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Abstract

We study the parabolic approximation of a multidimensional scalar conservation law with initial
and boundary conditions. We prove that the rate of convergence of the viscous approximation to
the weak entropy solution is of order 7]1/ 3 where 7 is the size of the artificial viscosity. We use a
kinetic formulation and kinetic techniques for initial-boundary value problems developed by the last
two authors in a previous work.

Résumé

Nous étudions I'approximation parabolique d’une loi de conservation scalaire multi-dimensionnelle
avec conditions initiales et aux limites. Nous prouvons que la vitesse de convergence de I’approxima-
tion visqueuse vers la solution entropique est de ’ordre de 771/3, ou n est la taille de la viscosité arti-
ficielle. Nous utilisons une formulation et des techniques cinétiques développées pour des problémes
au bord par les deux derniers auteurs dans un travail précédent.

keywords: conservation law, initial-boundary value problem, error estimates, parabolic approximation,

kinetic techniques.
AMS classification: 35L65, 35D99, 35F25, 35F30, 35A35

1 Introduction

Let Q be a bounded open subset of R? with Lipschitz continuous boundary. Let n(Z) be the outward
unit normal to Q at a point T € 9, Q = (0, 4+00) x Q and ¥ = (0, +00) x IQ. We consider the following
multidimensional scalar conservation law

Opu + divA(u) =0 in Q, (1a)
with the initial condition
u(0,z) = up(z),Vz € Q, (1b)
and the boundary condition
u(s,y) = up(s,y),¥(s,y) € X. (1c)
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It is known that entropy solutions must be considered if one wants to solve scalar conservation laws
(Equation (1a) is replaced by a family of inequalities — see [8] for the Cauchy problem) and that the
Dirichlet boundary conditions are to be understood in a generalized sense (see [1] for regular initial and
boundary conditions and [11] for merely bounded data).

In this paper, we estimate the difference between the weak entropy solution of (1) and the smooth solution
of the regularized parabolic equation

O + divA(v) = nAv in Q, (2)

satisfying the same initial and boundary conditions. Throughout the paper, we make the following
hypotheses on the data: the flux function A belongs to C2(R), the initial condition ug is in C2(Q), the
boundary 99 of the domain € is C2, the boundary condition u; belongs to C2(X). In that case, there
exists a unique solution v" (regular outside {0} x 9Q) to the problem (2)-(1b)-(1c).

The aim of this paper is to prove the following error estimate.

Theorem 1 Suppose that Q is C2, A € C3(R), up € C3(Q) and up € C?(X). Let u be the weak entropy
solution of (1) and let v" be the solution of the approximate parabolic problem (2)-(1b)-(1c). Let Ty > 0;
there exists a constant C only depending on (2, up, ug, A, To) such that, for all t € [0,Tp],

[lu(t) = 0" (t)]|L1 o) < /2. 3)

We now recall what is known about error estimates for approximations of conservation laws.
In the case where the function v is smooth (a feature which, we recall, requires the data to be smooth,
compatible and the time Ty to be small enough), error estimates of order

n'/2  if the boundary is characteristic 4

n if the boundary is not characteristic 4)
in L°(0,T;L1(2)) have been given (see Gues [5], Gisclon and Serre [3], Grenier and Gues [4], Joseph and
LeFloch [7], Chainais-Hillairet and Grenier [2] and references therein). The technique of boundary layer
analysis developed in those articles is devoted to the investigation of the initial-boundary value problem
for systems of conservation laws (and not only for a single equation). Roughly speaking, the viscous
approximation v"7 is decomposed as v"7 = wu + ¢"7 4+ (remainder) where ¢” characterizes the boundary
layer which appear in the vicinity of 9€2. Estimates on v — u are then consequences of estimates on
¢ 4 (remainder) (see Appendix 8.1).
To our knowledge, there does not exist other techniques of analysis which would confirm the error estimate
(4). On the contrary, many techniques have been set and improved to analyse the error of approximation
for the Cauchy Problem (2 = R?) for conservation laws (and results of sharpness of error estimates have
also been delivered). The first error estimate for the Cauchy problem is given by Kuznetéov in 1976
[9]: an adaptation of the proof of the result of comparison between two weak entropy solutions given
by Kruzkov [8] yields an error estimate of order 1/2 in the L'-norm. The reader interested in more
precise, more general and more recent results is invited to consult the compilation made by Tang [14],
the introduction of [13], and references therein.
We establish here Estimate (3) for arbitrary times Tp; in particular, the possible occurence of shocks is
taken into account: u is the weak entropy solution to Problem (1) and has no more regularity, in general,
than the ones stated in Proposition 1. As a consequence, u may be irregular in the vicinity of 9Q and
this constitutes an obstacle to the analysis of the rate of convergence of v". To circumvent this obstacle,
we use the kinetic formulation of [6] (an adaptation to boundary problems of the kinetic formulation
introduced in [10]) and adapt the technique of error estimate developed by Perthame for the analysis of
the Cauchy Problem [12]. We then obtain a rate of convergence of 1/3. The accuracy or non-sharpeness
of this order (compare to (4)) remains an open problem for us.



The paper is dedicated to the proof of Theorem 1. It is organized as follows. We begin with some prelim-
inaries, mainly to state (or recall) the kinetic formulations of both hyperbolic and parabolic equations. In
order to enlight the key ideas of this rather technical proof, we present its skeleton in Subsection 2.4. In
Section 3, we obtain a first estimate in the interior of the domain; then, in Sections 4 and 5, we transport
the equations so that €2 becomes a half space and we regularize them in order to use the solution of one
of them as a test function in the other. Eventually, in Section 6, we conclude the proof of Theorem 1 by
getting an estimate of the boundary term which appears at the end of Section 5.

2 Preliminaries

In order to clarify computations, we drop the superscript 7 in v” and simply write v for the approximate
solution. We prove Theorem 1 in several steps.

2.1 Known estimates on v and v

We gather in the following proposition the estimates we will need to prove Theorem 1. We refer to [1]
for a proof of these results.

Proposition 1 Assume that 2 is C2, A € C?(R), up € C*(Q) and u, € C?(X). There exists C > 0 only
depending on (Q,uy, ug, A, Ty) such that

1. the functions u,v : [0,Ty] — L1(Q) are C-Lipschitz continuous
2. for allt € (0,Tp), [o|0w(t, )| <C
<C

3. forallt e [O,To}, |u(t, ')|BV(Q) and ‘U(t, ')|BV(Q) < C.

2.2 Notations

Let us introduce some local charts of Q. Since Q is C? and bounded, we can find a finite cover {Oi}icqo,...m}

of Q by open sets of R? such that Oy C Q and that, for all i € {1,...,n}, there exists a C?-diffeomorphism
h; : O; — B? (the unit ball in R?) satisfying

o 000 CUL,0;;
. hl(Ol N 89) = Bi-1.= Bin (Rdil X {0}),
e 1;(0;NQ) = B4 = BN (R x (0,400)).

Let (Ai)icqo,...,
In the following, when a quantity appears with a bar above, it denotes something related to the boundary
of Q (possibly transported on BY~! by a chart): either a variable on 99 or the value of a function on
this boundary. The values of a function ¢ at t = 0 are denoted by ¢(=9).

Here are other general notations, related to the regularization of the equations. Let § € C°(]1/2,1[; RT)
be such that [, § = 1 and define, for 7 > 0, 6,(-) = 16(+) (right-decentred regularizing kernel). When
necessary, we define regularizing kernels p, in space (either the whole space or on the (transported)
boundary of ) or space-time variables; when such a kernel on RY (N =d -1, N=dor N =d+ 1) is

given and f is a function defined and locally integrable on a set S C R, we denote, for z € RY,

f”(z):/sf(r)p“(z—r)dr,



i.e. f* is the convolution of p, by the extension of f by 0 outside S. We have then, for all ¢ € L}(RY)

with compact support,
[sosmy=[ s
s RN

(where g,(2) = p(~2)).

2.3 Kinetic formulations of (1) and (2)

The function sgn, is defined by sgn, (s) = 0 if s <0 and sgn_ (s) = 1 if s > 0; similarly, sgn_(s) = —1
if s<0andsgn_(s)=0ifs>0. Let D =sup(]|up||co, ||to]|oc)-

Let us recall the kinetic formulation of (1) obtained in [6]: there exists a bounded nonnegative measure
m € M*(Q x R¢), which has a compact support with respect to &, and two nonnegative measurable
functions m4 ,m® € L2 (X x Re) such that the function m’ vanishes for £ > 1 (resp. the function m”
vanishes for £ < —1) and such that the functions fy (¢, x,&) = sgny (u(t, z) — ) associated with u satisty,
for any ¢ € C°(R+2)

/ e +a-V)p+ / FL80=0 ¢ / (ca-m)fid= [  Ocddm (5)
QXRe QxR xR

QxRe
where f9 (z,€) = sgn (uo(z) — €) and f1(t,7,€) = sgn (u(t,T) — £) satisfies
(—a-n)fT =ML +0cm (6)

with f2(t,7,€) = sgny (up(t,Z) — &) and M the Lipschitz constant of the flux function A on [—D, D].
This formula is the kinetic formulation of the BLN condition (see [1]).

We next give a kinetic formulation for the approximate solution. Consider two test functions ¢ €
C2=(R, xRY), 1 € CZ(R) and define £(a) = [ 1(€)sgns (a—&)de and H(a) = [ a(€)i(€)sgn (a—E)de.
Note that E' =1 and H' = F’a. Now multiply the equation 0;v + divA(v) = nAwv by (¢, 2)v(v(t, z)) =
o(t,z)E'(v(t,r)), integrate over @ and integrate by part (using the fact that v is C? outside {0} x 9Q)

/QE(v)at<p+H(v).w+/ﬂE(u0)¢<t—0>/EH(ub).w

=/ nE’(v)Vv-Vso—/nE’(ub)W-T@Jr/ nE" ()| Vol* o.
Q > Q

Using the definition of E and H, we obtain, denoting g4 (¢, x,&) = sgny (v(t, z) — &),

fL8=0 4 /

N9, Vv -V + /
o

QXRE

/ 9o (Dh+a- V) — Gia:/ deddg  (7)
QXRe xR QxRe

QXR{
where ¢(t,, ) = @(t, x)(¢) and

Gy = (—a-n)fh +n6,Vv-n
q=ndy|Vv[* >0

(notice that the support of ¢ is compact with respect to £). Using a classical argument relying on
convolution techniques, we claim that (7) holds true for any test function ¢ € C°(R+2).

Remark 1 i) Since fy, [, fT and m vanish for £ > 1, Equation (5) with fy holds true when the
support of the test function ¢ is merely lower bounded (and not necesseraly compact) with respect to
&. Similarly, we can apply (7) with g_ to test functions the support of which is only upper bounded
with respect to £&. Notice also that, in all the following, though we write integrals in & on the whole
of R, the integrands we consider are null outside a fivred compact (namely [—D, D)) of Re; we use
this in some estimates, without recalling it.



it) Equations (5) and (7) can be applied to certain test functions which are not fully reqular but have
some monotony properties with respect to &, provided we replace the equality by an inequality (the
sign of which is given by the monotony of the test function). More precisely, we consider, in the fol-
lowing, test functions of the kind ¢(t,x,&) = fooo Jo ot z, s,y)sgny (W(s,y) — &) dyds, where W is
bounded and ¢ is reqular and has a fized sign; we can approximate sgn, by some non-decreasing and
regular functions sgn . 5; then, applying (5) or (7) to ¢5(t,x,§) = fooo fQ o(t,z,s,y)sgny s(W(s,y)—
&) dy ds, which is regular and has the same monotony properties as ¢ (with respect to £), we no-
tice that the right-hand side has a fixed sign; then, passing to the limit 6 — 0, we see that these
inequalities are satisfied with ¢.

2.4 Main ideas of the proof

We present here formal manipulations which enable to understand the key steps of the proof. Let
(t,z) — @(t,x) be a non-negative regular function. Plugging ¢ = ¢g_ in (5) and ¢ = ¢fy in (7), we
obtain

/ F(@+a-V)(pg-) +/ (—a-n)fTf'B <0
QxRe

EXRS
and
/ 0_(0+a-V)(pfs) + / (—a-n)f* fT5—1n / 5,0V (fr0) -1 / 6., ¥0 - nf <0
QXRE ZXRg QX]R§ ZXRg

(since f_?r f° =0). Summing these inequalities and integrating by parts, it comes

/ f+g_(at+a~V>so<—/ (*wn)flf%fn/ 5ubW~nﬁ¢+n/ 5,0 -V (f10).
QXR{ EXRE EXRg QXR&

Taking ¢ (t, x) = we(t) with (w¢)¢>o which converges to the characteristic function of [0, 7] and w; — —ér,
this gives

/Q(u—u)‘*‘(T,x)d:EZ/ (—frg)=D

QXR&

</ (aemfis = [ 60 0 nF- 0 [ 5,V0- Vi (8)
[0, T]x 02 xR¢ [0, T]x 02 xR¢ [0, T]xQxRe

The functions f; and g_ are not regular enough to justify such manipulations, which are therefore
performed with f§ and g”, regularized versions of these applications. The smoothing of g_ is purely
technical and we immediately let v — 0; at the contrary, the way we define f{ is crucial for the proof.
A decentralizing regularization allows to get rid of the second term of the right-hand side of (8); the
size of the regularization being ¢, ||V f£ ||« is bounded by C/e and the last term of (8) is of order n/e¢.
There remains to estimate the first term of the right-hand side of (8), which is the aim of a whole section
(Section 6); the idea is to re-use the kinetic equation satisfied by v.

3 Estimate in the interior of the domain

In this section, we let A = Ag (we drop the subscript 0) and K := supp(Ag). In order to obtain an
estimate on the interior of the domain, we need to localize using A, regularize both kinetic equations in
order to combine them, proceeding as we did when proving the Comparison Theorem in [6]. This step is
more or less classical.

Let a > 0 and 0 < e < dist(K, 09); denote v.(z) = ngl 0.(x;). Taking ¢ € C(R¥+?2) with support in
R x K x Re and using ¢ (V. ® 6,) (*) — notice that this function is null on the boundary of Q — as a

1H<§re and after, the tensorial product is used to recall that v and 6, use different variables (for example, V= ® 04 (¢, ) =
e ()0 (t)) and the convolution product x never involves the kinetic variable .



test function in (5) with fi, we find

/ PO taVIo+ | fT @00 = / Oe dm** 9)
Rd+2 R Rd+2

(where m™* is the convolution in (f,z) of 7. ® 8, by the extention of m by 0 outside @ x R¢). We
next regularize the equation satisfied by g_, using the same method but different parameters g > 0 and
0 < v < dist(K,99Q): we obtain for the same ¢’s

By ) oV _ ) Y 2 0.) =
/Rd+2 97" (0r+a V)(b—l—/w+2 2 ®0z¢6 77/QXR£ 0,V - (Vo) x (7, ® b3) /

d+2

det dg™”.  (10)

R4+

Suppose that ¢ € C(R?*t1) is non-negative with support in R x K and apply (9) to the test function
—g>V(t,2,€)¢(t,z) and (10) to — [t 2, €)¢(t, ), and sum the two equations; using the fact that — f°
and fgg " are non-decreasing with respect to £, we find, after some integrate by parts,

_ FEgP (0 +a- V) + n/ 8, Vv - (V(f£5)) (7, @ b)

Rd+2 QXRE
- / [ff ® 0,977 + 2" @ egfi’e} =0 (11)
Rd+2

Thanks to the decentred regularization, f$°(t, z, ) is null if t < o/2; hence, for 8 < «/2, f9V®9[3fjr"’E =0.
Moreover, the function which associates ¢t with

/ 0% (2, )9 (t, 7, O)d(t, ) dr dE = / / (4, €)g— (2, €112 — 9)o(t, 7) de dy da
QxR aJa Jr,

- - / / (uo(y) — v(t, 7)) ez — )t 2) dEdy dz (12)
QJQ

is continuous (because v € C([0, To]; L(2)) and we have g_(0,-,-) = f°. Therefore, letting 3, v and «
successively tend to zero in (11), we have

/ (*fig—)(3t+a~v)¢+n/

QxRe QxRe

Choose T € [0,Tp] and let ¢(t, ) = AMx)wgs(t) where wg(t) = fttoTo 05(r)dr; we obtain

[ rig =05t~ DA+ wpa- VN 4 [

QXR{ QXR{

The function t — fngE(—fig,)(t,x,g))\(x) dx is continuous (it is similar to (12)); thus, letting § — 0,

[ e [ e [ e - [z

QXRg QTXRE QTX]Rg

QxRe

5,70 V(20 - [ s

QxRe

5, Vv - V(fE N wg — / 9T rPA = 0.
QXRg

where QT = (0,7) x Q. We therefore obtain

Ty <To+Tic+Tp (13)
where
o= [ (i),
QxRe
o= [ (-figeva
QT xR¢
Tp = / N0,V - V(fEA),
QT xRe
e
QxRe



We now estimate these terms. We have
no- [/ [ / E(f+(T,y,€)g—(T,x7£))d€] A@) (@ — y) dyda

_ /K /Q (W(T. ) — (T, ) * A& — ) d
J Jyoer ) = oy aate =y = | [ ) =Ty Ao =)
K JQ s

WV

But, if z € K, we have, by choice of e, x — Q D supp(y.), hence fQ Ye(z — y)dy = 1. Moreover, since
u(T,-) € BV(Q2), by Lemma 2 (see the appendix),

/ / (u(T, 2) — u(T,y))* A(@)e(x — ) dy da < / (T, 2) — (T, y)le (& — y) dy dx < Ce.
K JQ QJQ

Hence,
T > / (u(T,z) —v(T,z)) " A(z) dz — Ce.
Q

Next, reasoning as for 77,

T
i /0 /K/Q/Ré(‘f“t’y’f)g—(t’x,f))%(ﬂf—y)a<£>-VA(x) dy da dt

N

c / ' [ |t = ott.a) e = gy dydea

N

Ce + C/T/(u(t,x) —o(t,z))T dz dt.
0o Ja

Let us estimate the diffusion term Tp. First, we write: Tp = T}, + T with

T} :/ névVv-fiV)\:/ nVu - / SufS | VA gn/ |Vo||[VA| < On
QTXRg QTXRg Rg QT

and
T :/ n6,Vv - AV S < Cn/ |Vo|(t, ) sup |V £5|(t, x, €) dtdz.
QT xR QT 13
But Vf5(t,z,§) = fQ f+(ty,6)Vre(x — y) dy, so that |V fL|(t,z,§) < ||V7€||L1(Rd) < C/e. Hence,

C c
12 < 20wl < 2
g QT g

Using Lemma 2, a straightforward computation gives T7c < C'e. We finally gather the different estimates
in (13) and get, for all e,

/Q(u(T, o)~ o)A@z < € (e + 1) + C/OT /Q(u(t,x) oty 2)* dadt.

Minimizing on €, we obtain (recall that A = Ag here)

T
/(u(T, 2) — o(T, &) No(x)dz < C\/ii + c/ /(u(t,x) — o(t, 2))* da dt. (14)
Q 0 Q



4 Transport and regularization of the kinetic equations

In order to estimate (u(T,-) — v(T,-))" near the boundary of €, we choose a chart (O;, h;, \;) and we
transport the equations to Bi. In the following, we drop the subscript 3.

4.1 Transport of the kinetic equations

We now write the kinetic equations satisfied by u and v once they have been transported on Bi. Consider
a test function ¥ € CZ°(R x B? x R¢) and set ¢(t,z,&) = U(t, h(z),£) € C3(R; x O x R¢). Next, extend
# by 0 to get a function ¢ € C2(R%*?2) and plug it into (5), (¢ is not C* but is regular enough to be
taken as a test function in this equation). This gives

pe=Oony [ (ca-m)f{Toh
Rx (02N0) xRe

= / (0c¥) o hdm.
RXOXRg

Through the change of variables y = h(z), and by definition of the measure on ¥, we obtain

/RXOXR& T+ [(@\Ij) oh+a- h/T(V\P) o h} + /

OxRg

/ / |Jh 7Y fy o ™10, ¥ 4+ B o hta - V) +/ ‘thl‘f_(‘)_ o B~ 1y (t=0)
o JBi Jr, B? JRe

- —|oh~t on~1

+ —a-nfl Ohlllf‘ Ao N ——

/0 /Bd*I /Rg( ) Oy 0rq_1

:/OOC /Bd /Rg(ang)d(h*m).

Oh~1 A A Oh~1
8$1 333(1_1

d$1 . dl‘d_l

In the following, we adopt the notations

jx)y=|Jh Y (z)] and H(z)=hoh '(z) and I(z)= ‘ x).

Moreover, for any function r(t, z,£), we write 7(¢, z, &) for r(t,h~1(x), £). Therefore, the previous equality
reads

/ / /jf;(atqf+Ha-v\11)+/ /jfgxw:ohr/ / l(~a-n)f1¥
0 Bi R§ Bi Rg 0 Bd71 R§

:/Ooo/Bd [ ocvam). )

Similar computations are achieved on the kinetic equation satisfied by v. We obtain

/ / /jg:(atqf+Ha-vqf)+/ /jf?\If(t:O)
0 JB{ JRe B¢ JRg
+/ / /z(_a.ﬁ)ﬁm/ / /zDaiﬁ
0o JBi-1JR, 0 JBI1 JR
+n/ / /Z(Sﬁ-wz/ / eV d(h.q) (16)
0 B JRe 0 B¢ JR¢

where D(t,T) = nVo(t,T) - n(Z) and Z(¢t,x) = —h'(x)Vo(t, z). Notice that
Z is bounded in L'((0,7T) x Q) for all T > 0. (17)

This property, as well as the Lipschitz continuity [0,00) — L' of u and v (with a Lipschitz constant for
v independent of 1) and the bounds on |u(t,-)|gy and |v(¢, -)|sv, are conserved by the transport by h.



4.2 Transport of the BLN condition

We state here the only consequence of (6) that we use in the following.

Let ¥ € CX(R x B! x R¢) be non-negative and non-decreasing with respect to £&. The function
o(t,z, &) = V(t,h(T),&)(1 — fﬂ’r(t, T,£)) is non-decreasing with respect to £ (since ¥ and 1 — fi are
non-negative and non-decreasing with respect to £). Hence, (6) implies

L[ [cemawera—sy< [T ][ aasias fwen

But fﬂ’r(l — fﬁ’r) = 0 so that, transporting this equation with h~! on B?"!, we deduce that, for all
¥ € C®(R x B41 x R¢) which is non-negative and non-decreasing with respect to &,

[/ e ve 7). /Rg i (18)

We also need to understand how the unit normal is transported by the chart (O, h).

Lemma 1 For ally € B! and all X € R?, we have [(§)X - 7(y) = —j(7)(H(H)X)a, where (H(7)X )4
is the d-th coordinate of H(g)X

Proof of Lemma 1
Let ¢ € C°(B%) and ¢ =9 o h € C2(O) (extented by 0 outside O). Integrating by parts, we have

/ X -Vé@)de= | 6@)X -n(@)do(3).
Q o0

Since V¢(z) = b’ (x)TVip(h(x)), transporting these integrals by h (all the integrands are null outside O),
we find

/Bd J(@)H(@)X V() de = | X-(0'(h(2))" Vi(2)|Jh™ (z)| dz = V(@)X n(h™H(@)I(7) dz.

d d—1
BY B

Another integrate by parts then yields

Y(@)X - n(h7H(@)I(T) dT = (=@ H@)X)a)p(@)dr — [ div(jHX)(2)y(z)de.

d—1 d—1 d
B B B¢

(the unit normal to B4 on B! is (0,...,0,— )) Taking first ¢ € C°(B%), we see that div(jHX) = 0
on B+7 thus, for all ¢ € COO Bd de 1 ¢ (h_1<§))l(f)df = defl(_j(E)(H(f)X)d)w(j) dz,
which concludes the proof. B

4.3 Regularization of the transported equations

From now on, we work on B? and we thus simply write r for 7. Let K := supp()\) (compact subset of

B%). We now regularize equations (15) and (16).

For € > 0, we denote 7=(T) = Hf_ll 0=(z;); we take e4 > 0 and we denote € = (g,24), Ve (z) = 7=(T)0:, (xq).
We choose €+¢4 < dist(K,9B?). Let ¥ € C2(R x B x R¢) with support in R x K x Re; then Uk (7. ®0,)
is compactly supported in R x B? x R¢. Using ¥ % (V. ® 6,) in (15), we get

[ oo+ Gromraves [ GR) o,
Rd+2 Rd+2

+/ (z(—a.n)f;)af@esdq/:/ DeW d(hym)™*.  (19)
Rd+2 Rd+2



The same test function with parameters 8 and v in (16) gives

/ G970 + (g 1) a- T + / GL°) 050
Rd 2

Rd+2

+/ (l(fa«n)fﬁ)ﬁ’g®9yd\11+/ / /zmubqf*(%wg)
Re+2 0 JBi-1JR,
+n/ / /Z(sy.vw*(%@e@:/ e d(h.q)?". (20)
0 B¢ JRe Rd+2

5 Combination of the equations and new estimates

The next step consists in combining the two preceding kinetic equations. Choose a non-negative regular
function ¢(t, x), with support in | — 0o, Tp] x K, and apply (—jf+)*°(t, z,£)P(t, x) as a test function in
(20) and (—jg_ )" (t,z,€)p(t, ) as a test function in (19). These two test functions are non-decreasing
with respect to & so that, summing the results, we get U;"" + Uy + USY + U + U™ + U > 0,
where

U = [ RO ie O+ (i) 0i0) + (o) O + (1) 00

U = [ R (Vg0 + (~ig-) V)
Rd+2

+(—jg-H)""a- (V(if+)* ¢+ (jf+)*"Ve)
0Pt =[G @ 0l ot (IS0 @ 0t

N A W N FRER LR

[ e m 1) @ 0., (=g )6 + (a7 @ 0, (5. )0

v

By _ o . e ] )
s 77/0 /Bi RE(S”Z V(G f+)"7¢) * (1w © bp).

5.1 Passing to the limit in § and v
We study the limits of Uig’”, ..., U§" as B and v tend to 0.

The first term U
Integrating by parts, we have

e U TR
Ra+2

and thus, as § — 0 and v — 0,

v [ [, [ aromis o (21)

The second term UL
The first step, here, is to get H out of the regularizations (jfy H)*¢ and (jg_H)”"¥. To do this, we

10



notice that, for all (¢,z,¢) € R x B? x R, since H is C?,
(G f+H)™ 5 (t, 2, §)—H (x) Jf+ (R3]

Y) I+ (5,5, ) H(y)0a(t — s)1=(z — y) ds dy

// W) 1 (5,9,)0a(t — 5)7(@ — ) ds dy

< / , HO 0. OH W) = H @t = 9t ) sy
< C(§+€d)/ Ou(t — s)ve(x —y)dsdy < C(E+eq)
By
(here, “|-|” is a matrice norm). Hence,

/ (GF+H)*a- (V(=jg-)"" ¢ + (=ig-)"" V)
Rx B4xRe

- / (G f+)* Ha- (V(=jg-)""¢ + (—jg_)f’v"V¢>)|
RxBxRe
< CE+ed) (IV(=19-)"" I g-coo)x k x[-D.0) [6lloo + [(=59-)" [ @as2)| [Vl o) (22)
(recall that supp(¢) C| — oo, Tp] x K). But, by Lemma 3 (see the appendix), for all s € RT,
/ / V(jisgn_(v(s,) — )" < CL+ [o(s, ev(pe)) < C.

Therefore,
To
199V lug-sempisinon < [ [ ] / V(jsgn_(v(s,) — ) 10s(t - s) ds dt

To
C/ / Os(t —s)dsdt < C. (23)
o Jo

Noticing that, thanks to ¢, the integrals in UQB’V are in fact on R x B? x R¢, we deduce from (22), (23)
and similar estimates for the second part of Ug’” that UQ*B’V is equal to

/RXBMRE (1) Ha - (V(~jg- )6 + (=g ) V) + (—jg- )" Ha- (V(if )6 + (j[1)*V9)
+O((+ e+ 7+ va) (16l + 1V 61))
- /RXBWRE oHa - V((jf+)"*(~j9-)"") + 2(if+)** (~jg-)*"Ha V¢
+O((E+ e+ 7+ va) (18]l + 1V 61))
- /Rxgwfjf”“’a(‘jg>ﬁ’”<2Ha V6 — div(6Ha)) + O((E + 24+ 7 + va) ([0]]oo + [[V6]|0))

(we used the fact that ¢ has a compact support in R x B%). Letting 3 and v tend to 0, this gives

limsup U7 < O{(E-+2a)(¢llos +1170l1)) + N |, | Groreigoeta Vo -divoHa). (24)

B,v—0
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The third, fourth and fifth terms
By the choice of a decentred convolution kernel, we have for 8 and v4 small enough

05(')(jf+)a7€('7x’§> = 07 ((]f+)a,s¢) * (;YV ® éﬁ) = O’ eVd(')(jf+)a7E(taj? ?6) =0.

Therefore, as § and v go to 0,

B | > . 0N\e .

U / /B i / [LUEINSRE (25)
ulro - o (26)
By s = . T\, o )

Ut / /B 1 / (a2 @020 )0 (27)

The sixth term U}
Since (jf4+)*°¢ is regular, we have

57V_) ~ . : A8 Y
g —n / /B RO (28)

as B and v tend to 0.

Using (21), (24), (25), (26), (27) and (28) in UP” + UY" + USY + UPY + UL + UPY > 0, we obtain as
B and v go to 0

-/ 1 G102

< ClEteallolls+ Vol + [ [ [ Grome(io ) ota- 9o - div(oa)

] i / G @ 0a(ig )0 + I i / (e m 1) @0, (900

e[ [z oo (29)

5.2 Choice of ¢ and continuation of the estimates

We now take T' € [0,Tp] and ¢(t,z) = A(z)wg(t), where wg(t) = [, 05(s)ds (notice that wg has its
support in | — 00, 7p]). The function wg converges, as 8 — 0, to the characteristic function of | — oo, T
and wj(t) = —0s(t — T) converges to —dr. Since t — fBi ng (Gf+)>c(t, 2, &) (—jg-)(t, x, )N (z) dx dE is

continuous (it is similar to (12)), we deduce from (29) that

TS < Ty 4+ Ty + T + T + C(E+€a) (30)

12



where

e~ [ i JRCTRRETRIEE
e = o i [, Gror iy

e = ATLiAE(jf3>E®9a(‘jg)A
TP = /OT /| R (AR

o= [ )] 27 8 0, (g A

and Y = 2Ha - VA — div(AHa) € L°((0,Tp) x B{ x R¢). Our aim is to obtain an inequality of the kind
of (14); we now estimate each term 7.

The first term 77"°

We have
e = - —v z)) T — 8 xr — x sdx
e = /B/ /B ity ) = o(T,2))*0a(T — )@ — y)A (@) dy dsd
L[] ii@e) - o) 6u(T - (e - w)A) dydsda
B{ Jo B{
/ / / w(T,z) —u(s,9))T0,(T — 5)7:(x — y)A(z) dy ds dz. (31)
Bd Bd

Lemma 2 and Proposition 1 give

/ / / |u(T, z) — u(s,y)|0a(T — 8)ve(r — y)dydsde < C(E+eq + ). (32)
B¢ Jo B¢
Since j is bounded from below by j > 0, we have

L 0@ le) - o) 0u(r = she - y)\a) dyds do
B¢ Jo JBY

> 42 /B @) (u(T, z) — v(T,x))* (/OOO 0a(T — ) ds) (/B

+

> j?/wﬁ{wd}A(a:)(u(m)—vTa: ([ tutr=s )(/Bdw—mdy) o

(recall that K is the support of \).

Ye(z —y) dy) dx

If T > «, then fooo 0o (T —s)ds = ffoo 6, = 1. Moreover, if z € K and x4 > ¢4, we have ]0,2[?"1x]0, g4[C
z—B? (indeed, if 2z €]0,2[?71x]0, 4] then, since 2 € K, we have z—z € B? and, since x4 > 4 > zq, 1—2 €

Bi); hence, for those z’s, de ve(z — y) dy = 1 since the support of . is contained in ]0,Z[?1x]0,&4].
+

13



Thus, for T > «
I / M) (u(T, ) — o(T, z))* dr
- B4 ﬁ{zd>5d}

< / / / )i (@) (W(T, 2) — (T, ) 0 (T — s)ye( — y)A(z) dy ds de.
Bi 0 Bi
Since u and v are bounded,

/ M) (u(T, ) — v(T,z))" dr < / Cdx < Cey.
Bin{zq<ea}

Biﬂ{xdgsd}

Hence, if T' > «

72 | AMa)((T,z) —v(T, )" do

d
By

/Bd / /Bd u(T,z) — (T, )" 0o(T — 8)v.(xz — y)Mz) dy dsdz + Ceq.  (33)

Equations (31), (32) and (33) give, if T > «

T > ~CE+eq+a)+4° | Aa)(u(T,z) —o(T,2))* de.
2 o

But u and v are Lipschitz continuous [0, Ty] — L*(B%) (with a Lipschitz constant not depending on 7)
and equal to ug at ¢ = 0; hence, for T' < «a,

/Bd @) (u(T, z) — o(T, )+ dz < C/Bd

|u(T, z) — up(z)|dz + C’/ |o(T, ) — up(z)|dz < Ca

d
B+

Therefore, T7"° being non-negative, we have, for all T' € [0, Tp],

Ty > —CE+eq+a) + 52 /Bd Az)(w(T, z) — (T, x))" dx. (34)

The second term 7,"°
We have

o= [ Lo L L 050600000, 0) @ahatt ~orete ) dyds e

c / /. / [ (uls) = (0.2)) Ot = 1. =) dy s o
c| ' /. N ] o) = ult.2)) 00 (¢ = )7 = ) dyd s

+0/0T /B /Ooo /B (ult, ) — v(t, 2)) 0t — $)7. (x — ) dy ds da dt

C’(E+Ed+a)+C/T/ (u(t,z) —v(t,z))" dxdt
o JBd

N

N

N

(we used (32) with T' =1).
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Therefore,

Ty <CE+eq+a)+ C/T/ (u(t,z) —v(t,x))" dzdt. (35)
B

The third term 73"°
We write

T //B /B/ (2)10:€) (= (6,2, 07 — )A(w) de dy dx i

s C/ / / (uo(y) — v(t, 2)) " 0a(t)ye (2 — y) dy dw dt.
0 Bl}r Bi

But v(0,z) = ug(x) so that, v being Lipschitz continuous [0,7p] — L'(B%) (with a Lipschitz constant
not depending on 7) and ug being in BV(B%), by Lemma 2,

T
Toe < ¢ / / / o) — 1o (2)]0a (D)= (z — y) dy da dt
0 Bi Bi

T
+C . /Bd /B‘}r |U(O, 13) - U(t,iﬁ)wa(t)’ys(z — y) dy dx dt
)

< CE+eq+a).

The fourth term 7,"°
We have, for all (¢, z,&),

V(G )M (2, 8)] Y+ (5,4,8)0a(t = 5)(Vye(z —y)AMz) +7e(x —y) VA(z)) dy ds

c C c c
< C||V%||L1(Rd) + CHV)‘HL‘X’(Rd) <—+—+0< =+ —
g Ed g Ed

(recall that e4 < 1). Hence, by (17),

oy C
%U—”. (37)

€d

T
< [ [ 12l (supIV((J'f+)“’EA)I(t,x,§)> dtda <
o JBd 3
To sum up, gathering (30), (34), (35), (36) and (37), we have proved so far that

/ M) (u(T, ) — v(T,z))" do
Bd

+

<C<s+sd+a+ + >+C/ /Bd (t,x) —v(t,z)) T dodt +T5°. (38)

The aim of the following section is to estimate T5°. Using boundary layers arguments (see the introduc-
tion), we give in subsection 8.1 of the appendix an insight of the reason why this term can be bounded.
However, this is only an insight: since we also want to consider irregular solutions to (1), we cannot in
general estimate 7;"° using boundary layers analysis.

15



6 Estimate for the boundary term

This estimate is made in several steps. First, using the BLN condition, we introduce fﬂ’r and give an
upper bound Tg)a’s to T5"°. Then, we want to see (Ha)q in ﬁa’s7 in order to express ﬁa’s as a part
of the interior term in (16); to this end, we use Lemma 1. Finally, we must regularize the function fi
introduced above in order that 75" appears in (16) for some regular ¥. The resulting term S is then
estimated.

6.1 Introduction of [

We have
= [ @ n @) O 5.8 dedvas

T
- /0 /Bd Oa(t — 8)7=(T — 9)0c, (xa)(—7(x) g (¢, 2, £)) A (z) dz dt.

where

As (—g-), ¥ is non-negative and non-decreasing with respect to £&. Thus, (18) implies

oLE
T

N

T = / h /B B / Bl @ TOLT OV T dsdgds (39)
_ / /Bd/R (¢, 2, €)®o(t, x, €) dE dt do
with
Do(t, 2, €) = 0z, (a) / ) /B @U@ @©) - n@)FL (5,58 (5,7 E)0a(t — $)7-(7 — 7) dy ds.

6.2 Apparition of Ha
By Lemma 1, we have [(7)(a(€) - n(9)) = —j(7)(H(Y)a(£))q. Thus, if we define

O(t, x,8) = 0c,(za)(—(H(z)a(§))a) /OOO/B X@)i ()5 (5,5, €) 11 (5,7, €)0a(t — 5)7=(T —7) dy ds,

we have
@0(t,,) — 0,2, 6)
/ [ IIH@A)A@) ~ (@)D oot~ 572( — ) 7 dso, )
6 + 5d)95d (xd)

(we used the fact that H and A are Lipschitz continuous) and

/ /Bd /Rs —(t,2,0)P(t, x,§) d{ dz dt + C(E + €a). (40)
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6.3 Regularization of f%

We now want to replace fi(s@,f) in ® by a regular approximation. Let sgn, s be a regular non-
decreasing function, equal to 0 on R™, to 1 on [4, oo, such that |(sgn, ;5)'| < C/0 and sgn, 5 — sgn,
everywhere as § — 0. We have, for all (a,b,&) € R?,

/R jsgn s(a— &) — sgn, (b— &)|dé < a—b] + 6. (41)
13

Thus, defining

Ds(t,x, &) = 0-,(xq)(—(H(x)a(€))a)
<[] MO T s (1) = €0t = 97o(7 ) s,

we have

(¢, 2, &) — Ps(t, 2, &)
< COuten) [ [ (s, - O = s s((t.) — Ol6a(t - 97e(o ) dyds

and therefore, by (41),

_(t,z,)D(t,x,&) d¢ da dt — / /Bd/R _(t,x, &) Ps(t, x, &) d€ dx dt
¢

B? Rg

c /0 /B d /R 6 L[ entusm) - - s tuntea) - €)

X0a(t — 8)V=(T — §)0c,(xa) dy ds d§ dx dt

T oo
c/ /B/ /Bd71(|ub(s,§)—ub(tj)\+5)9a(t—s)ﬁg(f—y)c@ds&d(xd)dmdt

CE+a+9d) / / / / ot — $)7=(T — 9)0:,(zq) dg ds dx dt
Bd Bd—1

< CE+a+9d)

N

N

N

(we used the fact that up is Lipschitz continuous). We deduce from this last inequality and (40) that

/ /Bd/R _(t,2,8)Ps(t, x,&) dédudt + C(E+eq+ o+ 6)
/ /B /R& ~(t,2,8)(H(z)a(§))a
V /B @O (5,7, )0a(t - 5)7=(T - 9) dyds] sgny s (up(t, T) — )(—0c,(va)) dE du dt

+CE+eq+a+9)

Let O.,(za) = [;* 6=,(r) dr (we have 0 < ©., <1 and O, =1 on [gq, +00]),
M) = | [ [ @670 7~ 5) dnds| s sun(t.7) = (1 - 02, (20)
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and

T
e — / /B i / g1, €)(H (2)0(€)) a0 (1,7, €) ded .

The last estimate on Tg,a’a can be re-written

T < S + C(E+eq+a+0). (42)

6.4 Estimate of 5*° and conclusion concerning the boundary term

The functions f7(s,7,&) and sgn, s(uy(t,T) — &) are non-negative and non-increasing with respect to

& Since 1 — ©,, > 0, I is non-increasing with respect to &; it is also regular in (¢,z). Moreover, we

can see that t — [ ng (jg-)(t, x,&)T(t, x, &) d€ dx is continuous (this is slightly more difficult to write
+

than the continuity of (12), but similar). Hence, using I'(¢, x, §)wg(t) as a test function in (16), where
wa(t) = [, 05(s)ds, and letting 3 — 0 (then ws converges to the characteristic function of | — co,T]
and w’ﬁ converges to —dr), we find

T
/ / / J9— (0 L' + (Ha)y..a-1 - Val' + (Ha)q40,,I") + / / jror=o
0 Bi R5 Bi ]R6
T B T B
— / / (jg_)(t:T)F(t:T) —|—/ / I(—a-n)f°T +/ / 1Dé,, T
Bi Rg 0 Bd71 Rg 0 Bd71 RE
T
+77/ / /Z5v'VF<0, (43)
0o /B JRe

where we have denoted (Ha)i. 4—1 the vector of R%! made of the d — 1 first coordinates of Ha. But,
since 0, (—s) = 0 for s > 0, we have =0 = 0. Moreover, f*(t,7,&)sgn, s(us(t,T) — &) = 0, so that
f°T = 0. We also have

5ub(t75)f(ta z, f) = F(t7 z,0, ub(t’ E)) =0.
Re

Hence, in (43), the second, fourth and fifth terms are null and we deduce

T
g0 < / / / 9 (T + (Ha)..a s - VaT) + / / (jg_)=T)p=")
0 Bi R Bglr Re

T
—n/ / / Zé, - VI (44)
0 JB? JRe

We have I' > 0 and g_ < 0, so that

J

[ g-ye=mre=n <o, (45)
Re

We have
Ot 26)| < 0( /megu—s>|ds+<sgn+,5>'<ub<t,x>—f)|atub(t,x>|) (1- 6., ()

0

< (S ctm e - 90) 1= 06,

18



Since fRs (sgn, 5)'(a—&)d¢ =1 for all a € R, this implies

‘/OT/Bi/Rg”‘atr < / T/Bd (gw Rfsg“w)’(uz)(t»w)—5>dg> (1~ ©x, (24)) dadt
< <C€d+C€d> (46)

(indeed, fooo(l — O, (rq)) drg < g since (1 — O, (xq)) =0for xg > eq4and 0<1—-0,, <1).
In the same way,

Vara ] < C([ 1V mldn ) 7)1V )] ) (- Ouy(e)
< (§ctm s -9) 0 - e, (47)
and . c
—/0 /Bd/R jg_(Ha) a1 -Vl < <5d+05d> (48)

Inequality (47) and the definition of sgn ; shows that, for all (t,z,¢),

wartemal < (€46

Moreover,
10,,T(t, x,8)] < Ch.,(x4) < =
Hence, for all (t,z,&), |[VI'(t,z,&)| < % + % + % and, Z being bounded in L1((0,7) x Bi),
C C C
fn/ / /Za vr<l+l “n (19)
Bd JRe ) €d

Gathering (45), (46), (48) and (49) in (44), we obtain
S‘“<C(ed+++ + 24 )
0 Ed
which gives, thanks to (39) and (42),

3 3
T;’ESC<€+€d+a—|—5+d+d+n+n+n>~ (50)
a E E 0 &4

7 Conclusion

We now sum up and conclude.

Combining (38) and (50) (recall that the estimates in Sections 5 and 6 concern, in fact, @ and o — i.e.
u and v transported), we find

X&) (@(T, ) — 5(T,2)) " dz < c<e+ed+a+6+€d+5d+”+”+”>
« g T eq4 O

+C/ / —9(t,z)) " dx dt.
Bd

19
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Minimizing on d, a, & and £4, we notice that an optimal choice of these parameters is § = n'/2, g4 = 1*/3,

a =& = n'/3; we then re-transport this estimate on QN O:

T
/ M@ (T, 2) — o(T, 2))* dz < Cnt/3 + c/ / (u(t, z) — v(t, 2))* da dt.
QNo 0 QNo

Summing on the local charts (recall that in the preceding inequality A = \; and O = O; for any
i€ {l,...,n}) and using (14), we deduce

T
u xTr)—v X X / u ) —v T X .
/Q< (T, ) — o(T,2))* d <Cn13+0/0 /Q< (t.2) — olt,2))* de dt

This inequality being true for all T € [0,7p], Gronwall’s lemma applied to the continuous function
T — [o(u(T,z) —v(T,z))" dz ensures that there exists C > 0 such that, for all T' € [0, Ty],

/Q(u(T, 2) — (T, 2))* dz < Cn'/3, (51)

Now, since u satisfies (5)—(6) for f_, we see that —u satisfies these equations for f; with —ug, —uy,
s,m and s,m? instead of ug, uy, m and mi (where s is the symmetry with respect to £). Similarly, —v
satisfies (7) for g_ with —ug, —up and s.q instead of wug, up and gq. Hence, (51) applied to —u and —v
gives

/(—u(T7 x) +o(T,z))" doe = /(u(T,x) — (T, )" dx < Cn*/3.
Q Q

which concludes the proof of Theorem 1.

8 Appendix

8.1 Estimate of 7;° using boundary layers

If the solution wu is regular, then T;"° can be estimated using boundary layer techniques. This is what
we briefly explain here.

To simplify the exposition, we take Q =]0, co[ and recall some basic facts concerning boundary layers: if
u is regular, then the parabolic approximation admits the decomposition v(t,z) = u(t,z) + c(t,z/n7) +
r"(t,x), where v = 1/2 or 1 depending if the boundary is characteristic or not, and 77 is a remainder
(small, with respect to n, in L* norm). Fix t € (0,7), set w(y) = u(t,0) + c(t,y), wop = up(t) and
Weo = u(t,0). Then, by properties of the layer ¢, w satisfies

w(y) = Alw(y)) - Alws), (52)
w(0) = wp, (53)
w(+00) = Weo. (54)

Notice that, since (52) is an autonomous o.d.e., w vanishes on [0, 4+00) if, and only if, w is constant (and
then wy = weo). Now, suppose wy # we. Then, since w does not vanish, it has a constant sign, which is
actually the sign of ws, —wq since w is an orbit from wg to weo. To sum up, we have sgn(ws, —wo)w(y) > 0
for all y > 0. In view of (52), this is equivalent to sgn(ws — wo)(A(w(y)) — A(ws)) > 0 for all y > 0 or
still, since w is a bijection [0, +00) — [wo, Weo),

Yk € |wo, Weo| , 8gN(Weo — wp)(A(k) — A(wss)) > 0. (55)
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Conversely, on can check that (55) is a sufficient condition to the existence of a solution to (52)-(53)-(54).
Now, replacing wy and wy, by their respective values wuy(t) and u(t,0), (55) appears to be nothing but
the BLN condition

Vk € [up(t), u(t, 0)], —sgn(u(t, 0) —up(t))(A(u(t,0)) — A(k)) = 0.

In other words, the BLN condition is a necessary and sufficient condition to the existence of the boundary
layer function c.

Let us now come back to the estimate of 75°°: assuming that a = 0 and A = 1, 7;"° reduces in this
setting to

T3

T oo
/ / / a(€)sen, (u(t,0) — ) (—sgn_(v(t, x) — £))6. (z) de du dt
o Jo JRre

T o]
/O /O sgn, (u(t, 0) — v(t, 2)) (A(u(t,0)) — A(u(t, ). () da dt.

Since ¢ — sgn,, (u(t,0) — ¢)(A(u(t,0)) — A(C)) is Lipschitz continuous, 7¢ can be assimilated, up to an
error of order n+ ¢, to

/0 /0 " sgn (—clt,a/n7) (Au(t,0)) — A(u(t,0) + c(t, a/m))0- () da d

Since w is monotonous between wg and weo, Weo — w(y) has the same sign than ws, —wg. Reporting this
result in (55) and replacing w, wy and w, by u(t,0) + ¢(t,y), up(t) and u(t,0) respectively we get

sgn(—c(t,y))(A(u(t, 0)) — A(u(t,0) + c(t,y)) <0
for all y > 0, which shows that, up to an error of order n + ¢, T5"° is nonpositive.

The basic idea in Section 6 is thus to compare 75 to some nonpositive quantity, which is done as early
as Subsection 6.1.

8.2 Technical results

The first lemma is classical, we do not prove it.

Lemma 2 Let U be a bounded open set of R® with Lipschitz continuous boundary and ~y. be a reqularizing
kernel with support contained in the ball of radius |e|. Then there exists C only depending on U such
that, for all w € LX(U) N BV(U),

[ [ wte) = whete = vy dedy < Clel(lullue + ulev).

The second lemma is a technical result used in Section 5.

Lemma 3 Let D > 0 and K be a compact subset of BY. We take v € R? such that |v| < dist(K,R%\ B?)
and j a regular function on B, If w € BV(Bi) then there exists C' not depending on v or w such that

/ / #)sgn_(w(a) - )| dede < C(1+ Julpy(p)).
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Proof of Lemma 3

The proof is made in several steps. Let U be an open set relatively compact in B?, containing K and
such that |v| < dist(U, R4\ B?). We prove the result of the lemma with U instead of K (the introduction
of this open set is useful because we use classical results concerning BV functions on open sets).

Step 0: (a preliminary result) Let r € Wl’l(Bﬂir) and denote by R the extension of 7 to B? by 0 outside
B¢. Then R € BV(B?) and |R|gy(pe) < CHTHWM(Bi)' To see this, take ¢ € (C°(B%))?; thanks to an
integrate by parts, we have

» Rdiv(¢) = /Bi rdiv(¢) = —/BCH réa — /Bi ¢-Vr.

The right-hand side of this equation is bounded by C||7‘||W1,1(Bi)||q5||oo, which proves the result (in fact,
the preceding equation computes the gradient of R).

Step 1: let sgn_ 5 : R — R be a regular nondecreasing function, equal to 0 on R*, to —1 on | — 0o, =]
and such that sgn_ 5 — sgn_ as § — 0. We prove the result when w € WL(B4) and sgn_ is replaced
by sgn_ 5, with C' not depending on 4.

We clearly have (since sgn_ 5 is regular) jsgn_ s(w — &) € Wh(B{) and

V(jsgn_ s(w —¢)) = Visgn_ 5w — &) +j(sgn_ ;)" (w — §Vuw
By Step 0, the extension We of jsgn_ s(w — &) to B by 0 outside BY is in BV(B?) and
[Welgv(pey < C+C||(sgn_ 5) (w — §>Vw\|L1(Bi)7

where C' does not depend on ¢ nor w.
Moreover, by choice of v, (j(-)sgn_ s(w(:) — &))" = We x v, and V(jsgn_ 5(w — &))" = VWe %7, on U.
Thus,

IV (Gsgn_ s(w = )"l w) < Welpy(se) < C+C/Bd (sgn_5)"(w = &)Vl

+

We now integrate with respect to £ and use f_DD(sgn_ﬁ)'(s —&)d¢ < fR& (sgn_5)'(s —&)d¢ =1 for all

s € R to find
// V(jsgn_ s(w —¢&))"| < C+C/ |[Vw]|
B

which concludes this step.

Step 2: conclusion.

There exists w, € W'1(B4) which converge to w in L'(B%) and such that [waley(se) = |wlpy(sa)-
Since sgn_ s is regular, jsgn_ s(w,—¢) — jsgn_ s(w—¢) in L} (B}) asn — oo so that (jsgn_ 5(w,—&))” —
(jsgn_ 5(w — &))" in L*(R?) as n — co. Moreover, sgn_ s(w — &) — sgn_(w — &) in L*(B%) as § — 0 so
that (jsgn_ s(w — &))" — (jsgn_(w —£))” in LY(R?) as § — 0.

We deduce that

/U V(sen_(w— )| = |(sen_(w - €)) levio

< hgﬂg |(Fsen_ s(w — &))" [sv(v)
< liminfliminf[(jsgn_ s (wn —€))"lsv(v)

hmlnfhmlnf IV (jsgn_ s(wn —§))"].

n—oo
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Integrating on ¢ € [—D, D] and using Fatou’s Lemma, the result of Step 1 gives

// V(jsgn_(w — &))" < hgnmfhmmf/ /|V]sgn slwn = &))"

< liminfliminf (C—i— C/ [Vw,(x)] dx)
5t

§—0 mn—oo

< 1igli(l)1f(0 + Clwlgy(pe)) = C + Clwlgy(p1)

by choice of (wp)n>1. B
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