High-order methods for linear and non-linear elliptic equations

J. Droniou (Monash University)

Algoritmy 2020

Joint work with D. Anderson, D. Di Pietro, R. Eymard, F. Rapetti...

Australian Government

Australian Research Council

Discrete Functional Analysis: bridging pure and numerical mathematics

J. Droniou (Monash University)

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

J. Droniou (Monash University)

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

Polytopal meshes

Polytopal meshes

Arbitrary order: choice of an index $k \ge 0$ determining the accuracy of the method

Typically: exactly reproduce solutions that are polynomials of degree k + 1.

Hybrid High-Order method

An inspiring remark

- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

$$-\Delta u = f \quad \text{in } \Omega$$
$$u = 0 \quad \text{on } \partial \Omega$$

► Core model in many flows in porous media (including multi-components, multi-phases): oil recovery, CO2 storage, etc.

Find
$$u \in H^1_0(\Omega)$$
 s.t. $(\nabla u, \nabla v)_{\Omega} = (f, v)_{\Omega}$ for all $v \in H^1_0(\Omega)$.

• $(\cdot, \cdot)_X : L^2$ -inner product on X, norm denoted by $\|\cdot\|_X$.

Find
$$u \in H_0^1(\Omega)$$
 s.t. $(\nabla u, \nabla v)_{\Omega} = (f, v)_{\Omega}$ for all $v \in H_0^1(\Omega)$.

• $(\cdot, \cdot)_X : L^2$ -inner product on X, norm denoted by $\|\cdot\|_X$.

Computation elliptic projector: for *T* a mesh element, *v* smooth and $q \in \mathcal{P}^{k+1}(T)$:

$$(\nabla v, \nabla q)_T = -(v, \Delta q)_T + \sum_{F \in \mathcal{F}_T} (v, \nabla q \cdot \mathbf{n}_{TF})_F.$$

Find
$$u \in H_0^1(\Omega)$$
 s.t. $(\nabla u, \nabla v)_{\Omega} = (f, v)_{\Omega}$ for all $v \in H_0^1(\Omega)$.

• $(\cdot, \cdot)_X : L^2$ -inner product on X, norm denoted by $\|\cdot\|_X$.

Computation elliptic projector: for T a mesh element, v smooth and $q \in \mathcal{P}^{k+1}(T)$:

$$(\nabla v, \nabla q)_T = -(\pi^k_{\mathcal{P},T}v, \Delta q)_T + \sum_{F \in \mathcal{F}_T} (\pi^k_{\mathcal{P},F}v, \nabla q \cdot \mathbf{n}_{TF})_F.$$

• $\pi^k_{\mathcal{P},Y}: L^2(Y) \to \mathcal{P}^k(Y)$ orthogonal projector.

Find
$$u \in H_0^1(\Omega)$$
 s.t. $(\nabla u, \nabla v)_{\Omega} = (f, v)_{\Omega}$ for all $v \in H_0^1(\Omega)$.

• $(\cdot, \cdot)_X : L^2$ -inner product on X, norm denoted by $\|\cdot\|_X$.

Computation elliptic projector: for T a mesh element, v smooth and $q \in \mathcal{P}^{k+1}(T)$:

$$(\nabla v, \nabla q)_T = -(\pi_{\mathcal{P},T}^k v, \Delta q)_T + \sum_{F \in \mathcal{F}_T} (\pi_{\mathcal{P},F}^k v, \nabla q \cdot \mathbf{n}_{TF})_F.$$

▶ $\pi^k_{\mathcal{P},Y} : L^2(Y) \to \mathcal{P}^k(Y)$ orthogonal projector.

The projection $\Pi_{\nabla \mathcal{P}^{k+1}(\mathcal{T})}(\nabla v)$ of ∇v on $\nabla \mathcal{P}^{k+1}(\mathcal{T})$ can be computed from $\pi_{\mathcal{P},\mathcal{T}}^k v$ and $(\pi_{\mathcal{P},\mathcal{F}}^k v)_{\mathcal{F}\in\mathcal{F}_{\mathcal{T}}}$.

J. Droniou (Monash University)

Hybrid High-Order method

• An inspiring remark

Description of the HHO scheme

• Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

Which unknowns?

Space of local unknowns:

$$\underline{U}_{T}^{k} = \{ \underline{v}_{T} = (v_{T}, (v_{F})_{F \in \mathcal{F}_{T}}) : v_{T} \in \mathcal{P}^{k}(T), v_{F} \in \mathcal{P}^{k}(F) \}.$$

J. Droniou (Monash University)

Which unknowns?

Space of local unknowns:

$$\underline{U}_{T}^{k} = \{ \underline{v}_{T} = (v_{T}, (v_{F})_{F \in \mathcal{F}_{T}}) : v_{T} \in \mathcal{P}^{k}(T), v_{F} \in \mathcal{P}^{k}(F) \}.$$

Interpolator: $\underline{I}_T^k : H^1(T) \to \underline{U}_T^k$ such that

$$\underline{I}_T^k \mathbf{v} = (\pi_{\mathcal{P},T}^k \mathbf{v}, (\pi_{\mathcal{P},F}^k \mathbf{v})_{F \in \mathcal{F}_T}).$$

HHO: higher-order potential reconstruction using element and face polynomials \rightsquigarrow method of order k + 1.

HHO: higher-order potential reconstruction using element and face polynomials \rightsquigarrow method of order k + 1.

$$p_T^{k+1}: \underline{U}_T^k \to \mathcal{P}^{k+1}(T) \text{ such that:}$$

$$(\nabla p_T^{k+1}\underline{v}_T, \nabla w)_T = -(v_T, \Delta w)_T + \sum_{F \in \mathcal{F}_T} (v_F, \nabla w \cdot \boldsymbol{n}_{TF})_F \quad \forall w \in \mathcal{P}^{k+1}(T),$$

$$(p_T^{k+1}\underline{v}_T, 1)_T = (v_T, 1)_T.$$

HHO: higher-order potential reconstruction using element and face polynomials \rightsquigarrow method of order k + 1.

$$p_T^{k+1}: \underline{U}_T^k \to \mathcal{P}^{k+1}(T) \text{ such that:}$$

$$(\nabla p_T^{k+1}\underline{v}_T, \nabla w)_T = -(v_T, \Delta w)_T + \sum_{F \in \mathcal{F}_T} (v_F, \nabla w \cdot \boldsymbol{n}_{TF})_F \quad \forall w \in \mathcal{P}^{k+1}(T),$$

$$(p_T^{k+1}\underline{v}_T, 1)_T = (v_T, 1)_T.$$

$$\nabla \mathrm{p}_{T}^{k+1}\underline{I}_{T}^{k}v = \Pi_{\nabla \mathcal{P}^{k+1}(T)}(\nabla v) \text{ for all } v \in H^{1}(T).$$

▶ $a_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ such that

$$\mathbf{a}_{\mathcal{T}}(\underline{\boldsymbol{\nu}}_{\mathcal{T}},\underline{\boldsymbol{w}}_{\mathcal{T}}) = (\nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\boldsymbol{\nu}}_{\mathcal{T}}, \nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\boldsymbol{w}}_{\mathcal{T}})_{\mathcal{T}} + \mathbf{s}_{\mathcal{T}}(\underline{\boldsymbol{\nu}}_{\mathcal{T}},\underline{\boldsymbol{w}}_{\mathcal{T}}).$$

▶ $a_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ such that

$$\mathbf{a}_{\mathcal{T}}(\underline{\boldsymbol{\nu}}_{\mathcal{T}},\underline{\boldsymbol{w}}_{\mathcal{T}}) = (\nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\boldsymbol{\nu}}_{\mathcal{T}}, \nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\boldsymbol{w}}_{\mathcal{T}})_{\mathcal{T}} + \mathbf{s}_{\mathcal{T}}(\underline{\boldsymbol{\nu}}_{\mathcal{T}},\underline{\boldsymbol{w}}_{\mathcal{T}}).$$

Stabilisation: enables bound of unknowns, without degrading the order of exactness.

 $\blacktriangleright \ \mathbf{a}_{\mathcal{T}}:\underline{\textit{U}}_{\textit{T}}^k\times\underline{\textit{U}}_{\textit{T}}^k\to\mathbb{R}$ such that

$$\mathbf{a}_{\mathcal{T}}(\underline{\mathbf{v}}_{\mathcal{T}},\underline{\mathbf{w}}_{\mathcal{T}}) = (\nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\mathbf{v}}_{\mathcal{T}}, \nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\mathbf{w}}_{\mathcal{T}})_{\mathcal{T}} + \mathbf{s}_{\mathcal{T}}(\underline{\mathbf{v}}_{\mathcal{T}},\underline{\mathbf{w}}_{\mathcal{T}}).$$

Stabilisation: enables bound of unknowns, without degrading the order of exactness.

Symmetry & positivity: s_T : <u>U</u>^k_T × <u>U</u>^k_T → ℝ symmetric semi-definite positive.

▶ $a_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ such that

$$\mathbf{a}_{\mathcal{T}}(\underline{\boldsymbol{\nu}}_{\mathcal{T}},\underline{\boldsymbol{w}}_{\mathcal{T}}) = (\nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\boldsymbol{\nu}}_{\mathcal{T}}, \nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\boldsymbol{w}}_{\mathcal{T}})_{\mathcal{T}} + \mathbf{s}_{\mathcal{T}}(\underline{\boldsymbol{\nu}}_{\mathcal{T}},\underline{\boldsymbol{w}}_{\mathcal{T}}).$$

Stabilisation: enables bound of unknowns, without degrading the order of exactness.

- Symmetry & positivity: s_T : <u>U</u>^k_T × <u>U</u>^k_T → ℝ symmetric semi-definite positive.
- Stability & boundedness: it holds, for some $\eta > 0$,

$$\eta^{-1} \| \underline{\boldsymbol{\nu}}_{\mathcal{T}} \|_{\mathcal{T}}^2 \leq \mathbf{a}_{\mathcal{T}} (\underline{\boldsymbol{\nu}}_{\mathcal{T}}, \underline{\boldsymbol{\nu}}_{\mathcal{T}}) \leq \eta \| \underline{\boldsymbol{\nu}}_{\mathcal{T}} \|_{\mathcal{T}}^2$$

where the local discrete H^1 -seminorm is

$$\|\underline{v}_T\|_T^2 = \|\nabla v_T\|_T^2 + \sum_{F \in \mathcal{F}_T} h_T^{-1} \|v_F - v_T\|_F^2.$$

▶ $a_T : \underline{U}_T^k \times \underline{U}_T^k \to \mathbb{R}$ such that

$$\mathbf{a}_{\mathcal{T}}(\underline{\mathbf{v}}_{\mathcal{T}},\underline{\mathbf{w}}_{\mathcal{T}}) = (\nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\mathbf{v}}_{\mathcal{T}}, \nabla \mathbf{p}_{\mathcal{T}}^{k+1} \underline{\mathbf{w}}_{\mathcal{T}})_{\mathcal{T}} + \mathbf{s}_{\mathcal{T}}(\underline{\mathbf{v}}_{\mathcal{T}},\underline{\mathbf{w}}_{\mathcal{T}}).$$

Stabilisation: enables bound of unknowns, without degrading the order of exactness.

- Symmetry & positivity: s_T : <u>U</u>^k_T × <u>U</u>^k_T → ℝ symmetric semi-definite positive.
- Stability & boundedness: it holds, for some $\eta > 0$,

$$\eta^{-1} \| \underline{\boldsymbol{\nu}}_{\mathcal{T}} \|_{\mathcal{T}}^2 \leq \mathbf{a}_{\mathcal{T}} (\underline{\boldsymbol{\nu}}_{\mathcal{T}}, \underline{\boldsymbol{\nu}}_{\mathcal{T}}) \leq \eta \| \underline{\boldsymbol{\nu}}_{\mathcal{T}} \|_{\mathcal{T}}^2$$

where the local discrete H^1 -seminorm is

$$\|\underline{v}_{T}\|_{T}^{2} = \|\nabla v_{T}\|_{T}^{2} + \sum_{F \in \mathcal{F}_{T}} h_{T}^{-1} \|v_{F} - v_{T}\|_{F}^{2}.$$

• Polynomial consistency: $s_T(\underline{l}^k_T w, \underline{v}_T) = 0$ for all $w \in \mathcal{P}^{k+1}(T)$.

Global space (with boundary conditions): patched local spaces.

$$\underline{U}_{h,0}^{k} = \{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{T}}) : v_{T} \in \mathcal{P}^{k}(T), v_{F} \in \mathcal{P}^{k}(F), \\ v_{F} = 0 \text{ if } F \subset \partial \Omega \}.$$

Global space (with boundary conditions): patched local spaces.

$$\underline{U}_{h,0}^{k} = \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{T}} \right\} : v_{T} \in \mathcal{P}^{k}(T), \ v_{F} \in \mathcal{P}^{k}(F),$$
$$v_{F} = 0 \text{ if } F \subset \partial \Omega \right\}.$$

Global bilinear form: assembled from local ones.

$$\mathrm{a}_h: \underline{U}_{h,0}^k imes \underline{U}_{h,0}^k o \mathbb{R}\,, \quad \mathrm{a}_h(\underline{v}_h, \underline{w}_h) = \sum_{\mathcal{T} \in \mathcal{T}_h} \mathrm{a}_\mathcal{T}(\underline{v}_\mathcal{T}, \underline{w}_\mathcal{T}).$$

Global space (with boundary conditions): patched local spaces.

$$\underline{U}_{h,0}^{k} = \left\{ \underline{v}_{h} = ((v_{T})_{T \in \mathcal{T}_{h}}, (v_{F})_{F \in \mathcal{F}_{T}} \right\} : v_{T} \in \mathcal{P}^{k}(T), \ v_{F} \in \mathcal{P}^{k}(F),$$
$$v_{F} = 0 \text{ if } F \subset \partial \Omega \right\}.$$

Global bilinear form: assembled from local ones.

$$\mathrm{a}_h: \underline{U}_{h,0}^k imes \underline{U}_{h,0}^k o \mathbb{R}\,, \quad \mathrm{a}_h(\underline{v}_h, \underline{w}_h) = \sum_{\mathcal{T} \in \mathcal{T}_h} \mathrm{a}_\mathcal{T}(\underline{v}_\mathcal{T}, \underline{w}_\mathcal{T}).$$

Scheme:

$$\begin{array}{l} \text{Find } \underline{u}_h \in \underline{U}_{h,0}^k \text{ such that, for all } \underline{v}_{\mathcal{T}} \in \underline{U}_{h,0}^k \text{,} \\ \mathrm{a}_h(\underline{u}_h, \underline{v}_h) = \sum_{\mathcal{T} \in \mathcal{T}_h} (f, v_{\mathcal{T}})_{\mathcal{T}} \text{.} \end{array}$$

Error analysis

• Using a generic framework (3rd Strang lemma) developed for schemes written in fully discrete form (the approximation space is not a space of functions over Ω).

Energy error estimate: with $\|\cdot\|_{a,h} = \sqrt{a_h(\cdot, \cdot)}$ norm associated with a_h :

 $\|\underline{I}_h^k u - \underline{u}_h\|_{\mathbf{a},h} \leq Ch^{k+1} |u|_{H^{k+2}(\Omega)}.$

Error analysis

• Using a generic framework (3rd Strang lemma) developed for schemes written in fully discrete form (the approximation space is not a space of functions over Ω).

Energy error estimate: with $\|\cdot\|_{a,h} = \sqrt{a_h(\cdot, \cdot)}$ norm associated with a_h :

 $\|\underline{I}_h^k u - \underline{u}_h\|_{\mathbf{a},h} \leq Ch^{k+1} |u|_{H^{k+2}(\Omega)}.$

 L^2 error estimate: with $(p_h^{k+1}\underline{u}_h)|_T = p_T^{k+1}\underline{u}_T$ for all $T \in \mathcal{T}_h$, under elliptic regularity assumption:

$$\|u-\mathrm{p}_h^{k+1}\underline{u}_h\|_\Omega \leq C \left\{ egin{array}{ll} h^2\|f\|_{H^1(\Omega)} & ext{if } k=0, \ h^{k+2}|u|_{H^{k+2}(\Omega)} & ext{if } k\geq 1. \end{array}
ight.$$

► This is a **finite volume method**: we can define fluxes that are conservative and satisfy, up to high order volumic term, the balance relation.

► This is a **finite volume method**: we can define fluxes that are conservative and satisfy, up to high order volumic term, the balance relation.

► Other models with complete error analysis: anisotropic heterogeneous diffusion; degenerate advection-diffusion-equation equations; Stokes & Navier-Stokes (various options for non-linear term); p-Laplace equations; elasticity; Brinkman; etc.

► This is a **finite volume method**: we can define fluxes that are conservative and satisfy, up to high order volumic term, the balance relation.

Other models with complete error analysis: anisotropic heterogeneous diffusion; degenerate advection-diffusion-equation equations; Stokes & Navier-Stokes (various options for non-linear term); p-Laplace equations; elasticity; Brinkman; etc.

► Variant: polynomial degree in element could be k ± 1. Leads to links with

- non-conforming \mathcal{P}^1 FE;
- Virtual Element Methods;
- Hybridizable Discontinuous Galerkin;
- etc.

More about HHO

MS&A – Modeling, Simulation and Applications 19

Daniele Antonio Di Pietro Jérôme Droniou

The Hybrid High-Order Method for Polytopal Meshes

Design, Analysis, and Applications

J. Droniou (Monash University)

► Implementation in various libraries, in particular HArD::Core3D library (https://github.com/jdroniou/HArDCore).

- Open source C++ code for numerical schemes on generic polyhedral meshes.
- Based on Eigen linear algebra library (http://eigen.tuxfamily.org).
- Complete and intuitive description of mesh.
- Routines for handling polynomial spaces (on edges, faces and cells), for quadrature rules, for Gram-like matrices (mass, stiffness), etc.

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests
Model for enhanced oil recovery

$$\begin{cases} \nabla \cdot \mathbf{u} = q^{+} - q^{-} := q \\ \mathbf{u} = -\frac{\mathbf{K}}{\mu(c)} \nabla p \end{cases}$$
$$\phi \frac{\partial c}{\partial t} + \nabla \cdot (\mathbf{u}c - \mathbf{D}(\mathbf{x}, \mathbf{u}) \nabla c) + q^{-}c = q^{+}$$

Unknowns

Parameters

- p(x, t) pressure of the mixture
- u(x, t) Darcy velocity
- c(x, t) concentration of the injected solvent

- K(x) permeability tensor
- $\phi(\mathbf{x})$ porosity
- Complemented with no-flow boundary conditions.

t = 3 years, various k, Cartesian mesh

t = 10 years, various k, Cartesian mesh

Percentage of oil recovered vs. mesh size, various k

Computational cost for one time step: time (s) vs. mesh sizes

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

 \blacktriangleright $\Omega:$ open simply connected set in \mathbb{R}^3 with connected boundary.

Gradient:

$$\begin{split} & H^1(\Omega) = \{ u \in L^2(\Omega) : \text{ grad } u \in L^2(\Omega)^3 \}, \\ & \text{grad} : H^1(\Omega) \to L^2(\Omega)^3. \end{split}$$

Curl:

$$\begin{split} \boldsymbol{H}(\operatorname{curl};\Omega) &= \{\boldsymbol{u} \in L^2(\Omega)^3 : \operatorname{curl} \boldsymbol{u} \in L^2(\Omega)^3\},\\ \operatorname{curl}: \boldsymbol{H}(\operatorname{curl};\Omega) \to L^2(\Omega)^3. \end{split}$$

Divergence:

$$\begin{split} \boldsymbol{H}(\operatorname{div};\Omega) &= \{\boldsymbol{u} \in L^2(\Omega)^3 : \operatorname{div} \boldsymbol{u} \in L^2(\Omega)\},\\ \operatorname{div} &: \boldsymbol{H}(\operatorname{div};\Omega) \to L^2(\Omega). \end{split}$$

• $i_{\Omega} : \mathbb{R} \to H^1(\Omega)$ natural embedding.

Theorem (Exactness of de Rham sequence)

The following sequence is exact:

$$\mathbb{R} \xrightarrow{i_{\Omega}} H^{1}(\Omega) \xrightarrow{\text{grad}} \textbf{\textit{H}}(\mathsf{curl};\Omega) \xrightarrow{\text{curl}} \textbf{\textit{H}}(\mathsf{div};\Omega) \xrightarrow{\text{div}} L^{2}(\Omega) \xrightarrow{0} \{0\},$$

which means that, if \mathfrak{D}_i and \mathfrak{D}_{i+1} are two consecutive operators in the sequence, then

 $\operatorname{Im} \mathfrak{D}_i = \operatorname{Ker} \mathfrak{D}_{i+1}.$

$$\mathbb{R} \xrightarrow{i_{\Omega}} H^{1}(\Omega) \xrightarrow{\text{grad}} H(\operatorname{curl}; \Omega) \xrightarrow{\operatorname{curl}} H(\operatorname{div}; \Omega) \xrightarrow{\operatorname{div}} L^{2}(\Omega) \xrightarrow{0} \{0\},$$

Stokes problem

$$\begin{cases} -\Delta \boldsymbol{u} + \operatorname{grad} \boldsymbol{p} = f & \text{ in } \Omega, \\ \operatorname{div} \boldsymbol{u} = 0 & \text{ in } \Omega, \\ + \operatorname{BC} \end{cases}$$

• Inf-sup condition: for all $q \in L^2(\Omega)$,

$$\sup_{\boldsymbol{v}\in\boldsymbol{H}(\operatorname{div};\Omega)}\frac{(\operatorname{div}\boldsymbol{v},\boldsymbol{q})_{L^2}}{\|\boldsymbol{v}\|_{\boldsymbol{H}(\operatorname{div})}} \geq \beta \|\boldsymbol{q}\|_{L^2}.$$

Proof: Fix $q \in L^2(\Omega)$, and let $\mathbf{v} \in \mathbf{H}(\operatorname{div}; \Omega)$ such that $\operatorname{div} \mathbf{v} = q...$

$$\mathbb{R} \xrightarrow{i_{\Omega}} \mathcal{H}^{1}(\Omega) \xrightarrow{\text{grad}} \mathcal{H}(\text{curl};\Omega) \xrightarrow{\text{curl}} \mathcal{H}(\text{div};\Omega) \xrightarrow{\text{div}} \mathcal{L}^{2}(\Omega) \xrightarrow{0} \{0\},$$

Magnetostatic problem

$$\begin{cases} \boldsymbol{\sigma} - \operatorname{curl} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \operatorname{curl} \boldsymbol{\sigma} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} & \text{on } \partial \Omega. \end{cases}$$

▶ Inf-sup condition: for all $(\tau, \mathbf{v}) \in \mathbf{H}(\operatorname{curl}; \Omega) \times \mathbf{H}(\operatorname{div}; \Omega)$,

 $\sup_{\substack{(\boldsymbol{\mu}, \boldsymbol{w}) \in \boldsymbol{H}(\operatorname{curl}) \times \boldsymbol{H}(\operatorname{div})} \frac{\mathcal{A}((\boldsymbol{\tau}, \boldsymbol{v}), (\boldsymbol{\mu}, \boldsymbol{w}))}{\|(\boldsymbol{\mu}, \boldsymbol{w})\|_{\boldsymbol{H}(\operatorname{curl}) \times \boldsymbol{H}(\operatorname{div})}} \geq \beta \|(\boldsymbol{\mu}, \boldsymbol{v})\|_{\boldsymbol{H}(\operatorname{curl}) \times \boldsymbol{H}(\operatorname{div})}, \text{ where } \\ \mathcal{A}((\boldsymbol{\tau}, \boldsymbol{v}), (\boldsymbol{\mu}, \boldsymbol{w})) = (\boldsymbol{\tau}, \boldsymbol{\mu})_{L^2} - (\boldsymbol{v}, \operatorname{curl} \boldsymbol{\mu})_{L^2} + (\boldsymbol{w}, \operatorname{curl} \boldsymbol{\tau})_{L^2} + (\operatorname{div} \boldsymbol{v}, \operatorname{div} \boldsymbol{w})_{L^2}.$

$$\mathbb{R} \xrightarrow{i_{\Omega}} \mathcal{H}^{1}(\Omega) \xrightarrow{\text{grad}} \mathcal{H}(\text{curl};\Omega) \xrightarrow{\text{curl}} \mathcal{H}(\text{div};\Omega) \xrightarrow{\text{div}} \mathcal{L}^{2}(\Omega) \xrightarrow{0} \{0\},$$

Magnetostatic problem

$$\begin{cases} \boldsymbol{\sigma} - \operatorname{curl} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \operatorname{curl} \boldsymbol{\sigma} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} & \text{on } \partial \Omega. \end{cases}$$

▶ Inf-sup condition: for all $(\tau, \mathbf{v}) \in \mathbf{H}(\operatorname{curl}; \Omega) \times \mathbf{H}(\operatorname{div}; \Omega)$,

 $\sup_{\substack{(\boldsymbol{\mu},\boldsymbol{w})\in \boldsymbol{H}(\operatorname{curl})\times\boldsymbol{H}(\operatorname{div})}} \frac{\mathcal{A}((\boldsymbol{\tau},\boldsymbol{v}),(\boldsymbol{\mu},\boldsymbol{w}))}{\|(\boldsymbol{\mu},\boldsymbol{w})\|_{\boldsymbol{H}(\operatorname{curl})\times\boldsymbol{H}(\operatorname{div})}} \geq \beta \|(\boldsymbol{\mu},\boldsymbol{v})\|_{\boldsymbol{H}(\operatorname{curl})\times\boldsymbol{H}(\operatorname{div})}, \text{ where }$ $\mathcal{A}((\boldsymbol{\tau},\boldsymbol{v}),(\boldsymbol{\mu},\boldsymbol{w})) = (\boldsymbol{\tau},\boldsymbol{\mu})_{L^2} - (\boldsymbol{v},\operatorname{curl}\boldsymbol{\mu})_{L^2} + (\boldsymbol{w},\operatorname{curl}\boldsymbol{\tau})_{L^2} + (\operatorname{div}\boldsymbol{v},\operatorname{div}\boldsymbol{w})_{L^2}.$

Proof: requires two exactness properties in the sequence, to estimate each component of v on $(\text{Ker div})^{\perp}$ and Ker div.

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

- ▶ Mimic exact sequence with discrete spaces and operators.
- \rightsquigarrow To be used to design stable numerical schemes.
- ▶ Local construction (element by element), as in standard FE.
- ▶ Arbitrary order, based on polynomial spaces of degree $k \ge 0$.

Local discrete spaces and operators: for T mesh element,

$$\mathbb{R} \xrightarrow{I_{\mathsf{grad}}^{k}, \tau} \underline{X}_{\mathsf{grad}, \tau}^{k} \xrightarrow{\underline{\boldsymbol{G}}_{T}^{k}} \underline{X}_{\mathsf{curl}, \tau}^{k} \xrightarrow{\underline{\boldsymbol{C}}_{T}^{k}} \underline{X}_{\mathsf{div}, \tau}^{k} \xrightarrow{D_{T}^{k}} \mathcal{P}^{k}(T) \xrightarrow{0} \{0\}.$$

Local discrete spaces and operators: for T mesh element,

$$\mathbb{R} \xrightarrow{\underline{I}^{k}_{\operatorname{grad},T}} \underline{X}^{k}_{\operatorname{grad},T} \xrightarrow{\underline{G}^{k}_{T}} \underline{X}^{k}_{\operatorname{curl},T} \xrightarrow{\underline{G}^{k}_{T}} \underline{X}^{k}_{\operatorname{div},T} \xrightarrow{D^{k}_{T}} \mathcal{P}^{k}(T) \xrightarrow{0} \{0\}.$$

Finite Element approach:

- Finite Element Exterior Calculus (FEEC).
- Requires elements of certain shapes (tetrahedras, hexahedras...) as in usual FE.
- Designed in very generic setting, with exterior derivatives etc.

Local discrete spaces and operators: for T mesh element,

$$\mathbb{R} \xrightarrow{\underline{I}^{k}_{\operatorname{grad}, \mathcal{T}}} \underline{X}^{k}_{\operatorname{grad}, \mathcal{T}} \xrightarrow{\underline{G}^{k}_{\mathcal{T}}} \underline{X}^{k}_{\operatorname{curl}, \mathcal{T}} \xrightarrow{\underline{C}^{k}_{\mathcal{T}}} \underline{X}^{k}_{\operatorname{div}, \mathcal{T}} \xrightarrow{D^{k}_{\mathcal{T}}} \mathcal{P}^{k}(\mathcal{T}) \xrightarrow{0} \{0\}.$$

► Virtual Element approach:

- Applicable on generic meshes with polyhedral elements.
- Degree decreases by one at each application of differential operator.
- Functions not fully known, only certain moments or values are accessible.
- Exactness not usable in a scheme due to the variational crime in VEM.

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

Principles of discrete exact sequence

Fully discrete de Rham sequence

Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

► Applicable on polyhedral elements.

Arbitrary order of exactness.

Same order of accuracy along the entire sequence.

Based on explicit spaces and reconstructed differential operators, exactness holding for these objects.

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad}}^{k}, \tau} \underline{X}_{\mathsf{grad}, \tau}^{k} \xrightarrow{\underline{G}_{T}^{k}} \underline{X}_{\mathsf{curl}, \tau}^{k} \xrightarrow{\underline{C}_{T}^{k}} \underline{X}_{\mathsf{div}, \tau}^{k} \xrightarrow{D_{T}^{k}} \mathcal{P}^{k}(T) \xrightarrow{0} \{0\}.$$

Gradient unknowns: $\underline{q}_{T} = (q_T, (q_F)_{F \in \mathcal{F}_T}, q_{\partial^2 T}).$

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},T}^k} \underline{X}_{\mathsf{grad},T}^k \xrightarrow{\underline{G}_T^k} \underline{\underline{X}}_{\mathsf{curl},T}^k \xrightarrow{\underline{C}_T^k} \underline{\underline{X}}_{\mathsf{div},T}^k \xrightarrow{D_T^k} \mathcal{P}^k(T) \xrightarrow{0} \{0\}.$$

Gradient operator:

$$\underline{\boldsymbol{G}}_{T}^{k}\underline{\boldsymbol{q}}_{T} = (\underbrace{\boldsymbol{G}_{T}^{k}\underline{\boldsymbol{q}}_{T}}_{\in\mathcal{P}^{k}(T)^{3}}, \underbrace{(\underline{\boldsymbol{G}}_{F}^{k}(\boldsymbol{q}_{F}, \boldsymbol{q}_{\partial^{2}T}))_{F\in\mathcal{F}_{T}}, (\underbrace{\boldsymbol{G}}_{E}\boldsymbol{q}_{E})_{E\in\mathcal{E}_{T}}}_{\in\mathcal{P}^{k}(E)})_{F\in\mathcal{F}_{T}}$$

 \triangleright *G_E*: derivative along edge.

▶ G_F^k (≈ grad_{|F}): reconstruction from face and edge, based on formal IBP (divergence formula),

▶ G_T^k (\approx grad): reconstruction based on formal IBP & face potentials (divergence formula).

$$\mathbb{R} \xrightarrow{\underline{I}^{k}_{\operatorname{grad},T}} \underline{X}^{k}_{\operatorname{grad},T} \xrightarrow{\underline{G}^{k}_{T}} \underline{X}^{k}_{\operatorname{curl},T} \xrightarrow{\underline{C}^{k}_{T}} \underline{X}^{k}_{\operatorname{div},T} \xrightarrow{D^{k}_{T}} \mathcal{P}^{k}(T) \xrightarrow{0} \{0\}.$$

Curl unknowns: $\underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T}, (v_E)_{E \in \mathcal{E}_T}).$

$$\mathbb{R} \xrightarrow{\underline{l}^{k}_{\operatorname{grad}, T}} \underline{X}^{k}_{\operatorname{grad}, T} \xrightarrow{\underline{\boldsymbol{G}}^{k}_{T}} \underline{X}^{k}_{\operatorname{curl}, T} \xrightarrow{\underline{\boldsymbol{C}}^{k}_{T}} \underline{X}^{k}_{\operatorname{div}, T} \xrightarrow{D^{k}_{T}} \mathcal{P}^{k}(T) \xrightarrow{0} \{0\}.$$

Curl operator:

$$\underline{C}_{T}^{k}\underline{v}_{T} = (\underbrace{C_{T}^{k}\underline{v}_{T}}_{\in \mathcal{P}^{k}(T)^{3}}, (\underbrace{C_{F}^{k}(v_{F}, (v_{E})_{E \in \mathcal{E}_{F}})}_{\in \mathcal{P}^{k}(F))})_{F \in \mathcal{F}_{T}}).$$

► C_F^k (\approx curl $\cdot \boldsymbol{n}_F$): reconstruction from face and edge, based on formal IBP (rot formula in 2D),

► C_T^k (\approx curl): reconstruction based on formal IBP & face tangential potentials (curl formula).

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},T}^k} \underline{X}_{\mathsf{grad},T}^k \xrightarrow{\underline{G}_T^k} \underline{\underline{X}}_{\mathsf{curl},T}^k \xrightarrow{\underline{C}_T^k} \underline{\underline{X}}_{\mathsf{div},T}^k \xrightarrow{D_T^k} \mathcal{P}^k(T) \xrightarrow{0} \{0\}.$$

Divergence unknowns: $\underline{v}_T = (v_T, (v_F)_{F \in \mathcal{F}_T}).$

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},\mathcal{T}}^{k}} \underline{X}_{\mathsf{grad},\mathcal{T}}^{k} \xrightarrow{\underline{G}_{\mathcal{T}}^{k}} \underline{X}_{\mathsf{curl},\mathcal{T}}^{k} \xrightarrow{\underline{C}_{\mathcal{T}}^{k}} \underline{X}_{\mathsf{div},\mathcal{T}}^{k} \xrightarrow{D_{\mathcal{T}}^{k}} \mathcal{P}^{k}(\mathcal{T}) \xrightarrow{0} \{0\}.$$

Divergence operator:

 $D_T^k \underline{\mathbf{v}}_T \ (\approx \text{div}) \text{ reconstructed in } \mathcal{P}^k(T) \text{ from divergence formula.}$ $\int_T (D_T^k \underline{\mathbf{v}}_T) q_T = -\int_T \mathbf{v}_T \cdot \text{grad } q_T + \sum_{F \in \mathcal{F}_T} \omega_{TF} \int_F \mathbf{v}_F q_T \quad \forall q_T \in \mathcal{P}^k(T).$

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},\mathcal{T}}^{k}} \underline{X}_{\mathsf{grad},\mathcal{T}}^{k} \xrightarrow{\underline{G}_{\mathcal{T}}^{k}} \underline{X}_{\mathsf{curl},\mathcal{T}}^{k} \xrightarrow{\underline{C}_{\mathcal{T}}^{k}} \underline{X}_{\mathsf{div},\mathcal{T}}^{k} \xrightarrow{D_{\mathcal{T}}^{k}} \mathcal{P}^{k}(\mathcal{T}) \xrightarrow{0} \{0\}.$$

▶ The previous sequence is not exact!

$$\mathbb{R} \xrightarrow{\underline{I}^{k}_{\operatorname{grad},T}} \underline{X}^{k}_{\operatorname{grad},T} \xrightarrow{\underline{G}^{k}_{T}} \underline{X}^{k}_{\operatorname{curl},T} \xrightarrow{\underline{C}^{k}_{T}} \underline{X}^{k}_{\operatorname{div},T} \xrightarrow{D^{k}_{T}} \mathcal{P}^{k}(T) \xrightarrow{0} \{0\}.$$

▶ The previous sequence is not exact!

For X = F, T of dimension d = 2, 3 let:

$$\succ \mathcal{R}^{k}(X) = \operatorname{curl}(\mathcal{P}^{k+1}(X)^{d}), \ \mathcal{R}^{c,k}(X) \text{ complement in } \mathcal{P}^{k}(X)^{d}.$$

•
$$\mathcal{G}^{k}(X) = \operatorname{grad}(\mathcal{P}^{k+1}(X)^{d}), \ \mathcal{G}^{c,k}(X) \text{ complement in } \mathcal{P}^{k}(X)^{d}.$$

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathsf{grad},\mathcal{T}}^{k}} \underline{X}_{\mathsf{grad},\mathcal{T}}^{k} \xrightarrow{\underline{G}_{\mathcal{T}}^{k}} \underline{X}_{\mathsf{curl},\mathcal{T}}^{k} \xrightarrow{\underline{C}_{\mathcal{T}}^{k}} \underline{X}_{\mathsf{div},\mathcal{T}}^{k} \xrightarrow{D_{\mathcal{T}}^{k}} \mathcal{P}^{k}(\mathcal{T}) \xrightarrow{0} \{0\}.$$

▶ The previous sequence is not exact!

For X = F, T of dimension d = 2, 3 let:

▶
$$\mathcal{R}^k(X) = \operatorname{curl}(\mathcal{P}^{k+1}(X)^d), \ \mathcal{R}^{c,k}(X) \text{ complement in } \mathcal{P}^k(X)^d.$$

▶
$$\mathcal{G}^{k}(X) = \operatorname{grad}(\mathcal{P}^{k+1}(X)^{d}), \ \mathcal{G}^{c,k}(X) \text{ complement in } \mathcal{P}^{k}(X)^{d}.$$

Trimmed spaces: face/cell gradients and curls have to be projected on trimmed spaces.

• Gradients in $\mathcal{P}^k(X)^d$ projected on $\mathcal{R}^{k-1}(X) \oplus \mathcal{R}^{c,k}(X)$.

• Curls in
$$\mathcal{P}^k(X)^d$$
 projected on $\mathcal{G}^{k-1}(X) \oplus \mathcal{G}^{c,k}(X)$.

$$\mathbb{R} \xrightarrow{\underline{L}^{k}_{\mathsf{grad},\Omega}} \underline{X}^{k}_{\mathsf{grad},\Omega} \xrightarrow{\underline{\boldsymbol{G}}_{\Omega}} \underline{X}^{k}_{\mathsf{curl},\Omega} \xrightarrow{\underline{\boldsymbol{C}}^{k}_{\Omega}} \underline{X}^{k}_{\mathsf{div},\Omega} \xrightarrow{D^{k}_{\Omega}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}.$$

Global spaces/operators: by patching local spaces/operators.

- Additional challenges:
 - Global exactness, especially Ker $D_{\Omega}^k \subset \operatorname{Im} \underline{\boldsymbol{\mathcal{L}}}_{\Omega}^k$.
 - Poincaré inequalities (for stability), e.g.

$$\|\underline{\boldsymbol{\nu}}_{\Omega}\|_{\underline{\boldsymbol{X}}^{k}_{\operatorname{curl},\Omega}} \leq M \|\underline{\boldsymbol{C}}_{\Omega}^{k}\underline{\boldsymbol{\nu}}_{\Omega}\|_{\underline{\boldsymbol{X}}^{k}_{\operatorname{div},\Omega}} \quad \forall \boldsymbol{\nu}_{\Omega} \in (\underline{\boldsymbol{X}}^{k}_{\operatorname{curl},\Omega})^{\perp}.$$

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

Model and exact solution

$$\begin{cases} \boldsymbol{\sigma} - \operatorname{curl} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \operatorname{curl} \boldsymbol{\sigma} = \boldsymbol{f} & \text{in } \Omega, \\ \operatorname{div} \boldsymbol{u} = 0 & \text{in } \Omega, \\ \boldsymbol{u} \times \boldsymbol{n} = \boldsymbol{g} & \text{on } \partial\Omega. \end{cases}$$

on $\Omega=(0,1)^3,$ with exact solution

$$\sigma(\mathbf{x}) = 3\pi \begin{pmatrix} \sin(\pi x_1) \cos(\pi x_2) \sin(\pi x_3) \\ 0 \\ -\cos(\pi x_1) \cos(\pi x_2) \sin(\pi x_3) \end{pmatrix},$$
$$u(\mathbf{x}) = \begin{pmatrix} \cos(\pi x_1) \sin(\pi x_2) \sin(\pi x_3) \\ -2 \sin(\pi x_1) \cos(\pi x_2) \sin(\pi x_3) \\ \sin(\pi x_1) \sin(\pi x_2) \cos(\pi x_3) \end{pmatrix}.$$

► All spaces and operators implemented in the HArD::Core3D library.

- k = 0 - k = 1 - k = 2 - k = 3

 $\bullet k = 0 - k = 1 - k = 2 - k = 3$

 $10^{-0.6}$

 $\bullet k = 0 - k = 1 - k = 2 - k = 3$

1

 $10^{-0.4}$

 $10^{-0.2}$

J. Droniou (Monash University)

 10^{-2}

 $10^{-0.8}$

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2) Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests
Stationary version of Stefan/Porous Medium Equation equations:

$$u - \operatorname{div}(\Lambda \nabla \zeta(u)) = f - \operatorname{div}(F) \text{ in } \Omega,$$

$$\zeta(u) = 0 \text{ on } \partial \Omega.$$

Non-linearity:

Porous medium: $\zeta(u) = |u|^{m-1}u$ Stefan: ζ with plateau 0.9 0.8 0.8 0.6 0.7 0.4 0.6 0.2 0.5 0 0.4 -0.2 0.3 -0.4 0.2 -0.6 0.1 -0.8 -1 -1 0 0.4 0.8 -0.5 0

2

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2) Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

 $\Lambda = Id$ to simplify.

Continuous model: multiply by $\zeta(u)$, integrate by parts, use $\zeta(s)s \ge 0$:

$$\int_{\Omega} |\nabla \zeta(u)|^2 \leq \int_{\Omega} u\zeta(u) + \nabla \zeta(u) \cdot \nabla \zeta(u) = \int_{\Omega} f\zeta(u) + \int_{\Omega} F \cdot \nabla \zeta(u).$$

 $\Lambda = Id$ to simplify.

Continuous model: multiply by $\zeta(u)$, integrate by parts, use $\zeta(s)s \ge 0$:

$$\int_{\Omega} |\nabla \zeta(u)|^2 \leq \int_{\Omega} u\zeta(u) + \nabla \zeta(u) \cdot \nabla \zeta(u) = \int_{\Omega} f\zeta(u) + \int_{\Omega} F \cdot \nabla \zeta(u).$$

Use Poincaré inequality on $\zeta(u)$ and Cauchy–Schwarz inequalities:

$$\int_{\Omega} |\nabla \zeta(u)|^2 \leq C(f,F)$$

 \rightsquigarrow Bound on $\zeta(u)$, translates into a bound on u.

J. Droniou (Monash University)

Discrete version: think conforming \mathbb{P}_1 finite elements: find $u_h \in V_h$ such that, for all $v_h \in V_h$,

$$\int_{\Omega} u_h v_h + \nabla \zeta(u_h) \cdot \nabla v_h = \int_{\Omega} f v_h + \int_{\Omega} F \cdot \nabla v_h.$$

Stability: $v_h = \zeta(u_h)$ not a valid test function, we need to take $v_h = u_h$:

$$\int_{\Omega} u_h^2 + \zeta'(u_h) |\nabla u_h|^2 \leq \int_{\Omega} f u_h + \int_{\Omega} \mathbf{F} \cdot \nabla u_h$$

Last term cannot be estimated by left-hand side...

J. Droniou (Monash University)

▶ For $w_h \in V_h$, define $[\zeta(w)]_h$ by nodal values: unique function in V_h that has the values $\zeta(w_h(s))$ at the nodes s of V_h (nodes=degrees of freedom).

Scheme: find $u_h \in V_h$ such that, for all $v_h \in V_h$,

$$\int_{\Omega} u_h v_h + \nabla [\zeta(u)]_h \cdot \nabla v_h = \int_{\Omega} f v_h + \int_{\Omega} F \cdot \nabla v_h.$$

▶ For $w_h \in V_h$, define $[\zeta(w)]_h$ by nodal values: unique function in V_h that has the values $\zeta(w_h(s))$ at the nodes s of V_h (nodes=degrees of freedom).

Scheme: find $u_h \in V_h$ such that, for all $v_h \in V_h$,

$$\int_{\Omega} u_h v_h + \nabla [\zeta(u)]_h \cdot \nabla v_h = \int_{\Omega} f v_h + \int_{\Omega} F \cdot \nabla v_h.$$

Stability: $v_h = [\zeta(u)]_h$ is a valid test function!

$$\int_{\Omega} u_h[\zeta(u)]_h + |\nabla[\zeta(u)]_h|^2 \leq \int_{\Omega} f[\zeta(u)]_h + \int_{\Omega} F \cdot \nabla[\zeta(u)]_h.$$

 \blacktriangleright What to do with the first term? It was ≥ 0 in the continuous case, but now?

Solution to stability: mass-lumping

$$\int_{\Omega} u_h[\zeta(u)]_h + |\nabla[\zeta(u)]_h|^2 \leq \int_{\Omega} f[\zeta(u)]_h + \int_{\Omega} F \cdot \nabla[\zeta(u)]_h.$$

At the nodes, $u_h(s)[\zeta(u)]_h(s) = u_h(s)\zeta(u_h(s)) \geq 0.$

▶ Replace u_h in the reaction term by a quantity that only uses nodal values.

Solution to stability: mass-lumping

▶ Let $(K_s)_s$ node be a partition of Ω , each K_s being built "around" s, and set

$$\Pi_h u_h : \Omega \to \mathbb{R} \qquad (\Pi_h u_h)_{|K_s} = u_h(s) \quad \forall s.$$

Mass-lumped scheme: find $u_h \in V_h$ such that, for all $v_h \in V_h$,

$$\int_{\Omega} \prod_{h} u_{h} \prod_{h} v_{h} + \nabla [\zeta(u)]_{h} \cdot \nabla v_{h} = \int_{\Omega} f \prod_{h} v_{h} + \int_{\Omega} F \cdot \nabla v_{h}.$$

Stability: make $v_h = [\zeta(u)]_h$ as before, and use (magic of mass-lumping!)

 $\Pi_h[\zeta(u)]_h = \zeta(\Pi_h u_h)$

to get

$$\int_{\Omega} \underbrace{\prod_{h \leq u_h} \zeta(\prod_{h \leq u_h})}_{\geq 0} + |\nabla[\zeta(u)]_h|^2 \leq \int_{\Omega} f[\zeta(u)]_h + \int_{\Omega} F \cdot \nabla[\zeta(u)]_h.$$

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

Mass-lumping = approximate reaction terms by piecewise constant functions Order 1 consistency error at best...

▶ How do we recover a high-order scheme?

Discrete space and nodes: T_h a mesh of the domain,

$$X_h = \{ v = (v_i)_{i \in I} : v_i \in \mathbb{R}, v_i = 0 \text{ if } i \in I_{\partial \Omega} \}.$$

There is $(x_i)_{i \in I}$ and, for each $K \in \mathcal{T}_h$, $I_K \subset I$ such that $x_i \in \overline{K}$ if $i \in I_K$.

Discrete space and nodes: T_h a mesh of the domain,

$$X_h = \{ v = (v_i)_{i \in I} : v_i \in \mathbb{R}, v_i = 0 \text{ if } i \in I_{\partial \Omega} \}.$$

There is $(x_i)_{i \in I}$ and, for each $K \in \mathcal{T}_h$, $I_K \subset I$ such that $x_i \in \overline{K}$ if $i \in I_K$.

High-order reconstruction: $\Pi_h^{\text{HO}} : X_h \to \mathbb{P}_k(\mathcal{T}_h)$. For all $v \in X_h$, $K \in \mathcal{T}_h$ and $i \in I_K$, $v_i = (\Pi_h^{\text{HO}} v)_{|K}(x_i)$.

Discrete space and nodes: T_h a mesh of the domain,

$$X_h = \{ v = (v_i)_{i \in I} : v_i \in \mathbb{R}, v_i = 0 \text{ if } i \in I_{\partial \Omega} \}.$$

There is $(x_i)_{i \in I}$ and, for each $K \in \mathcal{T}_h$, $I_K \subset I$ such that $x_i \in \overline{K}$ if $i \in I_K$.

High-order reconstruction: $\Pi_h^{\text{HO}} : X_h \to \mathbb{P}_k(\mathcal{T}_h)$. For all $v \in X_h$, $K \in \mathcal{T}_h$ and $i \in I_K$, $v_i = (\Pi_h^{\text{HO}} v)_{|K}(x_i)$.

Mass-lumping: $U_h = (U_i)_{i \in I}$ partition of Ω and $\Pi_h : X_h \to \mathbb{P}_0(U_h)$ piecewise constant reconstruction.

For all $i \in I$ and $K \in \mathcal{T}_h$, $U_i \cap K \neq \emptyset$ only if $i \in I_K$.

Discrete space and nodes: T_h a mesh of the domain,

$$X_h = \{ v = (v_i)_{i \in I} : v_i \in \mathbb{R}, v_i = 0 \text{ if } i \in I_{\partial \Omega} \}.$$

There is $(x_i)_{i \in I}$ and, for each $K \in \mathcal{T}_h$, $I_K \subset I$ such that $x_i \in \overline{K}$ if $i \in I_K$.

High-order reconstruction: $\Pi_h^{\text{HO}} : X_h \to \mathbb{P}_k(\mathcal{T}_h)$. For all $v \in X_h$, $K \in \mathcal{T}_h$ and $i \in I_K$, $v_i = (\Pi_h^{\text{HO}} v)_{|K}(x_i)$.

Mass-lumping: $U_h = (U_i)_{i \in I}$ partition of Ω and $\Pi_h : X_h \to \mathbb{P}_0(U_h)$ piecewise constant reconstruction.

For all $i \in I$ and $K \in \mathcal{T}_h$, $U_i \cap K \neq \emptyset$ only if $i \in I_K$.

High-order gradient reconstruction: $\nabla_h^{\text{HO}} : X_h \to L^{\infty}(\Omega)^d$.

Discrete space and nodes: T_h a mesh of the domain,

$$X_h = \{ v = (v_i)_{i \in I} : v_i \in \mathbb{R}, v_i = 0 \text{ if } i \in I_{\partial \Omega} \}.$$

There is $(x_i)_{i \in I}$ and, for each $K \in \mathcal{T}_h$, $I_K \subset I$ such that $x_i \in \overline{K}$ if $i \in I_K$.

High-order reconstruction: $\Pi_h^{\text{HO}} : X_h \to \mathbb{P}_k(\mathcal{T}_h)$. For all $v \in X_h$, $K \in \mathcal{T}_h$ and $i \in I_K$, $v_i = (\Pi_h^{\text{HO}} v)_{|K}(x_i)$.

Mass-lumping: $U_h = (U_i)_{i \in I}$ partition of Ω and $\Pi_h : X_h \to \mathbb{P}_0(U_h)$ piecewise constant reconstruction.

For all $i \in I$ and $K \in \mathcal{T}_h$, $U_i \cap K \neq \emptyset$ only if $i \in I_K$.

High-order gradient reconstruction: $\nabla_h^{\text{HO}} : X_h \to L^{\infty}(\Omega)^d$.

Quadrature: $Q_h : C(\mathcal{T}_h) \to L^{\infty}(\Omega)$ given by:

$$(Q_h w)_{|\kappa} = \sum_{i \in I_K} w_{|\kappa}(\mathsf{x}_i) \mathbb{1}_{U_i \cap \kappa} \qquad \forall K \in \mathcal{T}_h.$$

Non-linear function of vectors: if $v = (v_i)_{i \in I} \in X_h$ and $g : \mathbb{R} \to \mathbb{R}$, we define

 $g(v) \in X_h$ such that $(g(v))_i = g(v_i) \quad \forall i \in I.$

Non-linear function of vectors: if $v = (v_i)_{i \in I} \in X_h$ and $g : \mathbb{R} \to \mathbb{R}$, we define

$$g(v) \in X_h$$
 such that $(g(v))_i = g(v_i) \quad \forall i \in I.$

Scheme:

Find $u_h \in X_h$ such that, for all $v_h \in X_h$, $\int_{\Omega} \Pi_h u_h \Pi_h v_h + \Lambda \nabla_h^{\text{HO}} \zeta(u_h) \cdot \nabla_h^{\text{HO}} v_h = \int_{\Omega} Q_h f \Pi_h v.$

J. Droniou (Monash University)

Exactness of quadrature: we assume that Q_h is locally exact of degree $k + \ell$, that is

$$egin{aligned} &\int_{\mathcal{K}} egin{aligned} &q = \int_{\mathcal{K}} Q_h egin{aligned} &Q_h egin{aligned} &= \sum_{i \in I_{\mathcal{K}}} |U_i \cap \mathcal{K}| egin{aligned} &q(\mathbf{x}_i) \end{pmatrix} \ & orall &\mathcal{K} \in \mathcal{T}_h \,, \ orall egin{aligned} &Q &\mathcal{R}_k(\ell). \end{aligned}$$

Error estimate

Broken Sobolev space:

$$W^{\ell+2,\infty}(\mathcal{T}_h) = \{ w \in L^{\infty}(\Omega) : w_{|K} \in W^{\ell+2,\infty}(K) \quad \forall K \in \mathcal{T}_h \}.$$

► Defect of conformity of the (underlying high-order) method: for any $\psi \in L^2(\Omega)^d$ with div $\psi \in L^2(\Omega)$,

$$W_h^{\text{HO}}(\psi) = \max_{w_h \in X_h \setminus \{0\}} \frac{1}{\|\nabla_h^{\text{HO}} w_h\|_{\Omega}} \left| \int_{\Omega} \Pi_h^{\text{HO}} w_h \operatorname{div} \psi q + \nabla_h^{\text{HO}} w_h \cdot \psi \right|$$

Error estimate

Broken Sobolev space:

$$W^{\ell+2,\infty}(\mathcal{T}_h) = \{ w \in L^{\infty}(\Omega) : w_{|K} \in W^{\ell+2,\infty}(K) \quad \forall K \in \mathcal{T}_h \}.$$

► Defect of conformity of the (underlying high-order) method: for any $\psi \in L^2(\Omega)^d$ with div $\psi \in L^2(\Omega)$,

$$W_h^{\text{HO}}(\psi) = \max_{w_h \in X_h \setminus \{0\}} \frac{1}{\|\nabla_h^{\text{HO}} w_h\|_{\Omega}} \left| \int_{\Omega} \Pi_h^{\text{HO}} w_h \operatorname{div} \psi q + \nabla_h^{\text{HO}} w_h \cdot \psi \right|$$

Theorem (D.-Eymard, 2018)

Under $QR_k(\ell)$, if u and f belong to $W^{\ell+2,\infty}(\mathcal{T}_h)$ then

$$\begin{split} \|\nabla^{{}_{\mathrm{h}}\scriptscriptstyle\mathrm{O}}_h[I_h\zeta(u)-\zeta(u_h)]\|_{\Omega} \\ &\leq CW_{h,{}_{\mathrm{H}\scriptscriptstyle\mathrm{O}}}(\Lambda\nabla\zeta(u))+C\|\nabla^{{}_{\mathrm{H}\scriptscriptstyle\mathrm{O}}}_hI_h\zeta(u)-\nabla\zeta(u)\|_{\Omega}+Ch^{\ell+2}, \end{split}$$

with $I_h\zeta(u) = (\zeta(u)(x_i))_{i \in I}$ interpolate of $\zeta(u)$ on X_h .

J. Droniou (Monash University)

Theorem (D.-Eymard, 2018)

Under $QR_k(\ell)$, if u and f belong to $W^{\ell+2,\infty}(\mathcal{T}_h)$ then

$$\|\nabla_{h}^{\text{HO}}[I_{h}\zeta(u)-\zeta(u_{h})]\|_{\Omega} \leq \underbrace{\mathcal{CW}_{h}^{\text{HO}}(\Lambda\nabla\zeta(u))}_{\mathcal{O}(h^{k})} + \underbrace{\mathcal{C}\|\nabla_{h}^{\text{HO}}I_{h}\zeta(u)-\nabla\zeta(u)\|_{\Omega}}_{\mathcal{O}(h^{k})} + Ch^{\ell+2},$$

with $I_h\zeta(u) = (\zeta(u)(x_i))_{i\in I}$ interpolate of $\zeta(u)$ on X_h .

▶ Real limiting factor is $h^{\ell+2}$, dictated by $QR_k(\ell)$ (and regularity of *u* and *f*).

Hybrid High-Order method

- An inspiring remark
- Description of the HHO scheme
- Miscible flow in porous media

2 Fully Discrete de Rham sequence

- Principles of discrete exact sequence
- Fully discrete de Rham sequence
- Application to magnetostatics

3 High-order schemes for stationnary Stefan/PME models

- Towards a stable numerical approximation
- High-order approximations
- Numerical tests

Name	$(\mathbf{x}_i)_{i\in I_K}$	$\left(\frac{ U_i\cap K }{ K }\right)_{i\in I_K}$	DOE	Illustration
Trapezoidal	(a, b)	$(\frac{1}{2}, \frac{1}{2})$	1	₽ €
Simpson	$(a, \frac{a+b}{2}, b)$	$\left(\frac{1}{6},\frac{2}{3},\frac{1}{6}\right)$	3	0
Equi6	$\left(a, \frac{2a+b}{3}, \frac{a+2b}{3}, b\right)$	$\left(\frac{1}{6},\frac{1}{3},\frac{1}{3},\frac{1}{6}\right)$	1	0 €
Equi8	$\left(a, \frac{2a+b}{3}, \frac{a+2b}{3}, b\right)$	$\left(\frac{1}{8},\frac{3}{8},\frac{3}{8},\frac{1}{8},\frac{1}{8}\right)$	3	0 → 0 → 0 → 0
Gauss–Lobatto	$(a, rac{5+\sqrt{5}}{10}a + rac{5-\sqrt{5}}{10}b, rac{5-\sqrt{5}}{10}a + rac{5+\sqrt{5}}{10}b, b)$	$\left(\frac{1}{12}, \frac{5}{12}, \frac{5}{12}, \frac{1}{12}\right)$	5	0

Table: Examples of quadrature rules in dimension d = 1 for K = (a, b). DOE stands for degree of exactness (corresponds to $k + \ell$).

Name	Degree <i>k</i>	Quadrature rule	l
$\mathcal{D}_1^{\mathrm{g}}(0)$	1	Trapezoidal	0
$\mathcal{D}_2^{ m g}(1)$	2	Simpson	1
$\mathcal{D}_3^{\mathrm{g}}(-)$	3	Equi6	-
$\mathcal{D}_3^{\mathrm{g}}(0)$	3	Equi8	0
$\mathcal{D}_3^{\mathrm{g}}(2)$	3	Gauss–Lobatto	2

Table: Mass-lumped GDs for \mathbb{P}_k Finite Element in dimension d = 1. These methods satisfy $QR_k(\ell)$ with the corresponding k, ℓ . g = u for uniform meshes, g = r for random meshes.

• We provide (C, α) such that

$$\|\nabla_h^{{}_{\mathrm{HO}}}(I_h\zeta(u)-\zeta(u_h))\|_{\Omega} pprox C \mathrm{Card}(I)^{-lpha/d}.$$

 $\alpha \sim$ rate of convergence in meshsize.

Test R: regular exact solution $u(x) = x(1-x)e^x$.

	$\mathcal{D}_1^{\mathrm{u}}(0)$	$\mathcal{D}_1^r(0)$	$\mathcal{D}_2^{\mathrm{u}}(1)$	$\mathcal{D}_2^r(1)$	$\mathcal{D}_3^{\mathrm{u}}(-)$	$\mathcal{D}_3^r(-)$	$\mathcal{D}_3^{\mathrm{u}}(0)$	$\mathcal{D}_3^r(0)$	$\mathcal{D}_3^{\mathrm{u}}(2)$	$\mathcal{D}_3^{\mathrm{u}}(2)$
С	0.44	0.31	0.14	0.13	0.15	0.15	0.2	0.2	0.0002	0.00024
α	2	1.9	3	2.98	1	1	2	1.99	2.95	2.97
$\min(k, \ell+2)$	1	1	2	2	-	-	2	2	3	3

Porous medium equation: $\zeta(u) = \max(u, 0)^2$

Test P1: exact solution with $s^{3/2}$ singularity – piecewise smooth, singularity not aligned with meshes.

	$\mathcal{D}_1^{\mathrm{u}}(0)$	$\mathcal{D}_1^r(0)$	$\mathcal{D}_2^{\mathrm{u}}(1)$	$\mathcal{D}_2^{\mathrm{r}}(1)$	$\mathcal{D}_3^{\mathrm{u}}(-)$	$\mathcal{D}_3^{\mathrm{r}}(-)$	$\mathcal{D}_3^{\mathrm{u}}(0)$	$\mathcal{D}_3^r(0)$	$\mathcal{D}_3^{\mathrm{u}}(2)$	$\mathcal{D}_3^{\mathrm{u}}(2)$
С	12	12	4.3	16	0.41	0.42	2.7	2.3	1.2	0.22
α	2	1.98	2.45	2.69	1.03	1.03	1.99	1.95	2.42	1.98
$\min(k, \ell+2)$	1	1	2	2	-	-	2	2	3	3

Test P2: exact solution $u(x) = \max(x - 1.5, 0)^2/12$ corresponding to f = 0.

	$\mathcal{D}_1^{\mathrm{u}}(0)$	$\mathcal{D}_1^r(0)$	$\mathcal{D}_2^{\mathrm{u}}(1)$	$\mathcal{D}_2^{\mathrm{r}}(1)$	$\mathcal{D}_3^u(-)$	$\mathcal{D}_3^r(-)$	$\mathcal{D}_3^{\mathrm{u}}(0)$	$\mathcal{D}_3^r(0)$	$\mathcal{D}_3^{\mathrm{u}}(2)$	$\mathcal{D}_3^{\mathrm{u}}(2)$
С	0.19	0.38	0.17	0.18	0.14	0.15	0.24	0.24	0.27	0.0014
α	2	1.97	2.99	2.98	1	1	2	1.99	3.1	3.46
$\min(k, \ell+2)$	1	1	2	2	-	-	2	2	3	3

Nonlinearity: $\zeta(u) = 0$ if $0 \le u \le 1$, slope 1 otherwise.

J. Droniou (Monash University)

Stefan model

Test S1: f(x) = 3(0.5 - |0.5 - x|), exact solution (computable up to parameters that are numerically evaluated):

	$\mathcal{D}_1^{\mathrm{u}}(0)$	$\mathcal{D}_1^r(0)$	$\mathcal{D}_2^{\mathrm{u}}(1)$	$\mathcal{D}_2^{\mathrm{r}}(1)$	$\mathcal{D}_3^{\mathrm{u}}(-)$	$\mathcal{D}_3^{\mathrm{r}}(-)$	$\mathcal{D}_3^{\mathrm{u}}(0)$	$\mathcal{D}_3^r(0)$	$\mathcal{D}_3^{\mathrm{u}}(2)$	$\mathcal{D}_3^{\mathrm{u}}(2)$
С	12	3.2	0.62	1	0.37	0.38	0.72	0.28	0.36	0.39
α	1.87	1.66	1.54	1.65	1.03	1.05	1.61	1.53	1.58	1.59
$\min(k, \ell+2)$	1	1	2	2	-	-	2	2	3	3

What happens with $\mathcal{D}_{3}^{g}(0)$ and $\mathcal{D}_{3}^{g}(2)$? No improvement over low order? • Due to lack of regularity of $\zeta(u)$, only belongs to H^{2} as $(\zeta(u))'' = u - f$ is discontinuous.

▶ Recover $\mathcal{O}(h^2)$ convergence if error calculated far from discontinuity; but not $\mathcal{O}(h^3)$ even for $\mathcal{D}_3^g(2)$.

Degree k = 3, various quadrature rules, for PME and Stefan (f = 0).

		$\mathcal{D}_3^{\mathrm{u}}(-)$	$\mathcal{D}_3^{\mathrm{r}}(-)$	$\mathcal{D}_3^{\mathrm{u}}(0)$	$\mathcal{D}_3^{\mathrm{r}}(0)$	$\mathcal{D}_3^{\mathrm{u}}(2)$	$\mathcal{D}_3^{\mathrm{u}}(2)$
Test R	С	0.15	0.17	0.22	0.22	0.023	0.011
Test IX	α	1.01	1.02	2	1.99	3.25	3.01
Tost D1	С	0.42	0.42	2.9	2.9	1.4	1
Test P1	α	1.03	1.03	1.98	1.97	2.39	2.32
Test P2	С	0.15	0.15	0.27	0.28	0.039	0.019
	α	1.01	1.01	2	2	3.42	3.08
Tort S2	С	0.09	0.085	0.082	0.074	0.054	0.058
Test 52	α	1.01	1	1.5	1.57	1.49	1.58
	$\min(k, \ell+2)$	-	-	2	2	3	3

Hybrid High-Order method

- ▶ High-order method for diffusion problems on polytopal meshes.
- ▶ Uses element and face unknowns to reconstruct higher-order potential.
- > Optimal rates of convergence, for many models of practical interest.
- ► Finite volume method, provides appropriate fluxes for coupling with transport.

Discrete de Rham sequence

- ▶ Preserve exactness property at discrete level: essential in some applications.
- ► Fully computable (purely polynomial) spaces and operators.
- ▶ In its infancy, lot of work remains to be done...
High-order schemes for Stefan/PME

- Stefan/PME requires mass lumping.
- ► Higher order schemes still possible, provided a key quadrature rule is respected.
- ► Convergence benefits from high order, unless restricted by regularity of solution (even then, local improvement is possible).

Main books/papers:

- High-order mass-lumped schemes for nonlinear degenerate elliptic equations. J. Droniou and R. Eymard. SIAM J. Numer. Anal. 58 (1), pp. 153–188, 2020. doi: 10.1137/19M1244500. https://arxiv.org/abs/1902.04662.
- The Hybrid High-Order Method for Polytopal Meshes: Design, Analysis, and Applications. D. A. Di Pietro and J. Droniou. Springer, MS&A vol. 19, 2020, 551p. doi: 10.1007/978-3-030-37203-3. https://hal.archives-ouvertes.fr/hal-02151813.
- Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra. D. Di Pietro, J. Droniou, and F. Rapetti. Math. Models Methods Appl. Sci. 44p, 2020. https://arxiv.org/abs/1911.03616.
- An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence. D. A. Di Pietro and J. Droniou, 31p, submitted, 2020. https://arxiv.org/abs/2005.06890.

Thanks.