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Abstract We prove here a uniqueness result for Solutions Obtained as the Limit of Approximations of
quasilinear elliptic equations with different kinds of boundary conditions and measures as data.

1 Introduction

1.1 Notations

In this paper, Ω is a bounded domain in RN (N ≥ 2), with a Lipschitz continuous boundary. The unit
normal to ∂Ω outward to Ω is denoted by n. We denote by x·y the usual Euclidean product of two vectors
(x, y) ∈ RN × RN ; the associated Euclidean norm is written |.|. The Lebesgue measure of a measurable
subset E in RN is denoted by |E|; σ is the Lebesgue measure on ∂Ω (i.e. the (N−1)-dimensional Hausdorff
measure). Γd and Γf are measurable subsets of ∂Ω such that ∂Ω = Γd ∪ Γf and σ(Γd ∩ Γf ) = 0.
For q ∈ [1,+∞], we denote by q′ the conjugate exponent of q (i.e. q′ = q/(q − 1)). W 1,q(Ω) is the usual
Sobolev space, endowed with the norm ||u||W 1,q(Ω) = ||u||Lq(Ω) + || |∇u| ||Lq(Ω). W

1,q
Γd

(Ω) is the space of

functions of W 1,q(Ω) which have a null trace on Γd.
When q = 2, we write H1

Γd
(Ω) instead of W 1,q

Γd
(Ω). The space of the traces of functions in H1

Γd
(Ω) is

denoted by H
1/2
Γd

(Ω) and it is endowed with the norm

||u||
H

1/2
Γd

(Ω)
= inf{||f ||H1(Ω) | f ∈ H1

Γd
(Ω) , f|∂Ω = u}.

The hypotheses on the function a that will define our quasilinear elliptic equation are the following:

a : Ω× R× RN → RN is a Caratheodory function, (1.1)

∃γ > 0 , Θ ∈ L1(Ω) such that a(x, s, ξ) · ξ ≥ γ|ξ|2 −Θ(x)
for a.e. x ∈ Ω, for all (s, ξ) ∈ R× RN , (1.2)

∃β > 0 and h ∈ L2(Ω) such that |a(x, s, ξ)| ≤ h(x) + β|s|+ β|ξ|
for a.e. x ∈ Ω, for all (s, ξ) ∈ R× RN , (1.3)

∃α > 0 such that (a(x, s, ξ)− a(x, s, η)) · (ξ − η) ≥ α|ξ − η|2
for a.e. x ∈ Ω, for all (s, ξ, η) ∈ R× RN × RN , (1.4)

∃Λ > 0 such that |a(x, s, ξ)− a(x, s, η)| ≤ Λ|ξ − η|
for a.e. x ∈ Ω, for all (s, ξ, η) ∈ R× RN × RN , (1.5)

∃δ > 0 such that
|a(x, s, ξ)− a(x, t, ξ)| ≤ δ|s− t| for a.e. x ∈ Ω,

for all (s, t, ξ) ∈ R× R× RN .
(1.6)

Remark 1.1 Hypotheses (1.1)—(1.3) are classical for the Leray-Lions operators in divergence form act-
ing on H1(Ω); Hypothesis (1.4) is a stronger form of the classical monotonicity hypothesis

(a(x, s, ξ)− a(x, s, η)) · (ξ − η) > 0 for a.e. x ∈ Ω, for all (s, ξ, η) ∈ R× RN × RN with ξ 6= η. (1.7)
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of the Leray-Lions operators, but is nevertheless classical when we want to obtain a uniqueness result,
even in the variational case (see [7]). Hypothesis (1.5) is not really demanding, since, for example,
a(x, s, ξ) = ã(s)ξ (with ã ∈ L∞(Ω)) satisfies this hypothesis, but Hypothesis (1.6) is really strong and we
would rather like to impose a weaker hypothesis, of the kind

∃δ > 0 such that |a(x, s, ξ)− a(x, t, ξ)| ≤ δ|s− t|(1 + |s|+ |t|+ |ξ|)
for a.e. x ∈ Ω, for all (s, t, ξ) ∈ R× R× RN

to handle the case a(x, s, ξ) = ã(s)ξ with ã Lipschitz continuous.

Remark 1.2 There are however many functions which satisfy Hypotheses (1.1)—(1.6). For example,
for M ≥ 0, a(x, s, ξ) = (1 + inf(M, ln(1 + |s| + |ξ|)))ξ + φ(x, s), with φ : Ω × R → RN a Caratheodory
function, Lipschitz continuous with respect to s ∈ R (with a Lipschitz constant not depending on x ∈ Ω)
and such that sups∈R |φ(., s)| ∈ L2(Ω).

Consider the problem {
−div(a(x, u,∇u)) = f in Ω,
u = 0 on ∂Ω.

(1.8)

It is well known (see [6]) that, when f is a bounded measure on Ω and a satisfies (1.1)—(1.3) and (1.7),
we can find a solution to this problem (even when we consider an operator acting on W 1,p

0 (Ω), 1 < p <∞
— see also [2] when p < 1 − 2

N —, not only on H1
0 (Ω)). The main idea of [6] is to approximate f by

regular functions, find estimates on the corresponding solutions and pass to the limit.
Moreover, when a does not depend on s and f is a function in L1(Ω), we can find (see [2]) a formulation
(so-called “entropy formulation”) for (1.8) which ensures the uniqueness of the solution (the existence is
still obtained by approximation).

In [12], the author defines another sense of solution, the “solution by transposition”, which gives an
existence and uniqueness result when a still does not depend on s but f is a bounded measure. This
definition requires the introduction of a particular matrix-valued function M(., .) : RN ×RN −→MN (R)
satisfying a few properties (general algebraic properties, completely independent of a); the formulation
by transposition uses then the matrix M(∇u − ∇v, a(.,∇u) − a(.,∇v)), where u is the solution by
transposition and v is any function in H1

0 (Ω). There can be many different possible choices of the matrix
M(., .) (the matrix chosen by the author depends on a parameter λ, which is any real number in ]0, α[,
where α is given by (1.4)). The solution by transposition seems thus to depend on the particular choice of
M ; however, an additional work allows to see that, with the methods of [12], we can prove the uniqueness
of the solution obtained as the limit of approximations (when a is independent of s).

When f is a bounded measure, a satisfies (1.1)—(1.5) but does not depend on s and is C1-continuous
with respect to ξ, the uniqueness of the solution obtained as the limit of approximations of Problem (1.8)
is proven in [3].
We will prove here that the ideas of [3] can lead to a uniqueness result when f is a bounded measure, a
depends on s (but satifies (1.6)) and is only Lipschitz continuous with respect to ξ. The main difficulty
brought by the dependence of a on s is in the resolution of the “dual equation” (2.3) in which the operator
is not coercive (because of the convection term). We will also consider more general boundary conditions;
they bring a few more difficulties (in particular the regularity result we need on the solution of (2.3))
which are solved by the results of [10].

The boundary conditions we consider are of the mixed or Fourier kind (that is to say a condition on u
on Γd and a condition on a(x, u,∇u) · n + λu on Γf ).
To get the coercivity that will ensure the existence of a solution, we add the assumption

σ(Γd) > 0 and λ ∈ L∞(∂Ω) , λ ≥ 0 σ-a.e. on ∂Ω
or

Γd = ∅ and λ ∈ L∞(∂Ω) , λ ≥ 0 σ-a.e. on ∂Ω, σ({x ∈ ∂Ω | λ(x) > 0}) 6= 0.
(1.9)
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Remark 1.3 Under Hypothesis (1.9), a classical reasoning shows that, for all q ∈ [1,+∞[, q ∈ [1, q] and
ρ > 0, there exists Kq,q(ρ,Ω,Γd, λ) > 0 such that, for all v ∈W 1,q

Γd
(Ω), we have

ρ

∫
Ω

|∇v|q +

(∫
Γf

λ|v|q dσ

)q/q
≥ Kq,q(ρ,Ω,Γd, λ)||v||qW 1,q(Ω). (1.10)

The proof of uniqueness we present here uses an existence and regularity result of a solution to a dual
problem. To obtain the required regularity result, we need some hypotheses on the way Γd and Γf are
distributed along ∂Ω.
Let us introduce two kinds of mapping of ∂Ω:

O is an open subset of RN ,
h : O → B := {x ∈ RN | |x| < 1} is a Lipschitz continuous

homeomorphism with a Lipschitz continuous inverse mapping,
h(O ∩ Ω) = B+ := {x ∈ B | xN > 0},

h(O ∩ ∂Ω) = BN−1 := {x ∈ ∂B+ | xN = 0}

(1.11)

(since Ω has a Lipschitz continuous boundary, there exists a finite number of (Oi, hi)i∈[1,m], such that,
for all i ∈ [1,m], (Oi, hi) satisfies (1.11) and ∂Ω ⊂ ∪mi=1Oi) and

O is an open subset of RN ,
h : O → B is a Lipschitz continuous homeomorphism

with a Lipschitz continuous inverse mapping,
h(O ∩ Ω) = B++ := {x ∈ B | xN > 0 , xN−1 > 0},

h(O ∩ Γf ) = Γ1 := {x ∈ ∂B++ | xN−1 = 0},
h(O ∩ Γd) = Γ2 := {x ∈ ∂B++ | xN = 0}.

(1.12)

The additional assumption we make on Γd and Γf is the following:

There exists a finite number of (Oi, hi)i∈[1,m] such that
∂Ω ⊂ ∪mi=1Oi and, for all i ∈ [1,m], (Oi, hi) is of one of the following types:∣∣∣∣∣∣

(D) Oi ∩ ∂Ω = Oi ∩ Γd and (Oi, hi) satisfies (1.11)
(F ) Oi ∩ ∂Ω = Oi ∩ Γf and (Oi, hi) satisfies (1.11)
(DF ) (Oi, hi) satisfies (1.12).

(1.13)

1.2 The SOLA and the main result

We recall here some facts about the solutions obtained as the limit of approximations for quasilinear
elliptic equations with measures as data.

We denote by M(Ω) the space of bounded measures on Ω and M(∂Ω) the space of bounded measures
on ∂Ω.
If µ ∈M(Ω) and µ∂ ∈M(∂Ω), we consider the problem −div(a(x, u,∇u)) = µ in Ω,

u = 0 on Γd,
a(x, u,∇u) · n + λu = µ∂ on Γf .

(1.14)
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The technique of approximation introduced in [6] is the following: let (µn)n≥1 ∈ L1(Ω) ∩ (H1
Γd

(Ω))′(1)

such that µn → µ for the weak-∗ topology of (C(Ω))′, (µ∂n)n≥1 ∈ L1(∂Ω)∩(H
1/2
Γd

(∂Ω))′ such that µ∂n → µ∂

for the weak-∗ topology of M(∂Ω) and take un a solution to
un ∈ H1

Γd
(Ω) ,∫

Ω

a(x, un,∇un) · ∇ϕ+

∫
Γf

λunϕdσ = 〈µn, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω)

+〈µ∂n, ϕ〉(H1/2
Γd

(∂Ω))′,H
1/2
Γd

(∂Ω)
, ∀ϕ ∈ H1

Γd
(Ω).

(1.15)

We can prove that the sequence (un)n≥1 is bounded in W 1,q
Γd

(Ω) for all q < N/(N − 1); thus, up to a

subsequence, un → u strongly in Lq(Ω) and weakly in W 1,q
Γd

(Ω); it is then possible to prove that, up to a
subsequence, ∇un → ∇u a.e. on Ω, which allows us to pass to the limit in the equation of (1.15) to see
that u satisfies

u ∈
⋂

q<N/(N−1)

W 1,q
Γd

(Ω) ,∫
Ω

a(x, u,∇u) · ∇ϕ+

∫
Γf

λuϕ =

∫
Ω

ϕdµ+

∫
∂Ω

ϕdµ∂ , ∀ϕ ∈
⋃
r>N

W 1,r
Γd

(Ω).
(1.16)

A Solution Obtained as the Limit of Approximations (a SOLA) for (1.14) is any u obtained by the method
detailed above.

Remark 1.4 In [6], where the SOLA (without this name, used for the first time in [8]) have been intro-
duced, the authors study the pure homogeneous Dirichlet case (with Θ = 0). But the adaptation of their
methods to the non-homogeneous mixed or Fourier case is quite straightforward (see [14] for the Fourier
case with Θ ≡ 0), even with a non-null Θ ∈ L1(Ω).

When N ≥ 3, the solution of (1.16) is not always unique; indeed, a counter-example by J. Serrin [15]
modified by A. Prignet [13] gives a non-null solution of (1.16) in the linear (a(x, s, ξ) = A(x)ξ) Dirichlet
case when µ = µ∂ = 0 (see also [10] for the adaptation of this counter-example to the mixed case).
However, there is uniqueness of the SOLA for this problem, and this is the main result of this paper:

Theorem 1.1 Under Hypotheses (1.1)—(1.6), (1.9) and (1.13), Problem (1.14) has one and only one
SOLA.

Remark 1.5 In fact, the proof of the existence of a SOLA to (1.14) does not use all our hypotheses on a
(it only uses (1.1)—(1.3), (1.7) and (1.9)). Our proof of the uniqueness of the SOLA does not use all the
Hypotheses we put on a too; indeed, we will see that we do not use (1.2) and (1.3) in this paper, we only
use the fact that a SOLA exists. Thus, this result of uniqueness can be extented to other equations for
which we know a SOLA exists. For example, in [4], L. Boccardo proves a wide existence result (for a pure
Dirichlet problem — this is quite important — with a right-hand side in L1) that entails the existence of
a SOLA for an operator defined by a function of the kind

a(x, s, ξ) = a0(x, s, ξ) + φ(s),

where a0 satisfies (1.1)—(1.6) and φ : R → RN is a Lipschitz continuous function; the hypotheses on φ
in [4] are in fact much weaker and require thus f ∈ L1(Ω), but our stronger hypotheses allow us to take
a right-hand side in M(Ω). Thus, a satisfies (1.1), (1.4)—(1.6) and the existence and uniqueness result
of Theorem 1.1 is still valid for such an operator in the pure Dirichlet case.

1This means that µn is a function of L1(Ω) such that there exists C > 0 satisfying, for all ϕ ∈ L∞(Ω) ∩ H1
Γd

(Ω),

|
∫
µnϕ| ≤ C||ϕ||H1(Ω); by density of L∞(Ω)∩H1

Γd
(Ω) in H1

Γd
(Ω), there exists then a unique extension of µn as an element

of (H1
Γd

(Ω))′. The same kind of definition and consideration apply to µ∂n ∈ L1(∂Ω) ∩ (H
1/2
Γd

(∂Ω))′.
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We will also see that this uniqueness result implies the following (very simple) stability result.

Theorem 1.2 Let (µn)n≥1 ∈ M(Ω) converges to µ in (C(Ω))′ weak-∗ and (µ∂n)n≥1 ∈ M(∂Ω) converges
to µ∂ in M(∂Ω) weak-∗. Under Hypotheses (1.1)—(1.6), (1.9) and (1.13), if un is the SOLA of (1.14)
with (µn, µ

∂
n) instead of (µ, µ∂) and u is the SOLA of (1.14), then un → u strongly in W 1,q

Γd
(Ω) for all

q < N
N−1 .

Remark 1.6 In fact, we will prove the following more general result: under Hypotheses (1.1)—(1.3),
(1.7) and (1.9), if un is a SOLA — of a slightly particular kind, see in the proof of Theorem 1.2 —
of (1.14) with (µn, µ

∂
n) instead of (µ, µ∂), there exists a subsequence (unk)k≥1 and a SOLA u of (1.14)

such that unk
k→∞−→ u strongly in W 1,q

Γd
(Ω) for all q < N/(N − 1). The fact that we can, with stronger

hypotheses, get rid of the subsequence is of course due to the uniqueness of the SOLA in this case.

Remark 1.7 Once again, the proof of this stability result only uses the existence and uniqueness of the
SOLA, not all the hypotheses on a (especially, we do not use (1.2) and (1.3)); thus Theorem 1.2 is also
valid for other kinds of quasilinear equations for which we know a SOLA exists, such as the example given
in Remark 1.5.

A uniqueness result for a linear equation is very often linked to an existence result for a dual equation.
It is also the case here, although (1.14) is not a linear problem; so, before the proof of Theorem 1.1, we
study in Section 2 an equation which will appear as the dual equation of a problem coming from (1.14).

2 The “dual” equation

We make the following hypotheses:

A : Ω→MN (R) is a measurable matrix valued function which satisfies:
∃α > 0 such that A(x)ξ · ξ ≥ α|ξ|2 for a.e. x ∈ Ω , for all ξ ∈ RN ,

∃M > 0 such that ||A(x)|| := sup
{
|A(x)ξ| , ξ ∈ RN , |ξ| = 1

}
≤M for a.e. x ∈ Ω,

(2.1)

v ∈ (L∞(Ω))N , (2.2)

and we take αA a coercivity constant for A, ΛA an essential upper bound of ||A(.)|| on Ω and Λv an
upper bound of || |v| ||L∞(Ω).

We will prove the following existence result:

Theorem 2.1 Under Hypotheses (2.1), (2.2), (1.9) and (1.13), if θ ∈ L∞(Ω) then, by denoting by Λθ
an upper bound of ||θ||L∞(Ω), there exists κ ∈]0, 1[ depending on (Ω, αA,ΛA,Λv, λ), C0 depending on
(Ω,Γd, αA,ΛA,Λv, λ,Λθ) and C1 depending on (Ω,Γd, αA,Λv,Λθ) such that there exists a solution to

f ∈ H1
Γd

(Ω) ∩ C0,κ(Ω) ,∫
Ω

A∇f · ∇ϕ+

∫
Ω

v · ∇fϕ+

∫
Γf

λfϕdσ =

∫
Ω

θϕ , ∀ϕ ∈ H1
Γd

(Ω) (2.3)

satisfying ||f ||C0,κ(Ω) ≤ C0 and ||f ||H1(Ω) ≤ C1.

Remark 2.1 We have denoted by C0,κ(Ω) the space of κ-Hölder continuous functions on Ω, endowed
with the norm

||f ||C0,κ(Ω) = ||f ||L∞(Ω) + sup
x6=y

|f(x)− f(y)|
|x− y|κ

.
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Remark 2.2 Without Hypothesis (1.13), we obtain a solution of the equation in Problem (2.3) in the
space H1

Γd
(Ω) ∩ L∞(Ω), with the same kind of estimates (we will notice it in the course of the proof);

Hypothesis (1.13) is only useful to apply the results of [10] in order to obtain the Hölder continuity of the
solution.

To prove the existence result of Theorem 2.1, we need an a priori estimate on the solutions of (2.3) (an
L1 estimate is enough). This is the aim of Lemma 2.1 for the proof of which the authors wish to thank
Lucio Boccardo (for having given them the key estimate of Step 2).

Lemma 2.1 Let A satisfy (2.1), w ∈ (L∞(Ω))N and τ ∈ L∞(Ω); we denote by Λw an upper bound of
|| |w| ||L∞(Ω) and Λτ an upper bound of ||τ ||L∞(Ω). Under Hypothesis (1.9), there exists C0 depending on
(Ω,Γd, αA,Λw, λ,Λτ ) and a solution to

g ∈ H1
Γd

(Ω) ∩ L∞(Ω) ,∫
Ω

AT∇g · ∇ϕ+

∫
Ω

gw · ∇ϕ+

∫
Γf

λgϕdσ =

∫
Ω

τϕ , ∀ϕ ∈ H1
Γd

(Ω) (2.4)

such that ||g||H1(Ω) + ||g||L∞(Ω) ≤ C0.

Remark 2.3 Once we know that g satisfies (2.4), since ϕ →
∫

Ω
gv · ∇ϕ is in (W 1,1

Γd
(Ω))′ (because g is

essentially bounded), the results of [10] show that, under Hypothesis (1.13), g is in fact Hölder continuous
on Ω.

Remark 2.4 The conclusions of Theorem 2.1 and Lemma 2.1 also hold when θ or τ only belong to⋃
p>N (W 1,p′

Γd
(Ω))′ (the proof of this uses the same ideas we present here; see [16] or [10] for the details

concerning the treatment of right-hand sides of this kind).

Remark 2.5 (Lucio Boccardo [5]) A close examination of the second step of the proof of Lemma 2.1
shows that the bound we obtain on || ln(1 + |gn|)||H1

Γd
(Ω) depends on the L1-norm of the right-hand side

τ . Thus, we can easily prove (by approximation) an existence result for −div(AT∇g)− div(gv) = τ in Ω ,
g = 0 on Γd ,
AT∇g · n + λg = 0 on Γf ,

(2.5)

(this problem has, when τ is regular, (2.4) as variational formulation) when τ is a bounded measure on
Ω; we must however be careful with the formulation of (2.5) since we only obtain a “solution” g such that,
for all k ≥ 0, Tk(g) ∈ H1

Γd
(Ω) (where Tk(s) = min(k,max(s,−k))).

Remark 2.6 Using the results of Theorem 2.1 and Lemma 2.1 and the ideas of their proofs, we can
prove, when L ∈ (H1(Ω))′, the existence and uniqueness of solutions to

f ∈ H1
Γd

(Ω) ,∫
Ω

A∇f · ∇ϕ+

∫
Ω

v · ∇fϕ+

∫
Γf

λfϕdσ = 〈L,ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) , ∀ϕ ∈ H1
Γd

(Ω) (2.6)

and 
g ∈ H1

Γd
(Ω) ,∫

Ω

AT∇g · ∇ϕ+

∫
Ω

gv · ∇ϕ+

∫
Γf

λgϕ dσ = 〈L,ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) , ∀ϕ ∈ H1
Γd

(Ω). (2.7)
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Remark 2.7 In fact, to prove Lemma 2.1 and Theorem 2.1 (as well as the results of Remark 2.6), we
only need v ∈ (Lr(Ω))N with a r > N . But since such an hypothesis on v would not allow us to consider
really better conditions in Theorem 1.1 (using the result of Theorem 2.1 with v ∈ (Lr(Ω))N for a r > N
would allow us to weaken Hypothesis (1.6), but not enough to handle the case of functions of the form
a(s, ξ) = ã(s)ξ), we prefer to consider the stronger Hypothesis (2.2), which is sufficient to our purpose
here.

Proof of Lemma 2.1
We will approximate Problem (2.4) by problems for which we have, thanks to the Schauder fixed point
theorem, a solution; then, by proving estimates on the solutions of these approximate problems, we will
obtain a solution to (2.4) (without passing to the limit!).

Step 1: the approximate problems.
For t ≥ 0, define Tt(s) = min(t,max(−t, s)). Let n be an integer and, if g ∈ L2(Ω), define F (g) = g as
the unique solution to

g ∈ H1
Γd

(Ω) ,∫
Ω

AT∇g · ∇ϕ+

∫
Γf

λgϕdσ =

∫
Ω

τϕ−
∫

Ω

Tn(g)w · ∇ϕ , ∀ϕ ∈ H1
Γd

(Ω) (2.8)

(the bilinear form is coercive on H1
Γd

(Ω) thanks to (1.10) applied to q = q = 2 and ρ = αA).
We notice that F : L2(Ω) → L2(Ω) is continuous; indeed, if gm → g∞ in L2(Ω), and if (for m ∈ N or
m =∞) Lm is the linear form

〈Lm, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) =

∫
Ω

τϕ−
∫

Ω

Tn(gm)w · ∇ϕ,

then Lm → L∞ in (H1
Γd

(Ω))′, so that gm = F (gm)→ g∞ = F (g∞) in H1
Γd

(Ω), thus in L2(Ω).
Moreover, there exists R > 0 such that, for all g ∈ L2(Ω), ||F (g)||H1(Ω) ≤ R; indeed, by taking g as a
test function in (2.8), we get

αA|| |∇g| ||2L2(Ω) +

∫
Γf

λ|g|2 dσ ≤ ||τ ||(H1
Γd

(Ω))′ ||g||H1(Ω) + n|| |w| ||L2(Ω)||g||H1(Ω),

which gives, thanks to (1.10),

K2,2(αA,Ω,Γd, λ)||g||H1(Ω) ≤ ||τ ||(H1
Γd

(Ω))′ + n|| |w| ||L2(Ω);

thus, R = K2,2(αA,Ω,Γd, λ)−1(||τ ||(H1
Γd

(Ω))′ + n|| |w| ||L2(Ω)) satisfies the property.

F : L2(Ω)→ L2(Ω) is thus a compact application (thanks to the Rellich theorem) which sends the whole
space L2(Ω) in the ball of center 0 and radius R in L2(Ω).
By the Schauder fixed point theorem, F has a fixed point in the ball of center 0 and radius R; we have
thus proven that there exists gn solution to

gn ∈ H1
Γd

(Ω) ,∫
Ω

AT∇gn · ∇ϕ+

∫
Ω

Tn(gn)w · ∇ϕ+

∫
Γf

λgnϕdσ =

∫
Ω

τϕ , ∀ϕ ∈ H1
Γd

(Ω) (2.9)

satisfying

||gn||H1(Ω) ≤ K2,2(αA,Ω,Γd, λ)−1(||τ ||(H1
Γd

(Ω))′ + n|| |w| ||L2(Ω))

≤ K2,2(αA,Ω,Γd, λ)−1(Λτ |Ω|
1
2 + nΛw|Ω|

1
2 ).
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Step 2: we prove that (ln(1 + |gn|))n≥1 is bounded in H1
Γd

(Ω), using the technique introduced in [6].
Let us first prove an estimate on

∫
Γf
λ|gn| dσ. Take ϕ = Tk(gn)/k ∈ H1

Γd
(Ω) as a test function in (2.9).

We obtain, since |Tk(s)/k| ≤ 1 for all s ∈ R and ∇(Tk(gn)) = 1{0<|gn|<k}∇gn a.e. on Ω (where 1E is the
characteristic function of a set E),∫

Γf

λ
Tk(gn)

k
gn dσ ≤ 1

k

∫
Ω

AT∇gn∇(Tk(gn)) +

∫
Γf

λ
Tk(gn)

k
gn dσ

≤
∫

Ω

|τ |+
∫
{0<|gn|<k}

|w||gn|
|∇gn|
k

≤
∫

Ω

|τ |+ || |w| ||L2(Ω)

(∫
{0<|gn|<k}

|∇gn|2
) 1

2

. (2.10)

But gnTk(gn)/k → |gn| on ∂Ω as k → 0 (if gn(x) = 0, gn(x)Tk(gn(x))/k = 0 and, if gn(x) 6= 0,
Tk(gn(x))/k → sgn(gn(x))) and |gnTk(gn)/k| ≤ |gn| ∈ L1(∂Ω); thus, by the dominated convergence
theorem,

∫
Γf
λgn(Tk(gn)/k) dσ →

∫
Γf
λ|gn|. Moreover, since ∇gn ∈ L2(Ω) and |{0 < |gn| < k}| → 0 as

k → 0 (this is the non-increasing continuity of the measure, associated to the fact that ∩k>0{0 < |gn| <
k} = ∅), we obtain

∫
{0<|gn|<k} |∇gn|

2 → 0 as k → 0. Thus, passing to the limit k → 0 in (2.10), we

obtain ∫
Γf

λ ln(1 + |gn|) dσ ≤
∫

Γf

λ|gn| dσ ≤
∫

Ω

|τ | ≤ |Ω|Λτ . (2.11)

Let us now prove an estimate on the derivatives of gn. Let k ∈ N and denote rk(s) = T1(s− Tk(s)), that
is to say 

rk(s) = −1 if s < −k − 1
rk(s) = s+ k if −k − 1 ≤ s ≤ −k
rk(s) = 0 if −k < s < k
rk(s) = s− k if k ≤ s ≤ k + 1
rk(s) = 1 if k + 1 < s.

We know that rk(gn) ∈ H1
Γd

(Ω) with ∇(rk(gn)) = 1Bnk∇gn, where Bnk = {x ∈ Ω | k ≤ |gn| < k + 1}.
Using rk(gn) as a test function in (2.9), we get thus, since |gn| ≤ k + 1 on Bnk and gnrk(gn) ≥ 0 on ∂Ω,

αA|| |∇(rk(gn))| ||2L2(Ω) ≤
∫

Ω

AT∇(rk(gn)) · ∇(rk(gn)) +

∫
Γf

λgnrk(gn) dσ

=

∫
Ω

AT∇gn · ∇(rk(gn)) +

∫
Γf

λgnrk(gn) dσ

=

∫
Ω

τrk(gn)−
∫

Ω

Tn(gn)w · ∇(rk(gn))

≤ ||τ ||L1(Ω) +

∫
Bnk

|w||gn||∇(rk(gn))|

≤ Λτ |Ω|+ (k + 1)|| |w| ||L2(Bnk )|| |∇(rk(gn))| ||L2(Ω)

≤ Λτ |Ω|+
αA
2
|| |∇(rk(gn))| ||2L2(Ω) +

|| |w| ||2L2(Bnk )

2αA
(k + 1)2.

Thus, we obtain

|| |∇(rk(gn))| ||2L2(Ω) ≤
2Λτ |Ω|
αA

+
|| |w| ||2L2(Bnk )

α2
A

(k + 1)2. (2.12)

We will use this to show that (∇(ln(1 + |gn|)))n≥1 is bounded in L2(Ω).
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We have, since Ω is the disjoint union of (Bnk )k≥0, and |gn| ≥ k on Bnk ,∫
Ω

|∇(ln(1 + |gn|))|2 =

∫
Ω

|∇(|gn|)|2

(1 + |gn|)2

=
∑
k≥0

∫
Bnk

|∇gn|2

(1 + |gn|)2

≤
∑
k≥0

∫
Ω

|∇(rk(gn))|2

(1 + k)2
.

Using (2.12), this gives∫
Ω

|∇(ln(1 + |gn|))|2 ≤ 2Λτ |Ω|
αA

∑
k≥0

1

(1 + k)2
+

1

α2
A

∑
k≥0

∫
Bnk

|w|2

≤ π2Λτ |Ω|
3αA

+
|| |w| ||2L2(Ω)

α2
A

.

This last estimate, associated to (2.11) and to (1.10) (with q = 2 and q = 1) gives

|| ln(1 + |gn|)||2H1(Ω) ≤
1

K2,1(1,Ω,Γd, λ)

(
π2Λτ |Ω|

3αA
+

Λ2
w|Ω|
α2
A

+ |Ω|2Λ2
τ

)
:= C1

(C1 depends on (Ω,Γd, αA,Λw, λ,Λτ )).

Step 3: we conclude by proving that (gn)n≥1 is bounded in L∞(Ω).
Let Sk(s) = s − Tk(s); we have Sk(gn) ∈ H1

Γd
(Ω) with ∇(Sk(gn)) = 1Enk∇gn (where Enk = {x ∈

Ω | |gn(x)| > k}). Since Sk(gn) = 0 outside Enk and since gnSk(gn) = |gn||Sk(gn)| ≥ |Sk(gn)|2, we have,
using Sk(gn) as a test function in (2.9),

αA|| |∇(Sk(gn))| ||2L2(Ω) +

∫
Γf

λ|Sk(gn)|2 dσ

≤
∫

Ω

AT∇gn · ∇(Sk(gn)) +

∫
Γf

λgnSk(gn) dσ

≤ Λτ

∫
Ω

|Sk(gn)|+
∫

Ω

|w||gn||∇(Sk(gn))|

≤ Λτ ||Sk(gn)||L2(Ω)|Enk |
1
2 +

∫
Enk

|w|(|Sk(gn)|+ k)|∇(Sk(gn))|

≤ Λτ ||Sk(gn)||L2(Ω)|Enk |
1
2 + || |∇(Sk(gn))| ||L2(Ω)(k|| |w| ||L2(Enk ) + || |w|Sk(gn)||L2(Enk ))

≤ Λτ ||Sk(gn)||H1(Ω)|Enk |
1
2 + kΛw|| |∇(Sk(gn))| ||L2(Ω)|Enk |

1
2

+|| |∇(Sk(gn))| ||L2(Ω)Λw||Sk(gn)||L2(Enk ). (2.13)

Thanks to the Hölder inequality we have, when p > 2,

||Sk(gn)||L2(Enk ) ≤ ||Sk(gn)||Lp(Ω)|Enk |
1
2−

1
p .

Since 2 < 2N/(N − 2), there exists, by the Sobolev injection, p > 2 and C2 only depending on Ω such
that

||Sk(gn)||Lp(Ω) ≤ C2||Sk(gn)||H1(Ω).
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Thus, with (2.13) and (1.10), we get

K2,2(αA,Ω,Γd, λ)||Sk(gn)||2H1(Ω) ≤ Λτ ||Sk(gn)||H1(Ω)|Enk |
1
2 + Λwk||Sk(gn)||H1(Ω)|Enk |

1
2

+C2Λw|Enk |
1
2−

1
p ||Sk(gn)||2H1(Ω). (2.14)

The Tchebycheff inequality reads

|Enk | = |{ln(1 + |gn|) > ln(1 + k)}| ≤ 1

(ln(1 + k))2
|| ln(1 + |gn|)||2L2(Ω)

≤ 1

(ln(1 + k))2
|| ln(1 + |gn|)||2H1(Ω)

≤ C2
1

(ln(1 + k))2

where C1 is the constant given by Step 2. Since 1/2 > 1/p, there exists thus k0 depending on C2, Λw,
p, C1 and K2,2(αA,Ω,Λd, λ), i.e. depending on (Ω,Γd, αA,Λw, λ,Λτ ), such that, for all k ≥ k0 and all

n ≥ 1, C2Λw|Enk |
1
2−

1
p ≤ K2,2(αA,Ω,Γd, λ)/2.

We obtain thus, for all k ≥ k0, thanks to (2.14),

||Sk(gn)||H1(Ω) ≤
(

2Λτ
K2,2(αA,Ω,Γd, λ)

+
2Λwk

K2,2(αA,Ω,Γd, λ)

)
|Enk |

1
2 ≤ C3(1 + k)|Enk |

1
2 ,

where C3 depends on (Ω,Γd, αA,Λw, λ,Λτ ).
By noticing that, when h > k, |Sk(gn)| ≥ (h − k) on Enh , we get, thanks to the Sobolev injection
W 1,1(Ω) ↪→ LN/(N−1)(Ω) (the norm of which, denoted by C4, only depends on Ω),

(h− k)|Enh |(N−1)/N ≤ ||Sk(gn)||LN/(N−1)(Ω)

≤ C4||Sk(gn)||W 1,1(Ω)

≤ C4|Enk |
1
2 ||Sk(gn)||H1(Ω)

≤ C3C4(1 + k)|Enk |.

Thus, as soon as h > k ≥ k0, we have, with β = N/(N − 1) > 1,

|Enh | ≤
(C3C4)β(1 + k)β

(h− k)β
|Enk |β ≤

(C3C4(1 + k0))β(1 + k − k0)β

(h− k)β
|Enk |β

(because, when k ≥ k0, (1 + k0)(1 + k − k0) ≥ 1 + k). Lemma 2.2 given just after the end of this proof,
and applied to the non-increasing function Gn(k) = |Enk+k0

|, allows us to see that, if

H0 = exp

∑
m≥0

2
1
βC3C4(1 + k0)|Ω|

β−1
β(

2
β−1
β

)m
 ≥ exp

∑
m≥0

2
1
βC3C4(1 + k0)Gn(0)

β−1
β(

2
β−1
β

)m
 ,

(notice that H0 < +∞ depends on (Ω,Γd, αA,Λw, λ,Λτ )), then Gn(H0) = 0, that is to say |gn| ≤ H0 +k0

a.e. on Ω for all n ≥ 1.

Thus, by taking n0 an integer greater than H0 + k0 (n0 depends on (Ω,Γd, αA,Λw, λ,Λτ )) and letting
g = gn0 , we have a solution to (2.4) (because Tn0(gn0) = gn0 = g) which satisfies ||g||L∞(Ω) ≤ H0 + k0

and ||g||H1(Ω) = ||gn0
||H1(Ω) ≤ K2,2(αA,Ω,Γd, λ)−1(Λτ |Ω|

1
2 + n0Λw|Ω|

1
2 ). This completes the proof of

Lemma 2.1.
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Lemma 2.2 Let G : R+ → R+ be a non-increasing function. If there exist β > 1 and C > 0 such that

∀h > k ≥ 0 , G(h) ≤ Cβ(1 + k)β

(h− k)β
G(k)β

then, with

H = exp

∑
m≥0

2
1
βCG(0)

β−1
β(

2
β−1
β

)m
 < +∞,

we have G(H) = 0.

For the proof of this lemma, which is a slight generalization of a lemma by G. Stampacchia ([16] Lemma
4.1, i)), we refer the reader to Lemma 2.2 in [10].

Proof of Theorem 2.1
The proof of the existence of a solution to

f ∈ H1
Γd

(Ω) ,∫
Ω

A∇f · ∇ϕ+

∫
Ω

v · ∇fϕ+

∫
Γf

λfϕdσ =

∫
Ω

θϕ , ∀ϕ ∈ H1
Γd

(Ω), (2.15)

(i.e. Problem (2.3) without the regularity f ∈ C0,κ(Ω)) uses the topological degree (see [9]); the proof of
the Hölder continuity of the solution, as well as the estimates in the Hölder space, uses a result of [10].

Step 1: on a cut-off problem.
Let n be an integer. Recall that Tn(s) = min(n,max(−n, s)). We know that, for all ϕ ∈ H1

Γd
(Ω),

Tn(ϕ) ∈ H1
Γd

(Ω) with ∇(Tn(ϕ)) = 1{|ϕ|<n}∇ϕ.

Let f ∈ H1
Γd

(Ω); since v · ∇(Tn(f)) ∈ L2(Ω) ⊂ (H1
Γd

(Ω))′, there exists a unique solution f = F (f) to
f ∈ H1

Γd
(Ω) ,∫

Ω

A∇f · ∇ϕ+

∫
Γf

λfϕdσ =

∫
Ω

θϕ−
∫

Ω

v · ∇(Tn(f))ϕ , ∀ϕ ∈ H1
Γd

(Ω). (2.16)

This defines an application F : H1
Γd

(Ω)→ H1
Γd

(Ω).
We will prove, using the topological degree, that F has a fixed point (conversely to the proof of Lemma
2.1, the Schauder fixed point theorem seems not applicable here).

Notice first that F is continuous; indeed, if fm → f in H1
Γd

(Ω), then Tn(fm)→ Tn(f) in H1
Γd

(Ω), so that

v · ∇(Tn(fm)) → v · ∇(Tn(f)) in L2(Ω), thus also in (H1
Γd

(Ω))′ and the solution F (fm) of (2.16) when

f is replaced by fm tends thus in H1
Γd

(Ω) to the solution F (f) of (2.16).

We will now prove that, if (fm)m≥1 is a bounded sequence in H1
Γd

(Ω), then there exists a subsequence (still

denoted (fm)m≥1) such that (F (fm))m≥1 converges in H1
Γd

(Ω). Since (fm)m≥1 is bounded in H1
Γd

(Ω),

(v · ∇(Tn(fm)))m≥1 is bounded in L2(Ω) and there exists thus a subsequence, still denoted (fm)m≥1,
such that v · ∇(Tn(fm))→ Φ weakly in L2(Ω).
Since (F (fm))m≥1 is bounded in H1

Γd
(Ω) (because of the coercivity of the operator in (2.16) and of the

fact that (v · ∇(Tn(fm)))m≥1 is bounded in L2(Ω)), its trace is bounded in L2(∂Ω) and we can also
suppose that, up to a subsequence, (F (fm))m≥1 converges to F0, weakly in H1

Γd
(Ω), strongly in L2(Ω)

and its trace weakly in L2(∂Ω); we see then that F0 is the solution to
F0 ∈ H1

Γd
(Ω) ,∫

Ω

A∇F0 · ∇ϕ+

∫
Γf

λF0ϕdσ =

∫
Ω

θϕ−
∫

Ω

Φϕ , ∀ϕ ∈ H1
Γd

(Ω). (2.17)
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We have now to prove that the convergence of (F (fm))m≥1 to F0 is strong in H1
Γd

(Ω); to see this, we

subtract the equation satisfied by F0 from the equation satisfied by F (fm) and we use the test function
ϕ = F (fm)− F0 ∈ H1

Γd
(Ω) to find

αA|| |∇(F (fm)− F0)| ||2L2(Ω) +

∫
Γf

λ|F (fm)− F0|2 dσ

≤
∫

Ω

A∇(F (fm)− F0) · ∇(F (fm)− F0) +

∫
Γf

λ(F (fm)− F0)(F (fm)− F0) dσ

=

∫
Ω

(Φ− v · ∇(Tn(fm)))(F (fm)− F0)

≤ ||Φ− v · ∇(Tn(fm))||L2(Ω)||F (fm)− F0||L2(Ω).

Since (v · ∇(Tn(fm)))m≥1 is bounded in L2(Ω) and F (fm)→ F0 in L2(Ω), this inequality, associated to
(1.10), gives

||F (fm)− F0||H1(Ω) → 0.

Thus, F : H1
Γd

(Ω)→ H1
Γd

(Ω) is a compact operator. To prove that F has a fixed point by an application

of the Leray-Schauder topological degree, it remains to find R > 0 such that, if t ∈ [0, 1] and f ∈ H1
Γd

(Ω)

satisfies f − tF (f) = 0, then ||f ||H1
Γd

(Ω) 6= R.

Suppose we have such a t ∈ [0, 1] and such a f ∈ H1
Γd

(Ω); then f satisfies∫
Ω

A∇f · ∇ϕ+

∫
Γf

λfϕdσ = t

∫
Ω

θϕ− t
∫

Ω

v · ∇(Tn(f))ϕ for all ϕ ∈ H1
Γd

(Ω).

Take ϕ = f ; since ∇(Tn(f)) = 1{|f |<n}∇f , we find, with (1.10),

K2,2(αA,Ω,Γd, λ)||f ||2H1(Ω) ≤ αA

∫
Ω

|∇f |2 +

∫
Γf

λ|f |2 dσ

≤ ||θ||(H1
Γd

(Ω))′ ||f ||H1(Ω) + n|| |v| ||L2(Ω)|| |∇f | ||L2(Ω)

≤
(
||θ||(H1

Γd
(Ω))′ + n|| |v| ||L2(Ω)

)
||f ||H1(Ω),

which gives

||f ||H1(Ω) ≤
||θ||(H1

Γd
(Ω))′

K2,2(αA,Ω,Γd, λ)
+

n|| |v| ||L2(Ω)

K2,2(αA,Ω,Γd, λ)
.

Thus, by taking R = 1 + (||θ||(H1
Γd

(Ω))′ + n|| |v| ||L2(Ω))/K2,2(αA,Ω,Γd, λ), we deduce from the properties

of the topological degree that F has a fixed point in the ball of center 0 and radius R in H1
Γd

(Ω).
We denote by fn such a fixed point, which satisfies

fn ∈ H1
Γd

(Ω) ,∫
Ω

A∇fn · ∇ϕ+

∫
Ω

v · ∇(Tn(fn))ϕ+

∫
Γf

λfnϕdσ =

∫
Ω

θϕ , ∀ϕ ∈ H1
Γd

(Ω) (2.18)

and ||fn||H1(Ω) ≤ 1 + (||θ||(H1
Γd

(Ω))′ + nΛv|Ω|
1
2 )/K2,2(αA,Ω,Γd, λ).

Step 2: we prove an L1 estimate for the sequence (fn)n≥1 constructed in Step 1.
Let wn = 1{|fn|<n}v; we have, for all ϕ ∈ H1

Γd
(Ω),∫

Ω

A∇fn · ∇ϕ+

∫
Ω

wn · ∇fnϕ+

∫
Γf

λfnϕdσ =

∫
Ω

θϕ. (2.19)
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Since Λv is an upper bound for || |wn| ||L∞(Ω), we can find, thanks to Lemma 2.1, a gn ∈ H1
Γd

(Ω) satisfying,
for all ϕ ∈ H1

Γd
(Ω), ∫

Ω

AT∇gn · ∇ϕ+

∫
Ω

gnwn · ∇ϕ+

∫
Γf

λgnϕdσ =

∫
Ω

sgn(fn)ϕ, (2.20)

and such that ||gn||L∞(Ω) ≤ K0, where K0 depends on (Ω,Γd, αA,Λv, λ) but not n (sgn denotes the sign
function, and we have thus ||sgn(fn)||L∞(Ω) ≤ 1).
By putting ϕ = fn in (2.20) and ϕ = gn in (2.19), we get

||fn||L1(Ω) =

∫
Ω

sgn(fn)fn =

∫
Ω

θgn ≤ K0||θ||L1(Ω). (2.21)

Step 3: with the same methods as in Step 3 of the proof of Lemma 2.1, we prove an L∞ estimate on
(fn)n≥1.
Define Sk as in Step 3 of the proof of Lemma 2.1, and use Sk(fn) as a test function in (2.18): we get, by
denoting Enk = {x ∈ Ω | |fn(x)| > k}, and since fnSk(fn) ≥ |Sk(fn)|2,

αA|| |∇(Sk(fn))| ||2L2(Ω) +

∫
Γf

λ|Sk(fn)|2 dσ (2.22)

≤
∫

Ω

A∇fn · ∇(Sk(fn)) +

∫
Γf

λfnSk(fn) dσ

≤ Λθ||Sk(fn)||L2(Ω)|Enk |
1
2 +

∫
{|fn|<n}

|v||∇fn||Sk(fn)|

≤ Λθ||Sk(fn)||L2(Ω)|Enk |
1
2 +

∫
Ω

|v||∇(Sk(fn))||Sk(fn)|

≤ Λθ||Sk(fn)||H1(Ω)|Enk |
1
2 + || |∇(Sk(fn))| ||L2(Ω)|| |v|Sk(fn)||L2(Ω)

≤ Λθ||Sk(fn)||H1(Ω)|Enk |
1
2 + || |∇(Sk(fn))| ||L2(Ω)Λv||Sk(fn)||L2(Ω), (2.23)

because ∇fn = ∇(Sk(fn)) where Sk(fn) 6= 0.
As before, we notice that, thanks to the Sobolev injection of H1, there exists p > 2 and K1 only depending
on Ω such that

||Sk(fn)||L2(Ω) ≤ ||Sk(fn)||Lp(Ω)|Enk |
1
2−

1
p

≤ K1||Sk(fn)||H1(Ω)|Enk |
1
2−

1
p ,

which gives, introduced in (2.23) and thanks to (1.10),

K2,2(αA,Ω,Γd, λ)||Sk(fn)||2H1(Ω)

≤ Λθ||Sk(fn)||H1(Ω)|Enk |
1
2 +K1Λv|Enk |

1
2−

1
p ||Sk(fn)||2H1(Ω). (2.24)

But, with (2.21) and the Tchebycheff inequality, we see that

|Enk | ≤
1

k
||fn||L1(Ω) ≤

K0|Ω|Λθ
k

;

there exists thus k0 depending on (K1,Λv, p,K0,Ω,Λθ,K2,2(αA,Ω,Γd, λ)) (i.e. on (Ω,Γd, αA,Λv, λ,Λθ)),

such that, for all n ≥ 1 and all k ≥ k0, K1Λv|Enk |
1
2−

1
p ≤ K2,2(αA,Ω,Γd, λ)/2.

Returning to (2.24), we have then, for all k ≥ k0,

||Sk(fn)||H1(Ω) ≤
2Λθ

K2,2(αA,Ω,Γd, λ)
|Enk |

1
2 = K2|Enk |

1
2
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where K2 depends on (Ω,Γd, αA, λ,Λθ).
Then, reasoning as in the end of Step 3 of the proof of Lemma 2.1, we get, for all h > k ≥ k0,

|Enh | ≤
MKβ

2

(h− k)β
|Enk |β ,

with β = N/(N − 1) > 1 and M depending on Ω.
Using Lemma 2.2 (or, more directly, Lemma 4.1 i) in [16]), we see thus that there exists H0 depending
on (Ω, β,M,K2), i.e. depending on (Ω,Γd, αA, λ,Λθ) [notice that a dependence on Ω takes into account
a dependence on N ] such that, for all n ≥ 1, |EnH0+k0

| = 0, that is to say ||fn||L∞(Ω) ≤ K3 = H0 + k0,
where K3 depends on (Ω,Γd, αA,Λv, λ,Λθ).

By taking any integer n0 ≥ K3 (such a choice of n0 depends on K3, thus on (Ω,Γd, αA,Λv, λ,Λθ)) and
letting f = fn0

, we get a solution to
f ∈ H1

Γd
(Ω)∫

Ω

A∇f · ∇ϕ+

∫
Ω

v · ∇fϕ+

∫
Γf

λfϕdσ =

∫
Ω

θϕ , ∀ϕ ∈ H1
Γd

(Ω), (2.25)

(because, since n0 ≥ K3 ≥ ||fn0
||L∞(Ω), Tn0

(fn0
) = fn0

= f) such that

||f ||H1(Ω) ≤ 1 +
||θ||(H1

Γd
(Ω))′ + n0Λv|Ω|

1
2

K2,2(αA,Ω,Γd, λ)
≤ 1 +

Λθ|Ω|
1
2 + n0Λv|Ω|

1
2

K2,2(αA,Ω,Γd, λ)
:= C1,

where C1 depends on (Ω,Γd, αA,Λv, λ,Λθ); notice also that

||f ||L∞(Ω) ≤ K3. (2.26)

Since, up to now, we have not used Hypothesis (1.13), this proves what we have claimed in Remark 2.2.

Step 4: conclusion.
It remains to prove that the solution f ∈ H1

Γd
(Ω) of (2.25) we found in the preceding section is in fact in

C0,κ(Ω) for a κ > 0. This is the only part of the proof where we need Hypothesis (1.13).

We have, for all ϕ ∈ H1(Ω),∣∣∣∣∫
Ω

ϕv · ∇ϕ
∣∣∣∣ ≤ || |∇ϕ| ||L2(Ω)Λv||ϕ||L2(Ω) ≤

αA
2
|| |∇ϕ| ||2L2(Ω) +

Λ2
v

2αA
||ϕ||2L2(Ω).

Thus, by taking b = 1 +
Λ2

v

2αA
, the bilinear continuous form

(ϕ,ψ) ∈ H1(Ω)→
∫

Ω

A∇ϕ · ∇ψ +

∫
Ω

v · ∇ϕψ +

∫
Ω

bϕψ

is coercive (notice that the choice of b depends on (Ω, αA,Λv)).

f is the solution to
f ∈ H1

Γd
(Ω) ,∫

Ω

A∇f · ∇ϕ+

∫
Ω

v · ∇fϕ+

∫
Γf

λfϕdσ +

∫
Ω

bfϕ =

∫
Ω

θ̃ϕ , ∀ϕ ∈ H1
Γd

(Ω), (2.27)

where θ̃ = θ + bf ∈ L∞(Ω).

Thus, θ̃ ∈ (W 1,1
Γd

(Ω))′ and, thanks to (2.26), the norm of θ̃ in (W 1,1
Γd

(Ω))′ is bounded by K4 depending
on (Ω,Γd, αA,Λv, λ,Λθ). With our choice of b, a slight adaptation of the methods of [16] and [10]
shows then that (thanks to Hypothesis (1.13)), there exists κ ∈]0, 1[ depending on (Ω, αA,ΛA,Λv, λ, b),
i.e. depending on (Ω, αA,ΛA,Λv, λ) and K5 depending on (Ω, αA,ΛA,Λv, λ, b,K4), i.e. depending on
(Ω,Γd, αA,ΛA,Λv, λ,Λθ), such that the solution f of (2.27) is in C0,κ(Ω) with ||f ||C0,κ(Ω) ≤ K5.
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3 Proof of the uniqueness and stability theorems

We will use, in the course of this proof, the following result.

Lemma 3.1 Let f : Ω → R, F : Ω → RN and G : Ω → RN be measurable functions such that
|F − G| ∈ L1(Ω). Under Hypotheses (1.1), (1.4) and (1.5), there exists a measurable matrix-valued
function M : Ω→MN (R) such that

M(x)τ · τ ≥ α|τ |2 for a.e. x ∈ Ω, for all τ ∈ RN , (3.1)

||M(x)|| ≤ Λ for a.e. x ∈ Ω, (3.2)

a(x, f(x), F (x))− a(x, f(x), G(x)) = M(x)(F (x)−G(x)) for a.e. x ∈ Ω. (3.3)

Remark 3.1 Notice that α and Λ do not depend on f , F or G (only on a).

Proof of Lemma 3.1.
When a is C1-continuous with respect to ξ, it is very simple: just take

M(x) =

∫ 1

0

∂a

∂ξ
(x, f(x), F (x) + t(G(x)− F (x)) dt

(where ∂a
∂ξ , the partial derivative of a with respect to ξ, is identified to a N ×N matrix; it is easy to see

that this partial derivative satisfies (3.1) and (3.2)).
When a is only Lipschitz continuous with respect to ξ, it has a partial derivative for a.e. ξ ∈ RN , but we
cannot take the preceding expression since F (.) + t(G(.) − F (.)) could take (on the whole of Ω and for
any t ∈ [0, 1]) its values where a is not derivable with respect to ξ.
We solve this problem by the following trick: by denoting (ρn)n≥1 a sequence of mollifiers in RN , we take
an(x, s, ξ) = (a(x, s, .) ∗ ρn)(ξ); an is a Caratheodory function which is C1-continuous with respect to ξ.
We have thus

an(x, f(x), F (x))− an(x, f(x), G(x)) = Mn(x)(F (x)−G(x)), (3.4)

where Mn(x) =
∫ 1

0
∂an
∂ξ (x, f(x), F (x) + t(G(x) − F (x)) dt; by noticing that ∂an

∂ξ (x, s, ξ) = (∂a∂ξ (x, s, .) ∗
ρn)(ξ), we see that ∂an

∂ξ — and thus Mn — satisfies (3.1) and (3.2) for all n ≥ 1.

Thus, (Mn)n≥1 being a bounded sequence in (L∞(Ω))N×N , there exists a subsequence, still denoted
(Mn)n≥1, which converges to M in (L∞(Ω))N×N weak-∗; it is then quite clear that M satisfies (3.1) and
(3.2). Moreover, since |F − G| ∈ L1(Ω), Mn(F − G) → M(F − G) in the sense of distributions. Since
an(x, f(x), F (x)) − an(x, f(x), G(x)) → a(x, f(x), F (x)) − a(x, f(x), G(x)) for a.e. x ∈ Ω (for all x ∈ Ω
such that a(x, ., .) is continuous) and is dominated by Λ|F −G| ∈ L1(Ω), the convergence is also true in
(L1(Ω))N (and thus in the sense of distributions). By passing to the limit (in the sense of distributions)
in (3.4), and since the limits are functions, we get

a(x, f(x), F (x))− a(x, f(x), G(x)) = M(x)(F (x)−G(x)) for a.e. x ∈ Ω,

and the measurable matrix valued function M is thus convenient.

Proof of Theorem 1.1
Let µ ∈M(Ω), µ∂ ∈M(∂Ω) and u, v two SOLA of (1.14).
By definition, there exists (µn, νn)n≥1 ∈ L1(Ω) ∩ (H1

Γd
(Ω))′ satisfying µn → µ and νn → µ in (C(Ω))′

weak-∗, (µ∂n, ν
∂
n)n≥1 ∈ L1(∂Ω) ∩ (H

1/2
Γd

(Ω))′ satisfying µ∂n → µ∂ and ν∂n → µ∂ in M(∂Ω) weak-∗, un a

solution of (1.15) and vn a solution of (1.15) with (νn, ν
∂
n) instead of (µn, µ

∂
n) such that un → u and

vn → v in L1(Ω) (in fact, the convergence is much stronger but we will not need it).
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By substracting the equation satisfied by vn from the equation satisfied by un, we have, for all ϕ ∈ H1
Γd

(Ω),∫
Ω

(a(x, un,∇un)− a(x, vn,∇vn)) · ∇ϕ+

∫
Γf

λ(un − vn)ϕdσ

= 〈µn − νn, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω) + 〈µ∂n − ν∂n , ϕ〉(H1/2
Γd

(Ω))′,H
1/2
Γd

(Ω)
. (3.5)

Let V : Ω× R× R× RN → RN defined, for all (x, s, t, ξ) ∈ Ω× R× R× RN , by{
V(x, s, t, ξ) = a(x,s,ξ)−a(x,t,ξ)

s−t if s 6= t,

V(x, s, t, ξ) = 0 if s = t.

Thanks to Hypothesis (1.1), V is Borel-measurable (it is Borel-measurable on the Borel set {s 6= t} and
on the Borel set {s = t}) and, by (1.6), |V(x, s, t, ξ)| ≤ δ for a.e. x ∈ Ω, for all (s, t, ξ) ∈ R×R×RN ; we
also have, for all (x, s, t, ξ) ∈ Ω× R× R× RN ,

a(x, s, ξ)− a(x, t, ξ) = (s− t)V(x, s, t, ξ).

V being Borel-measurable and un, vn, ∇vn being measurable, vn(.) = V(., un(.), vn(.),∇vn(.)) is measur-
able on Ω and, for a.e. x ∈ Ω, we have |vn(x)| ≤ δ.
By denoting Mn : Ω → MN (R) the measurable matrix-valued function given by Lemma 3.1 applied to
f = un, F = ∇un and G = ∇vn (notice that |F −G| ∈ L2(Ω) ⊂ L1(Ω)), we obtain, for a.e. x ∈ Ω,

a(x, un(x),∇un(x))− a(x, vn(x),∇vn(x))

= a(x, un(x),∇un(x))− a(x, un(x),∇vn(x)) + a(x, un(x),∇vn(x))− a(x, vn(x),∇vn(x))

= Mn(x)(∇un(x)−∇vn(x)) + (un(x)− vn(x))vn(x).

By (3.5), wn = un − vn is thus a solution to
wn ∈ H1

Γd
(Ω) ,∫

Ω

Mn∇wn · ∇ϕ+

∫
Ω

wnvn · ∇ϕ+

∫
Γf

λwnϕdσ = 〈µn − νn, ϕ〉(H1
Γd

(Ω))′,H1
Γd

(Ω)

+〈µ∂n − ν∂n , ϕ〉(H1/2
Γd

(∂Ω))′,H
1/2
Γd

(∂Ω)
, ∀ϕ ∈ H1

Γd
(Ω).

(3.6)

MT
n is a measurable matrix-valued function which satisfies Properties (3.1) and (3.2) (notice that α and

Λ do not depend on n) and we have vn ∈ L∞(Ω) with δ ≥ || |vn| ||L∞(Ω) (notice that δ does not depend
on n).
Thanks to Theorem 2.1, since sgn(u − v) ∈ L∞(Ω), there exists κ > 0 and C > 0 depending on
(Ω,Γd, α,Λ, δ, λ) (i.e. κ and C do not depend on n) and, for all n ≥ 1, a solution to

fn ∈ H1
Γd

(Ω) ∩ C0,κ(Ω) ,∫
Ω

MT
n∇fn · ∇ϕ+

∫
Ω

vn · ∇fnϕ+

∫
Γf

λfnϕdσ =

∫
Ω

sgn(u− v)ϕ , ∀ϕ ∈ H1
Γd

(Ω) (3.7)

such that ||fn||C0,κ(Ω) ≤ C.
Using fn as a test function in (3.6) and wn as a test function in (3.7), we obtain∫

Ω

wnsgn(u− v) =

∫
Ω

Mn∇wn · ∇fn +

∫
Ω

wnvn · ∇fn +

∫
Γf

λwnfn dσ

=

∫
Ω

fn(µn − νn) +

∫
∂Ω

fn(µ∂n − ν∂n) dσ. (3.8)
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Since (fn)n≥1 is bounded in C0,κ(Ω), it is relatively compact in C(Ω) (thanks to the Ascoli-Arzelà theorem)
and we can thus suppose that, up to a subsequence still denoted (fn)n≥1, we have fn → f in C(Ω). Since
µn − νn → 0 in (C(Ω))′ weak-∗ and µ∂n − ν∂n → 0 in M(∂Ω) weak-∗, we get∫

Ω

fn(µn − νn) +

∫
∂Ω

fn(µ∂n − ν∂n) dσ → 0.

Using the fact that wn → u − v in L1(Ω), we deduce then from (3.8), by passing to the limit n → ∞,
that

0 =

∫
Ω

sgn(u− v)(u− v) =

∫
Ω

|u− v|,

which gives u = v a.e. on Ω and concludes the proof.

Proof of Theorem 1.2.
We first prove the more general result stated in Remark 1.6. We suppose thus, to begin, only Hypotheses
(1.1)—(1.3), (1.7) and (1.9) and we take (un)n≥1 satisfying: for all n ≥ 1, there exists three sequences

(µn,m)m≥1 ∈ L1(Ω)∩ (H1
Γd

(Ω))′, (µ∂n,m)m≥1 ∈ L1(∂Ω)∩ (H
1/2
Γd

(∂Ω))′ and (un,m)m≥1 ∈ H1
Γd

(Ω) such that

µn,m
m→∞−→ µn in (C(Ω))′ weak-∗, µ∂n,m

m→∞−→ µ∂n in M(∂Ω) weak-∗,
∃C > 0 such that ||µn,m||M(Ω) + ||µ∂n,m||M(∂Ω) ≤ C for all n ≥ 1 and m ≥ 1, (3.9)

∀m ≥ 1 , un,m is a solution of (1.15) with (µn,m, µ
∂
n,m) instead of (µn, µ

∂
n),

un,m
m→∞−→ un in W 1,q

Γd
(Ω) for all q ∈ [1, N/(N − 1)[

((3.9) is the additional hypothesis we must make — see below for the reason).

Let {ϕk , k ≥ 1} (respectively {ψk , k ≥ 1}) be a countable dense subset of C(Ω) (respectively C(∂Ω)).
For all n ≥ 1, there exists mn ≥ 1 such that

•
∣∣∫

Ω
ϕk dµn,mn −

∫
Ω
ϕk dµn

∣∣ ≤ 1/n for all k ∈ [1, n],

•
∣∣∫
∂Ω
ψk dµ

∂
n,mn −

∫
∂Ω
ψk dµ

∂
n

∣∣ ≤ 1/n for all k ∈ [1, n],

• ||un,mn − un||W 1,N/(N−1)−1/n
Γd

(Ω)
≤ 1/n.

It is then quite clear that (νn)n≥1 = (µn,mn)n≥1 ∈ L1(Ω) ∩ (H1
Γd

(Ω))′ and (ν∂n)n≥1 = (µ∂n,mn)n≥1 ∈
L1(∂Ω)∩ (H

1/2
Γd

(∂Ω))′ converge respectively to µ in (C(Ω))′ weak-∗ and to µ∂ inM(∂Ω) weak-∗. Indeed,
(νn)n≥1 = (µn,mn)n≥1 is bounded inM(Ω) by C (this is where we need (3.9)) and, for all k ≥ 1, if n ≥ k,∣∣∣∣∫

Ω

ϕk dνn −
∫

Ω

ϕk dµ

∣∣∣∣ ≤ 1

n
+

∣∣∣∣∫
Ω

ϕk dµn −
∫

Ω

ϕk dµ

∣∣∣∣→ 0 as n→∞.

The bound of (νn)n≥1 and this convergence on a dense subset of C(Ω) gives the weak-∗ convergence. We
can do the same for (ν∂n)n≥1.
Thus, by definition of a SOLA, since vn = un,mn is a solution of (1.15) with (νn, ν

∂
n) instead of (µn, µ

∂
n),

there exists a subsequence (vnk)k≥1 and a SOLA u of (1.14) such that vnk → u in W 1,q
Γd

(Ω) for all

q ∈ [1, N/(N − 1)[. Let q ∈ [1, N/(N − 1)[; for all k ≥ (N/(N − 1) − q)−1, since nk ≥ k, we have then
(with rk = N/(N − 1)− 1/nk > q),

||unk − u||W 1,q(Ω) ≤ ||unk − vnk ||W 1,q(Ω) + ||vnk − u||W 1,q(Ω)

≤ |Ω|1/q−1/rk ||unk − vnk ||W 1,rk (Ω) + ||vnk − u||W 1,q(Ω)

≤ sup(1, |Ω|)
nk

+ ||vnk − u||W 1,q(Ω) → 0 as k →∞,
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which gives the convergence of (unk)k≥1 to u in W 1,q
Γd

(Ω), for all q ∈ [1, N/(N − 1)[.

Suppose now that we add the hypotheses of Theorem 1.1, or that we are in the case of Remark 1.5. We
have then the uniqueness of the SOLA.
The SOLA un thus does not depend on the way we approximate (µn, µ

∂
n), and we can always take

(µn,m, µ
∂
n,m)m≥1 which approximate these measures and satisfy moreover ||µn,m||M(Ω) ≤ ||µn||M(Ω) and

||µ∂n,m||M(∂Ω) ≤ ||µ∂n||M(∂Ω) for all m ≥ 1; in this case, since (µn)n≥1 is bounded in M(Ω) and (µ∂n)n≥1

is bounded in M(∂Ω) (they converge for the weak-∗ topology), we see that (µn,m, µ
∂
n,m)n≥1,m≥1 satisfy

(3.9).
By supposing that (un)n≥1 does not converge to the SOLA u of (1.14), we would take ε > 0 and a
subsequence, still denoted (un)n≥1, such that, for a q0 ∈ [1, N/(N − 1)[, ||un − u||W 1,q0 (Ω) > ε for all

n. Applying the preceding reasoning, we get a subsequence (unk)k≥1 which converges in W 1,q0
Γd

(Ω) to a
SOLA v of (1.14). The SOLA being unique, we have in fact u = v and this leads to a contradiction, thus
proving Theorem 1.2 and Remark 1.7.
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