Next generation methods for the simulation of geophysical flows (and more...)

Jérôme Droniou
...and many collaborators.

School of Mathematics, Faculty of Science, Monash University
https://users.monash.edu/~jdroniou/

Mathēmatica Sōlis et Terrae conference, 11-13 April 2022
Outline

1. Some models of interest

2. Polytopal methods

3. Hybrid High-Order methods
 - Design and convergence for Darcy flow
 - Miscible flow
 - Incompressible stationary MHD

4. Cohomology-preserving methods
 - Revisiting MHD through Magnetostatics
 - The de Rham complex

5. Conclusion and perspectives
Enhanced oil recovery

Injection well

Production well

Solvent

{Oil, solvent}
Model for enhanced oil recovery

\[\begin{cases} \text{div } \mathbf{u} = q^+ - q^- := q \\ \mathbf{u} = -\frac{K}{\mu(c)} \text{ grad } p \end{cases} \]

\[\phi \frac{\partial c}{\partial t} + \text{div}(\mathbf{u}c - D(x, \mathbf{u}) \text{ grad } c) + q^- c = q^+ \]

Unknowns
- \(p(x, t) \) - pressure of the mixture
- \(\mathbf{u}(x, t) \) - Darcy velocity
- \(c(x, t) \) - concentration of the injected solvent

Parameters
- \(K(x) \) - permeability tensor
- \(\phi(x) \) - porosity

Features: non-linear, coupled, convection-dominated, anisotropic and heterogeneous.
Incompressible magnetohydrodynamics

\[
- \frac{\partial \mathbf{u}}{\partial t} - \nu_k \Delta \mathbf{u} + (\mathbf{u} \cdot \text{grad}) \mathbf{u} + \text{grad} \frac{p}{\rho} - (\text{curl} \mathbf{b}) \times \mathbf{b} = \mathbf{f},
\]

\[
\frac{\partial \mathbf{b}}{\partial t} + \nu_m \text{curl}(\text{curl} \mathbf{b}) - \text{curl}(\mathbf{u} \times \mathbf{b}) = 0,
\]

\[
\text{div} \mathbf{u} = \text{div} \mathbf{b} = 0,
\]

Unknowns
- \(\mathbf{u} \) - fluid velocity
- \(p \) - fluid pressure
- \(\mathbf{b} \) - magnetic field

Parameters
- \(\mathbf{f} \) - external body force
- \(\rho \) - fluid density
- \(\nu_k, \nu_m \) - kinematic and magnetic diffusivity

Features: non-linear, coupled, incomplete differential operators and convection forces.
Finite elements

- Approximate using **global functions** on the domain that are **locally polynomials**.
Finite elements

- Approximate using **global functions** on the domain that are **locally polynomials**.
- Require specific mesh geometries, mostly tetrahedra or hexahedras, to glue local polynomial functions into global functions.

Unless using specific “tricks”, e.g. for cut meshes.
Shortcomings of classical Finite Elements

- Limitations of conforming meshes with standard elements
 - local refinement requires to trade mesh size for mesh quality
 - complex geometries may require a large number of elements
 - the element shape cannot be adapted to the solution

- Need for (global) basis functions
 - significant increase of DOFs on hexahedral elements
Meshes for complex problems
What is a polytopal method?

- A discretisation method for PDEs that can be applied to meshes with generic polytopal elements (polygons in 2D, polyhedra in 3D).
- Seamlessly handles non-conformity (“hanging nodes”).

- Sometimes also arbitrary order of accuracy.
Some polytopal methods

- Discontinuous Galerkin (actually started on triangles/tetrahedra), [Arnold, 1982, Brezzi et al., 2000, Di Pietro and Ern, 2010]: 70’s, then 2012+.
- Mixed Finite Volumes, Hybrid Finite Volumes (SUSHI) and Mimetic Finite Differences [D. et al., 2010, Beirão da Veiga et al., 2014]: 2004+.

General literature review in the preface of [Di Pietro and D., 2020].
Model problem: Darcy flow in pressure formulation

- Given κ constant symmetric positive definite tensor and $f \in L^2(\Omega)$, the Darcy problem reads:

 Find the velocity $u : \Omega \to \mathbb{R}^3$ and pressure $p : \Omega \to \mathbb{R}$ s.t.

 \[
 \kappa^{-1}u - \nabla p = 0 \quad \text{in } \Omega, \quad \text{(Darcy’s law)}
 \]

 \[
 - \nabla \cdot u = f \quad \text{in } \Omega, \quad \text{(mass conservation)}
 \]

 \[
 p = 0 \quad \text{on } \partial \Omega \quad \text{(boundary condition)}
 \]
Model problem: Darcy flow in pressure formulation

- Given κ constant symmetric positive definite tensor and $f \in L^2(\Omega)$, the Darcy problem reads:

Find the velocity $u : \Omega \to \mathbb{R}^3$ and pressure $p : \Omega \to \mathbb{R}$ s.t.

\[
\kappa^{-1} u - \nabla p = 0 \quad \text{in } \Omega, \\
- \text{div } u = f \quad \text{in } \Omega, \\
p = 0 \quad \text{on } \partial \Omega
\]

(Darcy’s law)

(mass conservation)

(boundary condition)

- **Primal formulation**: eliminate velocity.

\[
- \text{div}(\kappa \nabla p) = f \quad \text{in } \Omega, \\
p = 0 \quad \text{on } \partial \Omega.
\]
Model problem: Darcy flow in pressure formulation

- Given κ constant symmetric positive definite tensor and $f \in L^2(\Omega)$, the Darcy problem reads:

Find the velocity $u : \Omega \rightarrow \mathbb{R}^3$ and pressure $p : \Omega \rightarrow \mathbb{R}$ s.t.

$$\kappa^{-1}u - \text{grad } p = 0 \quad \text{in } \Omega, \quad \text{(Darcy's law)}$$

$$- \text{div } u = f \quad \text{in } \Omega, \quad \text{(mass conservation)}$$

$$p = 0 \quad \text{on } \partial\Omega \quad \text{(boundary condition)}$$

- **Primal formulation:** eliminate velocity.

$$- \text{div}(\kappa \text{grad } p) = f \quad \text{in } \Omega,$$

$$p = 0 \quad \text{on } \partial\Omega.$$

- **Weak formulation:** Find $p \in H^1_0(\Omega)$ s.t.

$$\int_{\Omega} \kappa \text{grad } p \cdot \text{grad } q = \int_{\Omega} f q \quad \forall q \in H^1_0(\Omega).$$
An inspiring remark

- T: mesh element (cell), \mathcal{F}_T set of faces F of T.
- $\mathcal{P}^k(X) =$ polynomials of degree $\leq k$ on $X = T, F$.
- $\pi^{0,k}_X$: L^2-projector on $\mathcal{P}^k(X)$, satisfies: for $g \in L^2(X)$,
 \[\int_X g q_k = \int_X (\pi^{0,k}_X g) q_k \quad \forall q \in \mathcal{P}^k(X). \]
- $\pi^{1,k+1}_{k,T}$: (oblique) elliptic projector, defined by: for $g \in H^1(T)$,
 \[\int_T \kappa \operatorname{grad}(\pi^{1,k+1}_{k,T} g) \cdot \operatorname{grad} q_{k+1} = \int_T \operatorname{grad} g \cdot \operatorname{grad} q_{k+1} \quad \forall q_{k+1} \in \mathcal{P}^{k+1}(T), \]
 \[\int_T \pi^{1,k+1}_{k,T} g = \int_T g. \]
An inspiring remark

\[\int_X g q_k = \int_X (\pi^{0,k}_X g) q_k \]
An inspiring remark

\[\int_X g q_k = \int_X (\pi^{0,k}_X g) q_k \]

- For \(p \in H^1(T) \) and \(q_{k+1} \in \mathcal{P}^{k+1}(T) \):

\[
\int_T \kappa \text{grad}(\pi^{1,k+1}_{\kappa,T} p) \cdot \text{grad} q_{k+1} = \int_T \kappa \text{grad} p \cdot \text{grad} q_{k+1}
\]

\[= - \int_T p \text{div}(\kappa \text{grad} q_{k+1}) + \sum_{F \in \mathcal{T}_T} \int_F p(\kappa \text{grad} q_{k+1} \cdot n_{TF}). \]
An inspiring remark

\[
\int_X g q_k = \int_X (\pi_X^0 g) q_k
\]

- For \(p \in H^1(T) \) and \(q_{k+1} \in \mathcal{P}^{k+1}(T) \):

\[
\int_T \kappa \text{grad}(\pi_{k,T}^{1,k+1} p) \cdot \text{grad} q_{k+1} = \int_T \kappa \text{grad} p \cdot \text{grad} q_{k+1}
\]

\[
= - \int_T \pi_T^{0,k} p \text{div}(\kappa \text{grad} q_{k+1}) + \sum_{F \in \mathcal{F}_T} \int_F \pi_F^{0,k} p (\kappa \text{grad} q_{k+1} \cdot \mathbf{n}_{TF}) \quad \epsilon \mathcal{P}^k(F)
\]
An inspiring remark

$$\int_X g q_k = \int_X (\pi^{0,k}_X g) q_k$$

- For $p \in H^1(T)$ and $q_{k+1} \in \mathcal{P}^{k+1}(T)$:

$$\int_T \kappa \text{grad} (\pi^{1,k+1}_{k,T} p) \cdot \text{grad} q_{k+1} = \int_T \kappa \text{grad} p \cdot \text{grad} q_{k+1}$$

$$= - \int_T \pi^{0,k}_T p \underbrace{\text{div}(\kappa \text{grad} q_{k+1})}_{\in \mathcal{P}^k(T)} + \sum_{F \in \mathcal{F}_T} \int_F \pi^{0,k}_F p \underbrace{(\kappa \text{grad} q_{k+1} \cdot \mathbf{n}_{TF})}_{\in \mathcal{P}^k(F)}.$$

$$\pi^{1,k+1}_{k,T} p$$ computable from $\pi^{0,k}_T p$ and $(\pi^{0,k}_F p)_{F \in \mathcal{F}_T}$.
Design: Local space and interpolator

For \(k \geq 0 \) and \(T \in \mathcal{T}_h \), define the local HHO space

\[
U^k_T := \{ v_T = (v_T, (v_F)_{F \in F_T}) : v_T \in P^k(T) \text{ and } v_F \in P^k(F) \text{ for all } F \in F_T \}
\]

The local interpolator \(I^k_T : H^1(T) \to U^k_T \) is s.t., for all \(v \in H^1(T) \),

\[
I^k_T v := (\pi^0_T v, (\pi^0_F v)_F)_{F \in F_T}
\]
Design and convergence for Darcy flow

Design: Potential reconstruction

- Let $T \in \mathcal{T}_h$, the potential reconstruction $r_{T}^{k+1} : \bar{U}_{T}^{k} \rightarrow \mathcal{P}^{k+1}(T)$ is s.t., for all $v_{T} \in \bar{U}_{T}^{k}$ and $q_{k+1} \in \mathcal{P}^{k+1}(T)$,

$$
\int_{T} \kappa \text{grad} r_{T}^{k+1} v_{T} \cdot \text{grad} q_{k+1} = - \int_{T} v_{T} \left(\text{div} \kappa \text{grad} q_{k+1} \right) + \sum_{F \in \mathcal{F}_{T}} \int_{F} v_{F} \left(\kappa \text{grad} q_{k+1} \cdot n_{TF} \right),
$$

$$
\int_{T} r_{T}^{k+1} v_{T} = \int_{T} v_{T}.
$$

- By construction:

$$
r_{T}^{k+1} (I_{T}^{k} v) = \pi_{k,T}^{1,k+1} v \quad \forall v \in H^{1}(T).
$$
Design: Local bilinear form

- Bilinear form in weak formulation:
 \[
 \int_{\Omega} \kappa \, \text{grad} \, p \cdot \text{grad} \, q = \sum_{T \in T_h} \int_{T} \kappa \, \text{grad} \, p \cdot \text{grad} \, q.
 \]
Design: Local bilinear form

- Bilinear form in weak formulation:
 \[\int_{\Omega} \kappa \text{grad} p \cdot \text{grad} q = \sum_{T \in \mathcal{T}_h} \int_{T} \kappa \text{grad} p \cdot \text{grad} q. \]

- Approximate local term:
 \[\int_{T} \kappa \text{grad} p \cdot \text{grad} q \]
 \[\sim a_T (p_T, q_T) := \int_{T} \kappa \text{grad}(r_{T}^{k+1} p_T) \cdot \text{grad}(r_{T}^{k+1} q_T) + s_T (p_T, q_T). \]
Design: Local bilinear form

• Approximate local term:

\[
\int_T \kappa \text{grad} \ p \cdot \text{grad} \ q \\
\sim a_T(p_T, q_T) := \int_T \kappa \text{grad}(r_T^{k+1}p_T) \cdot \text{grad}(r_T^{k+1}q_T) + s_T(p_T, q_T).
\]

• Stabilisation term \(s_T : U_T^k \times U_T^k \rightarrow \mathbb{R} \):

1. Symmetric semi-definite positive,
2. Polynomally consistent:

\[
s_T(I_T^k p_{k+1}, \cdot) = 0 \quad \forall p_{k+1} \in \mathcal{P}^{k+1}(T),
\]
3. Stable: in particular,

\[
a_T(p_T, p_T) = 0 \iff p_T = I_T^k C \quad \text{for some } C \in \mathbb{R}.
\]

Many possible choices, not all equally good [D. and Yemm, 2022b].
Design: Discrete problem

- **Global space** patching local ones and enforcing boundary conditions:

 \[U^k_{h,0} := \left\{ v_h = ((v_T)_T \in \mathcal{T}_h, (v_F)_F \in \mathcal{F}_h) : v_T \in \mathcal{P}^k(T) \quad \forall T \in \mathcal{T}_h, \right. \]

 \[v_F \in \mathcal{P}^k(F) \quad \forall F \in \mathcal{F}_h, \quad v_F = 0 \quad \forall F \subset \partial \Omega \left\} . \]

- **Global bilinear form** assembling local ones:

 \[a_h(v_h, w_h) := \sum_{T \in \mathcal{T}_h} a_T(v_T, w_T). \]

- **HHO scheme**: find \(p_h \in U^k_{h,0} \) s.t.

 \[a_h(p_h, q_h) = \sum_{T \in \mathcal{T}_h} \int_T f q_T \quad \forall q_h \in U^k_{h,0}. \]
Convergence analysis

- Based on optimal approximation properties of $\pi_{k,T}^{1,k+1}$.

- Errors in energy norm:
 \[
 \| p_{\text{h}} - I_h^k p \|_{a,h} = O(h^{k+1})
 \]
 where $\| v_{\text{h}} \|_{a,h} = a_h (v_{\text{h}}, v_{\text{h}})^{1/2}$ and $I_h^k p = ((\pi_T^{0,k} p)_T \in T_h, \pi_F^{0,k} p)_F \in F_h)$ global interpolate of the exact solution p.

- Errors in L^2-norm (under elliptic regularity of the problem):
 \[
 \| r_{\text{h}}^{k+1} p_{\text{h}} - p \|_{L^2(\Omega)} = O(h^{k+2})
 \]
 where $(r_{\text{h}}^{k+1} p_{\text{h}})_T = r_T^{k+1} p_T$.
Numerical results: error vs. h
Numerical results: error vs. h

Energy

L^2 norm

Mesh Reg. para.

1 10^7

2 377

3 $1.7E+3$

4 $2.6E+5$

5 $1.8E+4$
Some models of interest

Polytopal methods

Hybrid High-Order methods

Cohomology-preserving methods

Conclusion and perspectives

References

Design and convergence for Darcy flow

Numerical results: error vs. h

![Graphs showing error vs. h for different mesh regularity parameters](image)

<table>
<thead>
<tr>
<th>Mesh Reg. para.</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>107</td>
</tr>
<tr>
<td>2</td>
<td>377</td>
</tr>
<tr>
<td>3</td>
<td>1.7E+3</td>
</tr>
<tr>
<td>4</td>
<td>2.6E+5</td>
</tr>
<tr>
<td>5</td>
<td>1.8E+4</td>
</tr>
</tbody>
</table>
Model

From [Anderson and D., 2018].

\[
\begin{align*}
\text{div } u &= q^+ - q^- := q \\
u &= -\frac{K}{\mu(c)} \text{ grad } p
\end{align*}
\]

\[
\phi \frac{\partial c}{\partial t} + \text{div}(uc - D(x, u) \text{ grad } c) + q^- c = q^+
\]

- \(p(x, t)\) - pressure of the mixture
- \(u(x, t)\) - Darcy velocity
- \(c(x, t)\) - concentration of the injected solvent
Model

From [Anderson and D., 2018].

\[
\begin{aligned}
- \text{div} \left(\frac{K}{\mu(c)} \text{grad} p \right) &= q^+ - q^- := q \\
\mu(c) \frac{\partial c}{\partial t} + \text{div}(uc) - \text{div}(D(x,u) \text{grad} c) + q^- c &= q^+ \\
\end{aligned}
\]

- \(p(x, t) \) - pressure of the mixture
- \(u(x, t) \) - Darcy velocity
- \(c(x, t) \) - concentration of the injected solvent
Some models of interest

Polytopal methods

Hybrid High-Order methods

Cohomology-preserving methods

Conclusion and perspectives

References

Miscible flow

Numerical results

(a) Surface plot at $t = 3$ years

(b) Contour plot at $t = 3$ years

(c) Surface plot at $t = 10$ years

(d) Contour plot at $t = 10$ years

Figure: Concentration of invading solvent, $k = 1$ and $\Delta t = 18j$, discontinuous permeability.
Numerical results: recovery vs. h

Recovery: $\int_{\Omega} \phi c_h(T)$ for $T = 10y$.

![Graph showing recovery vs. mesh size]
Numerical results: recovery vs. h

Recovery: $\int_\Omega \phi c_h(T)$ for $T = 10y$.

![Graph showing recovery vs. mesh size and percentage of domain recovered for different values of k.]
Numerical results: recovery vs. h

Recovery: $\int_{\Omega} \phi c_h(T)$ for $T = 10y$.

Graph showing the percentage of domain recovered versus mesh size with lines for different values of k. The graph includes data points for $k = 0$, $k = 1$, and $k = 2$. The percentage of domain recovered decreases as the mesh size increases for $k = 2$.
Some models of interest
Polytopal methods
Hybrid High-Order methods
Cohomology-preserving methods
Conclusion and perspectives
References

Miscible flow

Numerical results: computational cost

![Graphs showing computational cost for Triangular and Cartesian meshes for different polynomial degrees (k = 0, 1, 2, 3).]
Numerical results: computational cost

A little bit of higher order approximation is not very expensive, but can make a huge difference.
Model

From [D. and Yemm, 2022a], based on [Botti et al., 2019] (Navier–Stokes).

\[-\nu_k \Delta u + (u \cdot \text{grad})u + \text{grad } q - (\text{curl } b) \times b = f,\]
\[\nu_m \text{curl(curl } b) - \text{curl(} u \times b) = 0,\]
\[\text{div } u = \text{div } b = 0,\]
Some models of interest

Polytopal methods

Hybrid High-Order methods

Cohomology-preserving methods

Conclusion and perspectives

References

Incompressible stationary MHD

Model

From [D. and Yemm, 2022a], based on [Botti et al., 2019] (Navier–Stokes).

\[-\nu_k \Delta u + (u \cdot \text{grad})u + \text{grad} q - (\text{curl} b) \times b = f,\]
\[\nu_m \text{curl} (\text{curl} b) - \text{curl} (u \times b) = 0,\]
\[\text{div} u = \text{div} b = 0,\]

... and with a little bit of differential calculus and Lagrange multipliers...

\[-\nu_k \Delta u + (u \cdot \text{grad})u - (b \cdot \text{grad})b + \text{grad} q = f,\]
\[-\nu_m \Delta b + (u \cdot \text{grad})b - (b \cdot \text{grad})u + \text{grad} r = g,\]
\[\text{div} u = \text{div} b = 0.\]
Convergence results

- Small data and smooth solutions:

 Optimal convergence rates $O(h^{k+1})$ in energy norm for u, b and in L^2-norm for r, q.

- Any data and solution:

 Convergence of the scheme by compactness techniques.

Applicable in real-world settings...
Numerical results: tetrahedral meshes ($\nu_k = \nu_m = 0.1$)

(a) $k = 0$
(b) $k = 1$
(c) $k = 2$
Numerical results: Voronoi meshes \((\nu_k = \nu_m = 0.1)\)
The magnetostatics problem

For $\mu > 0$ and $J \in \text{curl} \; H(\text{curl}; \Omega)$, the magnetostatics problem reads:

Find the magnetic field $H : \Omega \to \mathbb{R}^3$ and vector potential $A : \Omega \to \mathbb{R}^3$ s.t.

\[
\begin{align*}
\mu H - \text{curl} \; A &= 0 \quad \text{in } \Omega, \quad \text{(vector potential)} \\
\text{curl} \; H &= J \quad \text{in } \Omega, \quad \text{(Ampère’s law)} \\
\text{div} \; A &= 0 \quad \text{in } \Omega, \quad \text{(Coulomb’s gauge)} \\
A \times n &= 0 \quad \text{on } \partial \Omega \quad \text{(boundary condition)}
\end{align*}
\]
The magnetostatics problem

- For $\mu > 0$ and $J \in \text{curl} H(\text{curl}; \Omega)$, the magnetostatics problem reads:

 Find the magnetic field $H : \Omega \rightarrow \mathbb{R}^3$ and vector potential $A : \Omega \rightarrow \mathbb{R}^3$ s.t.

 $\mu H - \text{curl} A = 0 \quad \text{in } \Omega$, \quad (vector potential)

 $\text{curl} H = J \quad \text{in } \Omega$, \quad (Ampère’s law)

 $\text{div} A = 0 \quad \text{in } \Omega$, \quad (Coulomb’s gauge)

 $A \times n = 0 \quad \text{on } \partial \Omega$ \quad (boundary condition)

- Weak formulation: Find $(H, A) \in H(\text{curl}; \Omega) \times H(\text{div}; \Omega)$ s.t.

 $\int_{\Omega} \mu H \cdot \tau - \int_{\Omega} A \cdot \text{curl} \tau = 0 \quad \forall \tau \in H(\text{curl}; \Omega),$

 $\int_{\Omega} \text{curl} H \cdot v + \int_{\Omega} \text{div} A \text{ div } v = \int_{\Omega} J \cdot v \quad \forall v \in H(\text{div}; \Omega)$

 with

 $H(\text{curl}; \Omega) := \{ v \in L^2(\Omega) : \text{curl } v \in L^2(\Omega) \}$,

 $H(\text{div}; \Omega) := \{ w \in L^2(\Omega) : \text{div } w \in L^2(\Omega) \}$
The magnetostatics problem

- **Weak formulation**: Find \((\mathbf{H}, \mathbf{A}) \in H(\text{curl}; \Omega) \times H(\text{div}; \Omega)\) s.t.

\[
\int_{\Omega} \mu \mathbf{H} \cdot \mathbf{\tau} - \int_{\Omega} \mathbf{A} \cdot \text{curl} \mathbf{\tau} = 0 \quad \forall \mathbf{\tau} \in H(\text{curl}; \Omega),
\]

\[
\int_{\Omega} \text{curl} \mathbf{H} \cdot \mathbf{v} + \int_{\Omega} \text{div} \mathbf{A} \text{ div} \mathbf{v} = \int_{\Omega} \mathbf{J} \cdot \mathbf{v} \quad \forall \mathbf{v} \in H(\text{div}; \Omega)
\]

- **Stability (inf–sup) analysis**:
 - Make \((\mathbf{\tau}, \mathbf{v}) = (\mathbf{H}, \mathbf{A}) \leadsto\) bound on \(\mathbf{H}\) and \(\text{div} \mathbf{A}\).
The magnetostatics problem

- **Weak formulation**: Find \((H, A) \in H(\text{curl}; \Omega) \times H(\text{div}; \Omega)\) s.t.

 \[
 \int_{\Omega} \mu H \cdot \tau - \int_{\Omega} A \cdot \text{curl} \tau = 0 \quad \forall \tau \in H(\text{curl}; \Omega),
 \]

 \[
 \int_{\Omega} \text{curl} H \cdot v + \int_{\Omega} \text{div} A \cdot \text{div} v = \int_{\Omega} J \cdot v \quad \forall v \in H(\text{div}; \Omega)
 \]

- **Stability** (inf–sup) analysis:
 - Make \((\tau, v) = (H, A) \mapsto\) bound on \(H\) and \(\text{div} A\).
 - Make \((\tau, v) = (0, \text{curl} H) \mapsto\) bound on \(\text{curl} H\).
The magnetostatics problem

- **Weak formulation:** Find \((H, A) \in H(\text{curl}; \Omega) \times H(\text{div}; \Omega)\) s.t.

\[
\int_{\Omega} \mu H \cdot \tau - \int_{\Omega} A \cdot \text{curl} \tau = 0 \quad \forall \tau \in H(\text{curl}; \Omega),
\]
\[
\int_{\Omega} \text{curl} H \cdot v + \int_{\Omega} \text{div} A \cdot \text{div} v = \int_{\Omega} J \cdot v \quad \forall v \in H(\text{div}; \Omega)
\]

- **Stability (inf–sup) analysis:**

 - Make \((\tau, v) = (H, A) \leadsto\) bound on \(H\) and \(\text{div} A\).
 - Make \((\tau, v) = (0, \text{curl} H) \leadsto\) bound on \(\text{curl} H\).
 - Write \(A = A^* + A^\perp \in \text{Ker} \text{div} \oplus (\text{Ker} \text{div})^\perp\).
The magnetostatics problem

- **Weak formulation:** Find \((H, A) \in H(\text{curl}; \Omega) \times H(\text{div}; \Omega)\) s.t.

 \[
 \int_{\Omega} \mu H \cdot \tau - \int_{\Omega} A \cdot \text{curl} \tau = 0 \quad \forall \tau \in H(\text{curl}; \Omega),
 \]

 \[
 \int_{\Omega} \text{curl} H \cdot v + \int_{\Omega} \text{div} A \\text{div} v = \int_{\Omega} J \cdot v \quad \forall v \in H(\text{div}; \Omega)
 \]

- **Stability (inf–sup) analysis:**
 - Make \((\tau, v) = (H, A) \mapsto \text{bound on } H\) and \(\text{div} A\).
 - Make \((\tau, v) = (0, \text{curl} H) \mapsto \text{bound on } \text{curl} H\).
 - Write \(A = A^\perp + A^\parallel \in \ker \text{div} \oplus (\ker \text{div})^\perp\).
 - Bound on \(A^\parallel\) through bound on \(\text{div} A = \text{div} A^\parallel\).
The magnetostatics problem

- **Weak formulation**: Find \((H, A) \in H(\text{curl}; \Omega) \times H(\text{div}; \Omega)\) s.t.

\[
\int_{\Omega} \mu H \cdot \tau - \int_{\Omega} A \cdot \text{curl} \tau = 0 \quad \forall \tau \in H(\text{curl}; \Omega),
\]
\[
\int_{\Omega} \text{curl} H \cdot v + \int_{\Omega} \text{div} A \text{ div} v = \int_{\Omega} J \cdot v \quad \forall v \in H(\text{div}; \Omega)
\]

- **Stability** (inf–sup) analysis:
 - Make \((\tau, v) = (H, A) \leadsto\) bound on \(H\) and \(\text{div} A\).
 - Make \((\tau, v) = (0, \text{curl} H) \leadsto\) bound on \(\text{curl} H\).
 - Write \(A = A^* + A^\perp \in \text{Ker div} \oplus (\text{Ker div})^\perp\).
 - Bound on \(A^\perp\) through bound on \(\text{div} A = \text{div} A^\perp\).
 - Bound on \(A^*\): requires
 \[
 \text{Im curl} = \text{Ker div}
 \]
 to write \(A^* = -\text{curl} \tau\) with \(\tau \in (\text{Ker curl})^\perp\), and use \((\tau, 0)\) as test function.
A unified tool for well-posedness

\[\mathbb{R} \xrightarrow{\text{grad}} H^1(\Omega) \xrightarrow{\text{curl}} H(\text{curl}; \Omega) \xrightarrow{\text{div}} H(\text{div}; \Omega) \xrightarrow{\text{div}} L^2(\Omega) \xrightarrow{0} \{0\} \]

We have key properties depending on the topology of \(\Omega \):

- \(\Omega \) connected \((b_0 = 1) \) \(\Rightarrow \) \(\text{Ker} \text{grad} = \mathbb{R} \),
- \(\text{Im grad} \subset \text{Ker curl} \),
- \(\text{Im curl} \subset \text{Ker div} \),
- \(\Omega \subset \mathbb{R}^3 \) \((b_3 = 0) \) \(\Rightarrow \) \(\text{Im div} = L^2(\Omega) \)
The de Rham complex

A unified tool for well-posedness

\[\mathbb{R} \xrightarrow{\text{grad}} H^1(\Omega) \xrightarrow{\text{curl}} H(\text{curl}; \Omega) \xrightarrow{\text{div}} H(\text{div}; \Omega) \xrightarrow{\text{div}} L^2(\Omega) \xrightarrow{0} \{0\} \]

- We have key properties depending on the topology of \(\Omega \):
 - \(\Omega \) connected (\(b_0 = 1 \)) \(\implies \) \(\text{Ker grad} = \mathbb{R} \),
 - no “tunnels” crossing \(\Omega \) (\(b_1 = 0 \)) \(\implies \) \(\text{Im grad} = \text{Ker curl} \),
 - no “voids” contained in \(\Omega \) (\(b_2 = 0 \)) \(\implies \) \(\text{Im curl} = \text{Ker div} \),
 - \(\Omega \subseteq \mathbb{R}^3 \) (\(b_3 = 0 \)) \(\implies \) \(\text{Im div} = L^2(\Omega) \)
A unified tool for well-posedness

\[\mathbb{R} \xrightarrow{\text{grad}} H^1(\Omega) \xrightarrow{\text{curl}} H(\text{curl}; \Omega) \xrightarrow{\text{div}} H(\text{div}; \Omega) \xrightarrow{\text{div}} L^2(\Omega) \xrightarrow{0} \{0\} \]

- We have key properties depending on the topology of \(\Omega \):
 - \(\Omega \) connected (\(b_0 = 1 \)) \(\Rightarrow \) \(\text{Ker grad} = \mathbb{R} \),
 - no “tunnels” crossing \(\Omega \) (\(b_1 = 0 \)) \(\Rightarrow \) \(\text{Im grad} = \text{Ker curl} \),
 - no “voids” contained in \(\Omega \) (\(b_2 = 0 \)) \(\Rightarrow \) \(\text{Im curl} = \text{Ker div} \),
 - \(\Omega \subset \mathbb{R}^3 \) (\(b_3 = 0 \)) \(\Rightarrow \) \(\text{Im div} = L^2(\Omega) \)

- When \(b_1 \neq 0 \) or \(b_2 \neq 0 \), de Rham’s cohomology characterizes \(\text{Ker curl}/\text{Im grad} \) and \(\text{Ker div}/\text{Im curl} \)

- Key consequences are Hodge decompositions and Poincaré inequalities
A unified tool for well-posedness

\[\mathbb{R} \hookrightarrow H^1(\Omega) \xrightarrow{\text{grad}} H(\text{curl}; \Omega) \xrightarrow{\text{curl}} H(\text{div}; \Omega) \xrightarrow{\text{div}} L^2(\Omega) \xrightarrow{0} \{0\} \]

- We have key properties depending on the topology of Ω:

 \begin{align*}
 \Omega \text{ connected (} b_0 = 1 \text{)} & \implies \text{Ker grad} = \mathbb{R}, \\
 \text{no “tunnels” crossing } \Omega \text{ (} b_1 = 0 \text{)} & \implies \text{Im grad} = \text{Ker curl}, \\
 \text{no “voids” contained in } \Omega \text{ (} b_2 = 0 \text{)} & \implies \text{Im curl} = \text{Ker div}, \\
 \Omega \subset \mathbb{R}^3 \text{ (} b_3 = 0 \text{)} & \implies \text{Im div} = L^2(\Omega)
 \end{align*}

- When $b_1 \neq 0$ or $b_2 \neq 0$, de Rham’s cohomology characterizes

 \[
 \text{Ker curl}/\text{Im grad} \quad \text{and} \quad \text{Ker div}/\text{Im curl}
 \]

- Key consequences are Hodge decompositions and Poincaré inequalities

- Emulating these properties is key for stable discretizations
The discrete de Rham (DDR) approach I

- **Key idea:** replace both spaces and operators by discrete counterparts:

\[
\mathbb{R} \xrightarrow{I^k_{\text{grad},h}} X^k_{\text{grad},h} \xrightarrow{G^k_h} X^k_{\text{curl},h} \xrightarrow{C^k_h} X^k_{\text{div},h} \xrightarrow{D^k_h} P^k(\mathcal{T}_h) \rightarrow 0 \rightarrow \{0\}
\]

- Support of **polyhedral meshes (CW complexes) and high-order**
- **Key exactness and consistency properties proved at the discrete level**
- Several strategies to **reduce the number of unknowns** on general shapes
The discrete de Rham (DDR) approach II

- DDR spaces are spanned by vectors of polynomials
- Polynomial components enable consistent reconstructions of
 - vector calculus operators
 - the corresponding scalar or vector potentials
- These reconstructions emulate integration by parts (Stokes) formulas
Works on DDR

- Introduction of DDR [Di Pietro et al., 2020]
- Analytical properties [Di Pietro and D., 2021a]
- Application to magnetostatics [Di Pietro and D., 2021b]
- Bridges with VEM [Beirão da Veiga et al., 2021]
- Serendipity technique (reduction DOFs) [Di Pietro and D., 2022b]
- Cohomology analysis: ongoing...
- Other recent developments include:
 - Reissner–Mindlin plates [Di Pietro and D., 2021c]
 - The 2D plates complex and Kirchhoff–Love plates [Di Pietro and D., 2022a]

\[\mathcal{RT}^1(F) \hookrightarrow H^1(\Omega; \mathbb{R}^2) \xrightarrow{\text{sym rot}} H(\text{div div}, \Omega; \mathbb{S}) \xrightarrow{\text{div div}} L^2(\Omega) \xrightarrow{0} 0 \]

- The 2D Stokes complex [Hanot, 2021]

\[\mathbb{R} \hookrightarrow H^2(\Omega) \xrightarrow{\text{rot}} H^1(\Omega) \xrightarrow{\text{div}} L^2(\Omega) \xrightarrow{0} 0 \]
The de Rham complex

Numerical results for magnetostatics model

(a) Cubic mesh, error vs. h

(b) Voronoi mesh, error vs. h
Numerical results for magnetostatics model

(a) Cubic mesh, error vs. #DOFs

(b) Voronoi mesh, error vs. #DOFs
Stokes in curl-curl form: robustness, serendipity efficiency

- **Pressure-robust** discretisations: optimal error estimates depend only on the velocity.
- Strong computational gain with serendipity DDR.

Figure: Voronoi meshes, wall and processor times (s) for the resolution of the linear systems.
Benefits

- **Increased flexibility** for meshing complex domains, or capturing local behaviour of solutions.
- **Arbitrary order** improves efficiency/cost, especially for steep problems.
- Systematic strategies for **reducing the number of DOFs**.
Benefits

- **Increased flexibility** for meshing complex domains, or capturing local behaviour of solutions.
- **Arbitrary order** improves efficiency/cost, especially for steep problems.
- Systematic strategies for reducing the number of DOFs.

Challenges and perspectives

- Design of efficient **polytopal mesh generators**.
- **Numerical solvers**: work currently in infancy.
- Analysis of polytopal methods for **incomplete operators** (curl, divergence) is very complex.
- **Polytopal Exterior Calculus** (PEC) to be developed in line of Finite Element Exterior Calculus (FEEC), in the formalism of differential forms.
- Further applications...
References I

An arbitrary order scheme on generic meshes for miscible displacements in porous media.

Arnold, D. N. (1982).
An interior penalty finite element method with discontinuous elements.

The nonconforming virtual element method.

Basic principles of virtual element methods.

Arbitrary-order pressure-robust DDR and VEM methods for the Stokes problem on polyhedral meshes.

The mimetic finite difference method for elliptic problems, volume 11 of *MS&A. Modeling, Simulation and Applications*. Springer, Cham.

A Hybrid High-Order method for the incompressible Navier–Stokes equations based on Temam’s device.
References II

Discontinuous Galerkin approximations for elliptic problems.

The Weak Galerkin methods are rewritings of the Hybridizable Discontinuous Galerkin methods.

Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems.

A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods.

D., J. and Yemm, L. (2022a).
A hybrid high-order scheme for the stationary, incompressible magnetohydrodynamics equations.
page 33p.

D., J. and Yemm, L. (2022b).
Robust hybrid high-order method on polytopal meshes with small faces.

The Hybrid High-Order method for polytopal meshes.
Number 19 in Modeling, Simulation and Application. Springer International Publishing.
References III

 An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency.
 Published online. DOI: 10.1007/s10208-021-09542-8.

 An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence.

 A DDR method for the Reissner–Mindlin plate bending problem on polygonal meshes.

 A fully discrete plates complex on polygonal meshes with application to the Kirchhoff–Love problem.

 Homological- and analytical-preserving serendipity framework for polytopal complexes, with application to the ddr method.
 page 31p.

 Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra.

 Discrete functional analysis tools for discontinuous Galerkin methods with application to the incompressible Navier-Stokes equations.
References IV

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators.

An arbitrary-order fully discrete Stokes complex on general polygonal meshes.