Parabolic Capacity and soft measures

for nonlinear equations
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Abstract

We first introduce, using a functional approach, the notion of capacity related to the parabolic
p-laplace operator. Then we prove a decomposition theorem for measures (in space and time) that
do not charge the sets of null capacity. We apply this result to prove existence and uniqueness of
renormalized solutions for nonlinear parabolic initial boundary value problems with such measures
as right hand side.

1 Introduction

Let Q be a bounded, open subset of RY, T' a positive number and Q = 10,7 x Q. Let p be a real
number, with 1 < p < 0o, and let p’ be its conjugate Holder exponent (i.e. 1/p+ 1/p' = 1). In this
paper we deal with the parabolic initial boundary value problem

ug+ Alw) =p in]0,T[xQ,
u=0 on ]0,T[ x 09, (1.1)
u(0) = ug in 0,

where A is a nonlinear monotone and coercive operator in divergence form which acts from the space
LP(0,T; WyP(R)) into its dual L? (0, T; W12 (Q2)). As a model example, problem (1.1) includes the
p-Laplace evolution equation:

up — div(|VulP~2Vu) = p  in]0,T[ x Q,
u=0 on |0, T[ x 09, (1.2)
u(0) = ug in Q.

We study problem (1.1) in presence of measure data p and ug. It is well known that, if u € L7 (@)
and uop € L?(), J. L. Lions [18] proved existence and uniqueness of a weak solution. Under the
general assumption that g and ug are bounded measures, the existence of a distributional solution
was proved in [6], by approximating (1.1) with problems having regular data and using compactness
arguments.

Unfortunately, due to the lack of regularity of the solutions, the distributional formulation is
not strong enough to provide uniqueness, as it can be proved by adapting to the parabolic case the
counterexample of J. Serrin for the stationary problem (see [25] and the refinement in [23]). In case of
linear operators the difficulty can be overcome by defining the solution through the adjoint operator,
this method is used in [27] for the stationary problem and yields a formulation having a unique
solution. However, for nonlinear operators a new concept of solution needs to be defined to get a well-
posed problem. In case of problem (1.1) with L' data, this was done independently in [4] and in [24]
(see also [2]), where the notions of renormalized solution, and of entropy solution, respectively, were
introduced. Both these approaches allow to obtain existence and uniqueness of solutions if u € L'(Q)
and uo € L'(Q).
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Our main goal here is to extend the result of existence and uniqueness to a larger class of measures
which includes the L! case. Precisely, we prove (in the framework of renormalized solutions) that
problem (1.1) has a unique solution for every ug in L'(Q) and for every measure y which does not
charge the sets of null capacity, where the notion of capacity is suitably defined according to the
operator us + A(u).

The importance of the measures not charging sets of null capacity was first observed in the
stationary case in [7], where the authors prove existence and uniqueness of entropy solutions (as
introduced in [3]) of the elliptic problem

Alwy=p in Q,
{ u=0 on 0}, (13)

if 4 is a measure which does not charge the sets of null p—capacity, i.e. the capacity defined from the
Sobolev space WO1 'P(Q). Actually, this result relies on the fact that every such measure belongs to
LY(Q) + W=7 (Q). In order to use a similar approach in the evolution case, we develop the theory
of capacity related to the parabolic operator u; + A(u) and then investigate the relationships between
time—space dependent measures and capacity. We introduce here this notion of parabolic capacity in
the same spirit as in [21], where the standard notion of capacity constructed from the heat operator
is presented in a useful functional approach. Indeed, letting

W = {ue L2, T; W (@) N I2(2)), w € LF (0,T; (W "(@) n IX(@)))}

we define the capacity of a set B by, roughly speaking, minimizing the norm of W for functions
greater than 1 on B. This approach allows us to use the same arguments as in [9] and then to obtain
a representation theorem for measures that are zero on subsets of @ of null capacity (see Definition
2.22).

Thus our first main result extends the one in [7] for stationary measures and capacity.

Theorem 1.1 Let u be a bounded measure on () which does not charge the sets of null capacity. Then
there exist g1 € L¥ (0, T; W—17(Q)), go € LP(0,T; Wy P () N L*(Q)) and h € L'(Q), such that

T T
/wduz/ <gl,<p>dt—/ <sot,gz>dt+/ hp dadt, (1.4)
Q 0 0 Q

for any ¢ € C=([0,T] x Q), where {-,-) denotes the duality between (WyP(Q) N L*())" and
WoP () N L2(Q) .

(Notice that, since W=12' () < (W, () N L*(N2))', we have g, € L (0, T; (W, ?(Q) N L*(Q))') so
that the term involving g; in (1.4) is well defined.)

As far as the initial datum is concerned, considering measure data which do not charge sets of null
parabolic capacity leads to take ug in L!(Q), so that no improvement can be obtained with respect to
previous results. This is a consequence of the following theorem, which we prove in Section 2.

Theorem 1.2 Let B be a Borel set in Q. Let to €]0,T[. One has
cap,({to} x B) =0 if and only if measq(B) = 0.

In virtue of Theorem 1.2, if a measure is concentrated on a section {tg} x €, it does not charge sets
of null parabolic capacity if and only if it belongs to L' (). Here we compute the capacity on subsets



of the open set @, but a different choice could also be to compute the capacity of subsets of [0,7] x 2.
In this latter context one could take ¢t = 0 in the previous theorem and regard ug as a measure
concentrated at ¢t = 0, which explains why we take uo € L'(Q2). However, this argument also shows
that there is no real need to define the capacity up to t = 0 (see also Remark 3.7). A counterpart
of Theorem 1.2 will also be proved (Theorem 2.16), stating that, for any interval Jto,#:1[ C 10,77,
cap,(Jto, t1[ x B) = 0 if and only if the elliptic capacity (defined from Wy (Q)) of B is zero.

Thanks to the decomposition result of Theorem 1.1, if p is “absolutely continuous” with respect
to capacity (these are what we call soft measures) we can still set our problem (1.1) in the framework
of renormalized solutions. The idea is that, since p can be splitted as in (1.4), problem (1.1) can be
formally rewritten as (u — ga2)¢ + A(u) = g1 + h, and the renormalization argument can be applied to
the difference u — go. We leave to Section 3 the precise definition of renormalized solution; let us state
here our existence and uniqueness result.

Theorem 1.3 Let p be a bounded measure on () which does not charge the subsets of Q of null
capacity, and let ug € L*(Y). Then there exists a unique renormalized solution u (see Definition
3.5) of (1.1). Moreover u satisfies the additional regularity: u € L>*(0,T;L(Q)) and Ty(u) =
max(—k, min(k,u)) € LP(0,T; Wy P(Q)) for every k > 0.

The plan of the paper is the following. In the next section, we give the definition and prove the
basic properties of parabolic capacity, among which the existence of a unique cap—quasi continuous
representative for functions in W. We also prove Theorem 1.2 as far as the restriction of capacity to
sections {t} x Q is concerned. We investigate then the link between measures defined on the o—algebra
of borelians of () and the previously defined capacity, and we prove the decomposition theorem stated
above. In the third section we give first a result of existence and uniqueness for (1.1) if p € W',
the dual space of W, which seems a natural extension of the classical result of J.L. Lions. Finally,
we give the definition of renormalized solution for soft measures as data and we prove existence and
uniqueness.

In the sequel C will denote a constant that may change from line to line. For v a function of (¢, z)
and for k a real number, we will denote, for example, {v > k} the set {(¢,2) € Q : v(t,z) > k}, while
x4 denotes the characteristic function of a set A.

2 Parabolic capacity and measures

2.1 Capacity
The approach followed to define the capacity is in the same spirit as in [21].
Definition 2.1 Let us define V. = Wy*(Q) N L*(Q), endowed with its natural norm || - ||W01,p(m +
|- l|z2(e2), and
W= {u € LP(0,T; V), u; € L¥ (O,T;V’)} ,

endowed with its natural norm |lullw = |lul|Lz0,7,v) + |lwell o' (0,771 -

Remark 2.2 By noticing that V. < L?*(Q) — V', we see that W is continuously embedded
in C([0,T); L?(?)) (see [12]), which means that there exists C > 0 such that, for all u € W,

l[wll Lo 0,7;22(0)) < C llullw-



Remark 2.3 When 6 € C®°(R xRY) andu € W, then fu € W and there exists C(#) not depending
on u such that ||Qu|lw < C(8)||ullw. Indeed, when u € LP(0,T;V), it is quite obvious, by the
regularity of 8, that Qu € LP(0,T; V) with [|0u||Lr0,7;v) < C(0)||ul|Lr(0,7;v)- For the time derivative,
it is a little bit tricky; we have, in the sense of distributions, (6u); = 6u + 6u;. The second
term is not a problem: since u; € L? (0,T; V"), one has 6u; € L (0,T;V') and Ouell Lo 0,7,y <
C(O)llutll o (o,1;v+)- For the first term, that is 6yu, we must use the injection of W in C([0, T]; L*(1)),
thus also in L¥' (0, T; L2(Q)); thanks to this injection, it is then easy to get 6;u € L? (0,T; L*(Q)) with
10sul e 0,7;22(02)) SIC(O)HuHW; L2(Q) being injected in V', we have L? (0, T; L2(Q)) — L? (0,T; V")
which gives 6;u € LP (0,T; V") and [|6zull o (o, 7,1y < C(O)]|ullw-

Remark 2.4 Since L*' (0,T; V') = (L?(0,T;V))' (since V is a separable reflexive space, see [14]), and
since LP(0,T; V) = L?(0,T; Wy ?(Q)) N L?(0,T; L*(Q)) = EN F, with EN F being dense both in E
and F, we have L¥ (0,T; V') = E' + F' = L (0,T; W="#(Q)) + L¥ (0, T; L*(Q)) and the norms of
these spaces are equivalent.

In fact, the natural space that appears in the study of the p-laplacian parabolic operator
ug — div(|VulP~2Vu) is not W but W C W, defined as follows.

Definition 2.5 We define

W= {u € LP(0,T; WEP(Q)) N L®(0,T; L*(R)), ug € LP (0, T; W1 (n))} .

Remark 2.6 Since W% (Q) < V', W is continuously embedded in W.

We will define the parabolic capacity using the space W, whereas a more natural definition would
perhaps start from W. However, using this space instead of W would entail some technical difficulties
and since, as we will notice, the sets of null capacity with regards to W are the same than the sets of
null capacity with regards to W, there is no loss in working with W instead of W (see Remark 2.18).

Definition 2.7 If U C Q is an open set, we define the parabolic capacity of U as
cap,(U) = inf {||ul]|lw : v € W, u > Xy almost everywhere in Q} (2.1)

(we will use the convention that inf ) = +00), then for any borelian subset B C Q the definition is
extended by setting:

cap,(B) = inf {cap,(U), U open subset of Q, BC U} . (2.2)
Proposition 2.8 The parabolic capacity satisfies the subadditivity property, that is
oo oo
cap,, (U E,) < Z cap,(E;), (2.3)
i=1 i=1
for every collection of borelian sets E; C Q).

Proof. Let U; be open sets containing E; such that cap,(U;) < cap,(E;) + 57, and let u; be such
that u; > xv, a.e. in Q and |lugl|lw < cap,(U;) + 57. Without loss of generality we can assume that



Yooy cap,(B;) < oo (otherwise (2.3) is trivial); this implies that )72, u; is strongly convergent in W.
Let then u = Y%, u;; clearly u > xy a.e. in Q where U = 32, U;, so that, U being open,

oo o
cap,(U) < llullw <Y lluillw < cap, (i) + 2.
i=1 i=1
Since ;2 E; C U this implies (2.3). "
Remark 2.9 As usual, the parabolic capacity as defined above depends in fact of the open ambient
set @ and we should have denoted cap,(B, Q) to stress on this dependance. However, Proposition
2.8, along with Remark 2.3, allows to see that, when B is a borel set of Q) and cap, (B, Q) = 0, then
cap,(B,U) = 0 for all open sets U C @ containing B. Indeed, take a sequence of compacts K, C U
with U = |, Kn, then we have cap,(B,U) = cap,(|,_,(BN K,),U) < 7>, cap,(BN K,,U).
Since K, is a compact subset of U and since cap,(B N K,,Q) = 0, we can prove, using a function

Cn € C(U) such that ¢, = 1 on a neighborhood of K, that cap,(B N K,,U) = 0 for any n, which
proves our assertion.

The definition of capacity can be alternatively given starting from the compact sets in (), as follows.
We denote C2°([0, T] x ) the space of restrictions to ) of smooth functions in R x R" with compact
support in R x ).

Definition 2.10 Let K be a compact subset of Q. The capacity of K is defined as:
CAP(K) = inf {||lul|lw : v € CZ([0,T] x Q), u > Xk} .
The capacity of any open subset U of Q is then defined by:
CAP(U) = sup {CAP(K), K compact, K C U},
and the capacity of any Borelian set B C Q by
CAP(B) = inf {CAP(U), U open subset of ), B C U}.
This second definition of capacity given for compact subsets is motivated by the following theorem.

Theorem 2.11 Let Q be an open bounded set in RN and 1 < p < co. Then C°([0,T] x Q) is dense
in W.

The proof of this theorem will be given in the appendix.

Remark 2.12 Notice also that, when v € W has a compact support in () and p,, is a sequence of
space-time regularizing kernels, then u  p,, is well defined (at least for n large enough), is a function
of C*(Q) and u * p, — u in W (see Lemma A.1 in the appendix).

Proposition 2.13 The capacity CAP satisfies the subadditivity property.

Proof. Let us first prove the subadditivity for finite unions of open sets, starting from compact sets.
Indeed, let K, K5 be compact subsets of @, then there exist two functions u;, us € C([0,T] x )
such that u; > xk, and ||u;||lw < CAP(K;) + ¢, for i = 1,2. Since

ur +uz € Ccoo([oaT] X Q)a U1 + U2 Z XK1UK>5 5 ”ul + U2||W S ”uIHW + ||u2||W )



it follows that CAP(K; U K3) < CAP(K;) + CAP(K,). Let now A, B be open subsets of @,
and let K be a compact subset of A U B. It is easy to find compact subsets K4, Kp such that
K = KpUKp, with K4 C A and Kp C B (for instance, define F = {2z € A : dist (2, A°) > 3} where
m = min,¢ g [dist (2, A°) + dist (z, B°)], then K4 = KN F and Kp = K N F¢ fit the requirement).
Therefore we have CAP(K) < CAP(K 4)+CAP(Kp) < CAP(A)+CAP(B), and taking the supremum
over K C AU B we get

CAP(AUB) < CAP(A) + CAP(B), for all opensets A,BCQ. (2.4)

Finally, let E;, for ¢ > 1, be borelian subsets of @, and let E = |J;2, E;. Assume that
> i CAP(E;) < oo and let A; be open sets such that E; C A; and CAP(4;) < CAP(E;) + &,
so that ) .o  CAP(4;) < Y ;2 CAP(E;) +&. Let A = J;2, A;, and take a compact subset K C A.
Since the A; are a covering of K, there exists a finite number n such that K C |J_; A4;, hence using
(2.4) we get

CAP(K) < CAP (U A,.> <) CAP(4;) <> CAP(E;) +e¢.
i=1 i=1 i=1
Taking the supremum over K C A and since E C A we have

CAP(E) < CAP(4) < Y CAP(E;) +¢,
i=1

which concludes the proof as € tends to zero. [

Note that, in the elliptic case, the two possible constructions of the capacity in the space WO1 P(Q)
(from the open sets or from the compacts) coincide. Here, we are not able to prove the same result
(because of approximation difficulties), nevertheless we have that both capacities yield the same sets
of null capacity, which is in fact what matters.

Proposition 2.14 Let B be a borelian subset of Q. Then one has CAP(B) = 0 if and only if
cap,(B) = 0.

Proof. We first prove that cap,(B) < CAP(B) for every borelian set B, which will imply
cap,(B) = 0 whenever CAP(B) = 0.

Indeed, let A be open. Assume that CAP(A) is finite, and let K, = {z € A : dist(z,04) > 1}.
By definition there exists a sequence ¢,, of functions in C$°([0,T] x Q) such that

1 1

In particular we have that ¢, is a bounded sequence in W, which is a reflexive space, so that there
exists a subsequence, not relabeled, and a function ¢ € W such that:

Pn =@ weakly in LP(0,T;V),
(pn)t = ¥1 weakly in LY 0,T;V"),
Yn =@ almost everywhere in Q).

Last convergence is a consequence of standard compactness arguments (see [26]). Since ¢, > Xk,
for every n, we deduce that ¢ € W and ¢ > x4 almost everywhere in (), so that ¢ can be used in
Definition 2.7 above. By lower semicontinuity of the norm we get, as n tends to infinity:

llollw < CAP(4),



which yields that cap,(A4) < CAP(A). This inequality being satisfied for all open sets A, we deduce
from the definition that it is also true for all borelians of Q.

Now, let us obtain the reverse implication. We take B a borelian such that cap,(B) = 0. Since
CAP is sub-additive, it is enough to prove that, for any compact K C @, one has CAP(BN K) = 0.
We take thus K a compact subset of Q and ¢ € C°(Q) such that { = 1 on an open set O which
contains K.

Since cap,(B) = 0, there exists, for all ¢ > 0, an open set A, containing B such that cap,(4:) <¢;
we can then take u € W such that

u > XA, a.e. in @, [|ullw < 2e.

We have (u € W and ||Cu|lw < 2C(¢)e, with C(¢) only depending on ¢ (see Remark 2.3).

We will now estimate CAP(A. N O). Let L be a compact subset of A. N O and (pn)n>1 be a
regularizing kernel in R x R"; since (u has a compact support in Q, (Cu) * p, € C(Q) is well
defined (at least for n large enough) and (Cu) * p,, strongly converges to (u in W (see Remark 2.12
and the appendix). We can thus fix n(L, ¢) such that ||(Cu) * pr(z,c) = (Cu)|lw < € and (Cu)*pp(r,e) > 1
in L (recall that Cu > 1 on the open set A. N O and that L is a compact subset of A. N O);
with this choice of n(L,e), v = ((u) * prr,e) € C(Q) C CX([0,T] x Q) and v > xr. Thus,
CAP(L) < |Jvllw < |lv = Cullw + ||Cullw < (1 4+ 2C(())e. This being true for any compact subset L
of the open set A. N O, we deduce that CAP(4: N 0) < (1 +2C(¢))e.

But BNK C A.NO, so that CAP(BNK) < (1+2C(({))e for all € > 0. Letting ¢ — 0, we deduce
that CAP(BN K) =0. "

Here we give the characterization of sets of null capacity contained in the sections {to} x Q of the
parabolic cylinder.

Theorem 2.15 Let B be a borelian set in Q. Let to €]0,T[ fized. One has
cap,({to} x B) =0 if and only if measq(B) = 0.

Proof. Assume first that cap,({to} x B) = 0 and let K be any compact set contained in B, so that
cap,({to} x K) = 0. Since, by Proposition 2.14, we also have that CAP({to} x K) = 0, then, for all
€ > 0 there exists a function 9. € C°([0,T] x ) such that ||¢:||w < € and ¢ (tp) > 1 on K. Since
W is embedded in C([0,T], L?(2)), one has then

meas o (K) < /K e (to)? o < [l 0. 12500 < Cllelidy < CE2,

so we deduce that measq(K) < Ce?, and from the arbitrariness of € then meas o (K) = 0. Since this
is true for any compact subset contained in B, by regularity of the Lebesgue measure we conclude
that measq(B) = 0.

Conversely, if measq(B) = 0 then there exists, for all £ > 0, an open set A, such that B C A,
and meas g(A.) < . Let us consider ¢ fixed in the following, and let K, be a sequence of compact
sets contained in A, such that K, C K41, for all n > 1 and J;- | K,, = A.. Let ¢, € Cc(A.) (the
space of continuous functions with compact support in A.) be such that 0 < ¢, <1, ¢, =1 on K,
and ¢, < @ny1- Then we solve for t € [to, T,

('l/}n)t - diV(|V¢n|p_2V’(ﬁn) =0 in ]tO;T[XQa
Y =0 on Jtg, T[x 0N, (2.5)
Yn(to) = on on Q.



Clearly we have that v, € LP(to, T; Wy'P () N L (to, T; L*(Q)) and (¢,,)¢ € LP (to, T; WP (Q)).
Let us construct a function 1, defined on [0, T, by setting

'(Zn = ¢n in ]t07T] X QJ
s = n (T - LT; to)) in [0, 2] x Q.
0

It is not difficult to see that {ﬁvn belongs to W and by the energy estimates obtained from (2.5) by
using 1, itself as test function we have (recall the notation in (2.10)) :

e 71 e o2 2
||¢n||Lp(0,T;W01’p(Q)) + ||¢n||Lpl (0,T;V") + ||¢n||L°°(O,T;L2(Q)) S C”SOTLHL2(Q) S Cmea‘s(AE) S CS . (26)

By regularity results on the p-laplacian evolution equation (see [13]) we have that ¢, is continuous
in [to, T] x Q, hence ¢, € C([0,T] x Q). Thus we can define the open set U, = {¢, > 3}. Since U,
is open and 27Zn > xv, we have

1
T

cap,(Un) < 2[dnllw < Cmax(e?,e7"). (2.7)

Since the sequence ¢,, is nondecreasing we have that the sequence Jn is nondecreasing as well, hence

U, CUpy1, and ca,pp(Un) is also a nondecreasing sequence, and bounded too. Setting Uy, = U;L'ozl U,,
we are going to prove that

cap,(Ux) = nh_)rr;o cap,(Un) - (2.8)

Indeed, since U,, C Uy, we have li_)m capp(Un) < capp(Uoo). On the other hand, let u,, € W be such
n o
that 1
Up > xvu, a.e. in @ and llunllw < cap,(Un) + .

(in fact, it can also be chosen u, such that ||lu,|lw = cap,(Uy), but this is not essential). It follows
from (2.7) that u,, is a bounded sequence in W, hence there exists a function u € W such that, up to
a subsequence,

Up —> U weakly in W and a.e. in Q.

The almost everywhere convergence of this subsequence and the fact that the sequence U, is
nondecreasing imply that u > xp_, almost everywhere in @Q; since Uy, is open, we get

cap, (Uso) < [lullw < liminf [|un[lw < lim cap,(Us)

so that (2.8) is proved. Since ¢, =1 on K,, for each n and A, = |J,-; K,, we have that Uy is an
open set which contains {to} x A. D {to} x B, so that we conclude from (2.8) and (2.7)

)5

which implies that cap,({to} x B) = 0. L]

1
7

cap,({to} X B) < cap,(Ux) < C’max(si,ep

The following result can be considered a counterpart of the previous one, since we consider subsets
10,T[x B, B C Q.

Theorem 2.16 Let B C 2 be a borelian set, and 0 < tg < t1 <T. Then we have

cap,(lto,t1[ x B) =0 if and only if capy(B) =0,

where cap;, denotes the elliptic capacity defined from Wy P() (see [16]).



Proof. If cap;(B) = 0, then there exists, for all 0 < & < 1, an open set U, with B C U, such that
cap;(U:) <e. It is then a well-known result of the elliptic capacity (using truncation) that we can
choose v, € W, () with 1 > v. > xp, a.e. in Q and lvellwpry < € If p > 2, this also gives
[[ve||L2(@) < Ce (C not depending on ¢€); if p < 2, since 0 < v, < 1, we have [, [v:|* < [, |[ve[P < CeP
(C still not depending on €), that is to say ||ve||L2(q) < CeP/?. Tn either case, we have thus v, > xu.
such that [[ve|[yy10 ) + [[0=lL2() < Cle +¢P/?). Using u(t,r) = v.(z) in (2.1) for the capacity
of Jto,t1[ x U. we deduce that cap,(]to,t:[ x U:) < Cle + e?/?), and then as € go to zero we get
capp(]to,tl[ X B) =0.

Conversely, assume that cap,(]to,?1[ x B) = 0, which implies that there exists an open set A.
such that (Jto,t1[ x B) C A. and cap,(4:) < e. Let to < t5 < t; < t;. For every z € B, since
[tg,t1] x {z} is a compact subset of the open set A., there exists an open set U, C  such that
Ito, ti[ x {z} CJty, t1[ x U, C A.. Hence setting U = |J, .5 U, we have that B C U C , U is an open
set and ]tg, [ x U C A., so that cap,(]tg, [ x U) < cap,(4:) < e. Let then u. € W be such that
ue > Xjo ty[xv and |luc|lw < e. Defining

1 t p
Ve = —— Ue di
€ tll_té)/t() € ’

we easily check that v. € WO1 P(Q), v. > xu almost everywhere in 0 and
1 1
T»" T»"

1 f
, < — dedt < — <——-c.
el oy < gy |, el dedt < el < 5

Since U is open and contains B, the arbitrariness of ¢ implies capy,(B) = 0.

2.2 Quasicontinuous functions

Let us recall that a function w is called cap—quasi continuous if for every € > 0 there exists an open
set F., with cap,(F:) < ¢, and such that ujg\r, (the restriction of u to @\ F%) is continuous in @\ Fr.
As usual, a property will be said to hold cap—quasi everywhere if it holds everywhere except on a set
of zero capacity. The following lemma, is essential to prove the existence of a cap—quasi continuous
representative for functions in W. In fact, remark that if u € W, one may have |u| ¢ W (see Appendix
in [21]). To overcome this obstacle we use some ideas contained in [21].

Lemma 2.17 (i) Let u belong to W ; then there exists a function z in W (see Definition 2.5) such
that |u| < z and

uwWSCmu@w@mw5}. (2.9)

(ii) If u belongs to LP(0,T; Wy* () N L®(Q) and uy is in LP (0,T; W~1F' (Q)) + LY(Q) then there
exists z € W such that |u| < z and

zlw < C (Ilu

Hlullpeo@lluell Lo o, 75w -1 (@))+21(@) + Nl 0.7220)) ) »

o+

p p'
L?(0,T; WP () L' (0,T;W—1¢" (Q))+L1(Q)

where )
[Z]W = ”z“zl),P(O,T;WOl’P(Q)) + ||zt||ip,(0,T;Vl) + ||Z||%°°(O,T;L2(Q)) . (2]‘0)



Remark 2.18 In case (i), notice that, when ||u|ly is small, so is ||z||5; this allows to prove that the
sets of null capacity coming from W are the same than the sets of null capacity coming from W.

The case (ii) of Lemma 2.17 will not be useful to us, but we state and prove it because it allows
to see that, if u is as in this case, then u has a unique cap—quasi continuous representative (see also
Remark 3.8). Thanks to Remark 2.2, one has for all u € W,

fw < € smax {ull o < € amax { Gyl } (211)

Proof. We divide the proof in two steps. We will denote Ay (uc) = div(|Vue [P~ 2Vu,).
Step 1. Let us consider the penalized problem

(ue)t — Ap(us) = %(us —u)” in]0,T[xQ,
ue =0 on ]0,T[ x 09, (2.12)
ue(0) = u™(0) in Q,

which admits a nonnegative solution u. in C([0,T]; L*(2)) N L?(0,T; W, *(2)) by results in [18].
Choosing u. — u as test function in (2.12) we get, for every ¢ in [0, T:

/Mdm+// |Vu5|”dxdt§// V| [Vue|P~ dodt
Q 2 0JQ 0JQ

¢
+1//(u5—u)(u5—u)_dxdt
€JoJa
t 1 5
— [t =)+ Gl s

which yields, using also Young’s inequality, and that (u. — u)(us —u)~ <0,

J et g 3 [ [ (S st < © [ [Vup dsa
Q 2 2 Jo Ja Q

t . (2.13)
— [t =)t Gl

If we are in case (i), v is in W and we have

t T
/ <ut,u5—u>dt\ < [l o =l
0 0

T T
< [l l = ullygr @y e+ [ ullv e = wllzoge
0 0

< el o (0,T;v") llue — u”LP(O,T;WOl”’(Q)) + lluellzro, vy llue — ullpeo,m;02(0)

< ”Ut”Lp’ (0,T;V") ||u5 - U”Lp(o,T;WOl’P(Q)) + C”Ut”Lp’(o,T;V') ”Us - U||L°°(0,T;L2(Q))

so that we easily deduce from (2.13), using Young’s inequality:
ot I 0732262 + el gy < € e { Il Iy } - (2.14)

If we are in case (ii), then the duality product fot (ug,ue — u) in (2.13) is between the spaces
LP' (0, T; W=1#' () + L' (Q) and LP(0, T; W, P(2))NL>(Q), and we need to prove an L>°(Q) estimate
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on u.. This can be easily achieved by choosing G (u.) = (u. — k)T (let us recall that u. > 0) as test
function in (2.12), with k& = [|u[[ (@) : since G}, = (G},)P, we have

1
/ VG (ue)|P dedt = / G (ue)|Vue [P dedt < —/ (ue — u)” Gg(ue) dzdt,
Q Q ¢Je
and since (u: —u)” Gr(u:) = 0 for k = ||u||L=(g), We deduce that ||uc||r=(g) < [|ullr~(g).- Thus,
writing uy = u} +u? with u} € L (0,T; W="¢'(Q)) and u? € L'(Q) such that |Ju} ||} (0.1 w-12' () T

||U§||L1(Q) < 2wl (0,7;W—12"(Q))+L1(Q)> O1€ has

t T
/ <ut,u5—u>dt‘ < [ bl sy lae = ullyo eyt + sy e = wll (o
0 0

' 2
S C||u%||1£pl(O’T;W—l,pl(Q)) + ZHUEHZI),P(O,T;WOI’P(Q)) + C”u”I;P(O,T;WOl’p(Q)) + C||u||L°°(Q)||ut ||L1(Q) -

Then

t
‘/0 <ut;us - u) dt‘ S C”ut”ipl(O’T;W—l,pl(Q))_j’_Ll(Q)

||uE||Lp 0,T; W1 ?(Q))) + C”u”Lp(O T; Wl ?(Q))) + C”U”Loo Q)”ut”LP 0,T;W—-L2r (QN+LYQ) *

We deduce from (2.13) that, for all ¢ € [0, T,

t
—ul? P P v’
/Q|u5 ul (t)da:+/0/Q|Vu5| da:dtSC(/Q|Vu| dmdt+||ut||Lp,(0’T;W_1,p,(Q))+L1(Q)

llull o @ el o 0 25w -1 @014 3(@) + oo oy )
which implies
||u€||i°°(O,T;L2(Q)) + ”uE”iP(O,T;WOI’p(Q))

<O (Il

/
P
Loo,rswpr oy Il

L' (0,T;W =12 (Q))+L1(Q) (2.15)
Hlullze=@)llutll o o,m;w-10 @)+ 12(0) + ||u||2Loo(o,T;L2<m)) :

From (2.14) or (2.15) we deduce that there exists a nonnegative function w in L*(0,T; L2(2)) N
LP(0,T; WyP(R2)) such that (up to subsequences)

u. = w  weakly in LP(0,T; W, P(Q)) and weakly- in L=°(0,T; L*(Q)).

Note also that if € < 7 then u. > u, : indeed, we have

t
—/ R dt—// (Ve P>V, — Vg P> Vg )V (e — uy) ™ dardt

1
// ( U —U) — E(u,7 —u)) (ue — uy)~ dadt,
which yields, using the fact that the second term of the last equation is non negative and integrating
by parts,
1 _ 1 _
/| (t)? d:z:<// e — Up) (—(u,,—u) —E(us—u) )d:z:dt
- _ (1 1
< //(us—un) (upy —u) (— — —) dzdt <0,
0JQ /S
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for every t in ]0,T[. Thus u. is a non negative sequence bounded in L'(Q), moreover it is increasing
as € tends to zero, hence thanks to the monotone convergence theorem, u. converges to w in L'(Q)
and almost everywhere in (). We have, choosing (u. — u)~ as test function in (2.12),

T T
/ ((ue)t, (ue —u) ™) dt + / |V |P2Vu.V(u. —u)~ dedt = / |(ue —u)™ | dzdt,
0 0

which implies

/| |2dwdt+/| )da;—/OT(ut,(us—u)—)dt

+ / |Vu. P 2Vu, V(u. —u)~ dzdt .
Q
Using either (2.14) in case (i) or (2.15) and the L™ estimate in case (i7) we deduce:
1
—/ \(ue — ) |? dadt < C, (2.16)
€JQ

which implies, by Fatou’s lemma, that w > u, and w > u™ since w > 0.

Step 2: Let us now replace u. by a sequence converging in w. Precisely, we define z. the solution
of the following parabolic problem:

—2f — Apzf = —2Apu. in]0,T[x Q,
2 =0 on |0, T[ x 09, (2.17)
25(T) = u(T) in Q.

Since —2Apus > —(ue )t — Apu, in distributional sense, we can easily deduce from (2.17) that 2° > w..
Moreover using z¢ itself as test function and integrating between ¢ and T', we have the following energy
estimates:

||z5||i°"(0,T;L2(Q)) + ||25||2p(0 T'Wl’P(Q)) S C(HUEHLP(O T; Wl P(Q)) + ||u5||L°°(0 TLQ(Q)))

2.18
< C(lI°11% 219

+ [luell

”zt”LP (0,T;W—1.2"(Q)) LP(0,T;W, P (Q2)) LP(O,T;WOLP(Q)))'

In virtue of (2.18), we get that 2° is bounded in W, hence there exists a function z €
LP(0,T; Wy P(2)) N L®(0,T; L*()) and a function z € L? (0, T; W=7 (2)) such that (up to subse-
quences) 25 = 2z weakly in LP(0,T; Wy P(€2)) and weakly-* in L>®(0,T; L*(Q)) and z{ — Z weakly-x
in L7 (0, T; W% (Q)); it is then quite easy to see that z; = Z, so that z is in fact in . The classical
compactness argument contained in [26] implies that 2° is also compact in L!'(Q). Thus we deduce,
up to subsequences, that z° almost everywhere converges to z in (), and since 2° > u. passing to the
limit we obtain that:

+

Z>2w>u a.e. in Q.

Moreover, using either (2.14) or (2.15) and (2.18), we deduce that, if u is in W, then
2l o0,z + 1202 0 ot gy + 12t oiaw—1.7 gy < € {lully, Nl

which implies (2.9), and if u is in LP(0, T; Wy ?(Q)) N L°°(Q) and u; belongs to L' (0, T; W17 (Q)) +
L'(Q), then
[ ]W < C(”u”Lp 0,T; W27 () + ||ut||ip'(0,T;W—1,p’ (Q)+L(Q)

+||u||L°°(Q)”ut”LP ©o,msw-1#' @)+L1(Q) T Ul (0.7,02(0))) -

12



A similar construction can be made for the negative part u~, so the conclusion of the lemma, follows
by writing |u| = u™ +u~. "

The previous lemma has the following important consequence.

Proposition 2.19 If u is cap—quasi continuous and belongs to W, then for allt > 0

1

C 2
cap, ({1l > 1) < S max { Il il (2.19)

Proof. Let us first handle a simple case, that is to say u € C°([0,T] x ); then the set {|u| > ¢}
is open and its capacity can be computed according to (2.1). By Lemma 2.17 there exists a function
z > |u| satisfying (2.9). Since £ > 1 on the set {|u| > t} we have:

lzllw _ C 5 £
cap,({|ul > t}) < < — max 9 [Jullfy , [Jully

Let us now prove the general case: u is cap—quasi continuous and belongs to W. Let € > 0 and A,
be an open set such that cap,(Ac) < e and u|q\ 4, is continuous in Q \ A; by definition, this implies
that {|ujg\a.| >t} N (Q\ A:) is an open set of Q \ A, i.e. that there exists an open set U of R
such that {|ug\a.| >t} N(Q\ A:) =UN(Q\ A:). Thus,

{lul > UA = ({luigal > 85N (Q\A)) UA = UUA)INQ

is an open set. Let then z € W be such that z > |u| and (2.9) holds; let w € W be such that
lwllw < cap,(Ae) +& < 26 and w > xa,; we have w + % > 1 almost everywhere on { |u| >t} U A,
hence

cap, ({lul > 1} U A2) < llwllw + ¢ lellw < 26 + Il
Thus we get
cap,({Jul > 1)) < 2 + Zlzllw
which implies again (2.19). ]
We can now prove the result on quasicontinuity, whose proof follows the standard approach with

the help of Proposition 2.19.

Lemma 2.20 Any element v of W has a cap—quasi continuous representative v which is cap—quasi
everywhere unique, in the sense that two cap—quasi continuous representatives of v are equal except
on a set of null capacity.

Proof. By density of C°([0,T] x Q) in W, there exists a sequence v™ C C°([0,T] x Q) such that
v™ converges to v in W. We can also construct v,, such that

b 52 P’
Z 2™ max {||verl o™, o™ = vm||v’{,} < +00.
m=1
Let then define:
w™ = {[o™t! — ™| > 27™}, O = U w™.
m>r
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Since v™+! — v™ is continuous and belongs to W, using Proposition 2.19, one has
1 o 1 £
cap, (w™) < C2M max { [0 — ™[5, [T = 0™l 6

Thus we get:

B 2’
cap,(Q") < C Y 2™ max{||vm+1 — o™ lo™ T — umuvpv} .
m>r
This proves that lim cap,(2") = 0. Moreover for any r:
=00

Y2g Q" Ym>r, o™ —0™|(2) <27™,

hence (v™) converges uniformly on the complement of each Q" and pointwise in the complement of
oo

Q". Since
r=1

o0
cap, (ﬂ Q’") < capp(Q’) -0 as | tends to infinity,

r=1

we have that cap,((),—, ") = 0. Therefore the limit of v™ is defined cap—quasi everywhere and is
cap—quasi continuous. Let us call ¥ this cap—quasi continuous representative of v, and assume that
there exists another representative z of v which is cap—quasi continuous and coincides with v almost
everywhere in (). Then we have, thanks to Proposition 2.19:

1 ; 2
cap, {|17—z| > E} <Cn max{||17 —z||§_‘r,,||1~) —z||v’{,} =0,
since ¥ = z in W. This being true for any n, we obtain that z = ¥ cap—quasi everywhere, so that the
cap—quasi continuous representative of v is unique up to sets of zero capacity. [

We can also prove the following result.

Lemma 2.21 Let v, be a sequence in W which converges to v in W, then there exists a subsequence
of tv, which converges to v cap—quasi everywhere.

Proof. Let us extract a subsequence of v,, such that

!

oo LI p’
Z 2™ max {an —vl|§y 5 |lvn — 1)||V’[’,} < +o0.

n=1

Thanks to Proposition 2.19 we have
capp{ |Op — 3] > 27"} < C2" max {||vn - 1)||§_[r, v — v||g,} . (2.20)

Using (2.20) we can repeat the proof of Lemma 2.20, which proves that @, converges to ¥ cap—quasi
everywhere. -
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2.3 Measures

In the following, we denote by M;(Q) the space of bounded measures on the o—algebra of borelian
subsets of @, and Mj(Q) will denote the subsets of nonnegative measures of M;(Q).

Definition 2.22 We define
Mo(Q) = {p € My(Q) : n(E) =0 for every subset E C Q such that cap,(E) = 0}.
The nonnegative measures in Mo(Q) will be said to belong to M (Q).

We denote by ({-,-)) the duality between W' and W. W' N M;y(Q) denotes the set of elements
v € W' such that there exists C' > 0 satisfying, for all ¢ € C°(Q), [{{7,¥))| < Cll¢llL=(g); in such
a case, by the Riesz representation theorem there exists a unique y™ € M,;(Q) such that, for all
p € CX(Q), {{v,¢)) = fQ @ dy™== (notice however that, if the knowledge of v € W’ entirely defines
v e Mp(Q), the converse is not true since y™<** is not defined in ¢ = 0 nor in ¢t = T'). We denote
by W' N M (Q) the set of v € W' N M(Q) such that y==> € M (Q).

Now we investigate the link between measures in () and the notion of parabolic capacity. The
main theorem in this sense can be obtained from the result on the “elliptic capacity” contained in [9],
which can be slightly adapted to this context of parabolic spaces.

Theorem 2.23 Let p belong to M (Q). Then there exists v € W' N M;‘(Q) and a nonnegative
function f € LY(Q,dy™™) such that p = fym.

Proof. Let pu € MBL (Q). For any u in W, let 4 be the cap—quasi continuous representative of u,
which exists by Lemma 2.20. Since 4 is uniquely defined up to sets of zero capacity we can define the
functional F': W — [0, 00] by

F(u):/Qaer,u

(indeed, this definition does not depend on the cap—quasi continuous representative of u, since two
cap—quasi continuous representatives are equal except on a set of null capacity, that is to say p-a.e.).
Clearly F' is convex, and it is also lower semicontinuous in W thanks to Lemma 2.21 and Fatou’s
lemma. By the separability of W', there exists then a sequence a,, of real numbers and a sequence A\,
in W' such that:

Fu) = s%p{(()\n , u)) + an}.

Since, for any positive t, tF'(u) = F(tu) > t{{\n, u)) + a, for every n, dividing by ¢ and letting ¢ tend
to infinity we get F(u) > ({An,u)) for all w in W. For u = 0, we deduce that a,, < 0, hence

F(u) 2 s%p{«)‘na u))} = Sllep{((/\n ;u)) +an} = F(u). (2.21)

By (2.21) and the definition of F, for all ¢ € C2°(Q), we have

(s 0)) < /Q ot du < @) Il (), (2.22)

thus, applying this inequality to ¢ and —¢, we get |{((An, o)) < [[ullagy(@)ll#lle(q), Which implies
that A, € W' N My(Q); moreover, since F(—p) = 0 for any nonnegative ¢ € CX(Q), we
have 0 < ({An,9)) = chpd)\ze“ for all such ¢, which implies A= € M (Q) (that is to say

An € W' N M{(Q)) and, applying once again (2.22) to any nonnegative ¢ € C°(Q),
Amess <y (2.23)
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We have thus, in particular, [|A7(|aq,(Q) < 11l A, ()

The series
[e's} )\n
v = —_— (2.24)
2 Sl + D
is absolutely convergent in W' and we have, for all ¢ € C°(Q),

(s

venl = PV TENRTRENETY

oM =12 3w +1)

Z ”’\meaE“Mb(Q)”‘p”Lw

AN

< ||N||Mb(Q)||‘p”L°°(Q)=

meas

so that v € W' N My(Q). Since the series Y 7, AT 5D
see, applying (2.24) to functions of C°(Q), that

s S AR
Z Anllwe +1)°

strongly converges in My (Q), we can

In particular, y™* is a nonnegative measure (each A= is nonnegative).
Since Ame2* << ™<= there exists a nonnegative function f, € L!'(Q,dy™) such that A=< =
frny™ees, thus (2.21) implies:

/ @dp = sup / fnpdy™, (2.25)
Q n JQ
for any nonnegative ¢ in C°(Q)). We also have, by (2.23), fpy™ < u, that is

e

for any borelian subset B in () and every n. In particular, we have

/Bsup{fl,fz, ooy fepdy™e < u(B),

for any borelian subset B in ) and any k£ > 1. Letting k tend to infinity we deduce by the monotone
convergence theorem:

/ fdy™ < u(B),
B

where f = sup f,. Then we conclude, using (2.25):

/sodu=sur>/fncpdv’“ms/fcpdv’“e“s/sodm
Q n JQ Q Q

for any nonnegative ¢ € C¢°(Q), which yields that g = fy™=*, and since p(Q) < +o0o it follows that
f € LY@, dy™). .

In order to better specify the nature of a measure in My(Q), we need then to detail the structure
of the dual space W'.
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Lemma 2.24 Let ¢ € W'. Then there erist g1 € LPI(O,T;W_I””(Q)), g2 € LP(0,T;V) and
g3 € LP'(0,T; L*(Q)) such that

T T
<<g,u))=/ (gl,u)dt+/ (ut,gg)dt+/g3udmdt YueWw.
0 0 Q

Moreover, we can choose (g1, g2, 93) such that
”g]-”Lp’(O,T;W_l!PI(Q)) + ”gQHLP(O,T;V) + ||g3||LP’ (0,T;L2(Q2)) < C”g”W’a (2'26)
with C' not depending on g.

Proof. Let E = L?(0,T;V) x L¥(0,T;V') and T : W + E be such that T'(u) = (u,u;). If we
endow E with the norm

ll(v1, v2)lle = lloillzeo,m3v) + 020l e (0, 75v1)

then T is isometric from W to E. Let G = T (W), endowed with the norm of E, thus 7! is defined
from G to W. Let g € W' and let ® : G — R, ®(vy,v2) = ({9, T~ (v1,v2))), then ® is a continuous
linear form on G. Hence thanks to the Hahn-Banach theorem, it can be extended to a continuous

linear form on E, also denoted ®, with ||®||gr = ||g||w+ (since T~! is isometric). There exists thus
hy € (L*(0,T;V))" and hy € (L? (0,T; V"))’ such that

®(v1,v2) = (h1,v1)(Lr(0,1;v)y, 10 (0,1;v) F (h2,V2) (1w’ (0,75v7)) 17’ (0,15v7)

and [|hall(zeo,75vyy + lh2ll(zor 0, 75v1yy < Cll®||Er. But LP(0,T;V) is reflexive and (LP(0,T;V))" =
L¥'(0,T; W12 (Q)) + L? (0, T; L*(Q)) (with equivalent norms), so that we can find g, € L?(0,T;V),
g1 € L (0,T; W17 (Q)) and g3 € L? (0,T; L*(Q)) satisfying

®(vi,v2) = /OT(g1,v1)dt+/0

and ||91||Lp'(O,T;W—lm’(Q))+||92||LP(O,T;V)+||93||Lp'(o,T;L?(Q)) < Cllhallczeo,mvyy Flh2ll (Lo (0,7;v7y)) <
Cligllw:

Hence for all u € W, {{g,u)) = ®(T(u)) = fOT(gl,u) + fOT(ut,gz) + Ji 93u, which concludes the
proof. [

T
<7)27 92) dt + / g3v1 dxdt
Q

We will need, in the following, to construct suitable smooth approximations of ¥ € W' N M;(Q)
which at the same time converge in W' and weakly-* in M(Q). As usual, we would like to start with
measures v having compact support. To this purpose, note that when 6 is a regular function, since
the multiplication ¢ — 6y is linear continuous from W to W, we can define the multiplication of an
element v € W' by 6 thanks to a duality method: v € W' is defined by {{v, ¢)) = {{v, 0¢)).

Lemma 2.25 Let v € W' N My(Q) and 8 € C*(Q). We take p, a sequence of symmetric (i.e.
pn(=2) = pn(+)) regularizing kernels in R x RN and p = v € W'. Then p € W' N My(Q),
pres = Qumes )yt has o compact support in Q and

meas meas

prx pallie) S ™M@, B in W (2.27)
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Proof. The fact that u € W' N M;(Q2) is quite obvious since, for all ¢ € C(Q), |{({u,@))| =
[{((v,00))] < Cll0p||lreo@) < Cl0]|lr=(@)ll®llL=(q)- Moreover, by definition, one has, for all
peCr(@),

/wwmﬂwwbwww=/wwm,
Q Q

so that p™>* = fv™°>*; thus, the measure p™>* has indeed a compact support and g™ * p,, is well
defined and is, for n large enough, a function in C*(Q). By a classical result of convolution of
measures, one has ||u™ % pn||L1(Q) < [[™|| M, (@)

Let now (g1,92,93) € L? (0,T; W17 (Q)) x L?(0,T; V) x L* (0, T; L*(Q)) be a decomposition of
v according to Lemma 2.24. Then, for all ¢ € W, one has

T

T
(s 0)) = / (g1,00) dt + / ((09)e, g2) + /Q 9300 dads

T T T
- / (0gr, ) dt + / (e, 62) dt + / (60, go) dt + / Ogs¢p dodt.
0 0 0 Q

Since 6, € LP (0,T;L%(Q)) (see Remark 2.3), the term fOT(Otcp,g2)dt is in fact fQ 0:pgo dxdt.

Moreover, since g; € L? (0,T; W 1% (Q)), there exists G; € (L (Q))N such that g, = div(Gy),
so that

T T T
/ (Bg1, ) dt = / (div(6G1), o) dt — / (G1V0, ) dt.
0 0 0
Since G1 V6 € L? (Q) and we have in fact
T T
/ (Og1, ) dt = / (div(8G1), o) dt — / G1V0 p dadt.
0 0 Q

Thus, for all ¢ € W, one has

T T
(o @) = / (div(0GL), ) di + / (e, 02) dt + / bsp duds
0 0 Q (2.28)

—/ G1V0cpda:dt+/ 092 dxdt.
Q Q

From now on, we take n large enough so that Supp(é) + Supp(py) is included in a fixed compact
subset K of Q). The support of p™=**xp,, = (v™=*)*p, is then also contained in K; we take { € C(Q)
such that ¢ =1 on a neighborhood of K. We also take n large enough so that Supp(¢) + Supp(pn) is
a compact subset of Q).

By the natural injection C°(Q)) C W', we have, for all p € W,

(™ % pp, @) = /Q QU * pp dadt.

For all ¢ € C([0,T] x ), we have then

(U™ % pn, p)) = /Q Cp u™™ * pp dadt = /Q (Cp) * pn dp™,
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since n has been chosen large enough so that the support of () * p, is a compact subset of @Q; but
() * prn, € C(Q), so that, by definition and (2.28),

(™ % pn, o)) = ({11, (Cp) * pn))

T
- / (div(6G), (Cp) * pu) dt + /
0 0

T
(((C) * pn), Bg2) dt + / 895(Cp) * pn dudt
Q

_ / GL V8 (Cp) * pp ddt + / 0,95(Cp) * pr dardt.
Q Q

We have chosen n large enough according to the supports of § and ¢ to allow us to write

T

(™ % pr, ) = /0 (div((6G1) * pn), C) dt + /0 ((Cp)t, (Bg2) * pr) dt + /6,2(093) * pn, Qo dzdt

— / (G1V0) x pp, Cpdadt + / (0192) * pn Cp dxdt
Q Q

But ¢ = 1 on a neighborhood of Supp(f) + Supp(p,), so that

T

T
(e pnol) = [ @@« pu)sd s [ 00 e pur e+ [ 005)  pucodi

(2.29)
- / (G1V8) * pp, p dzdt + / (6:92) * pn p dzdt.
Q Q

This equality has only been established for ¢ € C°([0,T] x ), but since this space is dense in W
and both sides are continuous with respect to the norm of W, this equality is still valid for all ¢ € W.

We have (0G1) * pp — 0Gy in (LP (Q))N, (8g2) * pn — 0go in LP(0,T;V), (0g3) * pr — Ogs
in L¥ (0,T; L*(Q)), (G1V6) % p, — G1V0 in L (Q) and (8,95) * pn — 6,92 in LP(0,T; L2()).
Substracting (2.28) and (2.29), we have, for all p € W,

(™= % pr — 1, 0))

T T
- / (div((0G1) * pn — 6GL), ) dt + / (@1, (0g2) * pn — Bg2) dt + / ((895) % p — Og5)cp dadt
0 0 Q

+ / (G1V0 — (G1V8) * pp)p dxdt + / ((6:92) * pn — 6192)p dxdt
Q Q

< I(6G1) * pn — 901||(Lp'(Q))N||V90||LP(Q) + 11(6g2) * pn — 992||LP(0,T;V)||90t||Lp’(o,T;V')
+|(8g3) * pn — 093||LP’ (o,T;LZ(Q))||<P||LP(0,T;L2(Q)) +[|G1VO — (G1V0) Pn||Lp'(Q)||<P||LP(Q)
+ [[(8g2) * pn — 9t92||LP(0,T;L2(Q))||<P||Lp’(o,T;L2(Q))

<C (||(9G1) * pn — 0G| @y~ + [1(092) * pn — 092llLeo,7;v) + [1(093) * pn — 093l 107 (0, 7;12()
+G1VEO = (G1V0) * pull Lo () + [1(0e92) * pr — 9t92||LP(0,T;L2(Q))) llellw

meas

which proves the convergence of p™* * p,, to p in W'. [

Before stating and proving the decomposition theorem for elements of Mg (Q), let us first make a
remark on the preceding proof, that will be useful to approximate elements of My(Q) in a suitable
way.
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Remark 2.26 When L € W', we say that (Gy,g2,93,h1,h2) is a pseudo-decomposition of L if
Gi € (LP (Q)N, g2 € LP(0,T;V), g5 € LP (0,T; L*()), ha € LP(Q), ha € LP(0,T; L*(Q)) and,
for all p e W,

T

T
<@M»=/«mmmww+/<%WMHjﬁwwm+/hMMﬁ+/mWww
0 0 Q Q Q

The proof of Lemma 2.25 states the following: if (div(G1), g2,93) is a decomposition of v according to
Lemma 2.24, then (0G1,09>,093, —G1V0,60,g2) is a pseudo-decomposition of u = Qv (see (2.28)) and
((8G1) * pr, (092) * pr, (093) * pr, (—G1V ) * pr,, (6:92) * p) is @ pseudo-decomposition of ™ x p,, (see
(2.29)).

Thus, we have proven that a pseudo-decomposition of ™% p,, converges to a pseudo-decomposition
of p. It is a weaker result than the one that would state that a decomposition of p=>xp,, (i.e. according
to Lemma 2.24) converges to a decomposition of u, but this last result is not clear. Indeed, to compute
the elements of a decomposition of ™ x p,, we need to start from a decomposition of u such that each
term of the decomposition has a compact support; to obtain such a property, we need to introduce the
cut-off function 8 (because, in Lemma 2.24, it is not clear at all that, when g has a “compact support”
— in fact, this expression has not even proper sense since g is not a distribution on () —, we can
take (g1, 92, 93) with compact supports too), and the introduction of this cut-off function 8 entails the
apparition of the additional term 6:g>, which cannot in general (if p < 2) be put in one of the terms
of a decomposition of p according to Lemma 2.24. Moreover, when we want to represent the term
in L? (0, T; W=7 (Q)) of a decomposition of p as the divergence of an element of (L¥' (Q))N with
compact support (in order to manipulate this term using the convolution, we need such an hypothesis
on the support), the introduction of the cut-off function creates the additional term —G,1V#0, and
finally leads to a pseudo-decomposition of u as defined above.

Notice however that, if p > 2, then the term 6,9, € L?(0,T;L?*()) can be put into the term
LP(0,T; L2(Q)) but the term G,V € L (Q) remains; if p < 2, then the term G1 V6 can be put into
the term L (0, T; L?(R)), but the term 6yg, remains. In the special case p = 2, both terms G1V0
and 6;g» can be put into the term LP (0,T;L3(Y)) and, in this case, we have in fact proven that
there exists a decomposition of p™* x p, € W' (in the sense of Lemma 2.24) which converges to a
decomposition of u € W'.

Let us now prove a decomposition result as in [7].

Theorem 2.27 If u € Mo(Q), then there exist g € W' and h € L'(Q), such that u = g + h, in the
sense that

/ pdp = ((g,)) +/ hy dzdt, (2.30)
Q Q

for any ¢ € C°([0,T] x Q).

Proof. We follow the proof of [7]. First of all, using the Hahn decomposition of y, if p € Mo(Q)

also put, p= € Mo(Q), hence we can assume that p is nonnegative. Applying Theorem 2.23 there
exists v € W' N M (Q) and a nonnegative Borel function f € L!(Q,dy™), such that

mm=éfmms

for every Borel set B in ). Now let us replace p with a compactly supported measure. To this
end, it is enough to use the fact that C°(Q) is dense in L'(Q,dy™*) since y™* is a regular
measure; there exists thus a sequence f, € C(Q) such that f, strongly converges to f in
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LY(Q,dy™). Without loss of generality we can assume that Y > [|fn — frn—1ll11(Q,dymessy < 00,
so that, defining v, = (fn — fn_1)y € W', we have, by Lemma 2.25, v, € W' N My(Q) and
Yoo gz = 3% (fa — fa—1)y™™ = p converges in the strong topology of measures. The
convergence result of Lemma 2.25 applied to v, implies that p; * v=** strongly converges to v, in W’
as | tends to infinity. We can therefore extract a subsequence I, such that ||p;, * 2= — vy, ||y < 5.
We have then

n n n
Z vpees = Zplk * VP Z(V;:eas — i, * V;;.eas) . (231)
k=0 k=0 k=0
Let us denote
n

n n
M= Y VE, hn= Y pu kv and ga= % (v = pry *FT).
k=0 k=0 k=0

Thus m,, is a measure with compact support, hy, is a function in C°(Q), and g, € W' N M;(Q). The
third term of (2.31) is g=*>*; moreover, we can write g, = 8,9, with 6, € C°(Q) (indeed, take 6, =1
on a neighborhood of Supp(fo)U---USupp(f,) and on the neighborhood of the support of the C°(Q)
function Yy _, pr, *v;>>). Remark that (2.31) is an equality in M;(Q), i.e. that involves g=>* and that
can be applied only with test functions in C°(Q). But thanks to the preceding remarks concerning
the support of the elements involved in (2.31), we can in fact deduce that, for all ¢ € C°([0,T] x Q),
we have

/sodmn=/ hntp dzdt + ((gn, ¢))- (2.32)
Q Q

since fQ pdgpe = fQ Ontp dgre>* = ((gn; Onp)) = ((gn:¥))-

We have that hy, strongly converges in L'(Q) (because ||pr, * vp<**|lp1q) < |lvp=llm,(q) and
Y reo Vi is totally convergent in M, (Q)); we denote by h its limit. We also have that g,, is strongly
convergent in W' (because ||py, * v — vg||wr < 3¢), denoting by g its limit. If ¢ € C°([0,T] x Q),
we have thus

(gm o)) + /Q hnp dadt = {(g,0)) + /Q h dud. (2.33)

To prove the convergence of [, 0 pdmy to [, 0 @ du, we just recall that there is a natural injection

{ Mp(Q)—(C(@))'
m—m  defined by m(f) = fodm

which is linear and continuous. Thus, since m,, strongly converges in My(Q) to u, m, strongly

converges in (C(Q))’ to i and, since ¢ € C(Q),
/ pdmy =mn(p) = i(p) = / pdp. (2.34)
Q Q

Gathering (2.32), (2.33), and (2.34), we get (2.30). n
Combining Theorem 2.27 and Lemma 2.24 we deduce the following.

Theorem 2.28 Let u € Mo(Q), then there exists (f,g1,92) such that f € LY(Q), g1 €
LP (0, T;W=YP(Q)), go € LP(0,T;V) and

T T
/soduz/fcpdwdH/ (gl,cp)dt—/ (pi,g2)dt, Vo e C([0,T] x Q).
Q Q 0 0

Such a triplet (f,g1,92) will be called o decomposition of .
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Of course, there are infinitely many possible different decompositions of the same measure
u € Mo(Q), so the following lemma will be useful for further purposes.

Lemma 2.29 Let p € Mo(Q), and let (f,91,92) and (f,§1,92) be two different decompositions of
u according to Theorem 2.28. Then we have (g2 — §2)¢ = [ — f + §1 — g1 in distributional sense,
g2 — g2 € C([0,T;; L1 (Q)) and (g2 — §2)(0) = 0.

Proof. By assumption we have :
~ T T
[G=peasits [ g -gaa== [ (pnp-ma veecrO.I1x0), (23
Q 0 0

which implies, in particular, that (92— G2)t = f — f + g1 — g1 in distributional sense, thus
(92—32): € LY(Q)+L¥ (0, T; W17 (Q)). Moreover go—ga € LP(0,T; W, P()), hence by Theorem 1.1
in [22] it follows that g» — g2 € C([0,T]; L*(R)). Since

T T
/0 (©¢, 92 — Go) dt+/0 ((g92 — 32)1, ) dt = —/Q(gz — §2)(0)p(0) dz

for all p € C°([0,T] % Q) such that ¢(T) = 0, we deduce from (2.35) (since (92— go2)t = f—F+91—91)
that

/Q (92 — 32)(0)(0) dz = 0

for all ¢ € C([0,T] x Q) such that ¢(T") = 0. Choosing ¢ = (T — t)y, with ¢ € C°(Q) implies that
(92 — §2)(0) = 0. n

Remark 2.30 Let p € Mo(Q). It should be observed that, since it is defined on the o—algebra of
the borelians of the open set (), u does not charge sets at t = 0, which implies, in a weak sense, that
92(0) = 0 for any go such that (f, g1, g2) is a decomposition of p. More precisely, if £.(t) = (ET_t)JF,
for any ¢ € C*(2) we have, by Lebesgue’s theorem,

lim [ @& du=0.
Q

e—0

It follows then for any decomposition of

T 1 =
lim/fﬁswdde/ <gl,so>fsdt+—//gwdwdt=o,
Q 0 € Jo Ja

e—0

which implies, by the time regularity of f and g,

1 1>
lim — / / g2pdxdt =0, VYo e CXr(Q). (2.36)
e—0 ¢ 0JQ
Note that (2.36) is a weak expression of the fact that g»(0) = 0, which obviously implies (g2 —g2)(0) = 0
in the same weak sense; however Lemma 2.29 states that (g2 — §2)(0) = 0 is true in a stronger sense

(ie. in C([0,T]; L'(2))).
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We will now state and prove, thanks to what has been done in the proof of Theorem 2.27 and
Remark 2.26, an approximation result concerning elements of My(Q), which will allow us to obtain
additional regularity results on the renormalized solution of (1.1).

Proposition 2.31 Let p € Mo(Q). Then there exist a decomposition (f,div(G1),g2) of u in the
sense of Theorem 2.28 and an approximation ., of p satisfying:

pn € C°(Q), leenllrme@) <€,
T T
[ mmpdsdi= [ o fadadt+ [ (@v@)dt= [ ongrd Vo€ Cx(0.71x9),
Q Q 0 0
fn€CZ(Q), fa—> f strongly in L'(Q),
GT e (CP@Q)N, Gr =Gy strongly in (L¥ (Q))",
95 € C°(Q), 95 = ga strongly in L?(0,T;V).

Proof. We will prove that there exists a decomposition (f,div(G1), g2) of u such that, for all € > 0,
we can find p. € C°(Q) satisfying ||pe||z1(g) < C,

T T
/ pop dodt = / o f. dodt + / (div(G5), ) di — / (oo g)dt, Ve C2(0,T] x Q),
Q Q 0 0

with f. € C2°(Q) such that || f- — fllz1(g) < Ce, G5 € (C(Q))Y such that [|G5 —Gill(pe @y~ < Ce
and g5 € C°(Q) such that [|g5 — g2||Lr(0,7;v) < Ce (with C not depending on €).

We use the notations of the proof of Theorem 2.27. Recalling that vy = (fx — fr—1)7, we take
Ck € C(Q) such that ¢ =1 on a neighborhood of Supp(fi — fr—1); there exists C'(¢x) only depending
on ( such that,

7

if £ € {(L”(Q)~, L*(0,T;V), L* (0,T; L*(Q))} and h € E, then [|Gxh||s < C(G) |kl 2,
if H € (L7 (Q))" then |HVllze (q) < CUECIH 10 (@)~
if h € LP(0,T, L*(92)), then [|(Ck)ehllLeo,r:L2(2)) < C(Ck)II1llLe0,7522(0)-

S

Instead of the I;, chosen in the proof of Theorem 2.27, we take here I}, such that ||p;, * vy — vg||lw <
1/(2*(C(¢k) + 1)) and ¢ = 1 on a neighborhood of Supp(py, * v=>*). With this choice and taking
(div(BY), b%,b%) a decomposition of vy — py, * V> as in Lemma 2.24, satisfying moreover

meas

||Bf||(Lp'(Q))N + 1651l e 0,73 + ||b§||Lp’(o,T;L2(Q)) < Cllvk = pip * vi=||w

with C not depending on k (this is possible thanks to (2.26)), we notice that

> k>1 CeBf converges in (LP' (Q))N, > k>1 CebS converges in LP(0,T;V),
> k>1 Ceb§ converges in LP (0,T; L2()), > k>1 Bf V(i converges in L’ (Q), (2.37)
> k1 (Cr)ebs converges in LP(0,T; L*(Q)).

We denote by G1, —g2, fi, fo and f3 the respective limits of these terms; notice that the last three
convergences imply in particular the convergence in L*(Q).

Since vy, — py,, * Ve = Gp(vr — piy, *x V™) in W' (by choice of ¢, and Ij;) and (div(BF), bk, bk) is
a decomposition of vy — py, * vie*, (CxBY, (kbk, (ibk, —BFV (i, (Cr):b) is a pseudo-decomposition of
Vg — P, * V= (see Remark 2.26).
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Thus, by (2.32), for all ¢ € C°([0,T] x ),
T n T n
[ oimn=[ oh+ [ v (Z @Bf) o+ [ o> ath)
Q Q 0 k=0 0 k=0
T n n n
[ ather [ SBVQe+ [ Yok
0 k=0 @ k=0 Q k=0
and, by the convergences of m,, to u, of h,, to h and (2.37), we deduce that

/Qsodu=/Q(h+f1—f2+f3)90+/0T(diV(G1),so)—/0T<sot,gz),

ie. that (f =h+ f1 — fo + f3,div(G1), 92) is a decomposition of y in the sense of Theorem 2.28.
We fix now € > 0 and take n large enough (in fact n = n. is fixed in dependence of ¢ hereafter) so
that

> B -Gy <e, (2.38)

k=0 (L2 (Q)HN

D Gkbh + g2 <e, (2.39)

k=0 L?(0,T;V)

o+ Y Gebk =Y (BEVG) + D (G — f <e. (2.40)
k=0 k=0 k=0 L1(Q)

Since vy, — pi,, x v = C (v — pi,, *vi2e>) and (div(BF), bk, bk) is a decomposition of vy, — py, * v,
we also know that, for j large enough, ((¢xBF) *p;, (Ceb8) * pj, (Ckb§) % pj, (=BEV L) % pj, ((Cr)ebs) ;)
is a pseudo-decomposition of (vp= — py, * vp=>*) x p; € CX(Q) (see Remark 2.26). We take j, such
that, for all k € [0, n],

k k €
(G BY) * pj. — Byl (Lo (@y)v < nrl’ (2.41)
||(Ckb§) * Pjn — CkbgnLr(o,T;V) < ntl’ (2.42)
1(¢kb5) * pj — Cib5lILr(@) + II(BYVEk) * pj, — BYVEkllLi(q)
€
+1((Ce)ebS) * pj, — (Cr)ebsNlr @) < —— (2.43)

n+1

Define G5 = T7_o(GBY) #ps, € (C2(@); we have, by (238) and (241), G5 — Gl g gy <
2e. Let g5 = — > _o(Cebs) % pj, € C°(Q); we have, by (2.39) and (2.42), ||g5 — g2lLr(0,13v) < 2¢. If
fe = hn+ 3050 (GrbE) * pj, — 5o (BEVCk) * pj, + 2o (G)ebs) * pj, € C°(Q), we have, by (2.40)
and (2.43), ||f: — fllLi(q) < 2e.

Define now p. = f. +div(GY) + (95): € C°(Q); it remains to prove that ||u.||z1(g) < C with C
not depending on e. To see this, we recall that ((¢xBf) * pj., (Ckb5) * pj., (CkbY) * pj., (=BEV () *
Pins ((Ck)eb%) * pj.) is a pseudo-decomposition of (V"> — py, * V") % p; so that

n

n
pe = ho+ ) (VE™ = pu, % V™) % pj, = by + (Z(v;‘;‘“s —pu vz‘””)) *Pjn = hn + g7 i
k=0 k=0
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Since, by (2.31), gy = my, — hy, we deduce that ||u.||r1(qQ) < 2[|hnllz1Q) + Imalla, ). Since

hr, converges in L*(Q) and my, converges in My(Q), ||hnllL1(@) and ||mnl|aq,(g) are bounded, which
imply the desired majoration on ||ue|[z1(q)- ]

3 The initial boundary value problem with data in M;,(Q).

Let us turn to the study of initial boundary value problems with data taken in My(Q). We start by
introducing the following nonlinear monotone operators.

Let a : ]0,T[ x @ x RY — RY be a Carathéodory function (i.e., a(-,-,£) is measurable on @ for
every £ in RV, and a(t, ,-) is continuous on RY for almost every (¢, ) in @), such that the following
holds:

at,z,£) > alélP, p>1, (3.1)
la(t, =, )| < Bb(t, x) + [P, (3.2)
la(t,z,&) — a(t,z,n)](€ —n) >0, (3.3)

for almost every (¢, z) in @, for every &, nin R, with £ # 5, where o and 3 are two positive constants,
and b is a nonnegative function in L? (Q).
Let us define the differential operator

A(u) = —div(a(t,z,Vu)),  u€ LP(0,T; W, ().
Under assumptions (3.1), (3.2) and (3.3), A is a coercive and pseudomonotone operator acting from

the space L?(0,T; W, *(Q)) into its dual LP (0, T; W ~5#'(Q)), hence for u € L” (Q) and ug € L*(Q),
(1.1) has a unique solution in W (see Definition 2.5) in the weak sense (see [18]).

3.1 Variational case

Let us justify the interest of W', giving the following existence and uniqueness theorem.

Theorem 3.1 Let g belong to W', and let ug € L?(Q). Assume that (3.1)-(3.3) hold true. Then
there exists a unique solution u of

u+A(u) =g n]0,T[x 9,
u=0 on 10, T[ x 09, (3.4)
u(0) = ug in Q,

in the sense that u € L?(0,T;V) and satisfies
= [ tonurde= [ unpl0)ds+ [ alt,a, Vu) Vi dsdt = (ig, 0, (35)
Q Q Q

for all p € W with o(T) = 0.
Remark 3.2 Since g € W', by Lemma 2.24, there exist g, € L?' (O,T;W_l’pl (), g2 € L?(0,T;V)
and g3 € L? (0,T; L?(2)) such that
T T
(g,9)) = / (g1,) dt —/ (pt, 92) dt +/ng<pd:cdt, Vo e W.
0 0
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For any such decomposition, we deduce that u satisfying (3.5) is such that (u—gs); = —A(u
LP'(0,T; W=12'(Q)) + L¥ (0,T; L*(Q)) = L¥ (0,T; V"), so that u — g, € W c C([0,T];
returning to (3.5), we find (u — g2)(0) = ug.

Moreover, for any two solutions u and v of (3.5), we have u —v = u — g2 — (v — g2) € W and
(u—v)(0) = 0.

+91+93 €
(2

)
L?(Q)) and,

Remark 3.3 The Theorem 3.4 could also be stated with right hand side in W' and test functions
in W. Moreover according to [12], one has W = {u € LP(0,T; W P(Q)) N LP(0, T; L*(Q)), us €

LP (0, T; W=L7(Q))}, hence the right hand side g € W' can be written as above in Remark 3.2 but
with gy € L?(0,T; W, () D LP(0,T; V). Since ¢ € W, the term fOT(cpt,gg) makes sense.

Proof of Theorem 3.1. We take (g1, —g2,93) a decomposition of g according to Lemma 2.24. Let
g € C=(Q) strongly converge to g in L¥ (0,T; W=1#(Q)), 97 € C*(Q) strongly converge to ga
in LP(0,T;V) and g% € C(Q) strongly converge to g3 in LP (0,T; L%()) (the existence of such
sequences is a consequence of Lemma A.3 and Remark A.4 and of the density of C2°(Q) in W~1#'(Q),
V and L?(f2)). Thanks to [18], there exists a solution u, of

up +A(u") = g7 + 95 +(95)¢ in]0,T[xQ,
u" =0 on 10, T x 09,
u™(0) = uo in Q,

in the sense that u™ € W and

| = a)rett) da - / o™ — gf)ds — | wopt0)da

// (s,z,Vu™) chdxds—/ 97, ¥ ds+//g3g0da:ds

for all ¢ € W and t € [0,T]. Note that since g € C°(Q), we have (u™ — ¢7)(0) = u™(0) = ug. Using
u™ — g3 as test function, and integrating by parts, we find

n_ ,n)2 2 ¢
/w—/ %“"/ a(s, z, Vu")V(u" — g3) dzds
Q

0JQ

/(91a - 93) d3+//93 — g5) dxds

thus, using (3.1), (3.2) and Young’s inequality,

/(u —98)° dm+//|Vun|pda:ds
Q

p
U ooy + 1981 o o mcay + 195 e oz + ol + 18I )

+4T% llu™ — gg“LP(O,T;L?(Q))
P
c (ugl 12 sy NI o oy + 198 1,1y + ol + 101 (Q))

2

P
+4T% llu™ = 9811 0,7 12(0))
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which implies
[|lu™ — gg”%oo(o,T;Lz’(Q)) + ||U"||I£p(07T;W5,p(Q)) <C. (3.6)

Thanks to the equation, we deduce from this that (u™ — g); is bounded in L? (0, T; W% (Q)) +
LP'(0,T; L2(Q)) = L¥ (0,T; V') so that, in fact, u™ — g7 is bounded in W. There exists thus w € W
such that, up to a subsequence, u™ — g8 — w weakly in W. But, from (3.6), 4™ is bounded in
Lr0,T; WO1 'P(2)) and converges thus, up to a subsequence, weakly in L?(0,T; VVO1 P(Q)) to a function
u. Since g2 — go in LP(0,T; Wy'P(Q)), this implies that u” — gi — u— go weakly in L?(0,T; Wy ?(Q))
so that w = u — g2 € W C C([0,T]; L?(Q2)); note also that, since u — go € W and go € L?(0,T;V),
one has u € L?(0,T;V).

Moreover, A(u™) is bounded in L?' (0, T; W~1#'(Q)), thus (up to subsequences) it converges weakly
to an element f in L* (0, T; W17 (Q)). Using the equation in the sense of the distributions, we have
(u—gs)¢ + f = g1 + g3, which is also an equality in L?' (0,T;V"). Hence, since u — g, € W, one has

T T
- /0 (e — ga)dt — /Q (= 92)(0)(0) dr = /0 (01— fro)dt + /Q gap dadt.

for all ¢ € W such that ¢(T) = 0. On the other hand the equation implies, passing to the limit in n,
that, with ¢ € W such that ¢(T) =0,

T T
—/ <<pt,u—gz>dt—/ump(0) d-’v=/ (gl—f,<,0>dt+/ g3y dxdt
0 Q 0 Q

so that (u— g2)(0) = ug. Now using (u™ — g%) — (u — g2) as test function (note that ((u™ — g%) — (u —
92))(0) = 0), one has

[ =B D) g [ g, 68) — (0 g
Q 0

+ / [a(t, z, Vu™) — a(t,z, Vu)]V(u" — u) dzdt +/ a(t,z, Vu)V(u™ — u) dzdt
Q Q

+/ a(t,z, Vu™)V (g2 — 93) dzdt
Q

T
- / (g, (u™ — g3) — (u— go))dt + / gB[u™ — g§) — (u— go)] dodt
0 Q

Since the second term and last four terms converge to 0, thanks to the positivity of the first one and
to (3.3), one gets

lim [ [a(t,z, Vu") —a(t,z, Vu)]V(u" — u) dedt =0

n— 00 Q
hence, using the standard monotonicity argument (see Lemma 5 in [8]), one has the convergence almost
everywhere of Vu" to Vu and the strong convergence of a(t, z, Vu™) to a(t,z, Vu) in (L? (Q))N. This
proves that it is possible to pass to the limit in the approximating equation, and so the existence of
a solution.

For uniqueness, let us suppose there are two solutions u and v, thanks to Remark 3.2, u —v e W

so that, subtracting the two equations, one can choose u — v as test function, obtaining;:

/Q w do + /0 t /Q la(t, 2, Vu) — a(t,z, Vo)V (u — v) dadt = 0, Vit €]0,T],

thus u = v using (3.3). n
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3.2 Definition and properties of renormalized solutions

Now we want to deal with the general problem (1.1) when p is a measure which does not charge sets
of null capacity. In virtue of Theorem 2.27, this means that we consider measure data which can be
splitted in a term of W' and a term in L'(Q). It is then well known that, if dealing with L! data,
the concept of solution in the sense of distributions of problems like (1.1) is not strong enough to give
uniqueness of solutions. Moreover, we will deal with functions that may not belong to Sobolev spaces,
so that we need to give a suitable definition of “gradient” for functions that enjoy some properties.
To this purpose, if £ > 0, we define

Tk (s) = max(—k, min(k, s)) , Vs eR,

the truncature at levels k and —k, and O (s) = [ Tx(t) dt. One has O(s) > 0.
The truncations will be very useful for defining a good class of solutions, as in [3].

Definition 3.4 Let u be a measurable function on Q such that Ty, (u) belongs to LP(0,T; Wy () for
every k > 0. Then (see [3], Lemma 2.1) there ezists a unique measurable function v : Q — RN such
that

VTi(u) = v X{ju<k}, almost everywhere in Q, for every k > 0.

We will define the gradient of u as the function v, and we will denote it by v = Vu. If u belongs to
LY(0,T; WOI’I(Q)), then this gradient coincides with the usual gradient in distributional sense.

Let us introduce the definition of renormalized solution of (1.1).

Definition 3.5 Let u € Mo(Q) and let uy € L'()). A measurable function u is a renormalized
solution of (1.1) if there exists a decomposition (f,g1,92) of u such that

u—gs € L®(0,T; L)), Te(u— g2) € LP(0, T; WyP(Q)) for every k > 0, (3.7)
lim / Vul? dzdt = 0, (3.8)

{n<lu—ga|<n+1}

and, for every S € W2>(R) such that S’ has compact support,

(S(u = g2))e — div(a(t, z, Vu)S'(u — g2)) + 5" (u — g2)a(t, 2, Vu)V(u — g2) =

3.9
=8"(u—go)f +G1S"(u— g2)V(u — g2) — div(G1 S (u — g2)) (39)

in the sense of distributions (where g1 = —div(G;)) and
S(u— g2)(0) = S(ug) in L*(Q). (3.10)

Remark 3.6 Note that the distributional meaning of each term in (3.9) is well defined thanks to the
fact that Ty(u — g2) belongs to L?(0,T; WOI’I’(Q)) for every k > 0 and since S’ has compact support.
Indeed, by taking M such that Supp(S’') C |-M, M|, since S'(u — g2) = S"(u — g2) = 0 as soon as
|u — go| > M, we can replace, everywhere in (3.9), V(u — g2) by VTm(u — g2) € (LP(Q))YN and Vu
by V(Tm(u— g2)) + Vg2 € (LP(Q))YN (recall that a(-,-,0) = 0). Moreover, according to Definition 3.4
v = V(u — g2) is well defined and we naturally denote Vu = v + Vgs.

We also have, for all S as above, S(u— ga) = S(Ta(u—g2)) € LP(0,T; Wy'P(Q)); thus, by equation
(3.9), (S(u — g2)): belongs to the space L?' (0,T; W=7 () + L'(Q), which implies that S(u — g3)
belongs to C([0,T); L*()) (again see [22]). Thus condition (3.10) makes sense. Furthermore, since
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(S(u — g2))y € LP' (0, T; W=12(Q)) + L*(Q) we can use, as test functions in (3.9), not only functions
in C°(Q) but also functions in LP(0,T; Wy P(Q)) N L=(Q).
Finally, observe also that condition (3.8) is equivalent to

n—00
{n<lu—g2|<n+1}

lim / |V(u — g2)|P dadt =0,

since g» € LP(0,T; Wy'P(Q)) and u — go is almost everywhere finite.

Remark 3.7 The initial condition S(u—g2)(0) = S(uo) is the renormalized version of the requirement
that (u — ¢2)(0) = ug. By means of Remark 2.30, it also expresses, in a weak sense, that u(0) = uo,
as written in (1.1). Let us recall that this is due to the fact that p is only defined on Q. On the other
hand, it would also be possible to consider measures p on the o-algebra of borelians of [0,T) x Q, hence
w would charge the level t = 0. However, this case easily reduces to the previous one. Indeed, we can
split p = pq + pi, where p; = pu74—o} is the restriction of p tot =0 (i.e. p;(E) = p(EN({t =0} x 1))
for any set E) and pq is the restriction to the open set (). In this case problem (1.1) is equivalent to
problem

ur + Auw) = pg in]0,T[x Q,

u=0 on ]0,T[ x 89, (3.11)

u(0) =uo+p; inQ.

If p is a measure which does not charge sets of null capacity we have by Theorem 2.15 that p; € L* (1),
and the study of (3.11) reduces to the one we do for measures y only defined on Q.

Remark 3.8 As we have already noticed, when u is a renormalized solution of (1.1) and S
is as in Definition 3.5, we have S(u — g2) € LP(0,T;W,"(Q)) N L®(Q) and (S(u — g2)); €
L¥' (0, T; W22 (Q)) + L'(Q); this allows, thanks to (ii) in Lemma 2.17, to prove that S(u — g5)
has a cap—quasi continuous representative.

In order to deal with the renormalized formulation, we will often make use of the following auxiliary
functions of real variable.

Definition 3.9 We define:
O0n(s) =T1(s —=Tn(s)), hn(s) =1—10,(s)|, Sn(s)= / hp(r)dr , Vs e R.
0

Let us first prove that the formulation of renormalized solution does not depend on the decompo-
sition of p. This fact essentially relies on Lemma 2.29.

Proposition 3.10 Let u be a renormalized solution of (1.1). Then u satisfies (3.7), (3.8), (3.9) and
(3.10) for every decomposition (f,g1,g2) of p.

Proof. Assume that u satisfies the conditions of Definition 3.5 for (f,g1,92), and let (f, g1, 32)
be a different decomposition of pu. In the following we write g1 = —div(él). Note that since, by
Lemma 2.29, g» — g2 € C([0,T]; L*(2)) we have u — §o € L>(0,T; L*(f)), hence it is also almost
everywhere finite. First of all we prove that Ty (u — g2) € LP(0,T; WO1 P(Q)) for every k > 0. To do

29



this, we let S = S, in (3.9), where S,, is defined in Definition 3.9, and we choose as test function
Tk (Sn(u — g2) + g2 — §2), which belongs to LP(0,T; Wy "?(Q)) N L®(Q). Using Lemma 2.29 we have:

T
/0 ((Sn(u —g2) + g2 — §2)t, Tk, (Sp(u — g2) + g2 — o)) dt
+ [ 8l(u— g)alt, 2, V) V(a0 = g2) + 92 — ) dds
Q
= _/ Slwf(u - gZ)“(t7$7 VU)V(U - 92) Ty, (Sn(u - 92) +92 — !72) dzdt
? ) (3.12)
+ /Q (81 (u — g2) = )f + F) Te(Sn(t — g2) + g2 — §) drdt

+ /Q ((S'(u — g2) — )G + G1)VT(Sn(u — g2) + go — ) dedt

—+ / S (u— g2)G1V (u — g2)Tk(Sn(u — g2) + g2 — Go) dxdt .
Q
Since, by (3.2), (remark that [S}, ()| = Xp<|s|<nt1)

‘_/ 51111(“ - g2)a(t= z, VU‘)V(U - 92) Tk(Sn(u - 92) + 92— g2) dxdt
Q
s [ S0 )GV~ TS0 ) + 02— ) o
Q

< Ck / (IVul? + |[Vgsl? + |G1 [P+ [P dadt,

{n<lu—g2|<n+1}

thanks to (3.8) and the fact that u — g is almost everywhere finite, we get

n—oe

lim ‘—/ S (u— go)a(t,z, Vu)V(u — g2) Tk (Sn(u — g2) + g2 — Go) dxdt
Q

+/ Sp(u—g2)G1V(u — 92) Tk (Sn(u — g2) + g2 — g2) dadt| = 0.
Q

Let us denote by w(n) quantities going to zero as n tends to infinity. Integrating the first term of
(3.12) in time, using that 0 < O (s) < kls|, (92 — §2)(0) =0 and 0 < S/ (s) < 1, we obtain

/ Sl (u— ga)a(t, o, Vu)VT(S,(u — g2) + g — §o) dxdt
Q

< k1l + 11y + luollzs o)
+ / ((S'(u — g2) — 1)G1 + G1) VTi(Sn(u — g2) + g2 — o) dedt + w(n).
Q
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Setting E,, = {|Sn(u — g2) + g2 — §2| < k} we have:

/ [Sh(u — go)]%a(t, z, Vu)Vu dxdt
E,

<k(Ifllzr@ + Ifllz2 @) + lluollzr()) +/ (IG1] + |G1]) Sp(u — g2)|Vu| dzdt

n

+ / S!(u — go)lalt, 7, V)| (| Vel + [Vgal) dads
E,

+/ [SL(u—92)]2la(t,w,VU)||ngldwdt+2/ (IGL +1G1]) (IVg2| + [Vga]) dedt + w(n).
n Q

Young’s inequality then implies, using also (3.1), (3.2), (S”.(s))? < S'.(s), (S,(s))? < 8! (s) (because
0< S‘:’L < 1) and S‘:’L(s) < S;L(S)2 + X{n<|s|<n+1}*

/ (S (u — go) 2|V ulP dadt
E,
< Ck(IIflloi) + 1f1lLi@) + luolloiy) + C / (IG1P +|GiP + |V galP + [VgalP + ') dadt
Q

+C / |VulP dedt + w(n) .

{n<|u—g2|<n+1}

Using the properties of S, and the fact that g» belongs to L”(O,T;WO1 ?(Q)), we deduce from the
preceding inequality that, for all n > 1,

/Q x5, [V (Sn(u = g2))P < C.

Since V(T (Sn(u—g2) + g2 — §2)) = X£, V(Sn(u—g2) + g2 — §2) and since ga, g2 € LP(0,T; W, P(9)),
this implies that v, = T (S, (u— g2) + g2 — §2) is bounded in L?(0, T} Wol’p(Q)) and converges, up to a
subsequence, to v weakly in L2(0, T; W, *(2)), thus also in D'(Q); but v,, = Ti(u — §a) a.e. in Q and
is bounded by k, so that v, — Tj(u— g2) in D'(Q). We have then Ty (u — §2) = v € LP(0,T; W, *()),
for all k£ > 0.

Similarly we prove that (3.8) holds true for g, as well: we choose S = S, and test function
Or(Sn(u—g2)+g2—3g2) in (3.9). Reasoning as above we obtain, setting F,, = {h < |Sp,(u—g2)+g2—go| <
h+1}:

/ [S! (v — g2)]%a(t, z, Vu)Vu dzdt
F,

SH(UO)
< [ (Satu=g0) = DF + POu(Sau—2) 4 g2~ o) dade+ [ [ 0u(r)drds
Q QJo
+ [ Siw=a)(Gil + Gi)IVuldedt + [ i g)la(t,, V)l (il + Vo) dodt
Fy Fy

+ / 15! (u — g2)Plalt, 7, V) ||V g | didt + 2 / (1G] +1Ga) (Ve + [Vaal) dadt +w(n).
F,

n
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As before, thanks to Young’s inequality, (3.2) and by properties of S,, we get:

/ [S! (u — g2)]?|Vul? dedt

n

~ S (ug)
gC/(|f|+|f|)|0h(Sn(u—gz)+gz—§2)|da:dt+// O (r) drds
Q QJo
+ c/ (G1IP + |GalP +|Vial? + |Vgal? + [b]P') dudt
F,

+C / |VulP dedt + w(n) .

{n<lu—ga|<n+1}

Letting n tend to infinity, using (3.8) and since xr, converges to X{n<|u—g.|<h+1} We obtain:

|Vu|P dedt < / |uo| dz

{h<|u—ga|<h+1} {luo|>h}
+ / (Ifl I+ G +1G1P +|Vgal? + Vel + IbI”') dadt,
{lu—g2|>h}

which yields, as h tends to infinity (recall that u — go is almost everywhere finite),

h—o0
{h<|u—Ga2|<h+1}

lim / |VulP dzdt = 0.

We are left with the proof that the renormalized equation (3.9) and the initial condition (3.10) hold
with g, as well. To this aim, we take S = S, in (3.9), we choose a function S such that S’ has
compact support and we take S'(S,(u — g2) + g2 — J2)p as test function in (3.9), with ¢ € C(Q).
By Lemma 2.29 we get:

T
/0 (St — 92) + 92 — 52)0> 5" (Su(u — g2) + g2 — Go)p) dt
+ /Q S, — g2) alt, 2, Vi) Vip §"(Su(t — o) + g2 — ) ddt
+ [ Suu= g2 alt,, Vo) V(S (Snlu = g2) + g2 = o))
Q
+ / S (u — g2) a(t,z, Vu)V(u — g2) S'(Sn(u — g2) + g2 — §o) p dxdt
Q (3.13)
- /Q((S;L(u — ) = 1) f + F) S'(Su(t = g2) + g2 — Go) o dadlt
+ /Q((SL(U —g2) = 1)G1 + G1)V S'(Sn(u — g2) + g2 — §o) dwdt

+ /Q((SL(U —g2) = )G1 + G1)V(S'(Su(u — g2) + g2 — §2))p ddt

+ / Sp(u—g2) G1V(u — g2)S" (Sn(u — g2) + g2 — §2) @ dzdt .
Q
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We will now pass to the limit in each term of this equation.

To handle the first one, we write ((Sn(u — 92) + 92 — §2)¢, 5" (Sn(u — g2) + g2 — G2)p) =
((S(Sn(u — g2) + g2 — §2))+, ), so that, by definition of the derivative in D'(Q), this term passes
to the limit thanks to the dominated convergence theorem:

T
/ (S (St — go) + g2 — §2))e, @)dt = / S(Sn(u— g2) + 92 — Go) o1 dadt —s — / S(u— gn)pe dadt.
0 Q Q

To handle the other terms, we take M such that Supp(S’) C [-M, M]. Since S,(z) —1 <z <
Sn(z) + 1 for all x € [-n — 1,n + 1], one has

Supp (Sy,(u — g2) S'(Sn(u — g2) + 92 — 2)) C{lu—g2| <n+1,|u—g2| < M +1};

thus, in each of the integrals on @ of (3.13), Vu can be replaced by V = V(Thr41(u — §2) + §2) €
(LP(Q))"; we can then pass to the limit with the help of the dominated convergence theorem. Since
u— go = Tary1(u — o) whenever S'(u — g2) # 0 or 8" (u — g2) # 0, we can then replace V by Vu in
each limit term.

Indeed, since S], — 1 and is bounded by 1, we have

/ Sl (u—g2)alt,z,Vu)Vp S’ (Sn(u — g2) + g2 — Go) dadt
Q
= / Sy (u— g2) a(t,z, V)V S'(Sn(u — g2) + g2 — Jo) dadt
Q

— / a(t,z, V)V S'(u — g) dedt = / a(t,z, Vu)Vp S'(u — g2) dzdt.
Q Q

For the third term of (3.13), we write V(S'(Sp(u—g2)+ 92— G2)) = S"(Sn(u—g2) + 92— §2) (S, (u—
92)V(u— g2) + V(g2 — g2)) = S"(Sn(u — g2) + g2 — 2) (S, (u — g2)(V = Vg2) + V(g2 — §2)) with V,
Vg2, Vi € (LP(Q))VN so that this term tends to

/ S"(u — go)a(t,z, V)(V — Via)pdzdt = / S" (u — go)a(t,z, Vu)V(u — g2 ) dzdt.
Q Q

The fourth term tends to 0, because S” — 0 and, in this term, a(t,z,Vu)V(u — g2) =
a(t,z,V)(V — Vga) € L'(Q). A straight application of the dominated convergence theorem show
that the fifth term tends to fQ fS'(u — §2)¢ and that the sixth term tends to fQ G1Vp S'(u — go).

To study the convergence of the seventh term, we write, as above, V(S (Sp(u — g2) + g2 — §2)) =
S"(Sp(u—g2) + 92 — §2)(S),(u — g2)(V — Vg2) + V(g2 — §2)) so that, again thanks to the dominated
convergence theorem, the limit of this term is

/ 5" (u — §2)G1(V — Vi) p dadt = / S"(u — §2)G1V (u — §2) @ dzdt.
Q Q

Since V(u — g2) =V — Vga € (LP(Q))V in the last term of (3.13), we see that this term tends to
0 as n — oco. Gathering all the preceding convergences, we see that u satisfies (3.9) with g» instead of
92-

To get back the initial condition with §o instead of g2, we take ¢ = (T — t)¢ with ¢ € C* (),
and we use, as before, (3.9) with S = S, and the test function S'(Sp(u — g2) + g2 — J2)p €
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LP(0,T; Wy P(2)) N L®(Q); this gives (3.13). Now, however, since (0) # 0, the integration by
parts in time in the first term of (3.13) gives

T
/0 ((S(Sn(u— g2) + g2 — G2))1 ) dt
_ / (S — 92)(0) + (g2 — 32)(0))(0) dz — / S(S( — g2) + g2 — G2) ot dedt.
Q Q

Since Sp(u—g2)(0) = Sn(uo) and (g2 —72)(0) = 0, we have S(Sn(u—g2)(0) + (92— 92)(0)) = S(Sn(uo))
so that the first term of (3.13) tends now to

- [ Stuo)p(0)ds ~ | S(u~ ga)osdadt.
Q Q
The other terms tend to the same limits as before and we get thus
- / S(ug)p(0) dz — / S(u — go)pr dzdt + / a(t,z,Vu)Vp S'(u — §2) dzdt
Q Q

Q
+ / 8" (u— ga)a(t, z, Vu)V(u — ga)p dzdt (3.14)
Q

= / f5"(u — o) dudt + / G1Vp S'(u — §o) dzdt + / 5" (u — §2)G1V(u — §o)p dxdt.
Q Q Q

On the other hand, since S(u — ga) € LP(0,T; W, *(Q)) satisfies (3.9) (with g, instead of gs), we have
(S(u — §2)): € LP (0, T; W17 (Q)) + L(Q), so that S(u — §») € C([0,T]; L*(Q)). We can use ¢ as a
test function in (3.9) written with g», this gives

_ / S(u — §2)(0)(0) dr — / S(u— §o)py dzdt + / alt, 7, Vu)Ve S (u — Ga) dudt
Q Q Q

+ [ 9" (u— go2)a(t,z, Vu)V(u — §o)p dzdt (3.15)
Q
= / fS'(u — §o)g dadt + / G1VpS'(u — §o) dadt +/ 5" (1 — §2)G1V (u — §o)p dadt.
Q Q Q

From (3.14) and (3.15) we deduce that [, S(u — 32)(0)¢ = [, S(uo)y for all ¥ € C°(Q), that is to
say S(u — g2)(0) = S(uo). n

Remark 3.11 It should be noted that the definition of renormalized solution is not restricted to the
case that p is a measure, since (3.7)(3.10) make sense whenever f € L(Q), g1 € L? (0,T; W 17 (Q)),
g2 € LP(0,T;V). Thus the definition of renormalized solution makes sense also if u € L'(Q) + W',
without being necessarily a measure. In this case (f,g1,g2) is a decomposition of u in L*(Q) + W'.
Note also that the conclusion of Lemma 2.29 is still true if u € L*(Q) + W', hence the result of
Proposition 3.10 would remain true in this case too.

3.3 Proof of existence and uniqueness theorems

We can now start the proof of the existence result for problem (1.1). Following a standard approach, we
obtain the existence of a solution as limit of nonsingular approximating problems. To this purpose,
let p, be an approximation of p given by Proposition 2.31, and let ug, € L®(Q2) converge to ug

34



strongly in L!(Q). Then by classical results (see for instance [18]) there exists a unique solution u,,
in LP(0,T; W, () N L*®(0,T; L*(R)) of the Cauchy-Dirichlet problem:

(un)t - div(a(t7ma Vun)) =fpn in ]07 T[ X,
up, =0 on ]0,T[ x 69, (3.16)
un(o) = Uon in Q.

Moreover, from Proposition 2.31, u,, satisfies:

t t t
/«w—ﬂ%ww+//ﬁ@av%wvw@=//ﬂmww
0 0JQ 0JQ

t (3.17)
+/@£@w, Vi € IP(0,T5V), Ve € 0,71,
0

with g5 € C2°(Q), fn € C2°(Q) and g7 € C°(Q)-
Let us begin by getting a priori estimates on u,,.

Proposition 3.12 Let u,, be the solution of (3.16). Then we have:

lunllLoe0,7;01(2)) < C,

/ |VTi(un) P dzdt < Ck ,
Q

lun — 92 l|lLo= (0,101 (2)) < C,

/ VT (un — 95)|P dedt < C (k+1), (3.18)
Q

lim | sup / |[Vuy|Pdzdt | =0, Vk>0.
h—o0 n
{h<|un—g3|<h+k}

Moreover there exists a measurable function u : Q — R such that Ty(u) and Ty(u — g2) belong to
L?(0,T; Wol’p(ﬂ)), u and u — go belong to L>°(0,T; L'(Q)) and, up to a subsequence, for any k >0 :

Up — U a.e. inQ, (3.19)
Ti(un — g3) = Tr(u — g2) weakly in L*(0,T; Wy P(Q)) and a.e. in Q. '
Finally, we have
hlim / |Vu|Pdxdt =0, VEk>O0. (3.20)
—00

{h<|u—g2|<h+k}

Proof. First of all, we choose T} (u,) as test function in (3.16) and we integrate in ]0,¢[ to get:

/Q O () (t) dor + /0 t /Q a(s, , Vi) VT (un) dzds = /0 t /Q i T (1) dardls + /Q On(tion) d ,

which yields, from (3.1) and the fact that ||uon||z1(0) and [|un][z1(g) are bounded:
¢
/ O (un)(t) dz +// |VT (un)|P dzds < Ck.
Q 0Je
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Since O(s) > 0 and |©1(s)| > |s| — 1, we get
t
/ [wn (t)| dz + // V(T (un)) P dzdt < C(k+1)  Vk>0, Vtel[0,T]. (3.21)
Q 0JQ

Taking the supremum on ]0, T we obtain the estimate of u,, in L*°(0,T; L!(2)). Similarly we can get
the estimates on u,, — g% : let us choose Tj(u, — g%) as test function in (3.17). Integrating by parts
(recall that g has compact support, so that u™(0) — g7 (0) = u™(0) = ug,) and using (3.1) this gives:

/G)k - 97) )dw—l—a// |V, [P X{|un—gz |<k}dxds

< / O (uuon) da + / Fu Ti(tn — g3) dadt + / / GVt X[ g5 1<y dds
Q Q 0Ja

t t
—//G?VQSX{|un—g;\gk}d$d8+//a(S,HT,Vun)V!J?X{\un—gg\gk}divds-
0JQ 0JQ

Using assumption (3.2) and by means of Young’s inequality we obtain:

/®k )(t)dx + = //|Vun| X{|ttn— gz|<k}d$dt<k‘/ | fr| dzdt

+C/ leiid dwdt—}—C/ |Vg;‘|pdwdt+0/ |b(t, z)|P d:cdt+k/ [uon| dz .
Q Q Q Q

Since G7 is bounded in L? (Q), g& is bounded in L?(0,T; W, ?(Q2)), f, is bounded in L'(Q) and uq,
is bounded in L(f2), we obtain

/@1 Yt)dz <C  Vte]o,T|[,
which implies the estimate of u,, — g% in L>(0,T; L*(Q2)), and also
/ |V, |? X{|unfg§'\§k}dmdt <C((k+1),
Q

which yields that Ty (u, — ¢%) is bounded in L?(0,T; W,y*(2)) for any k > 0 (recall that g itself is
bounded in L?(0,T; Wy ?(Q))). Now, let 1(s) = T(s — Th(s)) and take ¢(u, — g}) as test function
n (3.17). Reasoning as above, using that ¢'(s) = X{n<|s|<nt+k} and applying Young’s inequality we
obtain:

|Vu,|P dzdt < Ck / |uon| dz + Ck / | fr| dzdt

{h<|un—95 |<h+k} {|uon|>h} {|un—95|>h}
+C / (G2 + Vg [P + |b(w, 8)[") dodt .
{|un—g3 |>h}

Since u,, — g% is bounded in L>(0,T; L'(Q)) we have
lim (sup meas{|u, — g5 | > h}) =0, (3.22)
h—o0 n
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then by means of the equi-integrability of the sequences f,, |G?|? and |Vg2|? in L'(Q), and by the
same arguments for ug,, we deduce that:

lim | sup / |[Vuy|Pdedt | =0, (3.23)
h—o0 n
{h<|un—g% [<h+k}

for every k > 0.

We are going to prove now that, up to subsequences, u,, converges almost everywhere in ) towards
a measurable function u. To this aim, let 7% (s) be a C?(R), nondecreasing function such that 73 (s) = s
for |s| < & and Ti(s) = sgn(s)k for |s| > k. If we multiply pointwise equation (3.16) by 7} (u, — g%)
(equivalently if we choose T, (un — g5)¢ as test function in (3.17) with ¢ € C(Q)) we get that:

(T (un — 93)) — div(a(t, z, Vun) Ty (un — 953))
= 77cl(un —93)fn — diV(G?n(un -95)) + 77:,(“” - 93)GTV(un — g3) .

Observe that thanks to the fact that 7, has compact support and since |V |PX{|u, —gz |<k} is bounded
in L'(Q) we deduce from (3.2) that a(t, z, Vu,)V(un — ¢2) T (ur — g%) is bounded in L'(Q) and so is
T (tn — g3)GPV (up — g2) (since G is bounded in (L¥' (Q))V). Similarly, a(t, z, Vu,)T{ (un — g&), as
well as G2 T} (un, — %), is bounded in (L*' (Q))", so that we conclude from (3.24) that (Tx(un — g%)):
is bounded in L¥ (0, T; W2 (Q)) + L*(Q). Since we have just proven that 7% (un — g%) is bounded
in LP(0,T; Wy ?(Q)), a classical compactness result (see [26]) allows us to deduce that T (un — g%)
is compact in L!'(Q). Thus, for a subsequence, it also converges in measure. Let then ¢ > 0 and,
given € > 0, let us fix h such that, for every n, meas{|u, — g3| > 2} < & (thanks to (3.22)). Since
Tr(un — g%) converges in measure, for n and m sufficiently large we have:

meas{|Tn(un — 93) — Ta(um — g5")| > 0} <e.

On the other hand we have, by definition of 7y:
n m n h
meas{|(un — g8) — (um — g3")| > 7} < meas{|un — g3 > 7}
h
+meas{[um — g3°| > 5} + meas{|Tu(un — 92) = Tn(um — 92°)| > 0},
hence the choice of h implies, for n and m sufficiently large,

meas{|(un — g5) — (um — g5')| > 0} < 3z,

so that u, — g% is a Cauchy sequence in measure. Up to subsequences, we deduce that u, — g%
almost everywhere converges in ), and since g} strongly converges to g in L?(0,T’; WO1 (Q)), there
exists a measurable function u such that u, almost everywhere converges to v and T (u, — g§) weakly
converges to Ty, (u—gs) in LP(0, T Wol’p(Q)). The estimates (3.21) also imply that u € L*°(0,T; L*())
(indeed, use Fatou’s lemma on the first term of the left-hand side of (3.21)) and that Ty (u,) weakly
converges to Ty (u) in LP(0,T; Wy ().

Let us prove (3.20). Let ¢(s) = Tk (s — Tx(s)); one has

/ V4 (un — g2)|P dardt = / IV (tn — g7 |P dadt < / IV Ths i (un — g2)|P dvdt < C,
< (h<[un—g3 <h+i} 9
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hence 1 (u, — g%) converges (up to subsequences) weakly in LP(0, T} WO1 'P(Q)) and almost everywhere
in @ to ¢¥(u — g2). Thus

/ [Vip(u — g2)|P dedt < liminf/ [Vi(upn, — g3)|P dzdt
Q n—oo Q

Moreover
[ 190t —gprasiesc [ (Vup+ Ve deds
? {h<|un—g5 |<h+k}
Hence, using (3.23), one gets
lim / [V(u—g2)|P daxdt =0

h—o0
{h<|u—g2|<h+k}

as h tends to oo, and (3.20) follows. m

Remark 3.13 In the proof of Proposition 3.12 we used the fact that the approximating sequence i,
converging to u is bounded in L'(Q) only for the first two estimates on u,. The estimates concerning
un — g% in (3.18) as well as (3.19) and (3.20) only needed the “separate” approximations of f, g1, g2
in the respective functional spaces. In particular, they hold true if u belongs to L'(Q) + W', being
(f,91,92) a decomposition of p.

Next we prove the strong convergence of T, (u,, — g%) in L?(0,T; WO1 "P(Q)). To obtain this result,
we use the same technique as in [22] adapted to the sequence u,, — g%.

We need then to recall the following definition of a time-regularization of T} (u), which was first
introduced in [17], then used in several papers afterwards (see particularly [11], [6]). Let z, be a
sequence of functions such that:

2, €W P NL®(Q),  |lzvllze(a) <k,
2, = Tr(ug) a.e. in Q as v tends to infinity,

1
;||z,,||€vg,p(9) -0 as v tends to infinity.

Then, for fixed k > 0, and v > 0, we denote by Tj(u), the unique solution of the problem

{ % = v(Tk(u) — Tx(u),) in the sense of distributions,

Ty (u)y(0) = 2 in Q. (3.25)

Then T (u), belongs to LP(0, T; Wy'P(Q)) N L®(Q) and % belongs to LP(0,T; W, ?(Q)), and it
can be proved (see also [17]) that, up to a subsequence,

Tr(u), = Tr(u) strongly in LP(0,T; Wol’p(Q)) and a.e. in Q,

3.26
Tk ()|l <k Vv >0. (3.26)

Proposition 3.14 Let u,, be the solution of (3.16), where p, is given by Proposition 2.31, and let u
be given by Proposition 3.12. Then there exists a subsequence, not relabeled, such that:

Tk (un — g%) = Tr(u — g2) strongly in LP(0,T; Wy *(Q)) for any k > 0.
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Proof. We take a subsequence such that w, — wu almost everywhere in (), where u is given by
Proposition 3.12. Let us denote, throughout what follows, v, = u, — ¢%, and v = u — g». By
Proposition 3.12 we know that v € L*(0,7;L'(Q)) (in particular it is almost everywhere finite),
Tk (v) € LP(0,T; Wy P(Q)) for every k > 0 and

Ti(vy) = Tp(v)  weakly in LP(0,T; Wy 'P()) and a.e. in Q for any k > 0. (3.27)

We take a subsequence of Tj(v),, the approximation of Ty (v) defined in (3.25), such that Ty (v), —
T (v) almost everywhere in ) (this subsequence only depends on v and %, i.e. quantities that will not
vary in the following proof). For h > 2k, we then introduce the function

Wp = TZk:(Un - Th(“n) + Tk (Un) - Tk(v)u) .

The use of w,, as test function to prove the strong convergence of truncations was first introduced in
the stationary case in [20], then adapted to parabolic equations in [22]. The advantage in working
with w,, is that, since

Vw, = V(wn — Th(vn) + Te(vn) — Te(v)y)XE, »
with E, = {|v, — Th(vn) + Tk(vn) — Tk (v),| < 2k}, in particular we have Vw,, = 0 if |v,| > h + 4k.
Thus the estimate on Ty (v,) in LP(0,T; WO1 'P(Q)) appearing in Proposition 3.12 implies that w, is
bounded in L?(0, T; W, ?(R)), then by the almost everywhere convergence of v, to v we deduce:

wy, = Tor(v — Th(v) + Ti(v) — Tx(v),) weakly in LP(0,T; W,y () and a.e. in Q. (3.28)

In the following we set M = h + 4k, moreover we will denote by w(n,v, h) all quantities (possibly
different) such that
lim lim limsup |w(n,v,h)| =0, (3.29)

h—+00 ¥=+00 nsto0o

and this will be the order in which the parameters we use will tend to infinity, that is, first n, then v,
and finally h. Similarly we will write only w(n), or w(n,v), to mean that the limits are made only on
the specified parameters. Choosing w,, as test function in (3.17) we have:

T T
/ ((vn)t, wr) dt + / a(t,z, Vuy,)Vw, dedt = / fnwp dzdt + / (97, wy) dt. (3.30)
0 Q Q 0

Then from (3.28) we obtain:

n—oo

lim [ fown dodt = / FTok(0 = Ta(v) + T (v) — T (v)y) dadt |
Q Q
T

lim [ (gfwy)dt = / (91, Tor (v — Ta(v) + Te(v) — Te(v),)) dt

n—oo 0

Moreover, since Ty (v), converges to Ti(v) strongly in LP(0,T; W, P(Q)) and almost everywhere in Q
as v tends to infinity, we have

v—0o0

lim fTQk(’U - Th(’U) + T (’U) — Tk(v),,) dxdt = / fTQk(’U — Th(’U)) dxdt ,
Q Q
T T
lim [ (g1, T2k (v — Th(v) + Tk (v) — Tk(v)y)) dt = /0 (91, Tor(v — Th(v))) dt .

V—00 0

By means of Lebesgue’s theorem we can conclude

h—o0

lim/fTQk(v—Th(v))dmdt:O.
Q
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Moreover, since
T
/ (91, Tor(v — Th(v))) dt = / G1Vv X {h<|v|<ht2k} drdt,
0 Q

Holder’s inequality implies

T
/ (91, Tok (v — Th(v))) dt| < [|Grll(ro @)y~ / |V (u — g2)[P dadt
0

{h<|u—g2|<h+2k}

Then thanks to (3.20) we obtain:

T
lim (91, Tor (v — Tp(v)))dt = 0.

h—oco Jg

Thus, recalling the notation introduced in (3.29), we have proven that

T
/ frnwp, dedt + / (97, wn) dt = w(n,v, h). (3.31)
Q 0
Let us estimate the second term in (3.30). Since Vw, = 0 if |v,| > M = h + 4k we have:

/a(t,a:,Vun)andxdt:/ a(t, z, VunX{|v,|<m}) VWn .
Q Q

Next we split the integral in the sets {|v,| < k} and {|v,| > k} so that we have, recalling that
E, = {|vn — Th(vy) + Ti(vy) — T (v),| < 2k} and h > 2k:

/ a(t, z, Vup) Vw, dedt :/ a(t,z, VunX{jv,|<k})V(0n — Tr(v),) dzdt
Q Q

+ / a(t, 2, VunX{jv,|<m})V(Vn = Th(vn)) X B, dzdt

3.32
{lva|>k} ( )

- / a(t, z, VupX{jv,1<m}) VI (V) X B, dedt.
{lvn|>k}

Let us denote (A4), (B) and (C) the three terms of the right hand side in (3.32). Let us estimate (B).
Since v, — Tp(v,) = 0if |u,| < h, we have

a(t, z, VunX{jv.|<m})V (Vn — Th(vn)) X E, dzdt
|vn | >k}

< / la(t, 2, V)| |V (up — g8 dardt
{h<|va | <h-+4k}

and using (3.2) and Young’s inequality we get:
la(t, z, Vup)| |V (un — g5)| dzdt
{h<|va | <h+ak}
<C / |V, |P dadt + C / |Vg2|P dedt + C / |b(z, t)|P dadt .

{h<|vn|<h+4k} {h<|vn|<h+4k} {h<|vn|<h+4k}
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Thanks to the equi-integrability of |[VgZ7|?, using (3.18) and that meas{h < |v,| < h + k} converges
to zero as h tends to infinity uniformly with respect to n we obtain:

lim limsup / a(t, z, VunX{jv,|<m})V(0n = Th(vn))xE, dedt| =0,

h—o00 npnooo
|vn |>k}

that is (B) = w(n, h). For (C), let us remark that, since Vn (|, <m} is bounded in L?(Q), (3.2)
implies that |a(t,z, VunX{|v,|<m})| is bounded in LP (Q)). The almost everywhere convergence of v,
to v implies that |VT}(v)|X{|v, >k} Strongly converges to zero in LP(Q), so that we have

n—00
{lvn|>k}

lim / a(t, z, VunX{jv,|<m})VTk(v) XE, dzdt = 0.

Thus we get

a(t, =, VupX{jv,|<m}) VTr(v)y XE, dodt
{lvn|>k}

=w(n) + / a(t, z, VUnX{|u,,|§M})V(Tk(U)u — T (v)) xE, dzdt.
{lva|>k}

Using that |a(t, z, VunX{|v,|<m})| is bounded in L¥'(Q), applying Hélder’s inequality and thanks to
(3.26) we also have

a(t,z, VunX{|v,|<m})V(Tx(v), — T (v)) XE, dzdt = w(n,v),
{|vn|>k}

therefore we conclude:

(€)= / a(t, T, VupX{jv,|<m}) VI, (V) XE, dvdt = w(n,v).

{lvn|>k}

We have then obtained from (3.32), using that (B) and (C) converge to 0:
/ a(t, z, Vuy)Vw, dedt = / a(t,z, VunX{jv,|<k})V(0n — Tr(v),) dzdt + w(n, v, h). (3.33)
Q Q

Putting together (3.31), (3.33) and (3.30) we have:

T
/ ((vn)t7wn)dt+/ alt, 7, VirnXlon 1 <xy)V (0n — Ti(0),) dedt = w(n, v, h) .
0 Q

As far as the first term is concerned, that is
T
/ ((n)e; Tak(vn — Th(vn) + T(vn) — Tr(v)y)) dt
0
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we can apply Lemma 2.1 in [22] to the function v,, using the fact that ug, and z, strongly converge
to ug and to T}, (ug) respectively in L!(£). This lemma, based on the monotonicity properties of the
time-regularization Ty (v),, gives that

T
/ (Wn)es wn) dt > w(n, v, h),
0

hence we finally have:
/ a(t, z, VunX{jv,|<k})V(0n — T (v),) dzdt < w(n,v,h). (3.34)
Q

Without loss of generality, we can assume that k is such that x{,, <} almost everywhere converges
to X{jv|<k} (in fact this is true for almost every k, see also Lemma 3.2 in [6]). Then, the strong

convergence of ¢ in L?(0,T; WOI”’(Q)) and (3.2) imply that a(t,z, V(95 + Tr(v))X{|v,|<k}) Strongly
converges to a(t,z, V(g2 + Tr(v))X{|v/<k}) in L (Q)N. Since

[ 6062, (65 + @)1 8y (0 = Tie)) dd
Q
= [ at.2, V(68 + Telo)) 1 200) (Tilen) = Te(o) o,
Q
the weak convergence of T (v,) to Tj(v) in LP(0,T; Wy ?()) allows to conclude that:

lim [ a(t,z,V(95 + Tk (v))X{jva <k})V(Vn — T (v)) dzdt =0,

n—o0 Q

hence we obtain from (3.34), using also the strong convergence of T (v), to Tj(v) as v tends to infinity:

lim a(t,w,vunx Un )
ns00 Q[ {Jon <k} (3.35)

—a(t, =, V(g5 + Tr(0))X{jv 1<k})] (Vin — V(g5 + Ty (v))) dzdt = 0.

Using that x{|,, <k} almost everywhere converges to x{j,|<¢} and that g3 strongly converges to g» in

Lr0,T; WO1 "P(Q)), through the standard monotonicity argument which relies on (3.3) (see Lemma, 5
in [8]) we can deduce from (3.35) that

VunX{joal<ky = V(92 + T(0))X{jo1<ky = VUuX{el<ky 2 in Q,

and then that a(t, z, VunX{|v, |<k}) Vun strongly converges to a(t, , Vuxyjs|<k}) Ve in L' (Q). Finally,
together with (3.1) this proves that the sequence |Vun|PX{|u,—gz <k} is equi-integrable in @, which

as a consequence of Vitali’s theorem and since g§ strongly converges in LP(0,T; Wy ?(Q)) yields
Tr(un — g3) = Ti(u — go) strongly in LP(0,T; Wol’p(ﬂ)).

In fact, since we have proved it for almost every k the result holds true for any k& as well. [

The proof of the existence of a renormalized solution will easily follow from the previous estimates
and compactness results.
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Theorem 3.15 Assume that (3.1), (3.2), (8.3) hold true, and let u € Mo(Q), uo € L*(2). Then
there exists a renormalized solution u of problem (1.1) in the sense of Definition 3.5. Moreover u
belongs to L®(0,T; L' () and Ty(u) € LP(0,T; Wy P (Q)) for every k > 0.

Remark 3.16 We already remarked that the definition of renormalized solution does not make use
of the fact that yu is a measure (only its decomposition in L'(Q) + W' is needed), in particular all the
regularity asked on renormalized solutions concerns the difference u— go. However, due to the fact that
u is a measure (and can be approximated by sequences bounded in L'((Q)) we have found a solution
u with the additional regularity properties u € L*(0,T; L'()) and Ty(u) € LP(0,T; W, P(Q)) for
every k > 0. Last one in particular says that |Vu|PX{ju <k} € LY(Q), which is not at all contained
in the request |Vul? x{ju—g,|<k} € L'(Q) for renormalized solutions. Actually, this regularity result is
consistent with the first existence result found in [5].

Remark 3.17 Since the solution u given by Theorem 3.15 is obtained by approximation with .,
bounded in L*(Q), further regularity of u and Vu in the class of parabolic Sobolev or Marcinkiewicz
spaces is proven in [6].

Proof of Theorem 3.15. Let u, be the sequence of solutions of (3.16), where p, and ugy,
approximate p and wug respectively in the sense specified above, and let u € L>(0,T; L'(Q2)) be such
that the results of Proposition 3.12 and Proposition 3.14 hold true. Then we have that

Up — U a.e. in Q,

3.36
T (un — g3) = Te(u — g2) strongly in LP(0, T; Wy P(Q)) for any k > 0 and a.e. in Q. (3.36)

Let S € W%>°(R) be such that S’ has compact support, and take S’(u, — g%)¢ as test function in
(3.17), with ¢ € C°(Q). Then we have:

Q
+ / S" (un, — g alt,z, Vu,)V(un — g5) p dzdt = / S (un — g5)p dzdt (3.37)
Q Q

- / 0 S(un — g%) dzdt +/ a(t,z, Vu,)Vo S (u, — g%) dzdt
Q

-I-/ GV S' (uy, — g%) dxdt +/ S" (un, — 95)GT V(up, — 9%) @ dzdt .
Q Q

Since Supp(S') is compact there exists M > 0 such that a(t, z, Vun)S (un — %) = a(t,z, VT (un —
g +Vg3) S (un—g3), so that (3.36), the strong convergence of g in L?(0, T'; Wy '?()) and assumption
(3.2) imply that

at,, Vun)S (un — g3) = alt,z, Vu)S'(u — g)  strongly in (L7 (Q))V.
Similarly we have that

S" (up, — 9%)alt, z, Vur,)V (un — g5) = S"(u — g2)a(t, z, Vu)V(u — g2) strongly in L'(Q)

and
S" (un = g5)V(un — g3) = S"(u— g2)V(u — g2) strongly in (LP(Q))".

Therefore, by means of (3.36) and the dominated convergence theorem, we can pass to the limit in

43



(3.37) as n tends to infinity obtaining:

- / weS(u — go) dadt + / a(t,x, Vu)VpS' (u — g2) dodt
Q Q

+ / S"(u — g2)a(t, z, Vu)V(u — go) p dedt = / 1S (u — go)p dzdt (3.38)
Q Q
+ / G1Vp S'(u — g2) dzdt +/ S"(u — g2)G1 V(u — go) pdadt.
Q Q

Thus u satisfies (3.9), while (3.8) is (3.20) with £ = 1 and has been proved in Proposition 3.12. Finally,
passing to the limit (thanks to (3.36)) in (3.37) written in distributional sense we have

(S(un — g}))e is strongly convergent in L?' (0, T; W% (Q)) + L*(Q),
and since S(u, — g%) strongly converges in L?(0, T WO1 "P(Q)) we deduce (see Theorem 1.1 in [22]) that
S(up —9%) = S(u — g2) strongly in C([0,T]; L*(Q)).

In particular, being S (u, —g%)(0) = S(uo,) we get that S(u—g2)(0) = S(up) in L*(2). This concludes
the proof that u is a renormalized solution of (1.1). ]

Here we prove the uniqueness of the renormalized solution of (1.1)

Theorem 3.18 Assume (3.1), (3.2), (3.8). Let u € Mo(Q), then there exists a unique renormalized
solution of (1.1).

Remark 3.19 One can remark in the proof of this theorem that we do not use the fact that
u—go € L®(0,T;LY(Q)) but only the fact that the renormalized solution is almost everywhere
finite.

Proof of Theorem 3.18 Let uy, us be two renormalized solutions of (1.1), let (f,g1,92) be a
decomposition of u, so that u; and us both satisfy (3.9). Note that the same decomposition of x4 can
be used for both equations of u; and us thanks to Proposition 3.10. Let S,, be as defined in Definition
3.9, in particular we have that S, (u; — g2) belongs to LP(0,T; W, *()) as well as Sy (uz — g2). We

choose then Ty (Sy,(u1 — g2) — Sn(u2 — g2)) as test function in both the equations solved by u; and wus.
In the following we write v; = u; — g2 and vy = us — go; subtracting the equations then we have:

T
/0 ((Sn(01) = S (2))0, Ti(Sn(v1) = Sn(v2)) dt
+/ [S! (v1)a(t,x, Vur) — S, (v2)a(t, z, Vuz)] VI (Sn(v1) — Sn(v2)) dzdt
Q
= [ 1(Su01) = S102) Tu(S(wn) = Sulvn) dade
Q (3.39)
+ / G1 (S;L(Ul) - S;L(Uz)) VTk(Sn(’Ul) - Sn(’l)Q)) dxdt
Q

+ / [SITZ('Ul)le'Ul — SITZ(’UQ)G1V’U2] Tk(Sn(’Ul) — Sn('UQ)) dxdt
Q

+/ [S! (va)a(t, x, Vus) Vv — SI (v1)a(t, z, Vu1)Vur] T (Sp(v1) — Sp(v2)) dzdt .
Q
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Let us denote by (A)—(F) the six integrals above, we study the behaviour of each as n tends to infinity.
To this purpose, let us recall that by definition of S, we have that S],(s) converges to 1 for every s in
R. This is enough to conclude by means of Lebesgue’s theorem that

lim (C) =0.

n—oo

Let us study the limit of (E) now. We have (E) = (E;) + (E»), where
(By) = / S"(01)G1 Vs T(Sn(01) = S (v2)) dacdt
Q

Since (E») has the same form of (E;) with the roles of v; and vy interchanged, it is enough to deal
with (E1). Recalling that S, (s) = —sgn(s)X{n<|s|<n+1}, We have:

(By)| < K / (G| [Von | dadt,
{n<|v1|<n+1}

so that, using Holder’s inequality we get:

|(E1)| <k ||G1||LP'(Q) / |V’LL1 — Vg2|” dxdt

{n<|u1—g2/<n+1}

Thus by (3.8) written for u; we get that (E;) converges to zero as n tends to infinity. The same is
true for (E2), hence we deduce:
lim (E) =0.

n— o0

The term (F) can be dealt with in the same way. First we write (F) = (F1) + (F3), with
(F) = / 8! (v2)a(t, z, Vuz) Voo Ty(Sn (1) — Su(v2)) devdt
Q

Clearly, by symmetry between (F}) and (F») it is enough to prove that (F}) tends to zero. To this
goal, using again the properties of S}/ and (3.2) we have:

(E <ok [ ol (ast)] + [Vual ™) o,
{n<lvz|<n+1}

which yields, by Young’s inequality:

(F)| < C / (IVg2|? + |b(=, t)|1") dzdt + / |Vus|P dzdt

(n<|uz—g2|<n+1} {n<lus—g2|<n+1}

Using that us — g2 is almost everywhere finite and thanks to (3.8) written for us we conclude that
(F1) converges to zero, and (Fy) as well, so that

lim (F)=0.

n—oo
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Asregards (D) note that, since S}, (v1) —Sh, (v2) = 0in {Jv1| < n, |va| < n}U{|ve| > n+1,|v2] > n+1}
we can split the integral as follows:

G1 (Sp(v1) = Sp(v2)) V(S (v1) = Sn(v2))X{lur|<n} X{lual>n} dadt
{1Sn (v1)—=Sn (v2)| <k}

+ / G (S,(01) — S1y(62)) V(S (v1) = Su(02))X el |<n i1} dadt .40
{|Sn(v1)—Sn(v2)|<k}
+ / Gl (Sln(vl) - S;:,('U2)) V(Sn(vl) - Sﬂ(’U2))X{‘v2‘§n+1} X{|v1\>n+1} dxdt .

{|Sn(v1)—Sn(v2)|<k}

We call (D1)—(D3) the three integrals of (3.40). Using the properties of S,, and S}, (recall that
Sn(t) =t if |¢t| < n, that S, is nondecreasing and Supp(S},) C [-n — 1,n + 1]) we have:

(D) < / G|V (w1 — go)| dardt + / G| |V (w5 — go)| dadt

{n—k<|u1—g2/<n} {n<|uz—g2|<n+1}

Applying Holder’s inequality and using property (3.8) for renormalized solutions we easily get that
(Dy) converges to zero as n tends to infinity. Similarly, since |S,(t)| > n — k implies |t| > n — k we
have:

< [ GINw-gldedts [ (Gl Vua - )| dodt.

{n<Jui—g2|<n+1} {n—k<|ua—g2|<n+1}

Again, Holder ’s inequality together with (3.8) allow to deduce that (D3) converges to zero as well.
The term (D3) is dealt with in the same way (using that S},(¢t) = 0 if |t| > n + 1), so that we finally
get that

Jim () =0,
We deal with (B) splitting it as below:
(B) = / [a(t,z, Vu1) — a(t,z, Vus)] (Vu; — Vuy) dzdt
i)
+ / [S! (v1)a(t,x, Vur) — S}, (va)a(t, z, Vuz)] V(S, (v1) — Sp(v2)) dzdt
TR
+ / [S] (v1)a(t, z, Vur) — S}, (va)a(t, z, Vuz)] V(Sp(v1) — Sp(ve)) dzdt .
e

Let us set (B1)—(Bs) the three integrals above. Since {|S,(v1) — Sp(v2)| < k, |v1| > n} C {|n] >
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n,|va| > n — k}, we have, using that S, (¢t) =0 if |t| >n + 1:

|(Bs)| < / lalt, 2, V)| |V (ur — go)| derdt

{n<Jui—g2|<n+1}

+ / la(t, z, Vu1)| |V (u2 = 92)[X{n—k<|us—go|<nt1} drdt

{n<|ui—g2|<n+1} (341)

+ / |a(t7 T, VU2)| |V(U1 - g2)|X{n—k§|u2—g2|§n+1} dxdt

{n<Jui—g2|<n+1}

+ / la(t, 2, Vus)| [V (us — g2)| ddt
{n—k<|ua—gz|<n+1}
Using assumption (3.2), Young’s inequality and the condition (3.8) for renormalized solutions, we can
conclude as we did before that all the four terms in the right hand side of (3.41) converge to zero.
Thus we get that (Bs) converges to zero. Changing the roles of u; and wus, the same arguments prove
that (Bs) also converges to zero as n tends to infinity. Thus we conclude, using Fatou’s lemma in
(Bl)l
lin_1>inf(B) > / [a(t, z,Vu1) — a(t,z, Vus)]|(Vur — Vug) dzdt.

{lu1—u2|<k}

In the term (A) of (3.39) we can integrate using that S, (v1) and S,(vs) belong to C([0,T]; L*(2))
and S, (v1)(0) = S, (v2)(0) = S, (ug). We then obtain:

mzém@mrﬂmmmw,

where O (s fo Ty (t) dt, and since Oy is nonnegative we conclude that (4) > 0. Putting together
the results obtalned on (A) (F') we obtain from (3.39), as n tends to infinity:

[a(t,z, Vuy) — a(t, z, Vuz)](Vuy — Vue) dzdt <0,

{lu1—u2 <k}

and then, letting k& tend to infinity (recall that u; and wusy are finite a.e. on Q):
/ [a(t,z, Vu1) — a(t,z, Vuz)](Vus — Vuz) dzdt <0.
Q

The strict monotonicity assumption (3.3) then implies that Vu; = Vus almost everywhere in Q.
Then, let &, = T1(Tpi1(v1) — Tny1(ve)). We have &, € LP(0,T; Wy*(R)) and, since Vo, = Vuy
almost everywhere,

0 on {|jvi| <n+1,|ve] <n+1}
Vo1 X{jo, - Tusa(ea)i<1y o0 {|v1] <n+1,|va| > n+1}

V&, =
&n —Vu, X{‘Tn+1(v1),v2‘51} on {|U1| >n+1, |’I}2| <n+ 1}

so that
/ V&P dadt < / |V |P dedt + / |V |P dadt .
Q

{n<|v1|<n+1} {n<lva|<n+1}
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Thanks to (3.8), we deduce that &, tends to 0 in L?(0,T; WP (€)) and, since &, tends to T} (v; — vy)
almost everywhere, T1(u; — u2) = T1(v1 — v2) = 0, hence u; = us. n

Remark 3.20 In fact, the proof of the uniqueness of renormalized solutions does not need the strict
monotonicity assumption (3.3) but only that

[a(t, z,€) — alt,z,m](€—n) >0 V(& n) €RN.

This can be seen performing the same proof as in Theorem 3.18 above in the interval |0, [, with
7 < T. The restriction of the integration to the interval |0, 7[ can be obtained from (3.9) multiplying

the test function by &.(t), with £.(t) =1 — Tf(tsi Passing to the limit as € tends to zero allows to
restrict the integration to ]0,[ since & converges to xjo,r and S(u — g2) € C([0,T]; L'(Q)) for any
renormalized solution u. Then, the same proof as in Theorem 3.18 applies and, using that the term
(A) is not only nonnegative as we already remarked but indeed

lim inf(4) > /Q On(u1 — ua)(7) dz,

n—o0

we can obtain

/ Okl —w)(r)dz <0 Vr €]0,T[,
Q

hence it follows that u; = us.

3.4 Data in LY(Q) + W'.

It is possible to extend the result on existence and uniqueness of renormalized solutions to data
which belong to L'(Q) + W', without being necessarily measures. In fact, let p € LY (Q) + W',
then a renormalized solution of (1.1) is defined exactly as in Definition 3.5, where (f,g1,92), is a
decomposition of u in L'(Q) + W', moreover this definition does not depend on the decomposition of
i (see Remark 3.11). Then all the results proved in the previous section apply without any change
except for the first two estimates of Proposition 3.12 for which we used the fact that y was a bounded
measure (see Remark 3.13). Thus, we obtain the following result.

Theorem 3.21 Let p € LY(Q) + W', and let ug € L*(). Assume that hypotheses (3.1), (3.2),
(3.3) hold true. Then there exists a unique renormalized solution of problem (1.1) in the sense of
Definition 3.5 (where p does not need to belong to My(Q)).
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A Proof of the density theorem

A.1 The case of compactly supported functions

Lemma A.1 Let u € W have compact support in ) and p, be a sequence of regularizing kernels.
Then, for n large enough (depending on the support of u), u x p, is well defined, is in C°(Q) and
uxpp, = uin W asn — oo.

Proof. The fact that u * p, is well defined and is in C°(Q) for n large enough is a classical
convolution result. It is still classical, since w € LP(Q) N LP(0,T;L*(Q2)), that u x p, — u in
LP(Q) N LP(0,T; L)) (in fact, the convergence in LP(0,T; L?(2)) is not so classical; if p > 2,
the usual techniques of convolution allow to prove this convergence, reasoning firstly in the space
variable, and then in the time variable; but if p < 2, we need, to prove this convergence, some basic
tools of the vector-valued integral; we refer the interested reader to [14]). Moreover, in the sense of
distributions, V(uxp,) = Vuxp,, so that, since Vu € (L?(Q))", one has V(u*p,) = Vuin (LP(Q))V.
Thus, u * p, — u in LP(0,T;V) and it remains to prove the convergence of the time derivative.

To see this, we take v; € L (0,T; W17 (Q)) and vy € LP (0,T; L2(Q)) such that u; = v, + vy.
We have u = 6u for some § € C(Q) so that u; = bu + Ouy = 6Ovy + (Bvs + 6u) with
Bvy € LV (0,T;W=L7(Q)) and v, + 6,u € LP' (0,T;L2(Q)) (because, u being in W, it is also in
C([0,T); L?(?))); moreover, fv; and Ovs + G;u have compact supports in . Denote w; = fv; and
wo = Ovy + G;u.

We have then, in the sense of distributions, (u*py,)s = ug*p, = w1 * py, +wax py, for n large enough.
Since wy, € LP (0, T; L2(R)), we have ws x p, — wy in L¥' (0,T; L2()). For the convergence of wy * py,,
write v; = div(;) for some V; € (LP (Q))"; we have w; = div(6V;) — Vi V8 with 8V; € (L*' (Q))N
and V, V4 € L¥ (Q) having compact supports in @), so that w;y * p, = div((0V1) * p,,) — (V1 V) * pp;
since (8V1) * pn — V4 in (LP' (Q))Y and (V1 V6) * p, — ViV6 in L¥ (Q), this gives the convergence
of wy * pp, to wy in L¥' (0, T; W12 (Q)).

We have thus proven that (u * pp); — w1 + wa = u in L? (0, T; W=1¢'(Q)) + LP (0, T; L*(Q)) =
L¥(0,T;V"), and this concludes the proof. n

This technique of approximation is however limited to compactly supported elements of W; for
general elements of W, we must find another way to prove the density of regular functions.

A.2 The general case

We prove the density of C°([0,T] x ) in W, that is Theorem 2.11. To prove this density result,
we will use two main tools: some results coming from the vector-valued integral and Sobolev space
theory and the following theorem (proved at the end of this appendix), which states a density result
in spaces of functions on 2. Let us recall that V = W, ?(Q) N L*(Q) with p € ]1, 00[.

Theorem A.2 If Q is a bounded open subset of RY, then C°(Q) is dense in V.

Proof. Letu € V = W, ?(Q)NL*(Q). Let S € C*®(R) such that S(s) = s when |s| < 1and S'(s)
when |s| > 2. We define, for n > 1, S, (s) = nS(Z2); notice that S,(s) = s and S},(s) = S'(2)
when n — oo; moreover, |Sy(s)| < [|S} || ®)ls| and [|S],[[ze®r) < ISl (r)-

Sp(u) = u on Q and is dominated by [|S'||p~(rylu| € LP(Q) N L?*(Q); the convergence thus
also happens in L?(Q) N L?(Q). Moreover, V(S,(u)) = S’ (v)Vu — Vu on Q and is dominated by
18] Lo (r) [ Vu| € LP(R2), which proves that V(S (u)) = Vu in (LP(Q))N as n — oo. Thus, Sp(u) =
inV asn —+ oo.

=0
-1
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Let (9m)m>1 € C2°(Q) such that ¢, — u in Wy () (by definition of W, (), such a sequence
exists); we can suppose, up to a subsequence, that ¢,, — u and V¢,, — Vu a.e. on Q. We
have, for all n > 1, Sp(pm) € C(Q) and Sp(om) — Snp(u) ae. on Q when m — oo; since
(Sn(®m))m>1 is bounded in L>®(Q) (by [|Sn|lL-®r)) and © is of finite measure, this implies that
Sn(om) = Sn(u) in LI(Q) for all ¢ < oo, and in particular in LP(Q) and in L%(Q2). We also have
V(Sn(pm)) = Sp.(m)Vom = S, (u)Vu = V(Sy (u)) a.e. on @ and [V(Sn(pm))| < |5l ®)|Veml;
this last inequality tells us that (V(S,(¢m)))m>1 is equi-integrable in (LP(Q2))V (because the sequence
Vom is equi-integrable in this space, since it converges) and thus that V(S,(¢m)) = V(Sn(u)) in
(LP(Q))N as m — oo.

We have proven that S,(¢m) — Sp(u) in V as m — oo. Take then m, > 1 such that
[|Sn(pm,) — Sn(u)|lv < 1/n; since S,(u) — w in V, we deduce that S,(¢m,) = uw in V and this
concludes the proof of this theorem. [

The results coming from the vector-valued integral and Sobolev space theory we will use here
are, for the most part, very intuitive when one recalls the same results for scalar-valued integral and
Sobolev spaces. We will thus only give the ideas of the reasoning that lead to the use of Theorem A.2,
and refer the interested reader to [14].

One of these results, however, is a little bit tricky; it comes from the density of simple functions
in L? (0,T; B), but it is not easy to explain without going further into the theory (and, especially,
without explaining the concept of p-mesurability, which we do not want here). We will thus state it,
without proof, in the following lemma.

Lemma A.3 Let B be a Banach space and D be a dense subset in B. If 1 < q < 0o, then the set

S(D) = {Zdi%, n>1,d; €D, g GCOO([O;T];R)}

i=1
is dense in L1(0,T; B).

Remark A.4 In fact, the result of this lemma is still true if we take the functions ; in C°(]0,T[; R)

(see [14]).

Let us now give the ideas that lead from Lemma A.3 and Theorem A.2 to Theorem 2.11.

Proof of Theorem 2.11. Let u € W, that is to say u € L?(0,T;V) such that u, € L¥ (0,T;V").
We want to find a sequence v, € C°([0,T] x Q) such that v, — u in LP(0,T;V) and (vp)r = u¢ in
L¥(0,T; V).

Step 1: define @ : |—T,2T[ — V almost everywhere by:

u(—t) ifte ]-T,0[,
at) = 4 u() if t € 10,7,
w(2T —t)if t € |T,2T].

One has u € LP(—T,2T;V). Moreover, since we have made two even reflections, it is easy (as for the
classical Sobolev spaces) to see that u; € L? (=T,2T; V") with

—uy(—t)  if t e ]-T,0][,
() = w(t) if t € ]0, T,
—ug(2T — ) if ¢ € |T, 2T,
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Define w € LP(R; V) as the extension of u by 0 outside |7, 27| and take (pn)n>1 a smoothing kernel
on R such that Supp(p,) C |-T,T|[. Let u, = w* p, € LP(R;V) (the convolution product is defined
exactly as for scalar-valued integral, and the same results as in the scalar-valued case hold in the
vector-valued case). One has u, € C®(R;V) C C*(R; V') (since V — V') and w,, — uwin LP(R;V);
thus, u, = (@n) 0,7y € C=([0,T];V) C C([0,T]; V') and u, — w in LP(0,T;V). Moreover, since
U, € LP(=T,2T;V'), one can verify that, by defining v € L (R;V) as the extension of & by 0
outside |7, 2T, we have (Uy); = v * p, in C*°(R;V'). Thus, (un); = (v * pr)jjo, 71 = Vjjo,7] = Ut in
L (0,T;V").

We thus have found u, € C*([0,T];V) such that u, — w in LP(0,T;V) and (u,); — u in
L¥(0,T; V).

Step 2: to approximate u in W, we thus just need to approximate in W a given function
v € C*([0,T];V). Let v be such a function, and let D = C(). According to Theorem A.2,
D is a dense subset of V. Since v' € C*([0,T];V) C L? (0,T;V), using Lemma A.3, there exists a
sequence w, € S(D) which converges to v’ in L? (0,T;V), and thus also in L? (0,T;V"). Moreover,
in V, one has v(t) = v(0) +f0t v'(s) ds. Define W, (t) = fot wp () ds; since wy, — v' in L (0,T;V), one
has W,, — [;v'(s)ds = v —v(0) in L*(0,T;V), and thus in LP(0,T; V). Taking a sequence d,, € D
which converges to v(0) € V in V, the functions v, = d, + W), converge to v in LP(0,T;V) and the
derivatives of these functions, v/, = W/, = wy,, converge to v’ in L? (0,T;V").

By noticing that v,(t) = d,, + f(f wy(s)ds € S(D), we have proven that v is approximable in W
by a sequence of functions in S(D) N W. Since S(D) C C([0,T] x ), this concludes the proof.

|
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