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Abstract

We study optimal control problems for semilinear parabolic equations with pointwise
controls in a bounded domain of RN . When the nonlinear term in the state equation is of
the form |y|γ−1y, we prove the existence of solutions for such equations when 1 ≤ γ < N

N−2
.

We next study a control problem with a terminal observation. We prove existence of optimal
controls and a Pontryagin principle for these problems.
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1 Introduction

Let Ω be a bounded open subset in RN (N ≥ 2) with a boundary Γ of class C2 and A be a

second order differential operator defined by Ay = −
∑N

i,j=1 Di(aij(x)Djy)+a0(x)y, (Di denotes

the partial derivative with respect to xi). We consider the following boundary value problem :

∂y

∂t
+ Ay + Φ(x, t, y) = u(t)δx0

in Q,
∂y

∂nA
= 0 (or y = 0) on Σ, y(0) = y0 in Ω, (1)

where Q = Ω×]0, T [, Σ = Γ×]0, T [, δx0
denotes the Dirac measure at x0 ∈ Ω, the control variable

u belongs to some subset KU of Lq(0, T ), Φ is a Carathéodory function from Q×R into R. We

are interested in the control problem

(PΦ) inf{I(y, u) | (y, u) ∈ L1(0, T ;W 1,1(Ω)) × KU , (y, u) satisfies (1)},

where

I(y, u) = β1

∫
Q
|y − zd|

rdxdt + β2

∫
Ω
|y(T ) − yd|

sdx + β3

∫ T

0
|u|q(t)dt

(βi ≥ 0 for i = 1, 2, 3). For a linear equation (when Φ ≡ 0) and for q = s = 2, β1 = 0, this

problem has been studied by J. -L. Lions in [9], [10]. A characterization of controls u for which

yu(T ) (yu is the solution of (1) corresponding to u) belongs to L2(Ω) is given in [10], [15]. Still

in the case when Φ ≡ 0, this problem has also been studied by S. Anita [3] for β2 = β3 = 0,

q = ∞, r = 1, and KU is a closed convex bounded subset of L∞(0, T ) (the existence and the

characterization of solutions are established). The case of a nonlinear equation corresponding
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to Φ(x, t, y) ≡ y3 is addressed in [10], an approximate problem is considered (in which the

Dirac mass δx0
is replaced by the characteristic function of some ball B(x0, ε)), but optimality

conditions for solutions of (PΦ) by a passage to the limit are not carried out. Moreover, from

[5] we known that if u ≡ 1 and if Φ(x, t, y) ≡ |y|γ−1y, then equation (1) admits a weak solution

if and only if γ < N
N−2 . Even if what follows can be extended to nonlinearities more general

than |y|γ−1y, for clarity we consider only this case, with 1 ≤ γ < N
N−2 , and we treat the case of

homogeneous Neumann boundary conditions (the results of this paper can be easily adapted to

homogeneous Dirichlet boundary conditions). Thus the state equation is

∂y

∂t
+ Ay + |y|γ−1y = u(t)δx0

in Q,
∂y

∂nA
= 0 on Σ, y(0) = y0 in Ω. (2)

To well define the control problem we must indicate in which space y and y(T ) may be observed.

The answer clearly depends on q [10], [15]. We prove that if q > max(1, 2γ
2γ−Nγ+N+2 ), then y(T )

can be observed in Ls(Ω) for every 1 ≤ s < Nq′

Nq′−2 (q′ is the conjugate exponent to q). For

simplicity, we only consider a terminal observation. Thus we study the control problem

(P ) inf{J(y, u) | (y, u) ∈ L1(0, T ;W 1,1(Ω)) × KU , (y, u) satisfies (2)},

where

J(y, u) =

∫
Ω
|y(T ) − yd|

sdx + β

∫ T

0
|u|q(t)dt

(β ≥ 0 and yd is a given function in Ls(Ω)).

Even if, at least in the case u ∈ L∞(0, T ), the existence result for (2) can be deduced from

[5], the estimates and the regularity results of Theorem 2.1 seems to be new. Moreover our proof

is different. By using estimates on analytic semigroups (Lemma 2.1), we first prove estimates in

Lq′(0, T ;C(Ω̄)) for linear equations (Propositions 2.3, 2.5). Next with the so-called transposition

method and by taking advantage of the structure of the measure u(t)δx0
, we obtain estimates

for linear equations with right hand side of the form u(t)δx0
(Propositions 2.1, 2.2). Existence

and regularity results for (2) are stated in Theorem 2.1. Some results concerning the adjoint

equation are established in Section 3. The existence of solutions for the control problem and

optimality conditions are established in Section 4.

2 State Equation

In all the sequel for λ1 > 0 and λ2 nonnegative, we set λ1

λ2
= ∞ if λ2 = 0. Some constants Ci in

estimates in propositions depend on different exponents. Since the constant Ci may intervene in

a proof for different exponents, for clarity we sometimes indicate this dependence. The constants

K1 and K2 are the ones which intervene in semigroup estimates (Lemma 2.1).

(A1) - The coefficient a0 of A is positive and belongs to C(Ω̄). The coefficients aij belong to

C1,ν(Ω̄) with 0 < ν ≤ 1, aij = aji, and they satisfy (for some m0 > 0)

N∑
i,j=1

aij(x)ξiξj ≥ m0|ξ|
2 for every ξ ∈ RN and every x ∈ Ω̄.

(A2) - KU is a closed convex subset of Lq(0, T ), max(1, 2γ
2γ−Nγ+N+2) < q < ∞ and 1 < s < Nq′

Nq′−2 .
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Remark 2.1. It is well known that the condition a0 > 0 is not restrictive. Indeed if y is a

solution of (1), then z = e−λty is the solution of

∂z

∂t
+Az+λz+e−λtΦ(x, t, eλtz) = e−λtu(t)δx0

in Q,
∂z

∂nA
= 0 (or z = 0) on Σ, z(0) = y0 in Ω.

Remark 2.2. When 1 ≤ γ < N
N−2 and 1 < q, we can easily verify that the condition

2γ
2γ−Nγ+N+2 < q is equivalent to γ < (N+2)q′

Nq′−2 and also to q′ < 2γ
(Nγ−N−2)+ (where (·)+ =

Max (0, ·)). Thus the inequality γ < min( N
N−2 , (N+2)q′

Nq′−2 ) is assumed throughout the paper.

In the sequel we consider equations of the form (1) for Φ(x, t, y) = |y|γ−1y or Φ(x, t, y) =

a(x, t)y (where a belongs to some space Lk̃(0, T ;Lk(Ω))), and when uδx0
is replaced by f ∈

Lℓ(0, T ;Mb(Ω)), ℓ ≥ 1. For all these equations, we consider solutions in the sense of the follow-

ing definition.

Definition 2.1 Let f be in Lℓ(0, T ;Mb(Ω)). We shall say that y ∈ L1(0, T ;W 1,1(Ω)) is a weak

solution of the equation

∂y

∂t
+ Ay + Φ(x, t, y) = f in Q,

∂y

∂nA
= 0 on Σ, y(0) = y0 in Ω,

if Φ(·, y(·)) belongs to L1(Q) and if

∫
Q
(−y

∂φ

∂t
+

N∑
i,j=1

aij(x)DjyDiφ + Φ(x, t, y)φ)dxdt =

∫ T

0
〈f(t), φ(t)〉Mb(Ω)×Cb(Ω)dt +

∫
Ω

φ(0)y0dx

for every φ ∈ C1(Q̄) such that φ(T ) = 0 on Ω̄. (〈f(t), φ(t)〉Mb(Ω)×Cb(Ω) denotes the integral over

Ω of φ(t) for the measure f(t).)

To prove the existence of a weak solution for equation (2), we need some estimates for linear

equations established below.

2.1 Estimates for Linear Equations

First recall some results for analytic semigroups. We denote by Ã the operator defined by

D(Ã) = {y ∈ C2(Ω̄) |
∂y

∂nA
= 0 on Γ}, Ãy = Ay.

For 1 ≤ ℓ < ∞, we denote by Aℓ the closure of Ã in Lℓ(Ω). The operator −Aℓ is the generator of

a strongly continuous analytic semigroup Sℓ(t)t≥0 in Lℓ(Ω) [1]. For 1 < ℓ < ∞ the domain of Aℓ

is D(Aℓ) = {y ∈ W 2,ℓ(Ω) | ∂y
∂nA

= 0 on Γ}. For 1 = ℓ, D(A1) is the set of functions y in L1(Ω)

such that there exists z ∈ L1(Ω) satisfying
∫
Ω z(x)v(x)dx =

∫
Ω y(x)Av(x)dx for all v ∈ D(Ã).

For any 1 ≤ ℓ < ∞, 0 belongs to the resolvent of −Aℓ and there exists δ > 0 such Reσ(Aℓ) ≥ δ

(it is a consequence of (A1) and of the fact that σ(Aℓ) is independent of ℓ). Therefore, for α > 0,

there exists a constant K0 = K0(ℓ, α) such that

‖Aα
ℓ Sℓ(t)ϕ‖Lℓ(Ω) ≤ K0t

−α‖ϕ‖Lℓ(Ω),

for every t > 0 and every ϕ ∈ Lℓ(Ω) (see [8], [12], Aα
ℓ is the α-power of Aℓ). Thanks to this

result the following lemma can be established. The first part of Lemma 2.1 is stated in [1], the

second part is established in [14].
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Lemma 2.1 For every 1 ≤ ℓ ≤ λ ≤ ∞ with ℓ < ∞, there exists a constant K1 = K1(λ, ℓ) such

that

‖Sℓ(t)ϕ‖Lλ(Ω) ≤ K1t
−N

2
( 1

ℓ
− 1

λ
)‖ϕ‖Lℓ(Ω) (3)

for every ϕ ∈ Lℓ(Ω) and every t > 0. For every 1 ≤ ℓ ≤ λ ≤ ∞ with ℓ < ∞, and every α > 0,

there exists a constant K2 = K2(λ, ℓ, α) such that

‖Aα
ℓ Sℓ(t)ϕ‖Lλ(Ω) ≤ K2t

−N
2

( 1

ℓ
− 1

λ
)−α‖ϕ‖Lℓ(Ω) (4)

for every ϕ ∈ Lℓ(Ω) and every t > 0.

We consider the linear equation

∂y

∂t
+ Ay + ay = f in Q,

∂y

∂nA
= 0 on Σ, y(0) = y0 in Ω, (5)

where f belongs to Lq(0, T ;Mb(Ω)), and a belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying

q

γ − 1
≤ k̃ < ∞, 1 ≤ k <

N

(N − 2)(γ − 1)
,

N

2
<

1

q′
+

N

2(γ − 1)k
+

1

(γ − 1)k̃
if γ > 1, (6)

and 1 ≤ k̃ < ∞, 1 ≤ k < ∞ if γ = 1.

We look for estimates for the solution y of (5) in Lr̃(0, T ;Lr(Ω)) with

q ≤ r̃ ≤ ∞, 1 < r <
N

N − 2
and

N

2
<

1

q′
+

N

2r
+

1

r̃
. (7)

The following lemma will be often used in calculations throughout the paper.

Lemma 2.2 If a function a belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying (6), and if

y belongs to Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7), then ay belongs to Lρ(Q) for every

1 ≤ ρ < inf( N
γ(N−2) ,

(N+2)q′

γ(Nq′−2)). If a sequence (an)n is bounded in Lk̃(0, T ;Lk(Ω)) for every

(k̃, k) satisfying (6), and if (yn)n is bounded in Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7),

then (anyn)n is bounded in Lρ(Q) for every 1 ≤ ρ < inf( N
γ(N−2) ,

(N+2)q′

γ(Nq′−2)).

Proof. If q ≥ N
N−2 , then for k̃ = q

γ−1 , r̃ = q, we can verify that ay belongs to Lρ̃(0, T ;Lρ(Ω))

for ρ̃ = q
γ and for every 1 ≤ ρ < N

γ(N−2) . Therefore the first part of the lemma is proved in this

case. If q < N
N−2 , then we can verify that ay belongs to Lρ(Q) for every 1 ≤ ρ < (N+2)q′

γ(Nq′−2) . The

second part of the lemma can be proved in the same way.

Proposition 2.1 If a is a nonnegative function belonging to Lk̃(0, T ;Lk(Ω)) for every (k̃, k)

satisfying (6), if f belongs to Lq(0, T ;Mb(Ω)) and if y0 belongs to L
Nq′

Nq′−2 (Ω), then equation

(5) admits a unique weak solution in L1(0, T ;W 1,1(Ω)), this solution belongs to Lr̃(0, T ;Lr(Ω))

for every (r̃, r) satisfying (7) and there exists a constant C1 = C1(r̃, r, q), not depending on the

function a, such that

‖y‖Lr̃(0,T ;Lr(Ω)) ≤ C1(‖f‖Lq(0,T ;Mb(Ω)) + ‖y0‖
L

Nq′

Nq′−2 (Ω)

). (8)

In particular for r̃ = ∞ and for every 1 < r < Nq′

Nq′−2 , y belongs to C([0, T ];Lr
w(Ω)) and we have

‖y‖L∞(0,T ;Lr(Ω)) ≤ C1(∞, r, q)(‖f‖Lq (0,T ;Mb(Ω)) + ‖y0‖
L

Nq′

Nq′−2 (Ω)

). (9)

(C([0, T ];Lr
w(Ω)) denotes the space of continuous functions from [0, T ] into Lr(Ω) endowed with

its weak topology.)
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Proposition 2.2 Let f be in Lℓ(0, T ;Mb(Ω)). The equation

∂y

∂t
+ Ay = f in Q,

∂y

∂nA
= 0 on Σ, y(0) = 0 in Ω. (10)

admits a unique solution in L1(0, T ;W 1,1(Ω)), it belongs to Lδ′(0, T ;W 1,d′(Ω)) for every (δ, d, ℓ)

satisfying

1 ≤ δ ≤ ℓ′ ≤ ∞, N < d < ∞,
N

2d
+

1

δ
<

1

2
+

1

ℓ′
, (11)

and there exists a constant C2 = C2(δ, d, ℓ) such that

‖y‖Lδ′ (0,T ;W 1,d′(Ω)) ≤ C2‖f‖Lℓ(0,T ;Mb(Ω)). (12)

For every y0 in L
Nq′

Nq′−2 (Ω), the equation

∂y

∂t
+ Ay = 0 in Q,

∂y

∂nA
= 0 on Σ, y(0) = y0 in Ω, (13)

admits a unique solution in L1(0, T ;W 1,1(Ω)), it belongs to Lδ′(0, T ;W 1,d′(Ω)) for every (δ, d)

satisfying

2 < δ < ∞, 1 < d ≤
Nq′

2
,

N

2d
+

1

δ
<

1

2
+

1

q′
, (14)

and there exists a constant C3 = C3(δ, d, q) such that

‖y‖Lδ′ (0,T ;W 1,d′(Ω)) ≤ C3‖y0‖
L

Nq′

Nq′−2 (Ω)

. (15)

Propositions 2.1 and 2.2 are proved thanks to the so-called transposition method. For this, we

prove some estimates in the propositions below.

Proposition 2.3 Consider the following terminal boundary value problem

−
∂z

∂t
+ Az + az = g in Q,

∂z

∂nA
= 0 on Σ, z(T ) = 0 in Ω. (16)

We suppose that a is a nonnegative function belonging to Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satis-

fying (6), and g belongs to Lδ(0, T ;Ld(Ω)). Then the weak solution of equation (16) belongs to

Lℓ′(0, T ;C(Ω̄)) for every (δ, d, ℓ) satisfying

1 ≤ δ ≤ ℓ′ < ∞,
N

2
< d < ∞,

N

2d
+

1

δ
< 1 +

1

ℓ′
, (17)

and there exists a constant C4 = C4(ℓ, δ, d) not depending on the function a such that

‖z‖Lℓ′ (0,T ;L∞(Ω)) ≤ C4‖g‖Lδ(0,T ;Ld(Ω)). (18)

Proof. 1 - We first consider the case when a = 0 and when g is regular. We denote by ẑ the

solution of (16) corresponding to a = 0. As in [13], [14], we use a duality method. Let φ be in

D(Ω) and y be the solution of the Cauchy problem

−
∂y

∂t
+ Ay = 0 in Q,

∂y

∂nA
= 0 on Σ, y(T ) = φ in Ω.
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Since g is regular, by a straightforward calculation we obtain

∫
Ω

φ(x)ẑ(x, t)dx = −

∫ T

t

d

dτ
(

∫
Ω

y(x, T + t − τ)ẑ(x, τ)dx)dτ

=

∫ T

t

∫
Ω
(Ay(x, T +t−τ)ẑ(x, τ)−y(x, T +t−τ)Aẑ(x, τ))dxdτ +

∫ T

t

∫
Ω

y(x, T +t−τ)g(x, τ)dxdτ

=

∫ T

t

∫
Ω

y(x, T + t − τ)g(x, τ)dxdτ. (19)

Thanks to (3) we have

‖y(t)‖Ld′ (Ω) ≤ K1(d
′, 1)(T − t)−

N
2d ‖φ‖L1(Ω) (20)

for all 1 ≤ d ≤ ∞ and all φ ∈ D(Ω). From (19) and (20), it follows

‖ẑ(t)‖L∞(Ω) = Sup{

∫
Ω

φ(x)ẑ(x, t)dx | ‖φ‖L1(Ω) = 1} ≤ K1

∫ T

t
(T + t − τ)−

N
2d ‖g(τ)‖Ld(Ω)dτ.

Notice that t → ‖g(t)‖Ld(Ω) belongs to Lδ(0, T ) and t → t−
N
2d belongs to Li(0, T ) for every

1 ≤ i < 2d/N . If we set ĝ(t) = ‖g(t)‖Ld(Ω)χ]−∞,T ](t), ĥ(t) = (T + t)−
N
2d χ]−∞,T ](T + t) (where

χ]−∞,T ] is the characteristic function of ]−∞, T ]), then
∫ T
t (T +t−τ)−

N
2d ‖g(τ)‖Ld(Ω)dτ = ĝ∗ĥ(t).

Thus t →
∫ T
t (T + t − τ)−

N
2d ‖g(τ)‖Ld(Ω)dτ belongs to Lℓ′(0, T ) if 1

ℓ′ = 1
δ + 1

i − 1. Therefore, ẑ

belongs to Lℓ′(0, T ;L∞(Ω)) for every ℓ′ satisfying (17) and we have

‖ẑ‖Lℓ′ (0,T ;L∞(Ω)) ≤ C̃‖g‖Lδ(0,T ;Ld(Ω))

for some constant C̃ = C̃(ℓ, δ, d). The same estimate can be obtained if g is not regular. For

that it is sufficient to use an approximation process.

2 - Now we suppose that a is regular and nonnegative. We set g+ = max(0, g), g− = max(0,−g),

we denote by ẑ1 (resp. ẑ2) the solution of (16) corresponding to a = 0 and to g+ (resp. g−) and

by z1 (resp. z2) the solution of (16) corresponding to g+ (resp. g−). The function w = z1 − ẑ1

is the solution of

−
∂w

∂t
+ Aw + aw = −aẑ1 in Q,

∂w

∂nA
= 0 on Σ, w(T ) = 0 in Ω.

Since aẑ1 belongs to L1(Q) and is nonnegative, thanks to a classical comparison theorem, we

obtain 0 ≤ z1 ≤ ẑ1 a.e. on Q, and with Step 1 we have

‖z1‖Lℓ′ (0,T ;L∞(Ω)) ≤ ‖ẑ1‖Lℓ′(0,T ;L∞(Ω)) ≤ C̃‖g+‖Lδ(0,T ;Ld(Ω)).

We can prove a similar estimate for z2 and we have

‖z‖Lℓ′ (0,T ;L∞(Ω)) ≤ 2C̃‖g‖Lδ(0,T ;Ld(Ω)).

Notice that C̃ is the constant of Step 1 and it is independent of a. Moreover we can easily

verify that z belongs to Lℓ′(0, T ;C(Ω̄)). Indeed if g is regular the result is obvious, if not, we

can consider a sequence (gn)n of regular functions converging to g in Lδ(0, T ;Ld(Ω)). If zn is

the solution of (16) corresponding to gn, then with the previous estimate we see that (zn)n is a
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Cauchy sequence in Lℓ′(0, T ;C(Ω̄)), converging to z (the solution of (16) corresponding to g) in

Lℓ′(0, T ;C(Ω̄)).

3 - We suppose that g belongs to L∞(Ω) and that a belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k)

satisfying (6). Let (an)n be a sequence of nonnegative regular functions converging to a in

Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying (6). Denote by zn the solution of

−
∂z

∂t
+ Az + anz = g in Q,

∂z

∂nA
= 0 on Σ, z(T ) = 0. (21)

The sequence (zn)n is bounded in Lℓ′(0, T ;L∞(Ω)). The sequence (zn)n is bounded in L∞(Q)

(because g ∈ L∞(Q)), the sequence (anzn)n is bounded in Lk̃(0, T ;Lk(Ω)) for every (k̃, k)

satisfying (6). The sequence (zn)n is also bounded in Ls(0, T ;W 1,r(Ω)) for N
2 + 1

2 < 1
s + N

2r

[13], therefore the vector distribution dzn

dt is bounded in Lλ(0, T ; (W 1,σ(Ω))′) for σ > 1 big

enough and some λ > 1. Thus from Aubin Theorem ([11] Theorem 1.5.1), we deduce that (zn)n
is relatively compact in L1(Q). Thus we can pass to the limit in the variational formulation

satisfied by zn and we see that (zn)n converges to the weak solution z of (16) for the weak-star

topology of Lℓ′(0, T ;L∞(Ω)), and that z satisfies (18) with C4 = 2C̃. To prove that z belongs

to Lℓ′(0, T ;C(Ω̄)), we notice that z ∈ L∞(Q) (because g ∈ L∞(Q)) and that

−
∂z

∂t
+ Az = −az + g in Q,

∂z

∂nA
= 0 on Σ, z(T ) = 0. (22)

Thanks to Step 1, z belongs to Lλ(0, T ;C(Ω̄)) for every λ ≥ 1 satisfying N
2k + 1

k̃
< 1 + 1

λ , where

(k̃, k) satisfies (6) and k̃ ≤ λ (the triplet (k̃, k, λ) exists because γ < N
N−2 ). We have proved

that z belongs to Lλ(0, T ;C(Ω̄)) ∩ Lℓ′(0, T ;L∞(Ω)), therefore z belongs to Lℓ′(0, T ;C(Ω̄)).

4 - We suppose that g belongs to Lδ(0, T ;Ld(Ω)) and that a belongs to Lk̃(0, T ;Lk(Ω)) for

every (k̃, k) satisfying (6). Let (gn)n be a sequence of regular functions converging to g in

Lδ(0, T ;Ld(Ω)) for every (δ, d, ℓ) satisfying (17). Let zn be the solution of (16) corresponding

to gn. Thanks to estimate (18) proved in Step 3 for zn, we can prove that (zn)n is a Cauchy

sequence in Lℓ′(0, T ;C(Ω̄)), that it converges in Lℓ′(0, T ;C(Ω̄)) to the weak solution z of (16)

and that (18) is satisfied.

Proposition 2.4 Consider the following equation

−
∂z

∂t
+ Az = −div ξ in Q,

∂z

∂nA
= 0 on Σ, z(T ) = 0 in Ω. (23)

Suppose that ξ ∈ (D(Q))N . Then the weak solution of equation (23) belongs to Lℓ′(0, T ;C(Ω̄))

for every (δ, d, ℓ) satisfying (11), and there exists a constant C6 = C6(q, δ, d) not depending on

a such that

‖z‖Lℓ′ (0,T ;L∞(Ω)) ≤ C6‖ξ‖Lδ(0,T ;(Ld(Ω))N ) (24)

for every ξ ∈ (D(Q))N .

Proof. We denote by y the solution of the Cauchy problem

−
∂y

∂t
+ Ay = 0 in Q,

∂y

∂nA
= 0 on Σ, y(0) = φ in Ω.
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As in the proof of Proposition 2.3, by a direct calculation we have

∫
Ω

φ(x)z(x, t) =

∫ T

t

∫
Ω

Dy(x, T + t − τ)ξ(x, τ)dxdτ. (25)

From [8], Theorem 1.6.1, we know that the domain of Aα
d′ is continuously imbedded in W 1,d′(Ω)

if α > 1
2 . Thus from (4) we deduce

‖y(t)‖W 1,d′ (Ω) ≤ C̃‖Aα
d′y(t)‖Ld′ (Ω) ≤ C̃K2(d

′, 1)(T − t)−
N
2d

−α‖φ‖L1(Ω) (26)

for every 1
2 < α < 1. From (25) and (26), it follows

‖z(t)‖L∞(Ω) ≤ C̃K2

∫ T

t
(T + t − τ)−

N
2d

−α‖ξ(τ)‖(Ld(Ω))N dτ.

Notice that t → ‖ξ(t)‖(Ld(Ω))N belongs to Lδ(0, T ) and that, for every 1 ≤ i < 2d
N+d , we can

choose α > 1
2 such that t → t−

N
2d

−α belongs to Li(0, T ). Therefore, still by using integrability

results for convolution products (as in the proof of Proposition 2.3), we claim that t →
∫ T
t (T +

t− τ)−
N
2d

−α‖g(τ)‖(Ld(Ω))N dτ belongs to Lℓ′(0, T ) for every ℓ′ ≥ δ satisfying 1
2 + 1

ℓ′ > 1
δ + N

2d and

that

‖z‖Lℓ′ (0,T ;L∞(Ω)) ≤ C6‖ξ‖Lδ(0,T ;(Ld(Ω))N )

for C6 = C6(ℓ, δ, d). Since ξ is regular, it is clear that z belongs to Lℓ′(0, T ;C(Ω̄)).

Proof of Proposition 2.1. 1 - We first prove the estimate in Lr̃(0, T ;Lr(Ω)) in the case

when f is regular (for example f ∈ C(Q̄)) and y0 ≡ 0. Let z be the solution of (16) correspond-

ing to g ∈ Lr̃′(0, T ;Lr′(Ω)). If (r̃, r) satisfies (7), we see that r̃′ ≤ q′, r′ > N
2 and 1+ 1

q′ > N
2r′ +

1
r̃′ ,

and Proposition 2.3 yields

‖z‖Lq′ (0,T ;L∞(Ω)) ≤ C4‖g‖Lr̃′ (0,T ;Lr′(Ω)).

Let y be the solution of (5) corresponding to y0 ≡ 0, by a Green formula, we have

∫
Q

ygdxdt =

∫
Q

fzdxdt.

For every (r̃, r) verifying (7), we have

‖y‖Lr̃(0,T ;Lr(Ω)) = sup{|

∫
Q

ygdxdt| | ‖g‖Lr̃′ (0,T ;Lr′(Ω)) = 1} ≤ C4‖f‖Lq(0,T ;L1(Ω))

for every f ∈ C(Q̄). In particular for r̃ = ∞ and every r < Nq′

Nq′−2 we obtain

‖y‖L∞(0,T ;Lr(Ω)) ≤ C4‖f‖Lq(0,T ;L1(Ω)).

2 - Suppose that f belongs to Lq(0, T ;Mb(Ω)), and let (fn)n be a sequence of regular functions

converging to f in the following sense

limn

∫
Q

fnφdxdt =

∫ T

0
〈f(t), φ(t)〉Mb(Ω)×Cb(Ω)dt for every φ ∈ C(Q̄),

8



limn‖fn‖Lq(0,T ;L1(Ω)) = ‖f‖Lq(0,T ;Mb(Ω)) and ‖fn(t)‖L1(Ω) ≤ ‖f(t)‖Mb(Ω) on [0, T ].

Let yn be the solution of

∂y

∂t
+ Ay + ay = fn in Q,

∂y

∂nA
= 0 on Σ, y(0) = 0 in Ω. (27)

Thanks to the estimate in Step 1, we obtain

‖yn‖Lr̃(0,T ;Lr(Ω)) ≤ C4‖fn‖Lq(0,T ;L1(Ω)). (28)

From (yn)n, we can extract a subsequence, still indexed by n, such that (yn)n converges to y

for the weak-star topology of Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7). By passing to the

limit in the variational formulation of (27), we can easily verify that y is the solution of (5)

corresponding to y0 ≡ 0. By passing to the limit in (28), we obtain (8). Since the solution of (5)

is unique, the original sequence (yn)n converges to y weakly-star in Lr̃(0, T ;Lr(Ω)), for every

(r̃, r) satisfying (7).

3 - Now we prove that the solution y of (5) corresponding to y0 ≡ 0 belongs to C([0, T ];Lr
w(Ω)).

Since y is the weak-star limit of (yn)n in L∞(0, T ;Lr(Ω)) for every 1 < r < Nq′

Nq′−2 , and since

‖fn(t)‖L1(Ω) ≤ ‖f(t)‖Mb(Ω)

for almost every t ∈ [0, T ] and every n, thanks to [4] Theorem 2, we can prove that y ∈

C([0, T ];L1(Ω)). We already know that y belongs to L∞(0, T ;Lr(Ω)) for every 1 < r < Nq′

Nq′−2 ,

therefore y belongs to belongs to C([0, T ];Lr
w(Ω)) for every 1 < r < Nq′

Nq′−2 (see for example [7],

Chapter 18, Lemma 5.6).

4 - If ŷ is the solution of

∂y

∂t
+ Ay = 0 in Q,

∂y

∂nA
= 0 on Σ, y(0) = y0 in Ω, (29)

then

‖ŷ(t)‖Lr(Ω) ≤ K1(r,
Nq′

Nq′ − 2
)t

−N
2

(Nq′−2

Nq′
− 1

r
)
‖y0‖

L
Nq′

Nq′−2 (Ω)

for every Nq′

Nq′−2 ≤ r < ∞. Therefore ŷ belongs to Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying

together Nq′

Nq′−2 ≤ r < ∞ and (7), and we have

‖ŷ‖Lr̃(0,T ;Lr(Ω)) ≤ C‖y0‖
L

Nq′

Nq′−2 (Ω)

for some C = C(r̃, r, q). Moreover ŷ belongs to C([0, T ];L
Nq′

Nq′−2 (Ω)). Thus the estimate

‖ŷ‖Lr̃(0,T ;Lr(Ω)) ≤ C‖y0‖
L

Nq′

Nq′−2 (Ω)

is true for all (r̃, r) satisfying (7).

5 - The estimate of Step 4 can be proved in the case when a 6= 0 and a is regular, by using a

comparison principle, as in Step 2 of the proof of Proposition 2.3.
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6 - Now, we suppose that a belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying (6), and that

y0 belongs to C(Ω̄). Let (an)n be a sequence of nonnegative regular functions, converging to a

for every (k̃, k) satisfying (6). Let yn be the solution of (5) corresponding to an and to f ≡ 0,

and let y be the solution of (5) corresponding to a and to f ≡ 0. By arguing as in Step 3 of the

proof of Proposition 2.3, we can verify that (yn)n converges to y for the weak-star topology of

Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7), and that (15) is satisfied. Therefore y belongs to

L∞(0, T ;L
Nq′

Nq′−2 (Ω)). We notice that (yn)n obeies

∂yn

∂t
+ Ayn + ayn = (a − an)yn in Q,

∂yn

∂nA
= 0 on Σ, yn(0) = y0 in Ω

and that ((a − an)yn)n tends to zero in Lρ(Q) for some ρ > 1 (it is a consequence of Lemma

2.2). As in Step 3, we can prove that y belongs to C([0, T ];L1(Ω)). Therefore y belongs to

C([0, T ];L
Nq′

Nq′−2

w (Ω)).

Remark 2.3. With the notation of step 6 in the previous proof, we can write

∂(yn − ym)

∂t
+ A(yn − ym) + an(yn − ym) = (am − an)ym in Q,

∂(yn − ym)

∂nA
= 0 on Σ, (yn − ym)(0) = 0 in Ω.

Thanks to the method developed in the proof of Proposition 2.3, we can prove that

‖yn − ym‖Lρ̃(0,T ;Lρ(Ω)) ≤ C‖(an − am)ym‖Lσ̃(0,T ;Lσ(Ω))

with σ ≤ ρ, σ̃ ≤ ρ̃ and N
2σ + 1

σ̃ < 1
ρ̃ + N

2ρ + 1. In particular for ρ̃ = ∞, 1
k + 1

r = 1
σ , 1

k̃
+ 1

r̃ = 1
σ̃ ,

σ < N
(N−2)γ , where (k̃, k) obeies (6) and (r̃, r) obeies (7), we obtain

‖yn − ym‖C([0,T ];Lρ(Ω)) ≤ C‖(an − am)‖
Lk̃(0,T ;Lk(Ω))

‖ym‖Lr̃(0,T ;Lr(Ω)),

with Nγ
2 − γ

q′ < N
2σ + 1

σ̃ < N
2ρ +1. Therefore (yn)n is a Cauchy sequence in C([0, T ];Lρ(Ω)), when

Nγ
2 − γ

q′ < N
2ρ + 1. This condition is in particular satisfied for ρ = 1 (because γ < q′(N+2)

Nq′−2 ) but

not in general for ρ = Nq′

Nq′−2 .

Proof of Proposition 2.2. 1 - We first prove the estimate (12) in the case when f ∈ C(Q̄).

Let z be the solution of (23). If (δ, d, ℓ) satisfies (11), from Proposition 2.4, we obtain

‖z‖Lℓ′ (0,T ;L∞(Ω)) ≤ C6‖ξ‖Lδ(0,T ;(Ld(Ω))N )

for every ξ ∈ (D(Q))N . Let y be the solution of (10), with a Green formula we have

∫
Q

Dyξdxdt =

∫
Q

fzdxdt.

It follows

‖Dy‖Lδ′ (0,T ;(Ld′ (Ω))N ) = Σisup{|

∫
Q

Diyξidxdt| | ‖ξi‖Lδ(0,T ;Ld(Ω)) = 1} ≤ NC6‖f‖Lℓ(0,T ;L1(Ω))
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for every f ∈ C(Q̄). We finally obtain (12) with this estimate and with Proposition 2.1.

2 - Suppose that f belongs to Lℓ(0, T ;Mb(Ω)). Let (fn)n be a sequence of regular functions

converging to f in the following sense

limn

∫
Q

fnφdxdt =

∫ T

0
〈f(t), φ(t)〉Mb(Ω)×Cb(Ω)dt for every φ ∈ C(Q̄)

and limn‖fn‖Lℓ(0,T ;L1(Ω)) = ‖f‖Lℓ(0,T ;Mb(Ω)).

Let yn be the solution of

∂y

∂t
+ Ay = fn in Q,

∂y

∂nA
= 0 on Σ, y(0) = 0 in Ω. (30)

Thanks to estimate (12) proved in Step 1 for regular functions, we obtain

‖yn‖Lδ′ (0,T ;W 1,d′(Ω)) ≤ C2‖fn‖Lℓ(0,T ;L1(Ω)). (31)

From (yn)n, we can extract a subsequence, still indexed by n, such that (yn)n converges to y for

the weak-star topology of Lδ′(0, T ;W 1,d′(Ω)) for every (δ, d) satisfying (11). By passing to the

limit in the variational formulation of (30), we can easily verify that y is the solution of (10).

We obtain (12) by passing to the limit in (31).

3 - Let y be the solution of

∂y

∂t
+ Ay = 0 in Q,

∂y

∂nA
= 0 on Σ, y(0) = y0 in Ω.

From [8] Theorem 1.6.1, the domain of Aα
d′ is continuously imbedded in W 1,d′(Ω) if α > 1

2 . With

Lemma 2.1, we obtain

‖y(t)‖W 1,d′ (Ω) ≤ C‖Aα
d′S(t)y0‖Ld′ (Ω) ≤ CK2t

−N
2

(Nq′−2

Nq′
− 1

d′
)−α

‖y0‖
L

Nq′

Nq′−2 (Ω)

if Nq′

Nq′−2 ≤ d′ < ∞. For every (d, δ) satisfying (14), we can choose α > 1
2 to have

1

2
+

N

2
−

1

q′
< α +

N

2
−

1

q′
<

N

2d′
+

1

δ′
.

Therefore

‖y‖Lδ′ (0,T ;W 1,d′(Ω)) ≤ C‖y0‖
L

Nq′

Nq′−2 (Ω)

.

This completes the proof.

2.2 State Equation

Theorem 2.1 The state equation (2) admits a unique solution, it belongs to Lr̃(0, T ;Lr(Ω)) for

every (r̃, r) satisfying (7) and

‖y‖Lr̃(0,T ;Lr(Ω)) ≤ C1(‖u‖Lq(0,T ) + ‖y0‖
L

Nq′

Nq′−2 (Ω)

)
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(where C1 = C1(r̃, r, q) is the constant in (8)). The solution of (2) also belongs to C([0, T ];Lr
w(Ω))

for every 1 ≤ r < Nq′

Nq′−2 and we have

‖y‖L∞(0,T ;Lr(Ω)) ≤ C1(∞, r, q)(‖u‖Lq (0,T ) + ‖y0‖
L

Nq′

Nq′−2 (Ω)

).

It also belongs to Lδ′
1(0, T ;W 1,d′

1(Ω)) + Lδ′
2(0, T ;W 1,d′

2(Ω)) for every (δ1, d1) satisfying

1 < δ1 ≤
q

q − γ
, N < d1 < ∞,

N

2d1
+

1

δ1
<

3

2
−

N(γ − 1)

2
+

γ

q′
, (32)

and every (δ2, d2) satisfying (14). There exists a constant C7 = C7(δ1, d1, q) such that

‖y − ζ‖
L

δ′
1 (0,T ;W

1,d′
1(Ω))

+ ‖ζ‖
L

δ′
2 (0,T ;W

1,d′
2(Ω))

≤ C7(‖u‖Lq(0,T ) + ‖u‖γ
Lq(0,T ) + ‖y0‖

γ

L
Nq′

Nq′−2 (Ω)

) + C3‖y0‖
L

Nq′

Nq′−2 (Ω)

,

where C3 is the constant in estimate (15) and ζ is the solution of

∂ζ

∂t
+ Aζ = 0 in Q,

∂ζ

∂nA
= 0 on Σ, ζ(0) = y0 in Ω.

Remark 2.4. Since γ < N
N−2 < N+1

N−2 , we have q−γ
q < 3

2 −
N(γ−1)

2 + γ
q′ . Therefore the set of pairs

(δ1, d1) satisfying (32) is nonempty.

Proof. First notice that the uniqueness can be proved as in [6]. Indeed, since the coefficients of

the operator A are regular, if y is a solution of (2) in the sense of Definition 2.1, it also satisfies

∫
Q
(−y

∂φ

∂t
+ yAφ + |y|γ−1yφ)dxdt =

∫ T

0
u(t)φ(x0, t)dt +

∫
Ω

φ(0)y0dx

for every φ ∈ C2,1(Q̄) such that φ(T ) = 0 on Ω̄ and ∂φ
∂nA

= 0 on Σ.

Let (un)n be a sequence of regular functions converging to u in Lq(0, T ) such that ‖un‖Lq(0,T ) ≤

‖u‖Lq(0,T ), let (vn)n be a sequence of nonnegative regular functions converging to δx0
for the

narrow topology of Mb(Ω) and such that ‖vn‖L1(Ω) = 1. We denote by yn the solution of (2)

corresponding to unvn.

1 - Estimate in Lr̃(0, T ;Lr(Ω)). By setting an = |yn|
γ−1, Proposition 2.1 yields

‖yn‖Lr̃(0,T ;Lr(Ω)) ≤ C1(‖u‖Lq(0,T ) + ‖y0‖
L

Nq′

Nq′−2 (Ω)

)

for every n and every (r, r̃) satisfying (7). In particular, the sequence (yn)n is bounded in Lr(Q)

for all 1 ≤ r < inf( (N+2)q′

Nq′−2 , N
N−2) (see Lemma 2.2). Since γ < inf( (N+2)q′

(Nq′−2) ,
N

N−2), for every

1 ≤ ρ < inf( (N+2)q′

γ(Nq′−2) ,
N

γ(N−2) ), (yγ
n)n is bounded in Lρ(Q) and

‖yγ
n‖Lρ(Q) ≤ C̃C1(γρ, γρ, q)γ(‖u‖Lq(0,T ) + ‖y0‖

L
Nq′

Nq′−2 (Ω)

)γ , (33)

where the constant C̃ only depends on the measure of Q. Moreover, still with Proposition 2.1,

for every ℓ ≥ 1 satisfying γℓ ≥ q and 1
q′ + 1

γℓ > N(γ−1)
2γ , we have

‖yγ
n‖Lℓ(0,T ;L1(Ω)) ≤ C1(γℓ, γ, q)γ(‖u‖Lq(0,T ) + ‖y0‖

L
Nq′

Nq′−2 (Ω)

)γ . (34)
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2 - Estimate in Lδ′
1(0, T ;W 1,d′

1(Ω)) + Lδ′
2(0, T ;W 1,d′

2(Ω)). Let ξn be the solution of

∂ξn

∂t
+ Aξn = un vn − |yn|

γ−1yn in Q,
∂ξn

∂nA
= 0 on Σ, ξn(0) = 0 in Ω.

Then we have yn = ξn + ζ. With Proposition 2.2, for every (δ1, d1, ℓ) satisfying (11), we obtain

‖ξn‖
L

δ′
1 (0,T ;W

1,d′
1(Ω))

≤ C2(δ1, d1, ℓ)(‖u‖Lℓ(0,T ) + ‖yγ
n‖Lℓ(0,T ;L1(Ω))) (35)

for every n. If γ < N
N−2 , we have 1 + γ

q′ −
N(γ−1)

2 ≥ q−γ
q . Therefore, if (32) is satisfied, there

exists ℓ ≥ q
γ such that 3

2 + γ
q′ −

N(γ−1)
2 ≥ 3

2 − 1
ℓ = 1

2 + 1
ℓ′ > N

2d1
+ 1

δ1
and 1 < δ1 ≤ ℓ′ ≤ q

q−γ .

Thanks to (34), (35), for every (δ1, d1) satisfying (32), there exists a constant C7 = C7(δ1, d1, q)

such that

‖ξn‖
L

δ′
1 (0,T ;W

1,d′
1(Ω))

≤ C7(‖u‖Lq(0,T ) + ‖u‖γ
Lq(0,T ) + ‖y0‖

γ

L
Nq′

Nq′−2 (Ω)

)

for every n. With Proposition 2.2, we also have

‖ζ‖
L

δ′
2 (0,T ;W

1,d′
2(Ω))

≤ C3‖y0‖
L

Nq′

Nq′−2 (Ω)

for every (δ2, d2) satisfying (14).

3 - Estimates of dyn

dt . From the previous estimates we can prove that dyn

dt is a distribution with

values in (W 1,σ(Ω))′ and that (dyn

dt )n is bounded in Lℓ(0, T ; (W 1,σ(Ω))′) for some ℓ > 1 and for

σ big enough. Thus, from Aubin Theorem [11] Theorem 1.5.1, the sequence (yn)n is relatively

compact in L1(Q).

4 - Passage to the limit. From (yn)n we can extract a subsequence, still denoted by (yn)n, weakly-

star convergent to y in Lr̃(0, T ;Lr(Ω)) for every (r, r̃) satisfying (7), and such that (yn − ζ)n
weakly converges to y − ζ in Lδ′

1(0, T ;W 1,d′
1(Ω)) for every (δ1, d1) satisfying (32). Since (yn)n is

relatively compact in L1(Q), we can also suppose that (yn)n converges to y almost everywhere

in Q. Because of (33), we can easily prove (with Hölder’s inequality and Vitali’s Theorem) that

(|yn|
γ−1yn)n converges to |y|γ−1y in Lρ(Q) for all 1 ≤ ρ < inf( (N+2)q′

γ(Nq′−2) ,
N

γ(N−2) ). Now by passing

to the limit in the variational formulation satisfied by yn, we see that y is a solution of (2). The

estimates on y clearly follow from estimates on yn proved in Step 1 and Step 2.

3 Adjoint Equation

3.1 Adjoint Equation

We consider the following terminal boundary value problem

−
∂p

∂t
+ Ap + ap = 0 in Q,

∂p

∂nA
= 0 on Σ, p(T ) = pT in Ω. (36)

If u is a solution of (P ), if yu is the solution of (2) corresponding to u, if we set a = γ|yu|
γ−1

and pT = s|yu(T ) − yd|
s−2(yu(T ) − yd), then equation (36) corresponds to the adjoint equation

for (P ) associated with (u, yu). Since yu(T ) belongs to Lr(Ω) for all 1 ≤ r < Nq′

Nq′−2 , we have to

study (36) for pT ∈ Lσ(Ω) with σ < Nq′

(Nq′−2)(s−1) .
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Theorem 3.1 Suppose that a is nonnegative and belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k)

satisfying (6). If pT belongs to Lσ(Ω) for all 1 ≤ σ < Nq′

(Nq′−2)(s−1) , the weak solution of (36)

belongs to Lℓ(0, T ;C(Ω̄)) for every ℓ < 2q′

(Nq′−2)(s−1) . Moreover, for every ℓ < 2σ
N , there exists a

constant C8 = C8(ℓ, σ), not depending on the function a such that

‖p‖Lℓ(0,T ;C(Ω̄)) ≤ C8‖pT ‖Lσ(Ω). (37)

Proof.

1 - We first prove the result for a ≡ 0 by using estimates on analytic semigroups. We denote by

p̂ the weak solution of (36) corresponding to a = 0. From Lemma 2.1, we deduce

‖p̂(t)‖L∞(Ω) ≤ K1(∞, σ)(T − t)−
N
2σ ‖pT ‖Lσ(Ω).

Therefore p̂ belongs to Lℓ(0, T ;L∞(Ω)) if ℓ < 2σ
N and we have

‖p̂‖Lℓ(0,T ;L∞(Ω)) ≤ C8‖pT ‖Lσ(Ω)

for some C8 = C8(ℓ, σ). Thanks to this estimate and by using approximation arguments, we can

easily prove that p̂ belongs to Lℓ(0, T ;C(Ω̄)).

2 - We suppose that a 6= 0 and a is regular. If p is the weak solution of (36), then w = p − p̂

satisfies

−
∂w

∂t
+ Aw + aw = −ap̂ in Q,

∂w

∂nA
= 0 on Σ, w(T ) = 0. (38)

Since p̂ belongs to Lℓ(0, T ;C(Ω̄)) for every ℓ < 2σ
N and a belongs to L∞(Q), then ap̂ belongs to

L1(Q). As in the proof of Proposition 2.3, we can use a comparison principle to prove that p

belongs to Lℓ(0, T ;L∞(Ω)) and that (37) is satisfied.

3 - Now, we suppose that a belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying (6), and that

pT belongs to C(Ω̄). Let (an)n be a sequence of regular functions, converging to a for every

(k̃, k) satisfying (6). Let pn be the solution of (36) corresponding to an and let p be the solution

of (36) corresponding to a. By arguing as in Step 3 of the proof of Proposition 2.3, we can

verify that, for every 1 < ℓ < 2q′

(Nq′−2)(s−1) , (pn)n converges to p for the weak-star topology of

Lℓ(0, T ;L∞(Ω)) and that ‖p‖Lℓ(0,T ;L∞(Ω)) ≤ C8‖pT ‖Lσ(Ω) is satisfied if ℓ < 2σ
N < 2q′

(Nq′−2)(s−1) .

To prove that p belongs to Lℓ(0, T ;C(Ω̄)), we notice that p ∈ L∞(Q) (because pT belongs to

C(Ω̄)) and

−
∂p

∂t
+ Ap = −ap in Q,

∂p

∂nA
= 0 on Σ, p(T ) = pT in Ω. (39)

Thanks to Step 1 and to Proposition 2.3, we can prove that p belongs to Lλ(0, T ;C(Ω̄)) for every

λ ≥ k̃, where k̃ is chosen so that N
2k + 1

k̃
< 1 + 1

λ and so that (k̃, k) obeies (6) (since γ < N
N−2

such a λ exists). We already know that p belongs to Lℓ(0, T ;L∞(Ω)), therefore p belongs to

Lℓ(0, T ;C(Ω̄)) for every 1 ≤ ℓ < 2q′

(Nq′−2)(s−1) .

4 - Now, we suppose that pT belongs to Lσ(Ω). We denote by (pn
T )n a sequence of bounded

functions converging to pT in Lσ(Ω). Let pn be the solution of (36) corresponding to pn
T . Thanks

to the estimate (37) established for pn in Step 3, we can prove that (pn)n is a Cauchy sequence

in Lℓ(0, T ;C(Ω̄)), that it converges to p in Lℓ(0, T ;C(Ω̄)) and that (37) is satisfied by p.
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3.2 Green Formula

Lemma 3.1 Let (an)n be a sequence of nonnegative functions converging to a in Lk̃(0, T ;Lk(Ω))

for every (k̃, k) satisfying (6). Let zn be the solution of

∂z

∂t
+ Az + anz = vδx0

in Q,
∂z

∂nA
= 0 on Σ, z(0) = 0 in Ω, (40)

and let z be the solution of

∂z

∂t
+ Az + az = vδx0

in Q,
∂z

∂nA
= 0 on Σ, z(0) = 0 in Ω. (41)

Then (zn)n converges to z for the weak-star topology of Lr̃(0, T ;Lr(Ω)) for all (r̃, r) satisfying

(7), and (zn(T ))n converges to z(T ) for the weak topology of Lr(Ω) for all 1 < r < Nq′

Nq′−2 .

Proof. Thanks to Proposition 2.1, (zn)n is bounded in Lr̃(0, T ;Lr(Ω)) for all (r̃, r) satisfying

(7), and (zn(T ))n is bounded in Lr(Ω) for all 1 < r < Nq′

Nq′−2 . The sequence (anzn)n is bounded

in Lρ(Q) for some ρ > 1 (see Lemma 2.2). Therefore (zn)n is also bounded in Lδ′(0, T ;W 1,d′(Ω))

for every δ > 1, d > 1 such that N
2d + 1

δ < 1
2 ([13] Theorem 4.2). From (zn)n, we can extract a

subsequence, still indexed by n, weakly star converging to some z in Lr̃(0, T ;Lr(Ω)) for all (r̃, r)

satisfying (7), and weakly star converging to z in Lδ′(0, T ;W 1,d′(Ω)) for every δ > 1, d > 1 such

that N
2d + 1

δ < 1
2 . Moreover, we can suppose that (zn(T ))n converges to some z̃ for the weak

topology of Lr(Ω) for all 1 < r < Nq′

Nq′−2 . By passing to the limit in the Green formula ([13],

Theorem 4.2)

∫
Q
(−zn

∂φ

∂t
+

N∑
i,j=1

aij(x)DjznDiφ + anznφ)dxdt =

∫ T

0
v(t)φ(x0, t)dt −

∫
Ω

φ(T )zn(T )dx

satisfied for every φ ∈ C1(Q̄), we see that z is the solution of (41) and that z̃ = z(T ).

Theorem 3.2 Let p be the solution of (36) (with pT ∈ Lσ(Ω) for every 1 ≤ σ < Nq′

(Nq′−2)(s−1))

and z be the solution of

∂z

∂t
+ Az + az = vδx0

in Q,
∂z

∂nA
= 0 on Σ, z(0) = 0 in Ω. (42)

Suppose that a belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying (6) and that v belongs to

Lq(0, T ), then we have the Green formula

∫ T

0
p(x0, t)v(t)dt =

∫
Ω

pT (x)z(x, T )dx. (43)

Proof.

1 - If a is regular and pT ∈ C(Ω̄), the result can be deduced from Theorem 4.2 in [13].

2 - First suppose that pT ∈ C(Ω̄) and v ∈ L∞(0, T ). Let (an)n be a sequence of regular func-

tions converging to a for every (k̃, k) satisfying (6). Let pn (resp. p) be the solution of (36)

corresponding to an (resp. a). Thanks to Proposition 2.3 we can prove that (pn)n is a Cauchy

sequence in L1(0, T ;C(Ω̄)) and that (pn)n converges to p in L1(0, T ;C(Ω̄)). If zn (resp. z) is the

solution of (42) corresponding to an (resp. a), then (zn(T ))n converges to z(T ) for the weak-star
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topology of Lr(Ω) for all 1 < r < Nq′

Nq′−2 (Lemma 3.1). Therefore we can pass to the limit in the

Green formula satisfied by (pn, zn) and (43) is satisfied by (p, z).

3 - Let us still suppose that v ∈ L∞(0, T ). Let (pn
T )n be a sequence of regular functions converg-

ing to pT in Lσ(Ω) for all 1 ≤ σ < Nq′

(Nq′−2)(s−1) , and let pn be the solution of (36) corresponding

to pn(T ) = pn
T . From Theorem 3.1, we deduce that (pn)n converges to the solution p of (36) in

Lℓ(0, T ;C(Ω̄)) for all 1 ≤ ℓ < 2q′

(Nq′−2)(s−1) , thus (pn(x0))n converges to p(x0) in Lq′(0, T ) (indeed

1 ≤ s < Nq′

Nq′−2). Thanks to Proposition 2.1, z(T ) belongs to Lr(Ω) for every 1 ≤ r < Nq′

Nq′−2 .

Since 1 ≤ s < Nq′

Nq′−2 , (z(T )pn
T )n converges to z(T )pT in L1(Ω). Thus, to complete the proof in

the case when a is not regular but when v ∈ L∞(0, T ), we can pass to the limit in the Green

formula satisfied by pn.

4 - Now we consider a sequence (vn)n of regular functions converging to v in Lq(0, T ). If zn

(resp. z) is the solution of (42) corresponding to vn (resp. v), thanks to Proposition 2.1, we see

that (zn(T ))n converges to z(T ) in Lr(Ω) for every 1 ≤ r < Nq′

Nq′−2 . We can pass to the limit in

the Green formula satisfied by zn and the proof is complete.

4 The Control Problem

4.1 Existence of solutions

Lemma 4.1 If (yn)n is a sequence bounded in Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7),

and if (yn)n converges to y in L1(Q), then (yn)n converges to y in Lr̃(0, T ;Lr(Ω)) for every

(r̃, r) satisfying together (7) and r̃ < ∞.

Proof. Let η > 0 and A be a measurable subset of Q with meas(A) = η. Let (r̃, r) satisfying

together (7) and r̃ < ∞. Let (r̃1, r1) satisfying (7) and such that

r̃ < r̃1, r < r1,
1

r
−

1

r1
=

1

r̃
−

1

r̃1
.

Let us set A(t) = A ∩ (Ω × {t}), |A(t)| = LN (A(t)), where LN is the N -dimensional Lebesgue

measure, and denote by χA the characteristic function of A. Thanks to Hölder’s inequality and

to the equality satisfied by r, r̃, r1, r̃1, we have

∫ T

0
(

∫
Ω
|yn(t) − y(t)|rχA(t)dx)r̃/rdt =

∫ T

0
(

∫
A(t)

|yn(t) − y(t)|rdx)r̃/rdt

≤

∫ T

0
|A(t)|

r̃
r
− r̃

r1 (

∫
Ω
|yn(t) − y(t)|r1dx)r̃/r1dt

≤ (

∫ T

0
|A(t)|dt)

1− r̃
r̃1 (

∫ T

0
(

∫
Ω
|yn(t) − y(t)|r1dx)r̃1/r1dt)r̃/r̃1

≤ η
1− r̃

r̃1 ‖yn − y‖r̃
Lr̃1 (0,T ;Lr1 (Ω)).

With this estimate, the lemma can be proved with Egorov’s Theorem.

Theorem 4.1 Let us suppose that either β > 0 or KU is bounded in Lq(0, T ). Then the control

problem (P ) admits solutions.
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Proof. Let (un)n be a minimizing sequence in KU . It is clear that (un)n is bounded in Lq(0, T ).

We can suppose that (un)n converges to some u weakly-star in Lq(0, T ). Since KU is convex and

closed in Lq(0, T ), then u ∈ KU . Thanks to Theorem 2.1, (yun)n (the sequence of solutions of (2)

corresponding to un) is bounded in Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7) and (yun − ζ)n
(where ζ is the function defined in Theorem 2.1) is bounded in in Lδ′

1(0, T ;W 1,d′
1(Ω)) for every

(δ1, d1) satisfying (32). By arguments similar to those in Step 3 in the proof of Theorem 2.1, we

can also prove that (yun)n is relatively compact in L1(Q). Thanks to Lemma 4.1 (yun)n converges

to yu (the solution of (2) corresponding to u) in Lr̃(0, T ;Lr(Ω)) for every (r̃, r) satisfying (7) and

r̃ < ∞ and (yun − ζ)n converges to yu − ζ weakly-star in Lδ′
1(0, T ;W 1,d′

1(Ω)) for every (δ1, d1)

satisfying (32). Since for all 1 < s < Nq′

Nq′−2

‖yun(T )‖Ls(Ω) ≤ C1(∞, s, q)(‖un‖Lq(0,T ) + ‖y0‖
L

Nq′

Nq′−2 (Ω)

),

we can also prove that (yun(T ))n (or at least a subsequence) converges to some yT for the weak-

star topology of Ls(Ω). To prove that yT = yu(T ), we use the Green formula of Theorem 3.2.

We introduce the solution pn of

−
∂p

∂t
+ Ap + anp = 0 in Q,

∂p

∂nA
= 0 on Σ, p(T ) = φ in Ω,

where an = |yun |
γ−1 and φ ∈ D(Ω), and we introduce the solution p of

−
∂p

∂t
+ Ap + ap = 0 in Q,

∂p

∂nA
= 0 on Σ, p(T ) = φ in Ω,

where a = |yu|
γ−1. Thanks to previous convergence results, (an)n converges to a in Lk̃(0, T ;Lk(Ω))

for all (k̃, k) satisfying (6). We notice that w = pn − p satisfies

−
∂w

∂t
+ Aw + anw = (a − an)p in Q,

∂w

∂nA
= 0 on Σ, w(T ) = 0 in Ω.

If q ≤ γ, with estimate (18), we have

‖pn − p‖Lq′ (0,T ;C(Ω̄)) ≤ C4(q, δ, d)‖(a − an)p‖Lδ(0,T ;Ld(Ω)) ≤ C4‖a − an‖Lδ(0,T ;Ld(Ω))‖p‖L∞(Q)

for δ ≤ q′ and N
2d + 1

δ < 1 + 1
q′ . Since γ < (N+2)q′

(Nq′−2) , we have (N
2 − 1

q′ )(γ − 1) < 1 + 1
q′ and we can

choose (k̃, k) = (δ, d) = (q′, d) satisfying (N
2 − 1

q′ )(γ − 1) < N
2d + 1

δ < 1 + 1
q′ = 1 + 1

δ . If q > γ,

still with estimate (18), we have

‖pn−p‖Lq′(0,T ;C(Ω̄)) ≤ C‖pn−p‖
L

q
γ−1 (0,T ;C(Ω̄))

≤ CC4(
q

q − γ + 1
, δ, d)‖a−an‖Lδ(0,T ;Ld(Ω))‖p‖L∞(Q),

if δ = q
γ−1 and N

2d < 1. Since γ < N
(N−2) , we choose (k̃, k) = (δ, d) satisfying N

2d < 1 and

(N
2 − 1

q′ )(γ−1) < N
2d + 1

δ . Thus (pn)n converges to p in Lq′(0, T ;C(Ω̄)). With the Green formula

(43) for pn and yun we have

∫ T

0
pn(x0, t)un(t)dt =

∫
Ω

φ(x)yun(x, T )dx.

By passing to the limit, we obtain

∫ T

0
p(x0, t)u(t)dt =

∫
Ω

φ(x)yT dx.
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We also have ∫
Ω

φ(x)yu(x, T )dx =

∫ T

0
p(x0, t)u(t)dt

for every φ ∈ D(Ω). Thus we obtain yu(T ) = yT . Since the mapping u →
∫ T
0 |u|qdt is lower

semicontinuous for the weak-star topology in Lq(0, T ), and the mapping y →
∫
Ω |y − yd|

sdx is

lower semicontinuous for the weak-star topology in Ls(Ω), by classical arguments, we prove that

u is a solution of (P ).

4.2 Optimality conditions

Theorem 4.2 If u is a solution of (P ), then

∫ T

0
(p(x0, t) + βq|u(t)|q−2u(t))(v − u)(t)dt ≥ 0 (44)

for every v ∈ KU , where p is the solution of

−
∂p

∂t
+Ap+γ|yu|

γ−1p = 0 in Q,
∂p

∂nA
= 0 on Σ, p(T ) = s|yu(T )−yd|

s−2(yu(T )−yd) in Ω,

(45)

and yu is the solution of (2) corresponding to u.

Proof. Let v be in KU , λ > 0, denote by yλ the solution of (1) corresponding to u + λ(v − u).

The function w = yλ − yu satisfies

∂w

∂t
+ Aw + aλw = λ(v − u)δx0

in Q,
∂w

∂nA
= 0 on Σ, w(0) = 0 in Ω,

where aλ = γ
∫ 1
0 |yu + θ(yλ − yu)|γ−1dθ. From estimate (8), still true for the above equation, we

obtain

‖w‖Lr̃(0,T ;Lr(Ω)) ≤ C1(r̃, r, q)λ‖v − u‖Lq(0,T )

for every (r̃, r) satisfying (7). Therefore, when λ tends to zero, yλ tends to yu in Lr̃(0, T ;Lr(Ω))

(for all (r̃, r) satisfying (7)) and yλ(T ) tends to yu(T ) in Lr(Ω) for all 1 ≤ r < Nq′

Nq′−2 . In

particular yλ(T ) tends to yu(T ) in Ls(Ω). It also follows that aλ tends to a = γ|yu|
γ−1 in

Lk̃(0, T ;Lk(Ω)) for every (k̃, k) satisfying (6). Now we set zλ = (yλ − yu)/λ and we denote by z

the solution of

∂z

∂t
+ Az + γ|yu|

γ−1z = (v − u)δx0
in Q,

∂z

∂nA
= 0 on Σ, z(0) = 0 in Ω.

Thanks to Lemma 3.1, zλ(T ) tends to z(T ) for the weak topology of Lr(Ω), for all 1 ≤ r < Nq′

Nq′−2 .

If we set I(u) =
∫
Ω |yu(T ) − yd|

sdx, from the convexity of the mapping y →
∫
Ω |y − yd|

sdx, it

follows

s

∫
Ω
|yu(T ) − yd|

s−2(yu(T ) − yd)zλ(T )dx ≤
I(u + λ(v − u)) − I(u)

λ

≤ s

∫
Ω
|yλ(T ) − yd|

s−2(yλ(T ) − yd)zλ(T )dx.
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We set F (u) = J(yu, u), thanks to the above calculations we obtain

F ′(u)(v − u) =

∫
Ω

s|yu(T ) − yd|
s−2(yu(T ) − yd)z(T )dx +

∫ T

0
βq|u(t)|q−2u(t)(v − u)(t)dt.

Now, if p is the solution of (45), we notice that γ|yu|
γ−1 belongs to Lk̃(0, T ;Lk(Ω)) for every (k̃, k)

satisfying (6), and that s|y(T ) − yd|
s−2(y(T ) − yd) belongs to Lσ(Ω) for 1 ≤ σ < Nq′

(Nq′−2)(s−1) .

Therefore we can use the Green formula of Theorem 3.2 to complete the proof. ✷
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of P. Baras, Paris VI, 1985.

[6] H. Brezis, A. Friedman, Nonlinear parabolic equations involving measures as initial condi-
tions, J. Math. Pures Appl., Vol. 62 (1983), p. 73-97.
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