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Abstract

The present paper is concerned with semilinear partial differential equations involving a particular
pseudo-differential operator. It investigates both fractal conservation laws and non-local Hamilton-
Jacobi equations. The idea is to combine an integral representation of the operator and Duhamel’s
formula to prove, on the one side, the key a priori estimates for the scalar conservation law and the
Hamilton-Jacobi equation and, on the other side, the smoothing effect of the operator. As far as
Hamilton-Jacobi equations are concerned, a non-local vanishing viscosity method is used to construct
a (viscosity) solution when existence of regular solutions fails, and a rate of convergence is provided.
Turning to conservation laws, global-in-time existence and uniqueness are established. We also show
that our formula allows to obtain entropy inequalities for the non-local conservation law, and thus to
prove the convergence of the solution, as the non-local term vanishes, toward the entropy solution of
the pure conservation law.
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Keywords: Lévy operator, fractal conservation laws, maximum principle, non-local Hamilton-Jacobi
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1 Introduction

In this paper, we are interested in solving semilinear partial differential equations involving the fractal
operator, also called Lévy operator, defined on the Schwartz class S(RN ) by

gλ[ϕ] = F−1
(
| · |λF(ϕ)

)
with 0 < λ < 2 (1.1)

where F is the Fourier transform. The study of PDEs involving gλ is motivated by a number of physical
problems, such as overdriven detonations in gases [9] or anomalous diffusion in semiconductor growth
[27], and by mathematical models in finance (see below for references). We consider perturbations by gλ

of Hamilton-Jacobi equations or scalar conservation laws, that is to say{
∂tu(t, x) + gλ[u(t, ·)](x) = F (t, x, u(t, x),∇u(t, x)) t > 0 , x ∈ RN ,
u(0, x) = u0(x) x ∈ RN (1.2)

or {
∂tu(t, x) + div(f(t, x, u(t, x))) + gλ[u(t, ·)](x) = h(t, x, u(t, x)) t > 0 , x ∈ RN ,
u(0, x) = u0(x) x ∈ RN .

(1.3)

These kinds of equations have already been studied. As far as scalar conservation laws are concerned, some
recent papers have investigated them. One of the first works on this subject is probably [4], which deals
with (1.3) when h = 0 and f(t, x, u) = f(u); using energy estimates, it states some local-in-time existence
and uniqueness results of weak solutions if f has a polynomial growth. This result is strengthened in [15],
where a splitting method is used to prove global-in-time existence and uniqueness of a regular solution if
λ > 1.
To our best knowledge, Hamilton-Jacobi equations of type (1.2) first appeared in the context of mathe-
matical finance as Bellman equations of optimal control of jump diffusion processes [24]. See also [25, 23, 1]
and more recently [6, 7, 8]. A general theory for non-linear integro-partial differential equations is de-
veloped by Jakobsen and Karlsen [19, 20]. Some of the ideas of [15] are adapted in [18] to prove that
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(1.2) has regular solutions if λ > 1. It adapts previous viscosity solution theories to the equation (1.2)
(existence via Perron’s method, comparison results, stability) and use techniques of [15] to obtain further
regularity.

The preceding methods to handle (1.2) and (1.3) are somewhat incompatible: the splitting method for
Hamilton-Jacobi equation (1.2) is less direct than Perron’s one and it is well known that the notion of
viscosity solution is inadequate to conservation laws such as (1.3). However, a scalar conservation law can
always be formally written as a Hamilton-Jacobi equation (write div (f(u)) = f ′(u) · ∇u). In this paper,
we present a way to simultaneously solve (1.2) and (1.3) by using this simple fact and the construction of
regular solutions to the Hamilton-Jacobi equations under weak assumptions (that are satisfied by both
(1.2) and (1.3)). The key estimate is given by Proposition 3.1. As we notice in the course of the proofs,
the method we use is also valid for more general operators than gλ.

The starting point of this work is the use of an equivalent definition of the fractal operator, namely an
integral formula for gλ similar to the ones appearing in [11] and [18]. This formula permits to extend the
operator from Schwartz functions to C2

b ones and is moreover used to establish what we call a “reverse
maximum principle” that says, freely speaking, that gλ[φ](x) is nonnegative if x is a maximum point of
φ. This principle is the key point when proving the estimates for the regular solutions of (1.2). Thanks
to the Fourier definition of gλ, we are also able to give properties of the kernel associated to gλ and thus
to write a Duhamel formula for the solutions of the PDEs.
The main novelty of this paper is to combine the “reverse maximum principle” (coming from the integral
formula for gλ) and the Duhamel formula in order to prove existence and uniqueness of global smooth
solutions to our PDEs.
As far as Hamilton-Jacobi equations are concerned, the study of (1.2) in [18] is made for λ > 1 and by
using Perron’s method. We generalize here the results of this paper to the case λ ∈]0, 2[ and we weaken
the hypotheses on the Hamiltonian. We first prove that the fractal operator has a smoothing effect for
λ ∈]1, 2[ under very general (and natural) hypotheses on F ; the idea to obtain a global solution is, roughly
speaking, to study how supRN |u(t, ·)| evolves. We next treat the case λ ∈]0, 2[ (recall that, contrary to the
formula in [18], ours is valid for such λ) by solving (1.2) in the sense of viscosity solutions; as expected in
this context (see (1.1)), these solutions are no more regular but only bounded and uniformly continuous.
We use a non-local vanishing viscosity method (though we could have used Perron’s method, see Remark
3.6): precisely, we add a vanishing fractal operator εgµ with µ > 1 and we pass to the limit ε → 0. We
also provide, for all µ ∈]0, 2[, a rate of convergence that is in some respect surprising, compared with
the case µ > 1 treated in [18]. Let us also mention that the reverse maximum principle and its main
consequence, namely the key estimate given by Proposition 3.1, can be generalized to the framework of
viscosity solutions: nonsmooth versions of both results are stated and proved in Appendix. We have
chosen not to use these versions because, anywhere we can, we search for regular solutions and we turn
to the notion of viscosity solution only if mandatory (that is if λ ≤ 1; see Subsection 3.2).
The case of scalar hyperbolic equations (1.3) with λ > 1 is treated next. The a priori estimates on the
solution follow from Proposition 3.1, the same proposition that gives the a priori estimates for (1.2), and
the existence of a regular solution is as straightforward. The splitting method of [15] can be adapted to
some cases where f and h depend on (t, x) (see [14]), but this is awfully technical; the technique we use
here therefore presents a noticeable simplification in the study of (1.3) in the general case. The question
of non-local vanishing viscosity regularization (multiplying gλ[u] by ε and letting ε → 0) is treated in
[13], still using the splitting method (and for h = 0, f(t, x, u) = f(u)); at the end of the present paper,
we quickly indicate how the formula for gλ allows to significantly simplify the corresponding proofs for
general f and h, in particular the proof of the entropy inequalities for (1.3).

The paper is organised as follows. Section 2 is devoted to give an analytical proof of the integral formula
for gλ (Theorem 2.1). It also contains the “reverse maximum principle” (Theorem 2.2) we presented
above. In Section 3, we study Hamilton-Jacobi equations. We first present the smoothing effect of the
fractal operator on (1.2) for λ ∈]1, 2[ (Theorem 3.1); next, we construct viscosity solutions for λ ∈]0, 2[ by
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a non-local vanishing viscosity method (Theorem 3.3) and we prove a rate of convergence (Theorem 3.4).
Section 4 contains the resolution of (1.3) and the (short) proof of the entropy inequalities associated with
the perturbed conservation law (Subsection 4.2). Some appendixes in Section 5 conclude the paper. In
particular, the reader can find there a generalization of the “reverse maximum principle” and of the key
estimate to the viscosity framework.

Notations. Throughout the paper, Br (resp. Br(x)) denotes the ball of RN centered at the origin (resp.
at x) and of radius r. Euler’s function is denoted by Γ.

2 Integral representation of gλ

The main result of this section is the integral representation of gλ, which generalizes Lemma 1 in [18].
As a consequence of this formula, we extend the definition of gλ from Schwartz functions to C2

b functions
and we prove what we call a “reverse maximum principle”: roughly speaking, it says that at a maximum
point of a C2

b function ϕ, we have gλ[ϕ] ≥ 0. This result is the crucial argument when proving the key
estimate stated in Proposition 3.1.

Theorem 2.1 If λ ∈]0, 2[, then, for all ϕ ∈ S(RN ), all x ∈ RN and all r > 0,

gλ[ϕ](x) = −cN (λ)

(∫
Br

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z
|z|N+λ

dz +
∫

RN\Br

ϕ(x+ z)− ϕ(x)
|z|N+λ

dz

)
(2.1)

where cN (λ) = λΓ( N+λ
2 )

2π
N
2 +λΓ(1−λ

2 )
. We can generalize this formula in two cases:

i) If λ ∈]0, 1[, we can take r = 0:

gλ[ϕ](x) = −cN (λ)
∫

RN

ϕ(x+ z)− ϕ(x)
|z|N+λ

dz.

ii) If λ ∈]1, 2[, we can take r = +∞:

gλ[ϕ](x) = −cN (λ)
∫

RN

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z
|z|N+λ

dz.

Before proving these formulae, let us state some of their consequences. We first notice that (2.1) allows
to define gλ[ϕ] ∈ Cb(RN ) for ϕ ∈ C2

b (RN ). In fact, this gives a continuous extension of gλ in the following
sense.

Proposition 2.1 Let λ ∈]0, 2[ and ϕ ∈ C2
b (RN ). If (ϕn)n≥1 ∈ C2

b (RN ) is bounded in L∞(RN ) and
D2ϕn → D2ϕ locally uniformly on RN , then gλ[ϕn] → gλ[ϕ] locally uniformly on RN .

Remark 2.1 We could also define gλ on Hölder spaces of functions (depending on λ), and state an
equivalent of Proposition 2.1 in this framework.

Proof of Proposition 2.1
The operator gλ being linear, we can assume that ϕ = 0. Since (ϕn)n≥1 is bounded in L∞(RN ), the
second integral term of (2.1) applied to ϕ = ϕn is small, uniformly for n ≥ 1 and x ∈ RN , if r is large. By
Taylor’s formula, for |z| ≤ r and |x| ≤ R we have |ϕn(x+z)−ϕn(x)−∇ϕn(x) ·z| ≤ ||D2ϕn||L∞(Br+R)|z|2;
hence, with r fixed, the first integral term of (2.1) applied to ϕ = ϕn is small, uniformly for x ∈ BR, if n
is large.

From (2.1) it is obvious that, if x is a global maximum of ϕ, then gλ[ϕ](x) ≥ 0, with equality if and only
if ϕ is constant (notice that cN (λ) > 0 for λ ∈]0, 2[). We have a generalization of this property, which
will be the key argument to study first order perturbations of ∂t + gλ.
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Theorem 2.2 Let λ ∈]0, 2[ and ϕ ∈ C2
b (RN ). If (xn)n≥1 is a sequence of RN such that ϕ(xn) → supRN ϕ

as n→∞, then limn→∞∇ϕ(xn) = 0 and lim infn→∞ gλ[ϕ](xn) ≥ 0.

Proof of Theorem 2.2
Since the second derivative of ϕ is bounded, there exists C such that, for all n ≥ 1 and all z ∈ RN ,

supRN ϕ ≥ ϕ(xn + z) ≥ ϕ(xn) +∇ϕ(xn) · z − C|z|2. (2.2)

Up to a subsequence, we can assume that ∇ϕ(xn) → p (this sequence is bounded). Passing to the limit
n→∞ in (2.2) gives 0 ≥ p · z −C|z|2; choosing then z = tp and letting t→ 0+ shows that p = 0, which
proves that limn→∞∇ϕ(xn) = 0 (the only adherence value of the bounded sequence (∇ϕ(xn))n≥1 is 0).
Since ϕ(xn + z)− ϕ(xn) ≤ supRN ϕ− ϕ(xn) → 0, we deduce that, for all z ∈ RN ,

lim supn→∞ (ϕ(xn + z)− ϕ(xn)) ≤ 0
lim supn→∞ (ϕ(xn + z)− ϕ(xn)−∇ϕ(xn) · z) ≤ 0.

(2.3)

We also have
|ϕ(xn + z)− ϕ(xn)|

|z|N+λ
≤

2||ϕ||L∞(RN )

|z|N+λ
∈ L1(RN\Br)

and
|ϕ(xn + z)− ϕ(xn)−∇ϕ(xn) · z|

|z|N+λ
≤
||D2ϕ||L∞(RN )|z|2

|z|N+λ
∈ L1(Br).

Hence, by (2.3) and Fatou’s Lemma,

0 ≥
∫

RN\Br

lim sup
n→∞

ϕ(xn + z)− ϕ(xn)
|z|N+λ

dz ≥ lim sup
n→∞

∫
RN\Br

ϕ(xn + z)− ϕ(xn)
|z|N+λ

dz

and

0 ≥
∫

Br

lim sup
n→∞

ϕ(xn + z)− ϕ(xn)−∇ϕ(xn) · z
|z|N+λ

dz ≥ lim sup
n→∞

∫
Br

ϕ(xn + z)− ϕ(xn)−∇ϕ(xn) · z
|z|N+λ

dz.

Combining these inequalities and (2.1) permits to achieve the proof of the theorem.

Remark 2.2 This theorem is also true for λ = 2, that is to say g2 = −4π2∆, provided that ϕ ∈ C3
b (RN ).

We now conclude this section by proving the formula given for gλ.

Proof of Theorem 2.1
Step 1: a preliminary formula.
We first assume that λ ∈]1, 2[. We have gλ[ϕ] = F−1(| · |λF(ϕ)); but F(∆ϕ) = −4π2| · |2F(ϕ) and
therefore, for ϕ ∈ S(RN ),

gλ[ϕ] =
1

−4π2
F−1(| · |λ−2F(∆ϕ)). (2.4)

Since λ ∈]1, 2[, we have λ− 2 ∈]−N, 0[; hence | · |λ−2 is locally integrable and is in S ′(RN ). The inverse
Fourier transform of | · |λ−2 is a distribution with radial symmetry and homogeneity of order −N−(λ−2);
we deduce that there exists CN (λ) such that

F−1(| · |λ−2) = CN (λ)| · |−N−(λ−2) (2.5)

in D′(RN\{0}); since | · |−N−(λ−2) is locally integrable, it is quite easy to see that (2.5) also holds in
S ′(RN ). We compute CN (λ) by taking the test function γ(x) = e−π|x|2 , which is its own inverse Fourier
transform:∫

RN

|x|λ−2e−π|x|2 dx = 〈F−1(| · |λ−2), γ〉S′(RN ),S(RN ) = CN (λ)
∫

RN

|x|−N−(λ−2)e−π|x|2 dx.
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Using polar coordinates, we deduce
∫∞
0
rN+λ−4e−πr2

rdr = CN (λ)
∫∞
0
r−λe−πr2

rdr and the change of
variable τ = πr2 implies

π−(N+λ−4)/2

∫ ∞

0

τ (N+λ−4)/2e−τ dτ

2π
= CN (λ)πλ/2

∫ ∞

0

τ−λ/2e−τ dτ

2π
,

that is to say CN (λ) = Γ(N+λ
2 − 1)/[π

N
2 +λ−2Γ(1 − λ

2 )]. With this value of CN (λ), (2.4) and (2.5) give,
for all ϕ ∈ S(RN ),

gλ[ϕ] = −
Γ
(

N+λ
2 − 1

)
4π

N
2 +λΓ

(
1− λ

2

) | · |−N−(λ−2) ∗∆ϕ. (2.6)

Step 2: proof of (2.1) for λ ∈]1, 2[.
Let r > 0, ϕ ∈ S(RN ), x ∈ RN and define φx(z) = ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z θ(z), where θ ∈ C∞

c (RN )
is even and equal to 1 on Br. We have ∆φx(z) = ∆ϕ(x + z) − ∇ϕ(x) · ∆(z θ(z)), and thus, with
β = −N − (λ− 2) ∈]−N, 0[,

| · |−N−(λ−2) ∗∆ϕ(x) =
∫

RN

|z|β∆ϕ(x+ z) dz =
∫

RN

|z|β∆φx(z) dz +∇ϕ(x) ·
∫

RN

|z|β∆(z θ(z)) dz

(all these functions are integrable since ∆ϕ(x + z) and ∆(z θ(z)) are both Schwartz functions). But
z 7→ z θ(z) is odd, so z 7→ |z|β∆(z θ(z)) is also odd and its integral on RN vanishes. Hence,

| · |−N−(λ−2) ∗∆ϕ(x) =
∫

RN

|z|β∆φx(z) dz = lim
ε→0

∫
Cε

|z|β∆φx(z) dz (2.7)

where Cε = {ε ≤ |z| ≤ 1/ε}. By Green’s formula,∫
Cε

|z|β∆φx(z) dz =
∫

Cε

∆(|z|β)φx(z) dz +
∫

∂Cε

[
|z|β∇φx(z) · n(z)− φx(z)∇(|z|β) · n(z)

]
dσε(z) (2.8)

where σε is the (N − 1)-dimensional measure on ∂Cε = Sε ∪ S1/ε (with Sa = {|z| = a}) and n is the
outer unit normal to Cε. On a neighbourhood of 0, we have φx(z) = ϕ(x + z) − ϕ(x) − ∇ϕ(x) · z, and
thus φx(z) = O(|z|2), ∇φx(z) = O(|z|); using |∇(|z|β)| = |β| |z|β−1, we deduce, since N + β = 2− λ > 0,∣∣∣∣∫

Sε

(
|z|β∇φx(z) · n(z)− φx(z)∇(|z|β) · n(z)

)
dσε(z)

∣∣∣∣ ≤ CεN−1εβ+1 → 0 as ε→ 0. (2.9)

Since −(N − 1) − (β − 1) = 2 − (N + β) = λ > 0 and, at infinity, φx(z) = ϕ(x + z) − ϕ(x) is bounded
and ∇φx(z) = ∇ϕ(x+ z) is rapidly decreasing, we obtain∣∣∣∣∣

∫
S1/ε

(
|z|β∇φx(z) · n(z)− φx(z)∇(|z|β) · n(z)

)
dσε(z)

∣∣∣∣∣
≤ C

(
1
ε

)N−1+β

sup
S1/ε

|∇ϕ(x+ ·)|+ Cε−(N−1)ε−(β−1) → 0 as ε→ 0. (2.10)

An easy computation gives

∆(|z|β) = div(β|z|β−2z) = β

(
N |z|β−2 + (β − 2)|z|β−3 z

|z|
· z
)

= β(N + β − 2)|z|β−2

and therefore ∫
Cε

∆(|z|β)φx(z) dz = (N + λ− 2)λ
∫

Cε

|z|−N−λφx(z) dz. (2.11)
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Since φx(z) = O(|z|2) on a neighbourhood of 0 and φx is bounded on RN , the function | · |−N−λφx is
integrable on RN and we can pass to the limit as ε→ 0 in the right-hand side of (2.11).

Combining (2.7), (2.8), (2.9), (2.10) and (2.11) yields

| · |−N−(λ−2) ∗∆ϕ(x) = λ(N + λ− 2)
∫

RN

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z θ(z)
|z|N+λ

dz.

Since θ = 1 on Br, this gives

| · |−N−(λ−2) ∗∆ϕ(x) = λ(N + λ− 2)
∫

Br

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z
|z|N+λ

dz

+λ(N + λ− 2)
∫

RN\Br

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z θ(z)
|z|N+λ

dz.

But |z|−N−λ(ϕ(x+ z)− ϕ(x)) and |z|−N−λz θ(z) are integrable on RN\Br, and thus∫
RN\Br

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z θ(z)
|z|N+λ

dz =
∫

RN\Br

ϕ(x+ z)− ϕ(x)
|z|N+λ

dz −∇ϕ(x) ·
∫

RN\Br

z θ(z)
|z|N+λ

dz.

Since z 7→ |z|−N−λz θ(z) is odd, this last integral vanishes and we deduce

| · |−N−(λ−2) ∗∆ϕ(x) = λ(N + λ− 2)
∫

Br

ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z
|z|N+λ

dz

+λ(N + λ− 2)
∫

RN\Br

ϕ(x+ z)− ϕ(x)
|z|N+λ

dz.

Using this formula in (2.6) and taking into account (N + λ− 2)Γ(N+λ
2 − 1) = 2(N+λ

2 − 1)Γ(N+λ
2 − 1) =

2Γ(N+λ
2 ), we obtain (2.1) if λ ∈]1, 2[.

Notice that, up to now, the reasoning is also valid for any λ ∈]0, 2[ if N ≥ 2. To prove (2.1) in the general
case, we must use a holomorphy argument.

Step 3: conclusion.
We now obtain (2.1) in the case λ ∈]0, 1]. Let ϕ ∈ S(RN ) and x ∈ RN . Since F(ϕ) ∈ S(RN ), we have,
for all λ in the strip E = {λ ∈ C | 0 < Re(λ) < 2},

| | · |λF(ϕ) | = | · |Re(λ)|F(ϕ)| ≤ (1 + | · |2)|F(ϕ)| ∈ L1(RN ).

Hence, by holomorphy under the integral sign, the function

λ 7→ gλ[ϕ](x) =
∫

RN

e2iπx·ξ|ξ|λF(ϕ)(ξ) dξ

is holomorphic on E. For all 0 < a ≤ Re(λ) ≤ b < 2, the integrands in (2.1) are bounded by integrable
functions which only depend on a and b: if z ∈ Br, we have | |z|λ | = |z|Re(λ) ≥ rRe(λ)−b|z|b ≥ cr,b|z|b
and, if z 6∈ Br, then | |z|λ| ≥ rRe(λ)−a|z|a ≥ c′r,a|z|a; hence, the two integral terms in this formula are
also holomorphic with respect to λ ∈ E. Since λ 7→ cN (λ) is holomorphic on E (Γ is holomorphic in the
half-plane {Re > 0} and has no zero), all the functions of λ in (2.1) are holomorphic on E; this equality
being satisfied for all real λ in ]1, 2[, it holds in fact for any λ ∈ E. In particular, this proves (2.1) if
λ ∈]0, 2[.

The special cases i) and ii) of the theorem are easy consequences of (2.1). Indeed, ϕ(x+z)−ϕ(x) = O(|z|)
on a neighbourhood of 0; thus, if λ < 1, |z|−N−λ(ϕ(x+ z)− ϕ(x)) is integrable on RN and we can pass
to the limit r → 0 in (2.1). The function z 7→ ϕ(x+ z)−ϕ(x)−∇ϕ(x) · z has a linear growth at infinity;
therefore, if λ > 1, |z|−N−λ(ϕ(x+ z)−ϕ(x)−∇ϕ(x) · z) is integrable on RN and we conclude by letting
r →∞ in (2.1).
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3 Fractal Hamilton-Jacobi equations

3.1 A smoothing effect for λ ∈]1, 2[

We assume here that λ ∈]1, 2[ and we consider the Cauchy problem{
∂tu(t, x) + gλ[u(t, ·)](x) = F (t, x, u(t, x),∇u(t, x)) t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN ,
(3.1)

where u0 ∈W 1,∞(RN ) and F ∈ C∞([0,∞[×RN × R× RN ) satisfies

∀T > 0 , ∀R > 0 , ∀k ∈ N , ∃CT,R,k such that,
for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R]×BR and all α ∈ N2N+2 satisfying |α| ≤ k,

|∂αF (t, x, s, ξ)| ≤ CT,R,k.

(3.2)

We also assume that

∀T > 0, there exists ΛT : [0,+∞[7→]0,+∞[ continuous nondecreasing
such that

∫∞
0

1
ΛT (a) da = +∞ and, for all (t, x, s) ∈ [0, T ]× RN × R,

sgn(s)F (t, x, s, 0) ≤ ΛT (|s|) ,
(3.3)

∀T > 0, ∀R > 0, there exists ΓT,R : [0,+∞[7→]0,+∞[ continuous nondecreasing
such that

∫∞
0

1
ΓT,R(a) da = +∞ and, for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R]× RN ,
|ξ|∂sF (t, x, s, ξ) ≤ ΓT,R(|ξ|) , |∇xF (t, x, s, ξ)| ≤ ΓT,R(|ξ|)

(3.4)

and we define
LT (a) =

∫ a

0

1
ΛT (b)

db and GT,R(a) =
∫ a

0

1
2NΓT,R(b)

db. (3.5)

By the assumptions on ΛT and ΓT,R, the functions LT and GT,R are nondecreasing C1-diffeomorphisms
from [0,∞[ to [0,∞[. Our main result concerning (3.1) is the following.

Theorem 3.1 Let λ ∈]1, 2[, u0 ∈W 1,∞(RN ) and F satisfy (3.2), (3.3) and (3.4). There exists a unique
solution u to (3.1) in the following sense: for all T > 0,

u ∈ Cb(]0, T [×RN ) , ∇u ∈ Cb(]0, T [×RN )N and, for all a ∈]0, T [ , u ∈ C∞
b (]a, T [×RN ) , (3.6)

u satisfies the PDE of (3.1) on ]0, T [×RN , (3.7)
u(t, ·) → u0 uniformly on RN , as t→ 0. (3.8)

We also have the following estimates on the solution: for all 0 < t < T <∞,

||u(t, ·)||L∞(RN ) ≤ (LT )−1
(
t+ LT (||u0||L∞(RN ))

)
, (3.9)

||Du(t, ·)||L∞(RN ) ≤ (GT,R)−1
(
t+ GT,R(||Du0||L∞(RN ))

)
, (3.10)

where LT and GT,R are defined by (3.5), ||Du(t, ·)||L∞(RN ) =
∑N

i=1 ||∂iu(t, ·)||L∞(RN ) and R is any upper
bound of ||u||L∞(]0,T [×RN ).

Remark 3.1 The uniqueness holds under weaker assumptions (see Corollary 3.1) and, with the technique
used in Section 4, it can also be proved if the uniform convergence in (3.8) is replaced by a L∞ weak-∗
convergence.

7



3.1.1 Discussion of the assumptions

We assume that F is regular because we look here for regular solutions to (3.1) (we relax this in Sub-
section 3.2); in this framework, (3.2) is restricting only in the sense that it imposes bounds which are
uniform with respect to x ∈ RN , but this is natural since we want solutions that also satisfy such global
bounds.
Assumption (3.3) is used to bound the solution, and (3.4) to bound its gradient. As a simple particular
case of these assumptions, we can take ΛT (a) = KT (1 + a) and ΓT,R(a) = MT,R(1 + a) with KT and
MT,R constants (see (3.20), (3.21) and Remark 3.4). With these choices, (3.9) and (3.10) read

||u(t, ·)||L∞(RN ) ≤ (1 + ||u0||L∞(RN ))e
KT t − 1

||Du(t, ·)||L∞(RN ) ≤ (1 + ||Du0||L∞(RN ))e
2NMT,Rt − 1 ,

which are quite classical estimates. Note that if this choice of ΓT,R in (3.4) is usual (see [12] for λ = 2,
[18] for λ ∈]1, 2[ and [3] for the pure Hamilton-Jacobi equation — i.e. without gλ), Assumption (3.3)
is, even with the preceding choice of ΛT , less usual in the framework of Hamilton-Jacobi equations. To
ensure global existence, this hypothesis is in general replaced by a bound on F (t, x, 0, 0) and by the
assumption that F is nonincreasing with respect to s (see the preceding references). Assumption (3.3)
with ΛT (a) = KT (1 + a) however appears in [16] in the case of parabolic equations (i.e. λ = 2).
In their general form, Assumptions (3.3) and (3.4) do not seem common in the literature; however, they
are completely natural with respect to the technique we use here. They allow to consider, for example,
F (t, x, u,∇u) = u2 ln(1 + |∇u|2).

We now turn to the proof of Theorem 3.1.

3.1.2 L∞ estimates and uniqueness

The following proposition gives the key estimate, both for Hamilton-Jacobi equations and for scalar
conservation laws; it relies on Theorem 2.2 in an essential way. This estimate still holds true in a
more general case (precisely, in the framework of viscosity solution, with less regular solutions; see
Subsection 3.2 for a definition): see Proposition 5.1 in Appendix. We choose to present below the
estimate in the smooth case because we look here for regular solutions.

Proposition 3.1 Let λ ∈]0, 2[, T > 0 and G ∈ C(]0, T [×RN ×R×RN ) be such that, for all R > 0, ∇ξG
is bounded on ]0, T [×RN × [−R,R]×BR. We also assume that

there exists h : [0,∞[7→]0,∞[ continuous nondecreasing
such that

∫∞
0

1
h(a) da = +∞ and, for all (t, x, s) ∈]0, T [×RN × R,

sgn(s)G(t, x, s, 0) ≤ h(|s|).
(3.11)

If u ∈ C2
b (]a, T [×RN ) for all a ∈]0, T [ and satisfies

∂tu(t, x) + gλ[u(t, ·)](x) = G(t, x, u(t, x),∇u(t, x)) on ]0, T [×RN , (3.12)

then, defining H(a) =
∫ a

0
1

h(b) db, we have, for all 0 < t′ < t < T ,

||u(t, ·)||L∞(RN ) ≤ H−1
(
t− t′ +H(||u(t′, ·)||L∞(RN ))

)
. (3.13)

Proof of Proposition 3.1
Let a ∈]0, T [. Since ∂2

t u is bounded on ]a/2, T [×RN (say by Ca), we have, for all t ∈]a, T [, all 0 < τ < a/2
and all x ∈ RN ,

u(t, x) ≤ u(t− τ, x) + τ∂tu(t, x) + Caτ
2

≤ supRN u(t− τ, ·) + τG(t, x, u(t, x),∇u(t, x))− τgλ[u(t, ·)](x) + Caτ
2. (3.14)
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Fix t > a and assume that supRN u(t, ·) > 0. Let (xn)n≥1 ∈ RN be a sequence such that u(t, xn) →
supRN u(t, ·). We have

G(t, xn, u(t, xn),∇u(t, xn)) ≤ G(t, xn, u(t, xn), 0) +Mt|∇u(t, xn)|

where Mt = sup{|∇ξG(t, x, s, ξ)| , (x, s, ξ) ∈ RN × [−Rt, Rt] × BRt} with Rt an upper bound of u(t, ·)
and ∇u(t, ·). For n large enough, u(t, xn) > 0 and thus, by (3.11),

G(t, xn, u(t, xn),∇u(t, xn)) ≤ h(u(t, xn)) +Mt|∇u(t, xn)| ≤ h (supRN u(t, ·)) +Mt|∇u(t, xn)|.

Injected in (3.14), this gives, for all t ∈]a, T [ and all 0 < τ < a/2,

u(t, xn) ≤ supRN u(t− τ, ·) + τh (supRN u(t, ·)) + τMt|∇u(t, xn)| − τgλ[u(t, ·)](xn) + Caτ
2.

By Theorem 2.2, we have lim infn→∞ gλ[u(t, ·)](xn) ≥ 0 and ∇u(t, xn) → 0 as n→∞. Hence, taking the
lim supn→∞ of the preceding inequality leads to

supRN u(t, ·) ≤ supRN u(t− τ, ·) + τh (supRN u(t, ·)) + Caτ
2.

This has been obtained under the condition that supRN u(t, ·) > 0; defining Φ(t) = max(supRN u(t, ·), 0),
we deduce, whatever the sign of supRN u(t, ·) is, that Φ(t) ≤ Φ(t− τ) + τh(Φ(t)) + Caτ

2, that is to say,
for t ∈]a, T [ and 0 < τ < a/2,

Φ(t)− Φ(t− τ)
τ

≤ h(Φ(t)) + Caτ.

As ∂tu is bounded on ]a, T [×RN , it is easy to see that Φ is Lipschitz continuous on ]a, T [ and this
inequality therefore implies Φ′ ≤ h(Φ) almost everywhere on ]0, T [. Hence, the derivative of the locally
Lipschitz continuous function t ∈]0, T [7→ H(Φ(t)) (notice that H is C1 on [0,∞[) is bounded from above
by 1 and, for all 0 < t′ < t < T , H(Φ(t)) ≤ t − t′ + H(Φ(t′)). Since H is a nondecreasing bijection
[0,∞[7→ [0,∞[, we deduce

supRN u(t, ·) ≤ Φ(t) ≤ H−1 (t− t′ +H(Φ(t′))) ≤ H−1
(
t− t′ +H(||u(t′, ·)||L∞(RN ))

)
.

The same reasoning applied to −u (solution to (3.12) with (t, x, s, ξ) 7→ −G(t, x,−s,−ξ), which also
satisfies (3.11), instead of G) gives an upper bound on supRN (−u(t, ·)) = − infRN u(t, ·) and concludes
the proof.

We deduce from this proposition the following corollary, which implies the uniqueness stated in Theo-
rem 3.1.

Corollary 3.1 Let λ ∈]0, 2[, T > 0 and u0 ∈ W 1,∞(RN ). If F satisfies (3.2), then there exists at most
one function defined on ]0, T [×RN which satisfies (3.6), (3.7) and (3.8).

Proof of Corollary 3.1
Assume that u and v are two such functions. The difference w = u−v is in C2

b (]a, T [×RN ) for all a ∈]0, T [
and satisfies

∂tw(t, x) + gλ[w(t, ·)](x) = G(t, x, w(t, x),∇w(t, x)) on ]0, T [×RN

with

G(t, x, s, ξ) =
(∫ 1

0

∂sF (t, x, τu(t, x) + (1− τ)v(t, x),∇u(t, x)) dτ
)
s

+
(∫ 1

0

∇ξF (t, x, v(t, x), τ∇u(t, x) + (1− τ)∇v(t, x)) dτ
)
· ξ.

By (3.2) and the hypotheses on u and v, G is continuous on ]0, T [×RN × R × RN and ∇ξG is bounded
on ]0, T [×RN × [−R,R]× BR for all R > 0. Moreover, G satisfies (3.11) with h(a) = C(κ+ a) where κ
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is any positive number (added so that h > 0 on R+) and C only depends on u, v and the constants in
(3.2). For this h, we have H(a) = 1

C (ln(κ + a) − ln(κ)) and H−1(a) = κeCa − κ; hence, by Proposition
3.1 we find, for 0 < t′ < t < T , ||w(t, ·)||L∞(RN ) ≤ eC(t−t′)(κ+ ||w(t′, ·)||L∞(RN ))− κ. Since u(t′, ·) → u0

and v(t′, ·) → u0 uniformly on RN as t′ → 0, we have ||w(t′, ·)||L∞(RN ) → 0 as t′ → 0 and we conclude,
letting t′ → 0 and κ→ 0 in the preceding inequality, that w(t, ·) = 0 for all t ∈]0, T [.

3.1.3 W 1,∞ estimates and existence

To prove the existence of a solution to (3.1), we first introduce another definition of solution, in the spirit
of [26, chapter 15] or [15].

Definition 3.1 Let λ ∈]1, 2[, u0 ∈ W 1,∞(RN ), T > 0 and F satisfy (3.2). A weak solution to (3.1) on
[0, T ] is a function u ∈ L∞(]0, T [×RN ) such that ∇u ∈ L∞(]0, T [×RN )N and, for a.e. (t, x) ∈]0, T [×RN ,

u(t, x) = Kλ(t, ·) ∗ u0(x) +
∫ t

0

Kλ(t− s, ·) ∗ F (s, ·, u(s, ·),∇u(s, ·))(x) ds , (3.15)

where Kλ is the kernel associated with gλ.

The kernel associated with gλ is Kλ(t, x) = F−1(ξ 7→ e−t|ξ|λ)(x). It is defined so that the solution to
∂tv + gλ[v] = 0 is given by v(t, x) = Kλ(t, ·) ∗ v(0, ·)(x) and (3.15) is simply Duhamel’s formula on (3.1).
Let us recall the main properties of Kλ (valid for λ ∈]0, 2[) which allow in particular to see that each
term in (3.15) is well-defined.

Kλ ∈ C∞(]0,∞[×RN ) and (Kλ(t, ·))t→0 is an approximate unit
(in particular, Kλ is nonnegative and, for all t > 0, ||Kλ(t, ·)||L1(RN ) = 1),

∀t > 0 , ∀t′ > 0 , Kλ(t+ t′, ·) = Kλ(t, ·) ∗Kλ(t′, ·) ,
∃K > 0 , ∀t > 0 , ||∇Kλ(t, ·)||L1(RN ) ≤ Kt−1/λ

(3.16)

(notice that the nonnegativity of Kλ can be proved from Theorem 2.2 by using the same technique as in
the proof of Proposition 3.1). Using the Banach fixed point theorem, it is quite simple to prove the local
existence (and uniqueness) of a weak solution to (3.1); its regularity is obtained by the same means. We
give in Appendix ideas for the proof of the following theorem and let the reader check the details (see,
for example, [15] and [18]).

Theorem 3.2 Let λ ∈]1, 2[, u0 ∈W 1,∞(RN ) and F satisfy (3.2).

i) For all T > 0, there exists at most one weak solution to (3.1) on [0, T ].

ii) A weak solution to (3.1) on [0, T ] satisfies (3.6), (3.7) and (3.8).

iii) Let M ≥ ||u0||W 1,∞(RN ). There exists T > 0, only depending on M and the constants in Hypothesis
(3.2), such that (3.1) has a weak solution on [0, T ].

We now obtain estimates on the gradient of the weak solution, and conclude the proof of Theorem 3.1.

Proposition 3.2 Let λ ∈]1, 2[ and u0 ∈ W 1,∞(RN ). Assume that F satisfies (3.2) and (3.4). If u is a
weak solution to (3.1) on [0, T ] and R ≥ ||u||L∞(]0,T [×RN ) then (3.10) holds for all t ∈]0, T [.

Proof of Proposition 3.2
The proof is very similar to the proof of Proposition 3.1. If ϕ ∈ C3

b (RN ), then a derivation under the
integral sign on (2.1) shows that ∂igλ[ϕ] = gλ[∂iϕ]. Since u satisfies (3.6) and (3.7) (Theorem 3.2), we
deduce that

∂t(∂iu)(t, x) + gλ[∂iu(t, ·)](x) = ∂xiF (t, x, u(t, x),∇u(t, x)) + ∂sF (t, x, u(t, x),∇u(t, x))∂iu(t, x)
+∇ξF (t, x, u(t, x),∇u(t, x)) · ∇(∂iu)(t, x).
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Let a ∈]0, T [; the function ∂2
t ∂iu is bounded on ]a/2, T [×RN (say by Ca,i) and thus, for t ∈]a, T [,

0 < τ < a/2 and x ∈ RN ,

∂iu(t, x) ≤ ∂iu(t− τ, x) + τ∂t∂iu(t, x) + Ca,iτ
2

≤ supRN ∂iu(t− τ, ·) + τ∂xiF (t, x, u(t, x),∇u(t, x)) + τ∂sF (t, x, u(t, x),∇u(t, x))∂iu(t, x)
+τ∇ξF (t, x, u(t, x),∇u(t, x)) · ∇(∂iu)(t, x)− τgλ[∂iu(t, ·)](x) + Ca,iτ

2. (3.17)

Assume that supRN ∂iu(t, ·) > 0 and take a sequence (xn)n≥1 ∈ RN such that ∂iu(t, xn) → supRN ∂iu(t, ·).
Since ∂iu(t, ·) ∈ C2

b (RN ), Theorem 2.2 gives lim infn→∞ gλ[∂iu(t, ·)](xn) ≥ 0 and limn→∞∇(∂iu)(t, xn) =
0. For n large enough, ∂iu(t, xn) > 0 and we can apply (3.17) to x = xn, use (3.4) and (3.2) to bound
the terms involving F and then take the lim supn→∞ of the resulting inequality; we find

supRN ∂iu(t, ·) ≤ supRN ∂iu(t− τ, ·) + 2τΓT,R (supRN |∇u(t, ·)|) + Ca,iτ
2

(recall that R is an upper bound of ||u||L∞(]0,T [×RN )). As in the proof of Proposition 3.1, to obtain an
inequality which holds whatever the sign of supRN ∂iu(t, ·) is, we define wi,+(t) = max(supRN ∂iu(t, ·), 0)
and we have, for all t ∈]a, T [ and all 0 < τ < a/2,

wi,+(t) ≤ wi,+(t− τ) + 2τΓT,R

(
||Du(t, ·)||L∞(RN )

)
+ Ca,iτ

2.

This reasoning applied to −u (the function −F (·, ·,−·,−·) satisfies (3.2) and (3.4)) leads to the same
inequality for wi,−(t) = max(supRN (−∂iu(t, ·)), 0) = max(− infRN ∂iu(t, ·), 0). This inequality is therefore
also satisfied by max(wi,+(t), wi,−(t)) = ||∂iu(t, ·)||L∞(RN ) and, summing on i = 1, . . . , N , we deduce that,
for all t ∈]a, T [ and all 0 < τ < a/2,

||Du(t, ·)||L∞(RN ) ≤ ||Du(t− τ, ·)||L∞(RN ) + 2NτΓT,R

(
||Du(t, ·)||L∞(RN )

)
+
∑N

i=1
Ca,iτ

2.

Since t 7→ ||Du(t, ·)||L∞(RN ) is locally Lipschitz continuous (because ∂t∂iu is bounded on ]a, T [×RN for
all a ∈]0, T [), we infer as in the proof of Proposition 3.1 that, for 0 < t′ < t < T ,

||Du(t, ·)||L∞(RN ) ≤ (GT,R)−1
(
t− t′ + GT,R(||Du(t′, ·)||L∞(RN ))

)
. (3.18)

The function u0 being Lipschitz continuous, the definition of the derivative and the dominated convergence
theorem show that ∂i(K(t′, ·) ∗ u0) = K(t′, ·) ∗ ∂iu0. Thanks to Lemma 5.1 in Appendix and (3.16), we
have ∂i[Kλ(t′ − s, ·) ∗ F (s, ·, u(s, ·),∇u(s, ·))] = ∂iKλ(t′ − s, ·) ∗ F (s, ·, u(s, ·),∇u(s, ·)), which is bounded
independently of x ∈ RN by an integrable function of s ∈]0, t′[; we can therefore derivate (3.15) under
the integral sign to find

∂iu(t′, x) = Kλ(t′, ·) ∗ ∂iu0(x) +
∫ t′

0

∂iKλ(t′ − s, ·) ∗ F (s, ·, u(s, ·),∇u(s, ·))(x) ds (3.19)

and, still using (3.16), we obtain

||∂iu(t′, ·)||L∞(RN ) ≤ ||∂iu0||L∞(RN ) + ||F (·, ·, u,∇u)||∞
Kt′1−

1
λ

1− 1
λ

.

This shows that lim supt′→0 ||Du(t′, ·)||L∞(RN ) ≤ ||Du0||L∞(RN ) and we conclude the proof by letting
t′ → 0 in (3.18).

The proof of the existence and estimates in Theorem 3.1 is then straightforward. Indeed, take u a weak
solution to (3.1) on [0, T ] given by Theorem 3.2. By (3.3), F satisfies (3.11) with h = ΛT ; since u satisfies
(3.6) and (3.7), Proposition 3.1 shows that, for 0 < t′ < t < T , ||u(t, ·)||L∞(RN ) ≤ (LT )−1(t − t′ +
LT (||u(t′, ·)||L∞(RN ))); but (3.8) holds for u, and we can therefore let t′ → 0 to deduce that (3.9) is valid.
We have (3.10) by Proposition 3.2. These estimates (3.9) and (3.10) show that the W 1,∞ norm of u(t, ·)
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does not explode in finite time; item iii) in Theorem 3.2 then allows to indefinitely extend u (1), which
gives a global weak solution to (3.1), and thus a global solution in the sense of Theorem 3.1.

Remark 3.2 As a by-product of this proof of existence, we see that the solution to (3.1) given by Theo-
rem 3.1 also satisfies (3.15), which was not obvious from (3.6)—(3.8).

Remark 3.3 The preceding technique also works if gλ is replaced by a more general operator, provided
that it satisfies Theorem 2.2 (in fact, this theorem is only needed for ϕ ∈ C∞

b (RN )) and that its kernel
satisfies (3.16) (for small t and some λ > 1 in the estimate of the gradient) and (5.1) in Appendix. As
interesting and simple examples of such operators, we can mention:

1) The laplace operator −∆ (which corresponds, up to a multiplicative constant, to g2). Or course,
the preceding results are known for semi-linear parabolic equations (at least for classical choices of
ΛT and ΓT,R).

2) Multifractal operators such as in [5], that is to say
∑l

j=1 αjgλj with αj > 0, λj ∈]0, 2] and λ1 ∈]1, 2].
The kernel of this operator is Kλ1(α1t, ·) ∗ · · · ∗Kλl

(αlt, ·), and it satisfies (3.16) with λ = λ1.

3) Anisotropic operators of the kind A[ϕ] = F−1(
∑N

j=1 |ξj |γjF(ϕ)(ξ)) with γj ∈]1, 2] (it comes to take
a “γj-th derivative” in the j-th direction). This operator is the sum of 1-dimensional operators gγj

acting on each variable, and thus a formula of the kind of (2.1) can be established, which proves that
Theorem 2.2 holds. The kernel of A is

∏N
j=1 kγj

(t, xj), where kγj
is the kernel of gγj

in dimension
N = 1, and it thus satisfies (3.16) with λ = infj(γj).

We refer the reader to [17] for the kernel properties of other pseudo-differential operators.

3.2 Existence and uniqueness results for λ ∈]0, 2[

We show here that, under weaker regularity (but stronger behaviour) assumptions on F and for λ ∈]0, 2[,
we can still solve (3.1), albeit in the viscosity sense. We assume, in the following, that the Hamiltonian F
is continuous with respect to (t, x, s, ξ), locally Lipschitz continuous with respect to (x, s, ξ) and satisfies
(3.3). We replace (3.4) by

∀T > 0 , ∀R > 0 , ∃ΘT,R > 0 such that, for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R]× RN ,
∂sF (t, x, s, ξ) ≤ ΘT,R

(3.20)

∀T > 0 , ∀R > 0 , ∃ΞT,R > 0 such that, for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R]× RN ,
|∇xF (t, x, s, ξ)| ≤ ΞT,R(1 + |ξ|). (3.21)

and (3.2) is relaxed to

∀T > 0,∀R > 0,∃CT,R > 0 such that, for all (t, x, s, ξ) ∈ [0, T ]× RN × [−R,R]×BR,
|F (t, x, s, ξ)| ≤ CT,R , |∂sF (t, x, s, ξ)| ≤ CT,R , |∇ξF (t, x, s, ξ)| ≤ CT,R.

(3.22)

In all the preceding inequalities, the derivatives of F are to be understood as the a.e. derivatives of a
Lipschitz continuous function; these hypotheses therefore state bounds on F and its Lipschitz constants.

Remark 3.4 Assumptions (3.20) and (3.21) are stronger than (3.4); they imply this last assumption
with, for example, ΓT,R(a) = (ΘT,R + ΞT,R)(1 + a).

Let us first briefly recall the definition of a viscosity solution to (3.1) (an immediate generalization of the
definition given in [18] in the case λ > 1).

1It is the semi-group property of Kλ in (3.16) which tells that, if we glue to u| [0,t0] a weak solution with initial time t0
and initial data u(t0, ·), then we construct another weak solution.
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Definition 3.2 Let λ ∈]0, 2[, u0 ∈ Cb(RN ) and F : [0, T [×RN ×R×RN 7→ R be continuous. A function
u : [0, T [×RN 7→ R is a viscosity subsolution to (3.1) if it is bounded upper semi-continuous, if u(0, ·) ≤ u0

and if, for all (t, x) ∈]0, T [×RN and all (α, p) ∈ R×RN such that there exists σ > 0 and r0 > 0 satisfying

u(s, y) ≤ u(t, x) + α(s− t) + p · (y − x) + σ|y − x|2 + o(s− t) for y ∈ Br0(x) and s ∈ [0, T [, (3.23)

we have, for all r > 0,

α− cN (λ)
∫

Br

u(t, x+ z)− u(t, x)− p · z
|z|N+λ

dz − cN (λ)
∫

RN\Br

u(t, x+ z)− u(t, x)
|z|N+λ

dz

≤ F (t, x, u(t, x), p). (3.24)

We similarly define the notion of supersolution for bounded lower semi-continuous functions by reversing
the inequalities (and the sign of σ). A function is a viscosity solution of (3.1) if it is both a sub- and a
supersolution of (3.1).

Remark 3.5 1. Since u(t, x+z)−u(t, x)−p ·z ≤ σ|z|2 on a neighbourhood of 0, the first integral term
of (3.24) is defined in [−∞,+∞[ (the inequality in fact forbids the case where this term is −∞);
the second integral term is defined in R, because u is bounded. Moreover, since

∫
Ba\Bb

p·z
|z|N+λ dz = 0

for all a > b > 0, the quantities in (3.24) in fact do not depend on r > 0; in particular, if λ < 1 or
λ > 1, we can take r = 0 or r = +∞.

2. In [18], a couple (α, p) ∈ R × RN satisfying (3.23) is called a supergradient. The set of all such
couples is denoted ∂Pu(t, x) and is referred to as the superdifferential of u at (t, x). It is the
projection on R× RN of the upper jet of u at (t, x) (see [12] for a definition of semi-jets).

We can now state our existence and uniqueness result for Lipschitz continuous Hamiltonians and λ ∈]0, 2[.

Theorem 3.3 Let λ ∈]0, 2[ and F be continuous and such that (3.3), (3.20), (3.21) and (3.22) hold
true. If u0 ∈W 1,∞(RN ), then there exists a unique viscosity solution of (3.1). Moreover, this solution is
Lipschitz continuous with respect to x and satisfies, for 0 < t < T <∞, (3.9) and

||Du(t, ·)||L∞(RN ) ≤ (1 + ||Du0||L∞(RN ))e
2N(ΘT,R+ΞT,R)t − 1 (3.25)

for any R ≥ ||u||L∞(]0,T [×RN ).

Remark 3.6 1. This result can be extended to initial conditions that are merely bounded and uniformly
continuous. It suffices to adapt the classical method used for instance in [12]. Notice that, in this
case, the Lipschitz continuity of the solution is no longer true.

2. As in Remark 3.3, this theorem also holds for more general operators gλ.

3. Estimate (3.25) is exactly (3.10) when we take, as in Remark 3.4, ΓT,R(a) = (ΘT,R +ΞT,R)(1+a).

4. The conclusions of this theorem are the same as the ones of Theorem 3 and Lemma 2 in [18], but
the assumptions are more general; see the discussion following Theorem 3.1. Moreover, the W 1,∞

estimate (3.25) involves a norm that is slightly different from the one used in [18].

5. Perron’s method. As mentioned in the introduction, Theorem 3.3 can be proved by using Perron’s
method. In this case, “natural” barriers are to be considered for large time, namely t 7→ ±(LT )−1(t+
LT (‖u0‖L∞(RN ))). For small time, in order to ensure that the initial condition is fulfilled, classical
barriers of the form t 7→ u0(x)± Ct can be used for C large enough.
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Proof of Theorem 3.3
We prove the existence result by regularizing F and using a vanishing viscosity method based on the
solution given by Theorem 3.1.

Step 1: regularization of F .
Let hε : Rd → Rd be defined by hε(z) = max(1− ε

|z| , 0)z. hε is at distance ε of the identity function, null
on Bε and |hε| ≤ | · | − ε on Rd\Bε; in particular,

for all z ∈ Rd and |z′| ≤ ε, |hε(z − z′)| ≤ |z|. (3.26)

We define Fε : R2N+2 → R by Fε(t, x, s, ξ) = F (hε(t)+, x, h2ε(s), hε(ξ)); let (t, x, s, ξ) 7→ ρε(t, x, s, ξ) be
a classical regularizing kernel such that supp(ρε) ⊂ Bε and define F̃ε = Fε ∗ ρε. In dimension d = 1, h′2ε

takes its values in [0, 1], and thus F̃ε satisfies (3.20) and (3.21) with the same constants as F (thanks to
(3.26)). It therefore satisfies (3.4) with ΓT,R(a) = (ΘT,R + ΞT,R)(1 + a) (see Remark 3.4). We also have
(3.2) for F̃ε with C̃T,R,k = sup|α|≤k ||∂αρε||L1 sup[0,T ]×RN×[−R,R]×BR

|F | (this quantity, which depends
on ε, is finite thanks to (3.22)).
Property (3.3) for F̃ε is slightly less obvious. Let (t, x, s) ∈ [0, T ]×RN ×R and |t′| ≤ ε, |x′| ≤ ε, |s′| ≤ ε,
|ξ′| ≤ ε. In the case |s| ≥ ε, we have sgn(s) = sgn(s− s′) = sgn(h2ε(s− s′)) since |s′| ≤ ε, and thus, by
(3.3) and (3.26),

sgn(s)Fε(t− t′, x− x′, s− s′, 0− ξ′) = sgn(h2ε(s− s′))F (hε(t− t′)+, x− x′, h2ε(s− s′), 0)
≤ ΛT (|h2ε(s− s′)|)
≤ ΛT (|s|).

In the case |s| ≤ ε, (3.22) gives

|Fε(t− t′, x− x′, s− s′, 0− ξ′)−F (hε(t− t′)+, x− x′, s, 0)|
= |F (hε(t− t′)+, x− x′, 0, 0)− F (hε(t− t′)+, x− x′, s, 0)|
≤ εCT,1

and therefore

sgn(s)Fε(t− t′, x− x′, s− s′, 0− ξ′) ≤ sgn(s)F (hε(t− t′)+, x− x′, s, 0) + εCT,1

≤ ΛT (|s|) + εCT,1.

In any cases, we have sgn(s)Fε(t− t′, x− x′, s− s′, 0− ξ′) ≤ ΛT (|s|) + εCT,1. Multiplying this inequality
by ρε(t′, x′, s′, ξ′) and integrating on (t′, x′, s′, ξ′) shows that (3.3) holds for F̃ε with ΛT (a)+εCT,1 instead
of ΛT (a).

To sum up this step, we have found a regularization F̃ε of F which converges locally uniformly to F and
satisfies (3.2), (3.4) with ΓT,R(a) = (ΘT,R + ΞT,R)(1 + a) (independent of ε) and (3.3) with a function
Λε

T = ΛT + εCT,1 which uniformly converges, as ε→ 0, to ΛT .

Step 2: passing to the limit.
We take λ ∈]0, 2[ and µ ∈]1, 2[. Applying Theorem 3.1 and Remark 3.3, we find a smooth solution uε of{

∂tu
ε(t, x) + gλ[uε(t, ·)](x) + εgµ[uε(t, ·)](x) = F̃ε(t, x, uε(t, x),∇uε(t, x)) t > 0 , x ∈ RN ,

uε(0, x) = u0(x) x ∈ RN (3.27)

in the sense of (3.6), (3.7) and (3.8) (notice that, if λ > 1, there is no need to introduce the term εgµ in
this equation). Since, for 0 < ε ≤ 1, F̃ε satisfies (3.3) with ΛT (a) + CT,1 instead of ΛT (a), the theorem
gives estimates on uε and ∇uε which do not depend on ε.
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These estimates and (3.22) show that F̃ε(·, ·, uε,∇uε) is bounded on ]0, T [×RN independently of ε. The
integral representation (3.15) reads here (see Remark 3.3)

uε(t, x) = Kλ(t, ·) ∗Kµ(εt, ·) ∗ u0(x)

+
∫ t

0

Kλ(t− s, ·) ∗Kµ(ε(t− s), ·) ∗ F̃ε(s, ·, uε(s, ·),∇uε(s, ·))(x) ds ,

and (3.16) thus gives ||uε(t, ·)−Kλ(t, ·) ∗Kµ(εt, ·) ∗ u0||L∞(RN ) ≤ Ct with C not depending on ε. Since
(Kλ(t, ·))t→0 and (Kµ(t, ·))t→0 are approximate units and u0 ∈ W 1,∞(RN ), we easily see that Kλ(t, ·) ∗
Kµ(εt, ·)∗u0(x) → u0(x) as t→ 0, uniformly with respect to x ∈ RN and ε ∈]0, 1]. Hence, uε(t, x) → u0(x)
as t → 0, uniformly with respect to (x, ε) ∈ RN×]0, 1], and the relaxed upper limit lim sup∗ uε(t, x) =
lim supε→0,(s,y)→(t,x) u

ε(s, y) coincides with u0 at t = 0. So does the relaxed lower limit lim inf∗ uε =
− lim sup∗(−uε).
Remark that uε is a viscosity solution of (3.27). Since F̃ε → F locally uniformly, an easy adaptation of
the stability theorem of [18] shows that lim sup∗ uε is a viscosity subsolution of (3.1) and that lim inf∗ uε

is a viscosity supersolution of (3.1). The assumptions ensure that the comparison principle holds true for
(3.1) (still a straightforward generalization of [18] to the case λ ∈]0, 2[). Thus, lim sup∗ uε(0, x) = u0(x) =
lim inf∗ uε(0, x) implies lim sup∗ uε ≤ lim inf∗ uε and we conclude that uε locally uniformly converges to
u = lim sup∗ uε = lim inf∗ uε, a viscosity solution to (3.1); the estimates on u stated in the theorem are
obtained by passing to the limit in the estimates on uε. To finish with, we recall that the comparison
principle ensures that the solution we have just constructed is unique in the class of viscosity solutions
which satisfy u(0, ·) = u0.

Since we have proved in Step 2 that a vanishing regularization gives a solution to (3.1), we can now
wonder if it is possible to obtain a rate of convergence. The next theorem answers this question.

Theorem 3.4 Let (λ, µ) ∈]0, 2[ and F be continuous and such that (3.3), (3.20), (3.21) and (3.22) hold
true. Let u0 ∈W 1,∞(RN ), u be the viscosity solution of (3.1) and, for ε > 0, uε be the viscosity solution
of{

∂tu
ε(t, x) + gλ[uε(t, ·)](x) + εgµ[uε(t, ·)](x) = F (t, x, uε(t, x),∇uε(t, x)) t > 0 , x ∈ RN ,

uε(0, x) = u0(x) x ∈ RN .
(3.28)

Then, for all T > 0,

||uε − u||Cb([0,T ]×RN ) =


O(ε) if µ < 1 ,
O(ε| ln(ε)|) if µ = 1 ,
O(ε1/µ) if µ > 1.

Remark 3.7 1. As the preceding results, this theorem is valid for more general operators gλ, and also
for µ = 2. Moreover, the conclusion still holds if we remove gλ from both equations (in this case,
(3.1) is a pure Hamilton-Jacobi equation).

2. These rates of convergence are optimal for any µ ∈]0, 2[ (take F = 0, remove gλ, choose u0(x) =
max(1−|x|, 0) and compare uε(1, 0)−u(1, 0) = Kµ(ε, ·)∗u0(0)−1 thanks to the formula Kµ(ε, x) =
ε−N/µKµ(1, ε−1/µx) and to the property Kµ(1, x) ∼ C|x|−N−µ as |x| → ∞).

Proof of Theorem 3.4
The proof relies on the same technique as in [18], with modifications due to the presence of gλ and to the
fact that µ can be equal to or less than 1.
By a classical change of unknown function, (3.20) allows to reduce to the case where F is nonincreasing
with respect to s. Let M = sup[0,T [×(RN )2{u(t, x) − uε(t, y) − |x − y|2/2α − β|x|2/2 − ηt − γ/(T − t)},
where α, β, η are positive and γ ∈]0, 1]. We want to prove that, for appropriate choices of η and γ, M is
attained at t = 0.
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Let ν > 0 and Mν = sup[0,T [2×(RN )2{u(t, x)−uε(s, y)−|x−y|2/2α−|t−s|2/2ν−β|x|2/2−ηt−γ/(T−t)}.
It is classical that Mν is attained at some (tν , sν , xν , yν) such that, up to a subsequence, (tν , sν , xν , yν) →
(t, t, x, y) as ν → 0, where (t, x, y) realizes M . We now assume that t > 0 and, with good choices of η
and γ, we show that this leads to a contradiction.

If t > 0 then, for ν small enough, tν > 0 and sν > 0. Let pν = (xν − yν)/α; by definition of Mν ,
(γ/(T − tν)2 + (tν − sν)/ν + η, pν + βxν) is a supergradient of u at (tν , xν); since u is a subsolution of
(3.1), we obtain

γ

(T − tν)2
+
tν − sν

ν
+ η

−cN (λ)
∫

Br

u(tν , xν + z)− u(tν , xν)− (pν + βxν) · z
|z|N+λ

dz − cN (λ)
∫

RN\Br

u(tν , xν + z)− u(tν , xν)
|z|N+λ

dz

≤ F (tν , xν , u(tν , xν), pν + βxν). (3.29)

Similarly, by definition of Mν we can use ((tν − sν)/ν, pν) in the equation at (t, x) = (sν , yν) which states
that uε is a supersolution of (3.28) and we obtain

tν − sν

ν

−cN (λ)
∫

Br

uε(sν , yν + z)− uε(sν , yν)− pν · z
|z|N+λ

dz − cN (λ)
∫

RN\Br

uε(sν , yν + z)− uε(sν , yν)
|z|N+λ

dz

−εcN (µ)
∫

BR

uε(sν , yν + z)− uε(sν , yν)− pν · z
|z|N+µ

dz − εcN (µ)
∫

RN\BR

uε(sν , yν + z)− uε(sν , yν)
|z|N+µ

dz

≥ F (sν , yν , u
ε(sν , yν), pν). (3.30)

We also have, still using the definition of Mν ,

uε(sν , yν + z)− uε(sν , yν) + u(tν , xν)− u(tν , xν + z) ≥ β|xν |2

2
− β|xν + z|2

2
= −βxν · z −

β|z|2

2
and, by the estimate on ∇uε, |uε(sν , yν + z)− uε(sν , yν)| ≤ C|z| (here and after, C stands for a positive
real number which can change from one line to another but does not depend on ε, r, R, ν, α, β, η or γ).
Hence, subtracting (3.29) from (3.30) and using the bounds we have on u and uε, we find (for R ≤ 1)

− γ

(T − tν)2
− η + cN (λ)

β

2

∫
Br

|z|2

|z|N+λ
dz

+C
∫

RN\Br

1
|z|N+λ

dz − εcN (µ)
∫

BR

uε(sν , yν + z)− uε(sν , yν)− pν · z
|z|N+µ

dz

+Cε
∫

B1\BR

|z|
|z|N+µ

dz + Cε

∫
RN\B1

1
|z|N+µ

dz

≥ F (sν , yν , u
ε(sν , yν), pν)− F (tν , xν , u(tν , xν), pν + βxν). (3.31)

Using once again the definition of Mν , we write

uε(sν , yν + z)− uε(sν , yν)− pν · z ≥
|xν − yν |2 − |xν − yν − z|2

2α
− 2(xν − yν) · z

2α
= −|z|

2

2α
.

We can therefore bound the integral term containing uε in (3.31) and pass to the limit ν → 0 to obtain

− γ

(T − t)2
− η + Cβ

∫
Br

|z|2

|z|N+λ
dz + C

∫
RN\Br

1
|z|N+λ

dz

+C
ε

α

∫
BR

|z|2

|z|N+µ
dz + Cε

∫
B1\BR

|z|
|z|N+µ

dz + Cε

≥ F (t, y, uε(t, y), p)− F (t, x, u(t, x), p+ βx)
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where p = (x−y)/α. Putting t = 0 and x = y = 0 in the definition of M , which is attained at (t, x, y), we
have u(t, x)− uε(t, y)− γ/(T − t) ≥M ≥ −γ/T , and thus u(t, x) ≥ uε(t, y) + γ/(T − t)− γ/T ≥ uε(t, y);
the function F being nonincreasing with respect to its third variable, we deduce

− γ

T 2
− η + Cβr2−λ + Cr−λ + C

ε

α
R2−µ + Cε

∫
B1\BR

|z|
|z|N+µ

dz + Cε

≥ F (t, y, u(t, x), p)− F (t, x, u(t, x), p+ βx). (3.32)

Using once again the definition of Mν , we have β|xν |2 ≤ C (because Mν ≥ M ≥ −γ/T ≥ −1/T ), so
that β|x| ≤ C

√
β. Moreover, since pν satisfies the reverse inequality of (3.23) with uε instead of u, and

since we have a bound on the spatial Lipschitz constant of uε, we find |pν | ≤ C and thus |p| ≤ C and
|x− y| ≤ Cα. Assumptions (3.21) and (3.22) therefore give

− γ

T 2
− η + Cβr2−λ + Cr−λ +

Cε

α
R2−µ + Cε

∫
B1\BR

|z|
|z|N+µ

dz + Cε ≥ −Cα− C
√
β

(we take β ≤ 1). Choosing γ = (C
√
β + Cβr2−λ + Cr−λ + β)T 2 (which is in ]0, 1] if r is large and β is

small) and η = Cα+ Cε
α R2−µ +Cε

∫
B1\BR

|z|
|z|N+µ dz+Cε leads to −β ≥ 0, which is the contradiction we

sought.

With these choices of γ and η, M is attained at (0, x, y) and, for all (t, x) ∈ [0, T [×RN ,

u(t, x)− uε(t, x)− β
|x|2

2
− ηt− γ

T − t
≤ u0(x)− u0(y)−

|x− y|2

2α
≤ Cα

(we use the fact that u0 is Lipschitz continuous). Thus,

u(t, x) ≤ uε(t, x) + β
|x|2

2
+

(
Cα+

Cε

α
R2−µ + Cε

∫
B1\BR

|z|
|z|N+µ

dz + Cε

)
T

+
(C
√
β + Cβr2−λ + Cr−λ + β)T 2

T − t
+ Cα.

We now let β → 0 and then r → +∞:

u(t, x) ≤ uε(t, x) + Cα+
Cε

α
R2−µ + Cε

∫
B1\BR

|z|
|z|N+µ

dz + Cε.

If µ < 1 (respectively µ = 1, respectively µ > 1), then
∫

B1\BR

|z|
|z|N+µ dz is bounded by C (respectively

C| ln(R)|, respectively CR1−µ). A simple optimization with respect to R and then α leads to

u(t, x) ≤ uε(t, x) + C


ε if µ < 1
ε| ln(ε)| if µ = 1
ε1/µ if µ > 1

and we obtain the reverse inequality by exchanging, from the beginning, the roles of u and uε.

4 Fractal scalar hyperbolic equations

4.1 Existence and uniqueness of a smooth solution

In this section, we come back to the case λ ∈]1, 2[ and we handle{
∂tu(t, x) + div(f(t, x, u(t, x))) + gλ[u(t, ·)](x) = h(t, x, u(t, x)) t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN ,
(4.1)
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where u0 ∈ L∞(RN ), f ∈ C∞([0,∞[×RN × R)N , h ∈ C∞([0,∞[×RN × R) and

∀T > 0 , ∀R > 0 , ∀k ∈ N ,∃CT,R,k such that,
for all (t, x, s) ∈ [0, T ]× RN × [−R,R] and all α ∈ NN+2 satisfying |α| ≤ k,

|∂αf(t, x, s)|+ |∂αh(t, x, s)| ≤ CT,R,k ,
(4.2)

∀T > 0, there exists ΛT : [0,+∞[→]0,+∞[ continuous nondecreasing
such that

∫∞
0

1
ΛT (a) da = +∞ and, for all (t, x, s) ∈ [0, T ]× RN × R ,

sgn(s)
(
h(t, x, s)−

∑N
i=1 ∂xifi(t, x, s)

)
≤ ΛT (|s|).

(4.3)

The term h−
∑N

i=1 ∂xifi represents a source for (4.1), and an assumption on this source is not unexpected
if we want global solutions; this hypothesis with ΛT (a) = KT (1+a) (and KT constant), as well as uniform
spatial bounds such as in (4.2), also appear in [21] when dealing with the pure scalar conservation law
(i.e. without gλ). Here, we prove the following.

Theorem 4.1 Let λ ∈]1, 2[ and u0 ∈ L∞(RN ); assume that f and h satisfy (4.2) and (4.3). Then there
exists a unique solution u to (4.1) in the sense: for all T > 0,

u ∈ Cb(]0, T [×RN ) and, for all a ∈]0, T [ , u ∈ C∞
b (]a, T [×RN ) , (4.4)

u satisfies the PDE of (4.1) on ]0, T [×RN , (4.5)
u(t, ·) → u0 in L∞(RN ) weak-∗, as t→ 0. (4.6)

We also have Estimate (3.9) on the solution, that is to say: for all 0 < t < T <∞,

||u(t, ·)||L∞(RN ) ≤ (LT )−1
(
t+ LT (||u0||L∞(RN ))

)
with LT (a) =

∫ a

0

1
ΛT (b)

db.

Remark 4.1 The proof of uniqueness shows that the solution to (4.1) also satisfies (4.7) below. As a
consequence, the convergence in (4.6) also holds in Lp

loc(RN ) for all p <∞.

As for (3.1), the existence of a solution to (4.1) is obtained via a weak formulation based on Duhamel’s
formula.

Definition 4.1 Let λ ∈]1, 2[, u0 ∈ L∞(RN ), T > 0 and (f, h) satisfy (4.2). A weak solution to (4.1) on
[0, T ] is a function u ∈ L∞(]0, T [×RN ) such that, for a.e. (t, x) ∈]0, T [×RN ,

u(t, x) = Kλ(t, ·)∗u0(x)−
∫ t

0

∇Kλ(t−s, ·)∗f(s, ·, u(s, ·))(x) ds+
∫ t

0

Kλ(t−s, ·)∗h(s, ·, u(s, ·))(x) ds. (4.7)

Thanks to (3.16), each term in (4.7) is well-defined. As before, a fixed point technique (see [15]) allows
to prove the theorem stated below (Theorem 4.2); we leave the details to the interested reader (notice
that once it has been proved that weak solutions to (4.1) have one continuous spatial derivative — which
is a consequence of a result similar to Proposition 5.2 —, the full regularity of these weak solutions can
be seen as a consequence of Theorem 3.2).

Theorem 4.2 Let λ ∈]1, 2[, u0 ∈ L∞(RN ) and (f, h) satisfy (4.2).

i) For all T > 0, there exists at most one weak solution to (4.1) on [0, T ].

ii) A weak solution to (4.1) on [0, T ] satisfies (4.4), (4.5) and (4.6).

iii) Let M ≥ ||u0||L∞(RN ). There exists T > 0, only depending on M and the constants in (4.2), such
that (4.1) has a weak solution on [0, T ].
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We can now prove the existence and uniqueness result for (4.1).

Proof of Theorem 4.1
Let u be a weak solution to (4.1) on [0, T ] in the sense of Definition 4.1. By Theorem 4.2, such a solution
exists and satisfies (4.4), (4.5); hence, it satisfies (3.12) with

G(t, x, s, ξ) = h(t, x, s)−
N∑

i=1

∂xi
fi(t, x, s)− ∂sf(t, x, s) · ξ.

Since (3.11) holds for G with h = ΛT given by Hypothesis (4.3), we deduce from Proposition 3.1 that,
for all 0 < t′ < t < T ,

||u(t, ·)||L∞(RN ) ≤ (LT )−1
(
t− t′ + LT (||u(t′, ·)||L∞(RN ))

)
. (4.8)

From (4.7) it is easy to see that lim supt′→0 ||u(t′, ·)||L∞(RN ) ≤ ||u0||L∞(RN ) (the last two terms of (4.7)
tend to 0 in L∞(RN ) as t → 0, thanks to (3.16)); hence, letting t′ → 0 in (4.8) shows that u satisfies
(3.9). In particular, the L∞ norm of u(t, ·) does not explode in finite time and, by iii) in Theorem 4.2,
we can indefinitely extend u; this proves the existence part of Theorem 4.1.

It remains to prove the uniqueness of the solution. Let u satisfy (4.4), (4.5) and (4.6) for all T > 0; take
t0 > 0. The function u(t0 + ·, ·) belongs, for all T > 0, to C∞

b ([0, T [×RN ); hence, it satifies (3.6) and
(3.8) with u0 = u(t0, ·). Moreover, if we define

F (t, x, s, ξ) = h(t0 + t, x, u(t0 + t, x))− div(f(t0 + t, x, u(t0 + t, x)))

(in fact, F does not depend on s or ξ), the function u(t0 + ·, ·) also satisfies (3.7). It is clear that this
F satisfies (3.2), (3.3) and (3.4) (with ΛT and ΓT,R constants) and, therefore, u(t0 + ·, ·) is the unique
solution to (3.1) given by Theorem 3.1; in particular, by Remark 3.2 we have, for all t > 0,

u(t0 + t, x) = Kλ(t, ·) ∗ u(t0, ·)(x)

+
∫ t

0

Kλ(t− s, ·) ∗ [h(t0 + s, ·, u(t0 + s, ·))− div(f(t0 + s, ·, u(t0 + s, ·)))] (x) ds

= Kλ(t, ·) ∗ u(t0, ·)(x)−
∫ t

0

∇Kλ(t− s, ·) ∗ f(t0 + s, ·, u(t0 + s, ·))(x) ds

+
∫ t

0

Kλ(t− s, ·) ∗ h(t0 + s, ·, u(t0 + s, ·))(x) ds. (4.9)

For t > 0 and x ∈ RN fixed, by (4.6) we have Kλ(t, ·)∗u(t0, ·)(x) → Kλ(t, ·)∗u0(x) as t0 → 0; using (4.4)
and the dominated convergence theorem, we can let t0 → 0 in the last two terms of (4.9) to see that u
satisfies (4.7). Hence, u is a weak solution to (4.1) and, by i) in Theorem 4.2, is unique.

Remark 4.2 Equation (4.1) can also be solved with more general operators gλ, see Remark 3.3.

4.2 About the vanishing regularization

Let us say a few things on the behaviour, as ε→ 0+, of the solution to{
∂tu

ε(t, x) + div(f(t, x, uε(t, x))) + εgλ[uε(t, ·)](x) = h(t, x, uε(t, x)) t > 0 , x ∈ RN ,

uε(0, x) = u0(x) x ∈ RN ,
(4.10)

where we still take λ ∈]1, 2[, u0 ∈ L∞(RN ) and (f, h) satisfying (4.2) and (4.3). It has been proved in
[13] that, if h = 0 and f does not depend on (t, x), the solution uε to (4.10) converges, as ε→ 0, to the
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entropy solution u of{
∂tu(t, x) + div(f(t, x, u(t, x))) = h(t, x, u(t, x)) t > 0 , x ∈ RN ,

u(0, x) = u0(x) x ∈ RN .
(4.11)

The key argument is the obtention, via a splitting method, of entropy inequalities for (4.10); this method
can be generalized to some cases where f and h depend on (t, x) (see [14]) but, in any cases, it is quite
technical.

Thanks to formula (2.1), we have a trivial proof of these entropy inequalities, via the following lemma.

Lemma 4.1 Let λ ∈]0, 2[, ϕ ∈ C2
b (RN ) and η ∈ C2(R) be a convex function. Then gλ[η(ϕ)] ≤ η′(ϕ)gλ[ϕ].

Proof of Lemma 4.1
Since η is convex, we have η(b)− η(a) ≥ η′(a)(b− a). Hence,

η(ϕ(x+ z))− η(ϕ(x)) ≥ η′(ϕ(x))(ϕ(x+ z)− ϕ(x))

and
η(ϕ(x+ z))− η(ϕ(x))−∇(η(ϕ))(x) · z ≥ η′(ϕ(x))(ϕ(x+ z)− ϕ(x)−∇ϕ(x) · z).

The conclusion follows from these inequalities and (2.1).

Thus, if η ∈ C2(R) is convex and φ is such that ∂sφ(t, x, s) = η′(s)∂sf(t, x, s), multiplying the PDE of
(4.10) by η′(uε(t, x)) gives (recall that all the functions, including uε, are regular)

∂t(η(uε))(t, x) + εgλ[η(uε(t, ·))](x) ≤ η′(uε(t, x))

(
h(t, x, uε(t, x))−

N∑
i=1

∂xifi(t, x, uε(t, x))

)

−div(φ(t, x, uε(t, x))) +
N∑

i=1

∂xiφi(t, x, uε(t, x)) , (4.12)

which is exactly the entropy inequality for (4.10). Once this inequality is established, the doubling variable
technique of [21] (used in [13]) shows that, for all T > 0 and as ε→ 0, uε → u in C([0, T ];L1

loc(RN )).

It is also possible, if the initial condition u0 is in L∞(RN ) ∩ L1(RN ) ∩ BV (RN ), to obtain a rate of
convergence: O(ε1/λ) in C([0, T ];L1(RN )); this is well-known for λ = 2 (see [22]) and has been done
for λ ∈]1, 2[, h = 0 and f(t, x, u) = f(u) in [13]. However, to obtain such a rate of convergence we
must first establish L1 and BV estimates on uε, which demands additional hypotheses on f and h (some
integrability properties with respect to x); we refer the reader to [14] for a set of suitable hypotheses.
Once these estimates are established, the proof of the rate of convergence is made as in [22] or [13] by
using (4.12).

5 Appendix

5.1 A technical Lemma

Lemma 5.1 If f ∈ C1(RN )∩W 1,1(RN ) and g ∈ L∞(RN ), then f ∗ g ∈ C1(RN ) and ∇(f ∗ g) = ∇f ∗ g.

Proof of Lemma 5.1
We have not assumed that ∇f(x − y) is bounded locally uniformly in x by some integrable function of
y; hence, we cannot directly use a theorem of derivation under the integral sign.
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Let n ≥ 1 and define gn = g1Bn
; for all x ∈ RN , f ∗ gn(x) =

∫
Bn

f(x − y)g(y) dy → f ∗ g(x) as
n → ∞. Since f ∈ C1(RN ), a derivation under the integral sign shows that f ∗ gn ∈ C1(RN ) with
∇(f ∗ gn) = ∇f ∗ gn. But, for all |x| ≤ R,

|∇f ∗ gn(x)−∇f ∗ g(x)| ≤ ||g||L∞(RN )

∫
{|y|≥n}

|∇f(x− y)| dy ≤ ||g||L∞(RN )

∫
{|z|≥n−R}

|∇f(z)| dz

(if |x| ≤ R and |y| ≥ n, then |x − y| ≥ |y| − |x| ≥ n − R); hence, since ∇f ∈ L1(RN ), we have
∇(f ∗ gn) = ∇f ∗ gn → ∇f ∗ g locally uniformly on RN , which concludes the proof of the lemma.

5.2 Generalizations of Theorem 2.2 and Proposition 3.1

In this subsection, we state and prove generalizations of Theorem 2.2 and Proposition 3.1. Roughly speak-
ing, we show that u needs not be in C2

b but only in Cb; in this case, the operator gλ and Equation (3.12)
must be understood in the viscosity sense.
For usc functions φ :]0, T [→ R, the notion of viscosity supergradient is used in order to define viscosity
subsolutions of φ′ = h(φ). The notion of upper semi-continuous envelope of locally bounded functions is
also used in the following. The definitions of viscosity supergradient, viscosity solution of φ′ = h(φ) and
upper semi-continuous envelope can be found in [12].

Theorem 5.1 Let λ ∈]0, 2[ and v ∈ Cb(]0, T [×RN ). Let φ denote the upper semi-continuous envelope of
the function supx∈RN v(·, x). Then for any viscosity supergradient α of φ at t ∈]0, T [, there exist tn → t,
αn → α, and xn, pn ∈ RN such that

v(tn, xn) → φ(t) and (αn, pn) ∈ ∂P v(tn, xn) and pn → 0 and lim inf
n→∞

gλ[v(tn, ·)](xn) ≥ 0.

Proof of Theorem 5.1
By definition of viscosity supergradient, there exists ψ ∈ C1(]0, T [) such that φ − ψ attains a global
maximum at t and α = ψ′(t). Then for any (s, x) ∈]0, T [×RN , we have:

v(s, x)− ψ(s) ≤ φ(s)− ψ(s) ≤ φ(t)− ψ(t).

Next, for any ε > 0, consider (tε, xε) ∈]0, T [×RN such that φ(t) < v(tε, xε) + ε/2 and tε → t as ε → 0.
We can also ensure that ψ(t) ≥ ψ(tε)− ε/2. Combining these facts yields:

sup
(s,x)∈]0,T [×RN

(v(s, x)− ψ(s)) < v(tε, xε)− ψ(tε) + ε.

We then apply Borwein and Preiss’ minimization principle (see for instance [10]) and get (sε, yε) and
(rε, zε) such that

|(rε, zε)− (tε, xε)| < ε1/4 and |(sε, yε)− (rε, zε)| < ε1/4

and sup
(s,x)∈]0,T [×RN

(v(s, x)− ψ(s)) ≤ v(sε, yε)− ψ(sε) + ε

and such that (sε, yε) is the unique point realizing the maximum of the perturbed function (t, x) 7→
v(t, x)−ψ(t)−

√
ε(t−rε)2−

√
ε|x−zε|2. This implies that (ψ′(sε)+2

√
ε(sε−rε), 2

√
ε(yε−zε)) ∈ ∂P v(sε, yε).

Define αε = ψ′(sε) + 2
√
ε(sε − rε) and pε = 2

√
ε(yε − zε). They verify αε → α and pε → 0 as ε → 0.

Moreover, v(sε, yε) → φ(t) and sε → t. It only remains to prove that lim infε→0 gλ[v(sε, ·)](yε) ≥ 0 by
using Fatou’s Lemma. First, notice that

v(sε, yε + z)− v(sε, yε) ≤ φ(sε)− v(sε, yε)

21



and since φ is upper semi-continuous and v(sε, yε) → φ(t), the upper limit of the right-hand side is
nonpositive. Secondly,

v(sε, yε + z)− v(sε, yε)
|z|N+λ

≤ 2‖v‖∞
|z|N+λ

∈ L1(RN \B1),

v(sε, yε + z)− v(sε, yε)− pε · z
|z|N+λ

≤
√
ε

|z|N+λ−2
∈ L1(B1).

Now choose ε = 1/n and (tn, αn, xn, pn) = (sεn , αεn , yεn , pεn) satisfies the desired properties.

Proposition 5.1 Let λ ∈]0, 2[, T > 0 and G ∈ C(]0, T [×RN × R × RN ) be such that (3.11) is satisfied
and G is locally Lipschitz continuous w.r.t. ξ, locally in (t, s) and uniformly in x. Then any viscosity
solution of (3.12) satisfies for any 0 < t′ < t < T :

||u(t, ·)||∗L∞(RN ) ≤ H−1
(
t− t′ +H

(
||u(t′, ·)||∗L∞(RN )

))
where ||u(s, ·)||∗L∞(RN ) = lim supτ→s ||u(τ, ·)||L∞(RN ).

Proof of Proposition 5.1
Let us denote φ(t) = ||u(t, ·)||∗L∞(RN ). Suppose we have proved that φ is a viscosity subsolution of
w′ = h(w) on ]0, T [. Then the function H(φ(t))− t is a viscosity subsolution of w′ = 0 (recall that H is
C1 and nondecreasing). This implies that H(φ(t)) − t is nonincreasing and, since H is a nondecreasing
bijection [0,+∞[→ [0,+∞[, we get the desired a priori estimate on u.
It remains to prove that φ is a viscosity subsolution of w′ = h(w) on ]0, T [. It is a consequence of
Theorem 5.1 applied to v = |u|. Let α be a viscosity supergradient of φ and consider tn → t, αn → α,
and xn, pn ∈ RN given by Theorem 5.1. We have to prove that α ≤ h(φ(t)). We distinguish two
cases. Suppose first that there exists a sequence nk → ∞ such that v(tnk

, xnk
) = u(tnk

, xnk
). Then

(αnk
, pnk

) ∈ ∂Pu(tnk
, xnk

) and, since u is a viscosity subsolution of (3.12), we get:

αnk
+ gλ[u(tnk

, ·)](xnk
) ≤ G(tnk

, xnk
, u(tnk

, xnk
), pnk

).

As k →∞, we have u(tnk
, xnk

) → φ(t) and pnk
→ 0. We can use the local Lipschitz continuity of G with

respect to ξ and find:
αnk

+ gλ[u(tnk
, ·)](xnk

) ≤ h(u(tnk
, xnk

)) +M |pnk
|

for M independent of k. As k goes to +∞, we conclude in the first case that α ≤ h(φ(t)) by using the fact
that u(tnk

, xnk
) → φ(t) and that gλ[u(tnk

, ·)](xnk
) ≥ gλ[v(tnk

, ·)](xnk
) (because v(tnk

, xnk
) = u(tnk

, xnk
)

and v(tnk
, xnk

+ z) ≥ u(tnk
, xnk

+ z)), so that lim infk→∞ gλ[u(tnk
, ·)](xnk

) ≥ 0. In the second case, for
n large enough, v(tn, xn) = −u(tn, xn). Then (−αn,−pn) ∈ ∂Pu(tn, xn) and we can argue similarly, by
using the fact that u is a viscosity supersolution of (3.12), to conclude that we also have α ≤ h(φ(t)).

5.3 Ideas for the proof of Theorem 3.2

We need the following additional property on Kλ:

t ∈]0,∞[7→ Kλ(t, ·) ∈ L1(RN ) is continuous. (5.1)

This continuity is a consequence of the regularity of Kλ and of the homogeneity property Kλ(t, x) =
t−N/λKλ(1, t−1/λx) which shows that, if A is a compact subset of ]0,∞[, then (Kλ(t, ·))t∈A is equi-
integrable at infinity (that is to say, for all ε > 0, there exists R > 0 such that, for all t ∈ A,∫

RN\BR
|Kλ(t, x)| dx ≤ ε).

The most difficult task in the proof of Theorem 3.2 is the regularity of the weak solutions. The key result
to prove this regularity is the following proposition.

22



Proposition 5.2 Let λ ∈]1, 2[, S > 0 and G : (t, x, ζ) ∈]0, S[×RN ×RN → G(t, x, ζ) ∈ R be continuous;
we suppose that ∂xG, ∂ζG, ∂ζ∂xG and ∂ζ∂ζG exist and are continuous on ]0, S[×RN × RN ; we also
suppose that there exists ω :]0,∞[→ R+ such that, for all L > 0, G and these derivatives are bounded on
]0, S[×RN ×BL by ω(L).
Let R0 > 0 and R = (2 +K)R0 where K is given by (3.16). Then there exists T0 > 0 only depending on
(λ,R0, ω) such that, if T = inf(S, T0) and V0 ∈ L∞(RN )N satisfies ||V0||L∞(RN )N ≤ R0, there exists a
unique V ∈ Cb(]0, T [×RN )N bounded by R and such that

V (t, x) = Kλ(t, ·) ∗ V0(x) +
∫ t

0

∇Kλ(t− s, ·) ∗G(s, ·, V (s, ·))(x) ds. (5.2)

Moreover, ∂xV ∈ C(]0, T [×RN )N2
and, for all a ∈]0, T [, ||∂xV ||Cb(]a,T [×RN )N2 ≤ Ra−1/λ.

Sketch of the proof of Proposition 5.2
We define ET = {V ∈ Cb(]0, T [×RN )N | t1/λ∂xV ∈ Cb(]0, T [×RN )N2} and, for V ∈ ET , ΦT (V ) as the
right-hand side of (5.2).
Thanks to (5.1), the first term Kλ(t, ·) ∗ V0(x) of ΦT (V ) is continuous in t uniformly with respect to x;
since, for t fixed, it is also continuous in x (it is the convolution product of an integrable function and
a bounded function), it is continuous in (t, x). The second term of ΦT (V ) is the convolution product in
R×RN of the integrable function ∇Kλ(t, x)1]0,T [(t) and the bounded function G(t, x, V (t, x))1]0,T [(t): it
is therefore continuous in (t, x). By Lemma 5.1 and (3.16), we have ∂x(Kλ(t, ·)∗V0)(x) = ∂xKλ(t, ·)∗V0(x);
since V ∈ ET , we can differentiate the second term of ΦT (V ) under the integral sign to obtain

∂xΦT (V )(t, x) = ∂xKλ(t, ·) ∗ V0(x)

+
∫ t

0

∇Kλ(t− s, ·) ∗
[
∂xG(s, ·, V (s, ·)) + ∂ζG(s, ·, V (s, ·))∂xV (s, ·)

]
(x) ds.

For t0 > 0 and t > 0, we have ∂x(Kλ(t0+t, ·)∗V0)(x) = Kλ(t, ·)∗(∂xKλ(t0, ·)∗V0)(x), which is continuous
in (t, x) (same proof as the continuity of Kλ(t, ·) ∗ V0(x)); hence, the first term of ∂xΦT (V ) is continuous
on ]0, T [×RN . The continuity the second term is proved first by replacing ∂xV (s, ·) with ∂xV (s, ·)1[δ,T [(s)
(since this function is bounded, the continuity is obtained as for the last term of (5.2)), and then by letting
δ → 0 (the convergence is uniform in (t, x) ∈ [t0, T [×RN for all t0 > 0).
A simple application of (3.16) then allows to prove that, for T small enough, ΦT is contracting from
the ball in ET of radius R into itself, which proves the existence of a solution to (5.2) in ET . The
uniqueness of the bounded solution comes from the fact that, if T is small, ΦT is contracting on the ball
in L∞(]0, T [×RN ) of radius R.

The spatial regularity of any weak solution u to (3.1) is then quite easy. Indeed, from (3.15) and the fact
that u and ∇u are bounded, we see as in the proof above that u is continuous on ]0, T [×RN ; moreover,
the gradient of u satisfies (3.19) which proves, still using the same technique, that it is continuous. Since
(u,∇u) ∈ Cb(]0, T [×RN ), these equations (3.19) can be written in the form of (5.2) (with G taking into
account u); hence, Proposition 5.2 says that the second spatial derivative of u is continuous on ]0, T [×RN

and bounded far from t = 0. We can also write an integral equation satisfied by this second derivative,
provided that we begin at an initial time t0 > 0 instead of 0; this equation is of the kind (5.2). An
induction process, using Proposition 5.2 on the successive equations satisfied by the spatial derivatives of
u, then proves that (3.6) holds for spatial derivatives (all the regularities and bounds we obtain are local
in time, but since the time span on which they hold is controlled, we also obtain global bounds).
To prove that u is differentiable w.r.t. t, we first notice that, if ϕ ∈ C2

b (RN ), then t 7→ Kλ(t, ·) ∗ ϕ(x) is
derivable and d

dt (Kλ(t, ·) ∗ ϕ(x)) = −gλ[Kλ(t, ·) ∗ ϕ](x); this is quite obvious on (1.1) if ϕ ∈ S(RN ) and
can be deduced for general ϕ by a density argument (same technique as in the proof of Proposition 2.1).
With this result, it is possible to derivate (3.15), written at an initial time t0 > 0 and with initial data
u(t0, ·) ∈ C2

b (RN ), with respect to t (to derivate the integral term, we first replace it by
∫ t−δ

0
and then
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let δ → 0); this proves that u satisfies (3.7). The spatial regularity of u and (2.1) then show that u is
also regular in time.
The proof of (3.8) is immediate on (3.15) (the integral term tends to 0 in L∞(RN ) as t → 0, and since
u0 is bounded and uniformly continuous and (Kλ(t, ·))t→0 is an approximate unit, Kλ(t, ·) ∗ u0 → u0

uniformly on RN as t→ 0).

The uniqueness i) and existence iii) in Theorem 3.2 are straightforward applications of a contracting fixed
point on (3.15) in the space {u ∈ L∞(]0, T [×RN ) | ∇u ∈ L∞(]0, T [×RN )N} (the uniqueness is first local
in time, and can then be extented to any time interval in the same way global uniqueness for ODEs is
proved).
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