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Enhanced oil recovery

{oil,
solvent}↑

production wellinjection well

solvent↓
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Model for enhanced oil recovery


div u = @+ − @− := @

u = − Q

`(2) grad ?

q
m2

mC
+ div(u2 − J (x, u) grad 2) + @−2 = @+

Unknowns
?(x, C) - pressure of the mixture
u(x, C) - Darcy velocity
2(x, C) - concentration of the
injected solvent

Parameters

Q (x) - permeability tensor

q(x) - porosity

Features: non-linear, coupled, convection-dominated, anisotropic and
heterogeneous.
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Incompressible magnetohydrodynamics

−mu
mC
− a:Δu + (u · grad)u + grad

?

d
− (curl b) × b = f ,

mb

mC
+ a< curl(curl b) − curl(u × b) = 0,

div u = div b = 0,

Unknowns

u - fluid velocity

? - fluid pressure

b - magnetic field

Parameters

f - external body force

d - fluid density

a: , a< - kinematic and magnetic
diffusivity

Features: non-linear, coupled, incomplete differential operators and
convection forces.
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Finite elements

Approximate using global functions on the domain that are locally
polynomials.

Require specific mesh geometries, mostly tetrahedra or hexahedras, to glue
local polynomial functions into global functions.

Unless using specific “tricks”, e.g. for cut meshes.
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Shortcomings of classical Finite Elements

Limitations of conforming meshes with standard elements

=⇒ local refinement requires to trade mesh size for mesh quality
=⇒ complex geometries may require a large number of elements
=⇒ the element shape cannot be adapted to the solution

Need for (global) basis functions

=⇒ significant increase of DOFs on hexahedral elements
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Meshes for complex problems
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What is a polytopal method?

A discretisation method for PDEs that can be applied to meshes with
generic polytopal elements (polygons in 2D, polyhedra in 3D).

Seamlessly handles non-conformity (“hanging nodes”).

Sometimes also arbitrary order of accuracy.
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Some polytopal methods

Discontinuous Galerkin (actually started on triangles/tetrahedra),
[Arnold, 1982, Brezzi et al., 2000, Di Pietro and Ern, 2010]: 70’s, then
2012+.

Hybridizable Discontinuous Galerkin and Weak Galerkin method
[Cockburn et al., 2009, Cockburn, 2018]: 2009+.

Mixed Finite Volumes, Hybrid Finite Volumes (SUSHI) and Mimetic Finite
Differences [D. et al., 2010, Beirão da Veiga et al., 2014]: 2004+.

Virtual Element Methods
[Beirão da Veiga et al., 2013, Ayuso de Dios et al., 2016]: 2013+.

Hybrid High-Order methods
[Di Pietro et al., 2014, Di Pietro and D., 2020]: 2014+.

General literature review in the preface of [Di Pietro and D., 2020].

10 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

Design and convergence for Darcy flow

Model problem: Darcy flow in pressure formulation

Given ^ constant symmetric positive definite tensor and 5 ∈ !2 (Ω), the
Darcy problem reads:

Find the velocity u : Ω→ R3 and pressure ? : Ω→ R s.t.

^−1u − grad ? = 0 in Ω, (Darcy’s law)

−div u = 5 in Ω, (mass conservation)

? = 0 on mΩ (boundary condition)

Primal formulation: eliminate velocity.

− div(^ grad ?) = 5 in Ω,

? = 0 on mΩ.

Weak formulation: Find ? ∈ �1
0 (Ω) s.t.∫

Ω

^ grad ? · grad @ =
∫
Ω

5 @ ∀@ ∈ �1
0 (Ω).
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Design and convergence for Darcy flow

An inspiring remark

�

)

) : mesh element (cell), F) set of faces � of ) .
P: (-) = polynomials of degree ≤ : on - = ), �.
c
0,:
-

: !2-projector on P: (-), satisfies: for 6 ∈ !2 (-),∫
-

6@: =

∫
-

(c0,:
-
6)@: ∀@ ∈ P: (-).

c
1,:+1
^,)

: (oblique) elliptic projector, defined by: for 6 ∈ �1 ()),∫
)

^ grad(c1,:+1
^,)

6) · grad @:+1 =
∫
)

grad 6 · grad @:+1 ∀@:+1 ∈ P:+1 ()),∫
)

c
1,:+1
^,)

6 =

∫
)

6.

c
1,:+1
^,)

? computable from c
0,:
)
? and (c0,:

�
?)� ∈F) .
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Design and convergence for Darcy flow

Design: Local space and interpolator

••
•

• •

•

k = 0

•

••

••
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•• ••

••

k = 1

••
•

• • •
• • •
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Figure: Degrees of freedom for : ∈ {0, 1, 2} and 3 = 2

For : ≥ 0 and ) ∈ Tℎ, define the local HHO space

*:
)
≔

{
E
)
= (E) , (E� )� ∈F) ) : E) ∈ P: ()) and E� ∈ P: (�) for all � ∈ F)

}
The local interpolator �:

)
: �1 ()) → *:

)
is s.t., for all E ∈ �1 ()),

�:) E ≔
(
c
0,:
)
E, (c0,:

�
E)� ∈F)

)
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Design and convergence for Darcy flow

Design: Potential reconstruction

Let ) ∈ Tℎ, the potential reconstruction r:+1
)

: *:
)
→ P:+1 ()) is s.t., for all

E
)
∈ *:

)
and @:+1 ∈ P:+1 ()),∫

)

^ grad r:+1) E
)
· grad @:+1

= −
∫
)

E) (div ^ grad @:+1) +
∑
� ∈F)

∫
�

E� (^ grad @:+1 · n) � ),∫
)

r:+1) E
)
=

∫
)

E) .

By construction:

r:+1
)
(�:
)
E) = c1,:+1

^,)
E ∀E ∈ �1 ()).
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Design and convergence for Darcy flow

Design: Local bilinear form

Bilinear form in weak formulation:∫
Ω

^ grad ? · grad @ =
∑
) ∈Tℎ

∫
)

^ grad ? · grad @.

Approximate local term:∫
)

^ grad ? · grad @

{ a) (?
)
, @
)
) ≔

∫
)

^ grad(r:+1) ?
)
) · grad(r:+1) @

)
) + s) (?

)
, @
)
).

Stabilisation term s) : *:
)
×*:

)
→ R:

1 Symmetric semi-definite positive,
2 Polynomially consistent:

s) (�:) ?:+1, ·) = 0 ∀?:+1 ∈ P:+1 ()),
3 Stable: in particular,

a) (?) , ?) ) = 0⇐⇒ ?
)
= �:)� for some � ∈ R.

Many possible choices, not all equally good [D. and Yemm, 2022b].
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Design and convergence for Darcy flow

Design: Discrete problem

Global space patching local ones and enforcing boundary conditions:

*:
ℎ,0 ≔

{
E
ℎ
= ((E) )) ∈Tℎ , (E� )� ∈Fℎ ) : E) ∈ P: ()) ∀) ∈ Tℎ ,

E� ∈ P: (�) ∀� ∈ Fℎ , E� = 0 ∀� ⊂ mΩ
}
.

Global bilinear form assembling local ones:

aℎ (Eℎ , Fℎ) ≔
∑
) ∈Tℎ

a) (E) , F) ).

HHO scheme: find ?
ℎ
∈ *:

ℎ,0
s.t.

aℎ (?
ℎ
, @
ℎ
) =

∑
) ∈Tℎ

∫
)

5 @) ∀@
ℎ
∈ *:

ℎ,0.
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Design and convergence for Darcy flow

Convergence analysis

Based on optimal approximation properties of c1,:+1
^,)

.

Errors in energy norm:

‖?
ℎ
− �:

ℎ
?‖a,ℎ = O(ℎ:+1)

where ‖E
ℎ
‖a,ℎ = aℎ (Eℎ , Eℎ)1/2 and �:

ℎ
? = ((c0,:

)
?)) ∈Tℎ , c

0,:
�
?)� ∈Fℎ ) global

interpolate of the exact solution ?.

Errors in !2-norm (under elliptic regularity of the problem):

‖r:+1
ℎ

?
ℎ
− ?‖!2 (Ω) = O(ℎ:+2)

where (r:+1
ℎ

?
ℎ
)|) = r:+1

)
?
)

.
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Design and convergence for Darcy flow

Numerical results: error vs. ℎ
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Miscible flow

Model

From [Anderson and D., 2018].


div u = @+ − @− := @

u = − Q

`(2) grad ?

q
m2

mC
+ div(u2 − J (x, u) grad 2) + @−2 = @+

?(x, C) - pressure of the mixture

u(x, C) - Darcy velocity

2(x, C) - concentration of the injected solvent
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Miscible flow

Numerical results
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(a) Surface plot at C = 3 years
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(c) Surface plot at C = 10 years
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(d) Contour plot at C = 10 years

Figure: Concentration of invading solvent, : = 1 and ΔC = 18 9, discontinuous permeability.
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Miscible flow

Numerical results: recovery vs. ℎ

Recovery:

∫
Ω
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Miscible flow

Numerical results: computational cost
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A little bit of higher order approximation is not very expensive, but can
make a huge difference.
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Incompressible stationnay MHD

Model

From [D. and Yemm, 2022a], based on [Botti et al., 2019] (Navier–Stokes).

−a:Δu + (u · grad)u + grad @ − (curl b) × b = f ,

a< curl(curl b) − curl(u × b) = 0,

div u = div b = 0,

... and with a little bit of differential calculus and Lagrange multipliers...

−a:Δu + (u · grad)u − (b · grad)b + grad @ = f ,

−a<Δb + (u · grad)b − (b · grad)u + grad A = g,

div u = div b = 0.
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−a<Δb + (u · grad)b − (b · grad)u + grad A = g,

div u = div b = 0.
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Incompressible stationnay MHD

Convergence results

Small data and smooth solutions:

Optimal convergence rates O(ℎ:+1) in energy norm for u, b and in
!2-norm for A, @.

Any data and solution:

Convergence of the scheme by compactness techniques.

Applicable in real-worl settings...
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Incompressible stationnay MHD

Numerical results: tetrahedral meshes (a: = a< = 0.1)
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Incompressible stationnay MHD

Numerical results: Voronoi meshes (a: = a< = 0.1)
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Revisiting MHD through Magnetostatics

The magnetostatics problem

For ` > 0 and P∈ curlN(curl;Ω), the magnetostatics problem reads:

Find the magnetic field N : Ω→ R3 and vector potential G : Ω→ R3 s.t.

`N − curl G = 0 in Ω, (vector potential)

curlN = P in Ω, (Ampère’s law)

div G = 0 in Ω, (Coulomb’s gauge)

G × n = 0 on mΩ (boundary condition)

Weak formulation: Find (N, G) ∈ N(curl;Ω) × N(div;Ω) s.t.∫
Ω

`N · 3 −
∫
Ω

G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)
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G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)

with

N(curl;Ω) ≔
{
v ∈ R2 (Ω) : curl v ∈ R2 (Ω)

}
,

N(div;Ω) ≔
{
w ∈ R2 (Ω) : div w ∈ !2 (Ω)

}
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Revisiting MHD through Magnetostatics

The magnetostatics problem

Weak formulation: Find (N, G) ∈ N(curl;Ω) × N(div;Ω) s.t.∫
Ω

`N · 3 −
∫
Ω

G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)

Stability (inf–sup) analysis:

Make (3, v) = (N, G) { bound on N and div G.

Make (3, v) = (0, curlN) { bound on curlN.
Write G = G∗ + G⊥ ∈ Ker div ⊕(Ker div)⊥.
Bound on G⊥ through bound on div G = div G⊥.
Bound on G∗: requires

Im curl = Ker div

to write G∗ = − curl 3 with 3 ∈ (Ker curl)⊥, and use (3, 0) as test function.

30 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

Revisiting MHD through Magnetostatics

The magnetostatics problem

Weak formulation: Find (N, G) ∈ N(curl;Ω) × N(div;Ω) s.t.∫
Ω

`N · 3 −
∫
Ω

G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)

Stability (inf–sup) analysis:

Make (3, v) = (N, G) { bound on N and div G.
Make (3, v) = (0, curlN) { bound on curlN.

Write G = G∗ + G⊥ ∈ Ker div ⊕(Ker div)⊥.
Bound on G⊥ through bound on div G = div G⊥.
Bound on G∗: requires

Im curl = Ker div

to write G∗ = − curl 3 with 3 ∈ (Ker curl)⊥, and use (3, 0) as test function.

30 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

Revisiting MHD through Magnetostatics

The magnetostatics problem

Weak formulation: Find (N, G) ∈ N(curl;Ω) × N(div;Ω) s.t.∫
Ω

`N · 3 −
∫
Ω

G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)

Stability (inf–sup) analysis:

Make (3, v) = (N, G) { bound on N and div G.
Make (3, v) = (0, curlN) { bound on curlN.
Write G = G∗ + G⊥ ∈ Ker div ⊕(Ker div)⊥.

Bound on G⊥ through bound on div G = div G⊥.
Bound on G∗: requires

Im curl = Ker div

to write G∗ = − curl 3 with 3 ∈ (Ker curl)⊥, and use (3, 0) as test function.

30 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

Revisiting MHD through Magnetostatics

The magnetostatics problem

Weak formulation: Find (N, G) ∈ N(curl;Ω) × N(div;Ω) s.t.∫
Ω

`N · 3 −
∫
Ω

G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)

Stability (inf–sup) analysis:

Make (3, v) = (N, G) { bound on N and div G.
Make (3, v) = (0, curlN) { bound on curlN.
Write G = G∗ + G⊥ ∈ Ker div ⊕(Ker div)⊥.
Bound on G⊥ through bound on div G = div G⊥.

Bound on G∗: requires
Im curl = Ker div

to write G∗ = − curl 3 with 3 ∈ (Ker curl)⊥, and use (3, 0) as test function.

30 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

Revisiting MHD through Magnetostatics

The magnetostatics problem

Weak formulation: Find (N, G) ∈ N(curl;Ω) × N(div;Ω) s.t.∫
Ω

`N · 3 −
∫
Ω

G · curl 3 = 0 ∀3 ∈ N(curl;Ω),∫
Ω

curlN · v +
∫
Ω

div G div v =

∫
Ω

P · v ∀v ∈ N(div;Ω)

Stability (inf–sup) analysis:

Make (3, v) = (N, G) { bound on N and div G.
Make (3, v) = (0, curlN) { bound on curlN.
Write G = G∗ + G⊥ ∈ Ker div ⊕(Ker div)⊥.
Bound on G⊥ through bound on div G = div G⊥.
Bound on G∗: requires

Im curl = Ker div

to write G∗ = − curl 3 with 3 ∈ (Ker curl)⊥, and use (3, 0) as test function.

30 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

The de Rham complex

A unified tool for well-posedness

R �1 (Ω) N(curl;Ω) N(div;Ω) !2 (Ω) {0}grad curl div 0

We have key properties depending on the topology of Ω:

Ω connected (10 = 1) =⇒ Ker grad = R,

Im grad ⊂ Ker curl,

Im curl ⊂ Ker div,

Ω ⊂ R3 (13 = 0) =⇒ Imdiv = !2 (Ω)

When 11 ≠ 0 or 12 ≠ 0, de Rham’s cohomology characterizes

Ker curl/Im grad and Ker div/Im curl

Key consequences are Hodge decompositions and Poincaré inequalities

Emulating these properties is key for stable discretizations
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Emulating these properties is key for stable discretizations

31 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

The de Rham complex

A unified tool for well-posedness

R �1 (Ω) N(curl;Ω) N(div;Ω) !2 (Ω) {0}grad curl div 0

We have key properties depending on the topology of Ω:

Ω connected (10 = 1) =⇒ Ker grad = R,

no “tunnels” crossing Ω (11 = 0) =⇒ Im grad = Ker curl,

no “voids” contained in Ω (12 = 0) =⇒ Im curl = Ker div,

Ω ⊂ R3 (13 = 0) =⇒ Imdiv = !2 (Ω)

When 11 ≠ 0 or 12 ≠ 0, de Rham’s cohomology characterizes

Ker curl/Im grad and Ker div/Im curl

Key consequences are Hodge decompositions and Poincaré inequalities
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The de Rham complex

The discrete de Rham (DDR) approach I

Key idea: replace both spaces and operators by discrete counterparts:

R -:
grad,ℎ

^:
curl,ℎ

^:
div,ℎ

P: (Tℎ) {0}
� :
grad,ℎ M:

ℎ
I:
ℎ

�:
ℎ 0

Support of polyhedral meshes (CW complexes) and high-order

Key exactness and consistency properties proved at the discrete level

Several strategies to reduce the number of unknowns on general shapes

32 / 41



Some models of interest Polytopal methods Hybrid High-Order methods Cohomology-preserving methods Conclusion and perspectives References

The de Rham complex

The discrete de Rham (DDR) approach II

�

+

)
�

DDR spaces are spanned by vectors of polynomials

Polynomial components enable consistent reconstructions of

vector calculus operators

the corresponding scalar or vector potentials

These reconstructions emulate integration by parts (Stokes) formulas
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The de Rham complex

Works on DDR

Introduction of DDR [Di Pietro et al., 2020]

Analytical properties [Di Pietro and D., 2021a]

Application to magnetostatics [Di Pietro and D., 2021b]

Bridges with VEM [Beirão da Veiga et al., 2021]

Serendipity technique (reduction DOFs) [Di Pietro and D., 2022b]

Cohomology analysis: ongoing...

Other recent developments include:

Reissner–Mindlin plates [Di Pietro and D., 2021c]
The 2D plates complex and Kirchhoff–Love plates [Di Pietro and D., 2022a]

RT1 (�) N1 (Ω;R2) N(div div,Ω;S) !2 (Ω) 0
sym rot div div 0

The 2D Stokes complex [Hanot, 2021]

R �2 (Ω) N1 (Ω) !2 (Ω) 0
rot div 0
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The de Rham complex

Numerical results for magnetostatics model
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Numerical results for magnetostatics model
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The de Rham complex

Stokes in curl-curl form: robustness, serendipity efficiency

Pressure-robust discretisations: optimal error estimates depend only on the
velocity.

Strong computational gain with serendipity DDR.
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Figure: Voronoi meshes, wall and processor times (s) for the resolution of the linear systems
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Benefits

Increased flexibility for meshing complex domains, or capturing local
behaviour of solutions.

Arbitrary order improves efficiency/cost, especially for steep problems.

Systematic strategies for reducing the number of DOFs.

Challenges and perspectives

Design of efficient polytopal mesh generators.

Numerical solvers: work currently in infancy.

Analysis of polytopal methods for incomplete operators (curl, divergence) is
very complex.

Polytopal Exterior Calculus (PEC) to be developed in line of Finite Element
Exterior Calculus (FEEC), in the formalism of differential forms.

Further applications...
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