Convergence and error estimates of numerical schemes for the porous medium equation

Jérôme Droniou

School of Mathematics, Monash University, Australia

ANZIAM 2021

Joint works with K.-N. Le, C. Cancès, C. Guichard, G. Manzini, M. Bastisdas, and I. S. Pop

Australian Government

Australian Research Council

Discrete Functional Analysis: bridging pure and numerical mathematics

- Convergence by compactness [D, Le; 2020]
- Error estimates [Cancès, D, Guichard, Manzini, Bastisdas, Pop; 2021]

1 Model and discretisation

2 Convergence by compactness

3 Error estimates

4 Numerical tests

The porous medium equation: strong formulation

$$\partial_t \bar{u} - \Delta(|\bar{u}|^{m-1}\bar{u}) = f \qquad \text{in } (0,T) \times \Omega,$$
$$\bar{u} = 0 \qquad \text{on } (0,T) \times \partial\Omega,$$
$$\bar{u}(0,\cdot) = u_{\text{ini}} \qquad \text{on } \Omega.$$

Ω open bounded connected in ℝ^d (d = 2, 3), Ω_T := (0, T) × Ω.
u_{ini} ∈ L^{m+1}(Ω), f ∈ L²(Ω_T).
m ∈ (0,∞):

The porous medium equation: strong formulation

$$\partial_t \bar{u} - \operatorname{div}(m \operatorname{sgn}(\bar{u}) | \bar{u} |^{m-1} \nabla \bar{u}) = f \qquad \text{in } (0, T) \times \Omega,$$
$$\bar{u} = 0 \qquad \text{on } (0, T) \times \partial \Omega,$$
$$\bar{u}(0, \cdot) = u_{\operatorname{ini}} \qquad \text{on } \Omega.$$

- Ω open bounded connected in \mathbb{R}^d (d = 2, 3), $\Omega_T := (0, T) \times \Omega$. • $u_{ini} \in L^{m+1}(\Omega)$, $f \in L^2(\Omega_T)$.
- $\blacksquare m \in (0, \infty):$
 - m < 1: fast diffusion.
 - m = 1: heat equation (linear).
 - m > 1: slow diffusion.

A weak solution to the PME is u such that

- $\blacksquare \ \bar{u} \in C([0,T];L^{m+1}(\Omega)_{\mathrm{w}}) \text{ and } \bar{u}(0,\cdot) = u_0 \text{ in } L^{m+1}(\Omega),$
- **2** $|\bar{u}|^{m-1}\bar{u} \in L^2(0,T;H^1_0(\Omega)),$

 $\exists \ \partial_t \bar{u} \in L^2(0,T;H^{-1}(\Omega)), \text{ and for any } \phi \in L^2(0,T;H^1_0(\Omega))$

$$\int_0^T \langle \partial_t \bar{u}(t), \phi(t) \rangle_{H^{-1}, H_0^1} + \int_{\Omega_T} \nabla(|\bar{u}|^{m-1} \bar{u}) \cdot \nabla \phi = \int_{\Omega_T} f \phi.$$

The porous medium equation: numerical approximation

Components of the spatial discretisation

- $X_{\mathcal{D},0}$ a finite-dimensional space, with canonical basis $(\mathbf{e}_i)_{i \in I}$,
- $\Pi_{\mathcal{D}}: X_{\mathcal{D},0} \to L^{\infty}(\Omega)$ a piecewise constant function reconstruction: for some partition $(\Omega_i)_{i \in I}$ of Ω ,

$$\forall u = \sum_i u_i \mathbf{e}_i \in X_{\mathcal{D},0}\,, \quad (\Pi_{\mathcal{D}} u)_{\mid \Omega_i} = u_i.$$

• $\nabla_{\mathcal{D}}: X_{\mathcal{D},0} \to L^{\infty}(\Omega)^d$ a gradient reconstruction, s.t. $u \mapsto \|\nabla_{\mathcal{D}} u\|_{L^2}$ is a norm on $X_{\mathcal{D},0}$.

The porous medium equation: numerical approximation

Components of the spatial discretisation

- $X_{\mathcal{D},0}$ a finite-dimensional space, with canonical basis $(\mathbf{e}_i)_{i \in I}$,
- $\Pi_{\mathcal{D}}: X_{\mathcal{D},0} \to L^{\infty}(\Omega)$ a piecewise constant function reconstruction: for some partition $(\Omega_i)_{i \in I}$ of Ω ,

$$\forall u = \sum_i u_i \mathbf{e}_i \in X_{\mathcal{D},0} \,, \quad (\Pi_{\mathcal{D}} u)_{\mid \Omega_i} = u_i.$$

• $\nabla_{\mathcal{D}}: X_{\mathcal{D},0} \to L^{\infty}(\Omega)^d$ a gradient reconstruction, s.t. $u \mapsto \|\nabla_{\mathcal{D}} u\|_{L^2}$ is a norm on $X_{\mathcal{D},0}$.

Non-linear transformations in $X_{\mathcal{D},0}$: if $g : \mathbb{R} \to \mathbb{R}$ and $u \in X_{\mathcal{D},0}$, we define $g(u) \in X_{\mathcal{D},0}$ by:

$$g(u) = \sum_{i \in I} g(u_i) \mathbf{e}_i$$
 where $u = \sum_{i \in I} u_i \mathbf{e}_i$.

• The piecewise constant function reconstruction property ensures that:

$$\Pi_{\mathcal{D}}g(u) = g(\Pi_{\mathcal{D}}u).$$

Extension as time-space operators: constant-step discretisation of (0,T), with times $t^{(n)} = n\delta t$. If $u = (u^{(n)})_{n=0,...,N} \in X_{\mathcal{D},0}^{N+1}$, set

$$\Pi_{\mathcal{D}} u(t, \cdot) = \Pi_{\mathcal{D}} u^{(n+1)} \text{ and } \nabla_{\mathcal{D}} u(t, \cdot) = \nabla_{\mathcal{D}} u^{(n+1)} \quad \forall t \in (t^{(n)}, t^{(n+1)}].$$

Extension as time-space operators: constant-step discretisation of (0,T), with times $t^{(n)} = n\delta t$. If $u = (u^{(n)})_{n=0,...,N} \in X_{\mathcal{D},0}^{N+1}$, set

$$\Pi_{\mathcal{D}} u(t, \cdot) = \Pi_{\mathcal{D}} u^{(n+1)} \text{ and } \nabla_{\mathcal{D}} u(t, \cdot) = \nabla_{\mathcal{D}} u^{(n+1)} \quad \forall t \in (t^{(n)}, t^{(n+1)}].$$

Discrete time stepping: for $u \in X_{\mathcal{D},0}^{N+1}$, we define

$$\delta_{\mathcal{D}} u(t, \cdot) = \frac{\Pi_{\mathcal{D}} u^{(n+1)} - \Pi_{\mathcal{D}} u^{(n)}}{\delta t} \quad \forall t \in (t^{(n)}, t^{(n+1)}].$$

The porous medium equation: numerical approximation

Scheme: let $u^{(0)} \in X_{\mathcal{D},0}$ be a suitable interpolate of u_{ini} , and find $u = (u^{(n)})_{n=0,\cdots,N}$ s.t.

$$\int_{\Omega_T} \delta_{\mathcal{D}} u \Pi_{\mathcal{D}} \phi + \int_{\Omega_T} \nabla_{\mathcal{D}} |u|^{m-1} u \cdot \nabla_{\mathcal{D}} \phi = \int_{\Omega_T} f \Pi_{\mathcal{D}} \phi$$

for all 'test function' $\phi = \left(\phi^{(n)}\right)_{n=0,\cdots,N} \in X_{\mathcal{D},0}^{N+1}.$

The porous medium equation: numerical approximation

Scheme: let $u^{(0)} \in X_{\mathcal{D},0}$ be a suitable interpolate of u_{ini} , and find $u = (u^{(n)})_{n=0,\cdots,N}$ s.t.

$$\int_{\Omega_T} \delta_{\mathcal{D}} u \Pi_{\mathcal{D}} \phi + \int_{\Omega_T} \nabla_{\mathcal{D}} |u|^{m-1} u \cdot \nabla_{\mathcal{D}} \phi = \int_{\Omega_T} f \Pi_{\mathcal{D}} \phi$$

for all 'test function' $\phi = \left(\phi^{(n)}\right)_{n=0,\cdots,N} \in X_{\mathcal{D},0}^{N+1}.$

- Large choice of $\mathcal{D} = (X_{\mathcal{D},0}, \Pi_{\mathcal{D}}, \nabla_{\mathcal{D}})$, each one leading to a specific scheme.
- Many classical schemes obtained by specific choices of D: (mass-lumped) conforming and non-conforming finite elements, finite volumes, discontinuous Galerkin, hybrid mimetic mixed, virtual elements, etc.

This approach is called the Gradient Discretisation Method. \mathcal{D} is a gradient discretisation.

1 Model and discretisation

2 Convergence by compactness

3 Error estimates

4 Numerical tests

Key properties of $\ensuremath{\mathcal{D}}$

A sequence $(\mathcal{D}_{\ell})_{\ell \in \mathbb{N}}$ of gradient discretisations is...

A sequence $(\mathcal{D}_{\ell})_{\ell \in \mathbb{N}}$ of gradient discretisations is...

Consistent if, for all $\phi \in H^1_0(\Omega)$, there is $v_\ell \in X_{\mathcal{D}_\ell,0}$ s.t., as $\ell \to \infty$,

 $\Pi_{\mathcal{D}_\ell} v_\ell \to \phi \text{ in } L^2(\Omega) \quad \text{ and } \quad \nabla_{\mathcal{D}_\ell} v_\ell \to \nabla \phi \text{ in } L^2(\Omega)^d.$

A sequence $(\mathcal{D}_{\ell})_{\ell \in \mathbb{N}}$ of gradient discretisations is...

Consistent if, for all $\phi \in H^1_0(\Omega)$, there is $v_\ell \in X_{\mathcal{D}_\ell,0}$ s.t., as $\ell \to \infty$,

 $\Pi_{\mathcal{D}_\ell} v_\ell \to \phi \text{ in } L^2(\Omega) \quad \text{ and } \quad \nabla_{\mathcal{D}_\ell} v_\ell \to \nabla \phi \text{ in } L^2(\Omega)^d.$

Limit-conforming if, for all $\psi \in L^2(\Omega)^d$ s.t. $\operatorname{div} \psi \in L^2(\Omega)$, as $\ell \to \infty$,

$$\max_{v \in X_{\mathcal{D}_{\ell}, 0} \setminus \{0\}} \frac{\left| \int_{\Omega} \nabla_{\mathcal{D}_{\ell}} v \cdot \boldsymbol{\psi} + \Pi_{\mathcal{D}_{\ell}} v \operatorname{div} \boldsymbol{\psi} \right|}{\left\| \nabla_{\mathcal{D}_{\ell}} v \right\|_{L^{2}(\Omega)}} \to 0.$$

A sequence $(\mathcal{D}_{\ell})_{\ell \in \mathbb{N}}$ of gradient discretisations is...

Consistent if, for all $\phi \in H^1_0(\Omega)$, there is $v_\ell \in X_{\mathcal{D}_\ell,0}$ s.t., as $\ell \to \infty$,

 $\Pi_{\mathcal{D}_\ell} v_\ell \to \phi \text{ in } L^2(\Omega) \quad \text{ and } \quad \nabla_{\mathcal{D}_\ell} v_\ell \to \nabla \phi \text{ in } L^2(\Omega)^d.$

Limit-conforming if, for all $\boldsymbol{\psi} \in L^2(\Omega)^d$ s.t. $\operatorname{div} \boldsymbol{\psi} \in L^2(\Omega)$, as $\ell \to \infty$,

$$\max_{v \in X_{\mathcal{D}_{\ell},0} \setminus \{0\}} \frac{\left| \int_{\Omega} \nabla_{\mathcal{D}_{\ell}} v \cdot \boldsymbol{\psi} + \Pi_{\mathcal{D}_{\ell}} v \operatorname{div} \boldsymbol{\psi} \right|}{\left\| \nabla_{\mathcal{D}_{\ell}} v \right\|_{L^{2}(\Omega)}} \to 0.$$

Compact if, for all $v_{\ell} \in X_{\mathcal{D}_{\ell},0}$ such that $(\|\nabla_{\mathcal{D}_{\ell}}v_{\ell}\|_{L^{2}(\Omega)})_{\ell \in \mathbb{N}}$ is bounded, $(\Pi_{\mathcal{D}_{\ell}}v_{\ell})_{\ell \in \mathbb{N}}$ is relatively compact in $L^{2}(\Omega)$.

A sequence $(\mathcal{D}_{\ell})_{\ell \in \mathbb{N}}$ of gradient discretisations is...

Consistent if, for all $\phi \in H^1_0(\Omega)$, there is $v_\ell \in X_{\mathcal{D}_\ell,0}$ s.t., as $\ell \to \infty$,

 $\Pi_{\mathcal{D}_\ell} v_\ell \to \phi \text{ in } L^2(\Omega) \quad \text{ and } \quad \nabla_{\mathcal{D}_\ell} v_\ell \to \nabla \phi \text{ in } L^2(\Omega)^d.$

Limit-conforming if, for all $\boldsymbol{\psi} \in L^2(\Omega)^d$ s.t. $\operatorname{div} \boldsymbol{\psi} \in L^2(\Omega)$, as $\ell \to \infty$,

$$\max_{v \in X_{\mathcal{D}_{\ell},0} \setminus \{0\}} \frac{\left| \int_{\Omega} \nabla_{\mathcal{D}_{\ell}} v \cdot \boldsymbol{\psi} + \Pi_{\mathcal{D}_{\ell}} v \operatorname{div} \boldsymbol{\psi} \right|}{\left\| \nabla_{\mathcal{D}_{\ell}} v \right\|_{L^{2}(\Omega)}} \to 0.$$

Compact if, for all $v_{\ell} \in X_{\mathcal{D}_{\ell},0}$ such that $(\|\nabla_{\mathcal{D}_{\ell}}v_{\ell}\|_{L^{2}(\Omega)})_{\ell \in \mathbb{N}}$ is bounded, $(\Pi_{\mathcal{D}_{\ell}}v_{\ell})_{\ell \in \mathbb{N}}$ is relatively compact in $L^{2}(\Omega)$.

All classical methods satisfy these properties, under standard mesh regularity assumptions.

Theorem (D.-Le, 2020)

There is a solution to the gradient scheme and, if $(\mathcal{D}_{\ell})_{\ell \in \mathbb{N}}$ is consistent, limit-conforming and compact and u_{ℓ} is a solution for \mathcal{D}_{ℓ} , then, up to a subsequence as $\ell \to \infty$,

$$\begin{split} \Pi_{\mathcal{D}_{\ell}} u_{\ell} &\to \bar{u} & \text{strongly in } L^{\infty}(0,T;L^{m+1}(\Omega)), \\ \nabla_{\mathcal{D}_{\ell}}(|u_{\ell}|^{m-1}u_{\ell}) &\to \nabla(|\bar{u}|^{m-1}\bar{u}) & \text{strongly in } L^{2}(\Omega_{T}). \end{split}$$

where \bar{u} is a solution to the PME.

- First uniform-in-time convergence result in $L^{m+1}(\Omega)$ (semi-group approach only provides $L^1(\Omega)$).
- Valid in whole range: m > 1 (slow diffusion) and m < 1 (fast diffusion).
- Convergence for more general models: $\Delta(|\bar{u}|^{m-1}\bar{u}) \rightsquigarrow \operatorname{div}(\Lambda(\bar{u})\nabla\beta(\bar{u})).$

1 Model and discretisation

2 Convergence by compactness

3 Error estimates

4 Numerical tests

DOFs attached to nodes: we assume that the coefficients $(u_i)_{i \in I}$ on the basis $(\mathbf{e}_i)_{i \in I}$ of $X_{\mathcal{D},0}$ are attached to points $(\mathbf{x}_i)_{i \in I}$ in $\overline{\Omega}$.

A suitable interpolator is then $I_{\mathcal{D}}: C(\overline{\Omega}) \to X_{\mathcal{D},0}$ defined by

$$(I_{\mathcal{D}}\phi)_i = \phi(\mathbf{x}_i) \qquad \forall i \in I.$$

Two measures of consistency

Strong consistency of gradient: for $\phi \in H_0^1(\Omega)$,

$$S_{\mathcal{D}}^{\nabla}(\phi) = \| \nabla_{\mathcal{D}}(I_{\mathcal{D}}\phi) - \nabla \phi \|_{L^{2}(\Omega)}.$$

Strong consistency of gradient: for $\phi \in H_0^1(\Omega)$,

$$S_{\mathcal{D}}^{\nabla}(\phi) = \|\nabla_{\mathcal{D}}(I_{\mathcal{D}}\phi) - \nabla\phi\|_{L^{2}(\Omega)} \,.$$

Weak consistency of function reconstruction: for $\omega \in L^2(\Omega)$,

$$S_{\mathcal{D}}^{\Pi,\star}(\omega) = |\Pi_{\mathcal{D}}(I_{\mathcal{D}}\omega) - \omega|_{\mathcal{D},\star},$$

where $|\cdot|_{\mathcal{D},\star}$ is the discrete H^{-1} -seminorm defined for $\xi \in L^2(\Omega)$ by

$$|\xi|_{\mathcal{D},\star} = \max\left\{\int_{\Omega} \xi \Pi_{\mathcal{D}} v \, : \, v \in X_{\mathcal{D},0} \, , \, \|\nabla_{\mathcal{D}} v\|_{L^2(\Omega)} \leq 1\right\}.$$

Error estimates

Set $\zeta(s) = |s|^{m-1}s$.

Measure of error: with \bar{u} solution of the PME,

$$E_{\mathcal{D}}(\bar{u}) = \left[\sum_{n=0}^{N-1} \delta t \, E_{\mathcal{D}}^n(\bar{u})^2\right]^{1/2}$$

where

$$E_{\mathcal{D}}^{n}(\bar{u}) = \left| \frac{1}{\delta t} \int_{t^{(n)}}^{t^{(n+1)}} \Delta \zeta(\bar{u}(s)) \, ds - \Delta \zeta(\bar{u}(t^{(n+1)})) \right|_{\mathcal{D},\star}$$

$$+ S_{\mathcal{D}}^{\Pi,\star} \left(\frac{\bar{u}(t^{(n+1)}) - \bar{u}(t^{(n)})}{\delta t} \right)$$

 $+ S_{\mathcal{D}}^{\nabla}(\zeta(\bar{u}(t^{(n+1)}))) + W_{\mathcal{D}}(\nabla\zeta(\bar{u}(t^{(n+1)})))$

Error estimates

Theorem (Cancès-D.-Guichard-Mazini-Olivares-Pop, 2020)

• In case of slow diffusion $m \ge 1$:

$$\left[\sum_{n=0}^{N-1} \delta t \, \left\| \Pi_{\mathcal{D}} u^{(n+1)} - \Pi_{\mathcal{D}} I_{\mathcal{D}}^{(n+1)} \bar{u} \right\|_{L^{m+1}(\Omega)}^{m+1} \right]^{\frac{1}{m+1}} \le C E_{\mathcal{D}}(\bar{u})^{\frac{2}{m+1}}.$$

• In case of fast diffusion m < 1:

$$\sum_{n=0}^{N-1} \delta t \left\| \zeta(\Pi_{\mathcal{D}} u^{(n+1)}) - \zeta(\Pi_{\mathcal{D}} I_{\mathcal{D}}^{(n+1)} \bar{u}) \right\|_{L^{\frac{m+1}{m}}(\Omega)}^{\frac{m+1}{m}} \le C E_{\mathcal{D}}(\bar{u})^{\frac{2m}{m+1}}.$$

1 Model and discretisation

2 Convergence by compactness

3 Error estimates

4 Numerical tests

- LEPNC (Locally Enriched Polytopal Non-Conforming): non-conforming pseudo-FE method on generic polygonal meshes.
- HMM (Hybrid Mimetic Mixed scheme): unknowns in cells and on edges, contains mimetic finite differences.
- MLP1 (Mass-Lumped \mathbb{P}^1 FE): FE with piecewise constant reconstruction $\Pi_{\mathcal{D}}$.
- VAG (Vertex Averaged Gradient discretisation): unknowns at the vertices, based on \mathbb{P}^1 on a triangular subdivision.
- CVFEM (Conforming Virtual Element Method): extension of conforming FE applicable on generic polygonal meshes.
- HDG (Hybridizable Discontinuous Galerking): lowest order discontinuous Galerkin with edge unknowns.

Discrete H^1 -error on $|u|^{m-1}u$:

$$E_{H^1,\zeta} = \frac{\left\| \nabla_{\mathcal{D}}(\zeta(u^{(N)}) - I_{\mathcal{D}}\zeta(\bar{u})(T,\cdot)) \right\|_{L^2(\Omega)}}{\| \nabla_{\mathcal{D}}I_{\mathcal{D}}\zeta(\bar{u})(T,\cdot) \|_{L^2(\Omega)}}.$$

 L^{m+1} error on u:

$$E_{L^{m+1}} = \frac{\left\| \Pi_{\mathcal{D}}(\boldsymbol{u}^{(N)} - I_{\mathcal{D}}\bar{\boldsymbol{u}}(T, \cdot)) \right\|_{L^{m+1}(\Omega)}}{\| \Pi_{\mathcal{D}}I_{\mathcal{D}}\bar{\boldsymbol{u}}(T, \cdot) \|_{L^{m+1}(\Omega)}}$$

Numerical tests: mesh and exact solution

Domain and meshes: $\Omega = (0, 1)^2$.

Numerical tests: mesh and exact solution

Domain and meshes: $\Omega = (0, 1)^2$.

Exact solution: Barenblatt–Pattle solution, with translation in time: $\bar{u}(t,x) = \mathcal{B}(t_0 + t, x - x_0)$ with

$$\mathcal{B}(t,x) = t^{-\frac{1}{m}} \left\{ \left[C_{\mathcal{B}} - \frac{m-1}{4m^2} \left(\frac{|x|}{t^{\frac{1}{2m}}} \right)^2 \right]_+ \right\}^{\frac{1}{m-1}}$$

and $x_0 = (0.5, 0.5)$, $t_0 = 0.1$, $C_{\mathcal{B}} = 0.005$.

Numerical tests: mesh and exact solution

Exact solution: for m = 2.5,

Triangular meshes, m = 2

Triangular meshes, m = 4

Locally refined cartesian meshes, m = 2

Locally refined cartesian meshes, m = 4

Hexagonal meshes, m = 2

Hexagonal meshes, m = 4

Hexagonal meshes, HMM, m = 0.3 and m = 0.7

Theorem: $h^{0.46}$ and $h^{0.82}$ in $L^{\frac{m+1}{m}}(\Omega_T)$ -norm.

Triangular meshes, MLP1, m = 0.3 and m = 0.7

Theorem: $h^{0.46}$ and $h^{0.82}$ in $L^{\frac{m+1}{m}}(\Omega_T)$ -norm.

References

1.5	-	
		_
12		
18		
E		

Cancès, C., Droniou, J., Guichard, C., Manzini, G., Bastisdas, M., and Pop, I. S. (2020). Error estimates for the gradient discretisation method on degenerate parabolic equations of porous medium type, pages 1–35. SEMA-SIMAI.

Droniou, J. and Eymard, R. (2016).

Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations.

Numer. Math., 132(4):721-766.

Droniou, J., Eymard, R., Gallouët, T., Guichard, C., and Herbin, R. (2018). *The gradient discretisation method*, volume 82 of *Mathematics & Applications*. Springer.

Droniou, J., Eymard, R., Gallouët, T., and Herbin, R. (2020). *Non-conforming finite elements on polytopal meshes*, pages 1–27. SEMA-SIMAI.

Droniou, J. and Le, K.-N. (2020).

The gradient discretisation method for slow and fast diffusion porous media equations. *SIAM J. Numer. Anal.*, 58(3):1965–1992.

- Generic discretisation framework for PME (slow and fast diffusion), covers to many numerical methods.
- Uniform-in-time strong L^{m+1} convergence result without regularity assumptions.
- For nodal discretisations: error estimates.
- Numerous numerical tests (and many more results reported in the papers/book chapters: approximation of solution radius, fraction of negartive mass, convergence vs. #DOFs, etc).

Thanks!