, ), converges to some u weakly-star in L%(0,T"). Since Ky is convex and
closed in L4(0,T"), then v € K. Thanks to Theorem 2.1, (yu,, )n (the sequence of solutions of (2)
corresponding to u,,) is bounded in L7 (0,T; L™(2)) for every (7, r) satisfying (7) and (yu, — ()n
(where ¢ is the function defined in Theorem 2.1) is bounded in in L% (0, T; W91 (Q)) for every
(61,dy) satisfying (32). By arguments similar to those in Step 3 in the proof of Theorem 2.1, we
can also prove that (,, ) is relatively compact in L'(Q). Thanks to Lemma 4.1 (i, ), converges
to 3, (the solution of (2) corresponding to u) in L7 (0, T; L" (£2)) for every (7, ) satisfying (7) and
7 < oo and (y,, — ()n converges to y, —IC weakly-star in L% (0, T; W% (Q)) for every (61, d;)

satisfying (32). Since for all 1 < s < NN/{2

1Yun (1) s (0) < C1(00, 8, @) ([unllLago,r) + lloll );
LNQ’ 2(Q)
we can also prove that (y,, (1)), (or at least a subsequence) converges to some yp for the weak-
star topology of L*(Q2). To prove that yr = y,(T'), we use the Green formula of Theorem 3.2.
We introduce the solution p,, of

Jdp 15)
———i—Ap—l—anp—OmQ, P

9 aA—OonE p(T) = ¢ in Q,

where a, = |y, |7 and ¢ € D(2), and we introduce the solution p of

Op Op .
—a—l—Ap—{—ap—Oan, %—OODE, p(T) = ¢ in Q,

where a = |y,|7~!. Thanks to previous convergence results, (a, ), converges to a in L’E(O, T; L*(Q))
for all (k, k) satisfying (6). We notice that w = p,, — p satisfies
ow ow

—E%—Aw—i—anw—(a—an)pinQ, anA—OonE w(T)=01in Q.

If ¢ <, with estimate (18), we have

1Pn = Pll Lo 0,7:0(0)) < Cala, 6, d) (@ — an)pl|Ls(0,7;La()) < Calla — anllLso r.La@) IpllL=(q)

for § < ¢’ and 25 V3 < 1+ . Since v < E%;?gg,we have ( —%)(7—1) < 1+% and we can

N

2
choose (k, k) = (6,d) = (¢ ,d) satisfying (§ — %)(7 —) < +i<it % =1+4% Ifg>,
still with estimate (18), we have

q
1pn—pll o 0.2y < ClIpa—pl s < CCu( 5, d)la—an | 50,7100 1Pl 1 (@)-

L7=T(0,T;C(Q)) — qg—~y+1’

if 6§ = -L and & d < 1. Since v < ﬁ we choose (k,k) = (8,d) satisfying % < 1 and

o,
~
(&- %)( —1) < &£+ 1. Thus (p,), converges to p in L9(0,T;C(Q)). With the Green formula

(43) for p,, and y,, we have

T
/ pn(x(]at)un(t)dt:/¢(Cﬂ)yun($,T)d$.
0 Q

By passing to the limit, we obtain

A%@MW@ﬁZLMQWM.
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We also have
T

/ (), T)da = / p(0, u(t)dt
Q 0

for every ¢ € D(2). Thus we obtain y,(T") = yp. Since the mapping u — fOT |u|?dt is lower
semicontinuous for the weak-star topology in L9(0,7"), and the mapping y — [, |y — ya|®dx is
lower semicontinuous for the weak-star topology in L*(Q), by classical arguments, we prove that
u is a solution of (P).

4.2 Optimality conditions
Theorem 4.2 If u is a solution of (P), then

T
| @) + Balu)*2u(e) (0 — w)(t)dt = 0 (34)
for every v € Ky, where p is the solution of

0 _ _ 0 o .
—a—ZZ—FAp—i-’y\qu ly=0inQ, % =0onX, p(T) = s|yu(T)—y4l 2(yu(T)—yd) n 9,
(45)

and y, 1s the solution of (2) corresponding to u.

Proof. Let v be in Ky, A > 0, denote by y, the solution of (1) corresponding to u + A(v — u).
The function w = y — vy, satisfies

0 0

—w—{—Aw—Fa)\w:)\(v—u)émo in @Q, 2% —0on 3, w(0) =0 in Q,

ot on g
where ay =y fol [Yu + 0(yx — yu )|~ 1df. From estimate (8), still true for the above equation, we
obtain

w27 0,752r ) < C1(Fsr, @) A|lv — ullpagor)

for every (7,7) satisfying (7). Therefore, when X tends to zero, y tends to y, in L7 (0,T; L™ (2))
(for all (7,r) satisfying (7)) and yx(7T') tends to y,(T") in L"(Q2) for all 1 < r < NJZ’q—IZ' In
particular y,(T') tends to y,(T) in L(2). It also follows that ay tends to a = ~y|y,[”™! in
LF(0,T; L*(Q)) for every (k, k) satisfying (6). Now we set z) = (yx — yu)/\ and we denote by z

the solution of

0
FAz Al T = 0 Wi, Q. =0 S 2(0)=0in
A

0z

ot

Thanks to Lemma 3.1, z)(T) tends to z(T") for the weak topology of L"(Q2), forall 1 < r < %.
If we set I(u) = [ |yu(T) — ya|*dz, from the convexity of the mapping y — [, |y — ya|®dz, it

follows
8/Q 90lT) = 9al*2(0u(T) — ya)r () < LA —A“)) — I(u)

< [ () = w2 (T) ~ ga)oa(T)do.
Q
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We set F'(u) = J(yu,u), thanks to the above calculations we obtain

T
P —u) = [ sliu(T) = vl *waT) = 5)=(Tdz + [ Balu()'2u(t) 0 — )00,

Now, if p is the solution of (45), we notice that |y,|”~! belongs to L’E(O, T; L*(Q)) for every (k, k)
satisfying (6), and that s|y(T) — ya|* 2(y(T) — yq) belongs to L7 () for 1 < o < N7 Nq

Therefore we can use the Green formula of Theorem 3.2 to complete the proof.

(N¢'=2)(s—1)"
O
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