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The porous medium equation: strong formulation

mC D̄ − Δ( |D̄ |<−1D̄) = 5 in (0, )) ×Ω,
D̄ = 0 on (0, )) × mΩ,

D̄(0, ·) = Dini on Ω.

Ω open bounded connected in R3 (3 = 2, 3), Ω) := (0, )) ×Ω.

Dini ∈ !<+1 (Ω), 5 ∈ !2 (Ω) ).
< ∈ (0,∞):

< < 1: fast diffusion.
< = 1: heat equation (linear).
< > 1: slow diffusion.
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The porous medium equation: weak formulation

A weak solution to the PME is D such that

1 D̄ ∈ � ( [0, )]; !<+1 (Ω)w) and D̄(0, ·) = D0 in !<+1 (Ω),
2 |D̄ |<−1D̄ ∈ !2 (0, ) ;�1

0 (Ω)),
3 mC D̄ ∈ !2 (0, ) ;�−1 (Ω)), and for any q ∈ !2 (0, ) ;�1

0 (Ω))∫ )

0

〈mC D̄(C), q(C)〉�−1 ,�1
0
+

∫
Ω)

∇(|D̄ |<−1D̄) · ∇q =
∫
Ω)

5 q.
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The porous medium equation: numerical approximation

Components of the spatial discretisation

-D,0 a finite-dimensional space, with canonical basis (e8)8∈� ,
ΠD : -D,0 → !∞ (Ω) a piecewise constant function reconstruction: for
some partition (Ω8)8∈� of Ω,

∀D =
∑
8

D8e8 ∈ -D,0 , (ΠDD)|Ω8 = D8 .

∇D : -D,0 → !∞ (Ω)3 a gradient reconstruction, s.t. D ↦→ ‖∇DD‖!2 is
a norm on -D,0.

Non-linear transformations in -D,0: if 6 : R→ R and D ∈ -D,0, we
define 6(D) ∈ -D,0 by:

6(D) =
∑
8∈�

6(D8)e8 where D =
∑
8∈�

D8e8 .

The piecewise constant function reconstruction property ensures that:

ΠD6(D) = 6(ΠDD).
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The porous medium equation: numerical approximation

Extension as time-space operators: constant-step discretisation of (0, )),
with times C (=) = =XC. If D = (D (=) )==0,...,# ∈ -#+1D,0 , set

ΠDD(C, ·) = ΠDD (=+1) and ∇DD(C, ·) = ∇DD (=+1) ∀C ∈ (C (=) , C (=+1) ] .

Discrete time stepping: for D ∈ -#+1D,0 , we define

XDD(C, ·) = ΠDD
(=+1) − ΠDD (=)

XC
∀C ∈ (C (=) , C (=+1) ] .
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The porous medium equation: numerical approximation

Scheme: let D (0) ∈ -D,0 be a suitable interpolate of Dini, and find
D = (D (=) )==0, · · · ,# s.t.∫

Ω)

XDDΠDq +
∫
Ω)

∇D |D |<−1D · ∇Dq =
∫
Ω)

5ΠDq

for all ‘test function’ q =
(
q (=)

)
==0, · · · ,# ∈ -#+1D,0 .

Large choice of D = (-D,0,ΠD ,∇D), each one leading to a specific
scheme.

Many classical schemes obtained by specific choices of D:
(mass-lumped) conforming and non-conforming finite elements, finite
volumes, discontinuous Galerkin, hybrid mimetic mixed, virtual
elements, etc.

This approach is called the Gradient Discretisation Method.
D is a gradient discretisation.
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Key properties of D
A sequence (Dℓ)ℓ∈N of gradient discretisations is...

Consistent if, for all q ∈ �1
0 (Ω), there is Eℓ ∈ -Dℓ ,0 s.t., as ℓ →∞,

ΠDℓ Eℓ → q in !2(Ω) and ∇Dℓ Eℓ → ∇q in !2 (Ω)3 .

Limit-conforming if, for all 7 ∈ !2 (Ω)3 s.t. div7 ∈ !2 (Ω), as ℓ →∞,

max
E∈-Dℓ ,0\{0}

���∫
Ω
∇Dℓ E · 7 + ΠDℓ E div7

���

∇Dℓ E

!2 (Ω)
→ 0.

Compact if, for all Eℓ ∈ -Dℓ ,0 such that (


∇Dℓ Eℓ

!2 (Ω) )ℓ∈N is bounded,

(ΠDℓ Eℓ)ℓ∈N is relatively compact in !2(Ω).

All classical methods satisfy these properties, under standard mesh
regularity assumptions.
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Convergence result

Theorem (D.-Le, 2020)

There is a solution to the gradient scheme and, if (Dℓ)ℓ∈N is consistent,
limit-conforming and compact and Dℓ is a solution for Dℓ , then, up to a
subsequence as ℓ →∞,

ΠDℓDℓ → D̄ strongly in !∞ (0, ) ; !<+1 (Ω)),
∇Dℓ ( |Dℓ |<−1Dℓ) → ∇(|D̄ |<−1D̄) strongly in !2 (Ω) ).

where D̄ is a solution to the PME.

First uniform-in-time convergence result in !<+1 (Ω) (semi-group
approach only provides !1 (Ω)).

Valid in whole range: < > 1 (slow diffusion) and < < 1 (fast diffusion).

Convergence for more general models: Δ( |D̄ |<−1D̄) { div(Λ(D̄)∇V(D̄)).
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Special case: nodal gradient discretisation

DOFs attached to nodes: we assume that the coefficients (D8)8∈� on the
basis (e8)8∈� of -D,0 are attached to points (x8)8∈� in Ω.

A suitable interpolator is then �D : � (Ω) → -D,0 defined by

(�Dq)8 = q(x8) ∀8 ∈ � .
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Two measures of consistency

Strong consistency of gradient: for q ∈ �1
0 (Ω),

(∇D (q) = ‖∇D (�Dq) − ∇q‖!2 (Ω) .

Weak consistency of function reconstruction: for l ∈ !2 (Ω),

(
Π,★
D (l) = |ΠD (�Dl) − l|D,★,

where |·|D,★ is the discrete �−1-seminorm defined for b ∈ !2 (Ω) by

|b |D,★ = max

{∫
Ω

bΠDE : E ∈ -D,0 , ‖∇DE‖!2 (Ω) ≤ 1

}
.
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Error estimates

Set Z (B) = |B |<−1B.

Measure of error: with D̄ solution of the PME,

�D (D̄) =
[
#−1∑
==0

XC �=D (D̄)2
]1/2

where

�=D (D̄) =
����� 1

XC

∫ C (=+1)

C (=)
ΔZ (D̄(B)) 3B − ΔZ (D̄(C (=+1) ))

�����
D,★

+ (Π,★D
(
D̄(C (=+1) ) − D̄(C (=) )

XC

)
+ (∇D (Z (D̄(C (=+1) ))) +,D (∇Z (D̄(C (=+1) )))
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Error estimates

Theorem (Cancès-D.-Guichard-Mazini-Olivares-Pop, 2020)

In case of slow diffusion < ≥ 1:[
#−1∑
==0

XC




ΠDD (=+1) − ΠD � (=+1)D D̄




<+1
!<+1 (Ω)

] 1
<+1

≤ ��D (D̄)
2
<+1 .

In case of fast diffusion < < 1:[
#−1∑
==0

XC




Z (ΠDD (=+1) ) − Z (ΠD � (=+1)D D̄)



<+1<
!
<+1
< (Ω)

] <
<+1

≤ ��D (D̄)
2<
<+1 .
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Numerical tests: schemes

LEPNC (Locally Enriched Polytopal Non-Conforming):
non-conforming pseudo-FE method on generic polygonal meshes.

HMM (Hybrid Mimetic Mixed scheme): unknowns in cells and on
edges, contains mimetic finite differences.

MLP1 (Mass-Lumped P1 FE): FE with piecewise constant
reconstruction ΠD .

VAG (Vertex Averaged Gradient discretisation): unknowns at the
vertices, based on P1 on a triangular subdivision.

CVFEM (Conforming Virtual Element Method): extension of
conforming FE applicable on generic polygonal meshes.

HDG (Hybridizable Discontinuous Galerking): lowest order
discontinuous Galerkin with edge unknowns.
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Numerical tests: Errors (at final time)

Discrete �1-error on |D |<−1D:

��1 ,Z =



∇D (Z (D (# ) ) − �DZ (D̄) (), ·))

!2 (Ω)
‖∇D �DZ (D̄) (), ·)‖!2 (Ω)

.

!<+1 error on D:

�!<+1 =



ΠD (D (# ) − �D D̄(), ·))

!<+1 (Ω)
‖ΠD �D D̄(), ·)‖!<+1 (Ω)
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Numerical tests: mesh and exact solution

Domain and meshes: Ω = (0, 1)2.

Exact solution: Barenblatt–Pattle solution, with translation in time:
D̄(C, G) = B(C0 + C, G − G0) with

B(C, G) = C− 1
<


�B −

< − 1

4<2

(
|G |
C

1
2<

)2+


1
<−1

and G0 = (0.5, 0.5), C0 = 0.1, �B = 0.005.
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Numerical tests: mesh and exact solution

Exact solution: for < = 2.5,

(a) C = 0.1 (b) C = 0.19

(c) C = 0.37 (d) C = 0.73
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Triangular meshes, < = 2

LEPNC HMM VAG CFVEM
HDG MLP1

10−2 10−1

10−2

10−1

100

1

1

(a) < = 2: ��1 ,Z vs. ℎ.

10−2 10−1

10−3

10−2

10−1

1

1.3

(b) < = 2: �!<+1 vs. ℎ (theorem: ℎ0.66)
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Triangular meshes, < = 4

LEPNC HMM VAG CFVEM
HDG MLP1

10−2 10−1

10−2

10−1

100

1

0.8

(a) < = 4: ��1 ,Z vs. ℎ.

10−2 10−1

10−1.5

10−1

10−0.5

1

0.5

(b) < = 4: �!<+1 vs. ℎ (theorem: ℎ0.4)
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Locally refined cartesian meshes, < = 2

LEPNC HMM VAG CFVEM

10−1.5 10−1 10−0.5

10−1

100

1

1

(a) < = 2: ��1 ,Z vs. ℎ.

10−1.5 10−1 10−0.5

10−2

10−1

100

1

1.3

(b) < = 2: �!<+1 vs. ℎ (theorem: ℎ0.66)
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Locally refined cartesian meshes, < = 4

LEPNC HMM VAG CFVEM

10−1.5 10−1 10−0.5

10−1

100

1

0.7

(a) < = 4: ��1 ,Z vs. ℎ.

10−1.5 10−1 10−0.5
10−1.5

10−1

10−0.5

1

0.5

(b) < = 4: �!<+1 vs. ℎ (theorem: ℎ0.4)
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Hexagonal meshes, < = 2

LEPNC HMM VAG CFVEM

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−1

100

1

1

(a) < = 2: ��1 ,Z vs. ℎ.

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−2

10−1

1

1.5

(b) < = 2: �!<+1 vs. ℎ (theorem: ℎ0.66)
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Hexagonal meshes, < = 4

LEPNC HMM VAG CFVEM

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6
10−1.5

10−1

10−0.5

1

0.75

(a) < = 4: ��1 ,Z vs. ℎ.

10−1.8 10−1.6 10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−1.5

10−1

10−0.5

1

0.45

LEPNC
HMM
VAG

(b) < = 4: �!<+1 vs. ℎ (theorem: ℎ0.4)
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Hexagonal meshes, HMM, < = 0.3 and < = 0.7

��1 ,Z �!<+1

10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−3

10−2

10−1

1

2

(a) < = 0.3

10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−3

10−2

1

2

(b) < = 0.7

Theorem: ℎ0.46 and ℎ0.82 in !
<+1
< (Ω) )-norm.
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Triangular meshes, MLP1, < = 0.3 and < = 0.7

��1 ,Z �!<+1

10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−2

10−1

100

1

1.5

(a) < = 0.3

10−1.4 10−1.2 10−1 10−0.8 10−0.6

10−2

10−1

1

1.3

(b) < = 0.7

Theorem: ℎ0.46 and ℎ0.82 in !
<+1
< (Ω) )-norm.
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Conclusion

Generic discretisation framework for PME (slow and fast diffusion),
covers to many numerical methods.

Uniform-in-time strong !<+1 convergence result without regularity
assumptions.

For nodal discretisations: error estimates.

Numerous numerical tests (and many more results reported in the
papers/book chapters: approximation of solution radius, fraction of
negartive mass, convergence vs. #DOFs, etc).
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Thanks!
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