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Jérôme Droniou

joint work with G. Manzini (IMATI CNR) and L. Yemm (Monash University).

IMAG, CNRS & University of Montpellier, France,
School of Mathematics, Monash University, Australia

https://imag.umontpellier.fr/~droniou/

CTAC 2024

1 / 29

https://imag.umontpellier.fr/~droniou/


Reference for this presentation

The eXtended Virtual Element Method for elliptic problems with weakly
singular solutions. J. Droniou, G. Manzini, and L. Yemm. Comput. Methods
Appl. Mech. Engrg. 429, Paper No. 117129, 16p, 2024. doi:
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Principles of mesh-based schemes

Model problem {
−∆u = f in Ω,
u = 0 on ∂Ω.

Mesh-based methods: cut domain in small pieces (elements/cells),
approximate the solution with piecewise polynomial functions on these pieces.
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Error estimate requires smoothness

Typical error estimate: for a method of order k ≥ 1,

∥u− uh∥H1 ≤ Chk∥u∥Hk+1

◦ Comes from the local approximation properties of polynomial functions.

◦ Requires smoothness of u.

Failure of smoothness: even in non-challenging situation (any non-convex
domain!).
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Error estimate requires smoothness

Typical error estimate: for a method of order k ≥ 1,

∥u− uh∥H1 ≤ Chk∥u∥Hk+1

◦ Comes from the local approximation properties of polynomial functions.

◦ Requires smoothness of u.

Failure of smoothness: even in non-challenging situation (any non-convex
domain!).

u = r
2
3 sin( 23 (θ −

π
2 )) + ur with ur ∈ H2.
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Workaround

Extend the local polynomial spaces with the singular part of the solution.

Caveat: far from the singularity, the “singular” part is actually smooth, and
too close to polynomials...

Refs.:

◦ FEM: [Melenk and Babuška, 1996, Babuška and Melenk, 1997,

Belytschko and Black, 1999, Laborde et al., 2005, Chin et al., 2017] etc.
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Polytopal methods and virtual elements? I

◦ Finite Element methods (FEM) have been the golden standard for decades,
but their mesh lack flexibility with: local refinement, representation of
complex geometries, etc.

◦ Polytopal methods are inherited from FEM but are applicable on meshes
made of generic polygons/polyhedra.

Refs.: [Beirão da Veiga et al., 2014, Beirão da Veiga et al., 2017,

Di Pietro and Droniou, 2020] etc.
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Polytopal methods and virtual elements? II

◦ Virtual Element Method is a polytopal method based on approximation
spaces such that:

□ Virtual functions are not fully known,

□ Unisolvent degrees of freedom (DOFs) can be identified for the spaces,

□ Certain projections of virtual functions/gradients can be explicitly
computed from the DOFs.
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Standard and extended virtual element spaces

Local standard space: Fix k ≥ 1, l = max(0, k − 2) and define, for each
element E,

Vk,h(E) :=
{
vh ∈ H1(E) : ∆vh ∈ Pl(E),

vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) ∀e ⊂ ∂E
}
.

Contains polynomials: Pk(E) ⊂ Vk,h(E).

Local extended space: with Ψ ⊂ H1(Ω) the space of singularities of the
solution,

V Ψ
k,h(E) :=

{
vh ∈ H1(E) : ∆vh ∈ Pl(E) + ∆Ψ|E ,

vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) + Ψ|e ∀e ⊂ ∂E
}
.

Contains polynomials and singular function: Pk(E) + Ψ|E ⊂ V Ψ
k,h(E).
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DOFs for extended virtual element spaces

V Ψ
k,h(E) :=

{
vh ∈ H1(E) : ∆vh ∈ Pl(E) + ∆Ψ|E ,

vh|∂E ∈ C0(∂E), vh|e ∈ Pk(e) + Ψ|e ∀e ⊂ ∂E
}
.

Decomposition of boundary space: write Pk(e) + Ψ|e = Pk(e)⊕Pe and set

PP
k−2(e) = Pk−2(e)⊕Pe.

Degrees of freedom: for vh ∈ V Ψ
k,h(E),

(D1) vh(xV ) for each vertex V ∈ ∂E;

(D2) ΠP
k−2,evh, projection on PP

k−2(e), for each edge e ⊂ ∂E;

(D3) Π∆
l,Evh, projection on Pl(E) + ∆Ψ|E .

Pk−2(e) + Ψ|e would be natural, but does not ensure unisolvence...
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Extended virtual element scheme I

Extended elliptic projector: Π∇,Ψ
k,E : V Ψ

k,h(E) → Pk(E) + Ψ|E , computable
from the DOFs, defined by∫

E

∇(Π∇,Ψ
k,E vh) · ∇q =

∫
E

∇vh · ∇q q ∈ Pk(E) + Ψ|E ,∫
E

Π∇,Ψ
k,E vh =

∫
E

vh.

Remark: Π∇,Ψ
k,E v = v for all v ∈ Pk(E) + Ψ|E .

Global space: V Ψ
k,h,0 obtained by gluing the local spaces, and

V Ψ
k,h,0 := {vh ∈ H1

0 (Ω) : vh|E ∈ V Ψ
k,h(E) ∀E ∈ Ωh}.
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Extended virtual element scheme II

Bilinear form: consistent part plus stabilisation.

ah(uh, vh) :=
∑

E∈Ωh

aE(uh, vh)

with

aE(uh, vh) =

∫
E

∇Π∇,Ψ
k,E uh · ∇Π∇,Ψ

k,E vh + SE(uh, vh)

and SE such that

SE(uh, uh) = h−2
E ∥Π∆

l,E(uh −Π∇,Ψ
k,E uh)∥

2
L2(E) + h−1

E ∥uh −Π∇,Ψ
k,E uh∥

2
L2(∂E).

Scheme: Find uh ∈ V Ψ
k,h,0 such that

ah(uh, vh) :=
∑

E∈Ωh

∫
E

f Π∆
l,Evh ∀vh ∈ V Ψ

k,h,0.
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Convergence

Theorem (Discrete Energy Error)

Let u = ur + ψ solution to PDE with ψ ∈ Ψ and ur ∈ Hk+1(Ωh). Under
standard mesh regularity assumption:

∥uh − Ik,hu∥a,h ≲ hk|ur|Hk+1(Ωh),

where ∥·∥a,h is the energy norm associated with ah and Ik,hu = Îk,hur + ψ

with Îk,h standard VEM interpolant of ur.
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Consistency analysis – The Virtual Element Approach

∑
E∈Ωh

∫
E

−∆uΠ∆
l,Evh − ah(Ik,hu, vh)

=

∫
Ω

−∆u vh +O(hk)−
∑

E∈Ωh

∫
E

∇(Π∇,Ψ
k,E Ik,hu) · ∇

�
��Π∇,Ψ
k,E vh + stab

=

∫
Ω

∇(u−Π∇,Ψ
k,E Ik,hu) · ∇vh +O(hk) + stab

≤ ∥∇(u−Π∇,Ψ
k,E Ik,hu)∥L2∥∇vh∥L2 +O(hk) + stab

To conclude:

◦ Approximation properties of Ik,hu.
◦ Boudedness ∥∇vh∥L2 ≤ C∥vh∥a,h (norm on DOFs of vh).

Difficult for standard VEM, not known for extended VEM...

Refs: [Benvenuti et al., 2019, Artioli and Mascotto, 2021].
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Consistency analysis – The Fully Discrete Approach I

Circumvents these issues by adopting a fully discrete approach:
do not introduce virtual functions, express everything in terms
of computable quantities.

Refs: Enriched Hybrid High-Order: [Yemm, 2022, Yemm, 2024].
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Consistency analysis – The Fully Discrete Approach II

Manipulate source term: introduce elliptic projector, perform IBP, use
continuity of fluxes:

−
∑

E∈Ωh

∫
E

∆uΠ∆
l,Evh

= −
∑

E∈Ωh

∫
E

∆u(Π∆
l,Evh −Π∇,Ψ

k,E vh) +
∑

E∈Ωh

∫
E

∇u · ∇Π∇,Ψ
k,E vh

+
∑

E∈Ωh

⟨∇u · n, vh −Π∇,Ψ
k,E vh⟩∂E .

Property of projectors: for all z ∈ Pk(E) + Ψ|E , we have
∆z ∈ Pl(E) + ∆Ψ|E so

−
∫
E

∆z(
�
��Π∆
l,Evh −Π∇,Ψ

k,E vh) + ⟨∇z · n, vh −Π∇,Ψ
k,E vh⟩∂E

IBP
=

∫
E

∇z · ∇(vh −Π∇,Ψ
k,E vh)

def. Π∇,Ψ
k,E

= 0.
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Consistency analysis – The Fully Discrete Approach III

Eliminate singular part of u: recalling that u = ur + ψ, take
z = qE + ψ ∈ Pk(E) + Ψ|E and subtract:

−
∑

E∈Ωh

∫
E

∆uΠ∆
l,Evh =

∑
E∈Ωh

∫
E

∇u · ∇Π∇,Ψ
k,E vh

−
∑

E∈Ωh

∫
E

∆(ur − qE)(Π
∆
l,Evh −Π∇,Ψ

k,E vh)

+
∑

E∈Ωh

∫
∂E

∇(ur − qE) · n(vh −Π∇,Ψ
k,E vh).

◦ Last two terms are O(hk) by regularity of ur and polynomial
approximation.

◦ First term combines with consistent term in ah(Ik,hu, vh):∫
E

∇(Π∇,Ψ
k,E Ik,hu) · ∇Π∇,Ψ

k,E vh =

∫
E

∇Ik,hu · ∇Π∇,Ψ
k,E vh

to create u− Ik,hu = ur − Îk,hur (since ψ = Ik,hψ), which is O(hk).
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L-shaped domain Ω = (−1, 1)2\[0, 1)2

Solution: take u = sin(πx) sin(πy) + ψ with singularity at re-entrant corner

ψ(r, θ) = r
2
3 sin(

2

3
(θ − π

2
)).

Mesh:
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L-shaped domain Ω = (−1, 1)2\[0, 1)2
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Fractured domain Ω = (0, 1)2\([0, 1)× {0})

Solution: take u = sin(πx) sin(πy) + ψ with singularity at re-entrant corner

ψ(r, θ) = r
1
2 sin(

1

2
θ).

Mesh:
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Fractured domain Ω = (0, 1)2\([0, 1)× {0})
Non-enriched Locally Enriched Globally Enriched
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Conclusion

◦ Polytopal method, benefitting from the flexibility of general
polygonal/polyhedral meshes.

◦ Extended: includes a singularity space in the design, to better reproduce
singular solutions.

◦ Recovers optimal convergence for problems with re-entrant corners and
cracks. But also improves problems with highly oscillatory solutions (PhD
L. Yemm).

◦ First complete analysis, circumvents the issues of a virtual-element based
analysis by using a fully discrete approach (only based on DOFs, not virtual
functions).
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