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Main modeling concepts

m Hybrid-dimensional model: fractures reduced to co-dimension
1 surfaces by integration along the width

m Continuous phase pressures at matrix fracture interfaces

e Phases: a € {nw, w}

e Matrix pressures: py, = p*
e Fracture pressures ﬁjf- = yp*
e Matrix saturations: 50,

e Fracture saturations: 5%

e Matrix Darcy velocity: g,

e Fracture tangential velocity: qf

e Displacement field: @
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Main modeling concepts

m Poiseuille’s law for the tangential velocity in the fractures,
extended to two-phase flow using generalized Darcy laws

_ 1 - _
qf = —n7(5%) <12df’c> Vyp”
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Main modeling concepts

m Poiseuille’s law for the tangential velocity in the fractures,
extended to two-phase flow using generalized Darcy laws

_ 1 - _
qf = —n7(5%) <12d§> Vyp”

m Linear poroelasticity with small strains assumption
Total stress: T(a) = (u)—b pZl,
with (@) = 2p (@) + A div(a) I and b the Biot coefficient

m Open fractures: no contact

T(ﬁ)ni = _ﬁ?ni7
The equivalent pressures p~ and ]5? are defined using the
capillary energy density concept (Coussy)
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Two-phase hybrid-dimensional Darcy flow: « € {nw, w}

Or (Oms5,) + div (af;) = Aoy

dpy, = — N (50,) K Vp©
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Two-phase hybrid-dimensional Darcy flow: « € {nw, w}

Or (Oms5,) + div (af;) = Aoy

dpy, = — N (50,) K Vp©

Ot <Jf'8?) +div-(af) — [an.] = h
QS 1 i X
qf = —ﬁf(sf)<1267}> VP

(Normal jump: [q] =q -nt +q -n7)
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J. Droniou (Monash)

Two-phase hybrid-dimensional Darcy flow: « € {nw, w}

— ho

m

Ot (pm5%) + div (qf,)
a5y, = 1 (50,) K V™

Ot <Jf'8?) +div-(af) — [an.] = h

—an( 1 _
qf = —n}(5%) (1267}> Vp®

(Normal jump: [q] =q -nt +q -n7)

|
S¥ (pe)
s (s e (i Sm' (Pe) |-
Sm = Sm(De), 5§ = SF(pe)
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Poromechanics
Poromechanical model
—div( (@) — b pﬁﬂ) —f
(@) =2u (@) + A div(a) I
( (@) —bpyhn* = —pint

Closure laws

. o1
(9_t¢m = b divo,a + Matpﬁ
dy = —[u]
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Poromechanics

Poromechanical model

—div( (@) — b pﬁﬂ) —f

(@) =20 (@) + A div(a) T

( (@) =0 ppDn* = —pFn*
Closure laws

. o1
8_t¢m = b divo,a + Matpﬁ
dy = —[u]

Pe
Let Uyt (pc) = f 2 (S%¥) (2) dz, the equivalent pressures are

0

ph= Y. P55 —Un(b), pf=

ac{nw,w}
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Weak solution: p® and u such that for all smooth test
functions p* and v:

T
f f (—&mgf“nat@“ + ne (50K, Vp© ~V¢a)dxdt
0 Q
73

T B d 3
[ [ (Firsgonet + i) LT - T ot
0 I

- | et 0. 0ax— | 85707 0,0 ()
J J h& _adth+J J Fyp*do(x)dt, a e {w,nw},

f f — bpEdiv(v ))ddeJ pr [¥]do (x)dt
- L Lf-x‘zdxdt,
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Example of discretization

®m Two-Point Flux Approximation (TPFA) scheme for Darcy
m P, elements for mechanics

(0% (8%

¢ pK'SmyK

= pg? srg,a
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® P ’Sf,s

o u,
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a
" UKo, Sm,KcT
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Gradient discretization method: motivation

m Abstract discretization framework accounting for a large class
of conforming and non conforming discretizations

B Generic stability and convergence analysis under general
properties such as
o Coercivity (discrete Poincaré inequality)
o Consistency
o Limit Conformity (for non-conforming methods)
o Compactness
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Gradient discretization of the poromechanical model

Two-phase flow
XODP = space of discrete unknowns. Reconstruction operators:

B gradient operators on matrix and fracture network
0 d 0 d—1
VE, : Xp, — LP(Q)%, V{DP t Xp, — LP(ID)*Y
B piecewise-constant function operators on matrix and fracture network

5, : Xp, — L7(Q), T : Xp, — L%(T).

Assume |v]p, = VD, v|L2q) + Hdg/&vbfgp@’\\w(r)d*l is a norm on Xp .
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Gradient discretization of the poromechanical model

Two-phase flow

XODP = space of discrete unknowns. Reconstruction operators:

B gradient operators on matrix and fracture network

VE, : Xp, — LP(Q)%, V{DP t Xp, — LP(ID)*Y

B piecewise-constant function operators on matrix and fracture network
m 0 e f . vO 0
H'Dp : X’Dp i L (9)7 HDP . X’Dp i L (F)

Assume |[v]p, = [V, 0] 12(ya + |d"VE v]12(ya-1 is a norm on X3 .

Poromechanics

X%u = space of discrete unknowns. Reconstruction operators:
B symmetric gradient operator p, : X% — L*(Q,S4(R)),

B displacement function operator Ilp,, : X3 — L*(Q)?

B normal jump function operator [-]p, : X3, — L*(T).
Assume |

[V]p, = | pu (V)”L?(Q) is a norm on X%u.
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Gradient scheme

Find p* € (X%p)]\”r1 and u e (X )V*! such that, for all
o e (X3, )V v e (X )V

| | (5 (om0 5 013, 55, 7 - 9 )t

525 dfp H Sf)H{) (padO'( )

J, [+
+f, b

V{)pp : VD,, e%do(x)dt

D,

T
J J mIlp p*dxdt +J f ho‘Hé e%do(x)dt, « € {w,nw}
o Jo

T
J J (v) —b(Ilp, pdivp, dxdt¢
0 JQ

)
J J H{) pf )[v]p,do(x J J 1p, vdxdt
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Convergence analysis: main assumptions

m Mobility function n% continuous, non-decreasing, s.t.

0< ngc,min < n;’é(s) < nrat,max <+4w Vse [0’ 1]
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Convergence analysis: main assumptions

m Mobility function n% continuous, non-decreasing, s.t.

0< nﬁt,min < 77;)‘[5(8) < nroé,max <+ Vse [07 1]

m The sequences (Dé)leN, (DY) ien, {(tln)ﬁio}leN of space time
Gradient Discretizations satisfy coercivity, consistency,
limit-conformity and compactness properties
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Convergence analysis: main assumptions

m Mobility function n% continuous, non-decreasing, s.t.

0< nﬁt,min < 77;)‘[5(8) < nroé,max <+ Vse [07 1]

m The sequences (Dé)leN, (DY) ien, {(tln)ﬁio}leN of space time
Gradient Discretizations satisfy coercivity, consistency,
limit-conformity and compactness properties

. . 1 l
m There exist a solution p?* e(X%é)N A ule(X%{l)N st
(I) @’D7 (tv X) = G’mgnin >0,

(i) d; pi (t,x) = do(x), where do > 0 is continuous and vanishes only at the
J u
fracture tips
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Main convergence result

There are p* € L3(T; V) and @ € L®(T; UY) satisfying the weak
formulation s.t.

N3 pf* — p* weakly in L%(T; L?(Q2)),

Iy, pf — 79" weakly in L?(T; L*(T")),

HDaul —u weakly-* in L®(T; L2(Q)9),

bpt — bm weakly-x in L®(T; L?(Q)),

dypi — dy strongly in L%(T; LP(T")) for 2 < p < 4,
7, S (pe) = S5i(pe)  strongly in L2(T; L*()),

Iy, SF () — S§(vpe) - strongly in L*(T; L*(T),

o 1 .
where ¢,, = ¢, + b div(a — a°) + M(@% — =9 and dy = —[u]
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Main convergence result

There are p® € L?(T; V?) and @ e L®(T; UY) satisfying the weak
formulation s.t.

I pf — p* weakly in L(T; L?(Q)),

Iy, pff — 79" weakly in L2(T; L*(I)),

lp u' —a weakly-x in L®(T; L?(Q)9),

bpt — bm weakly-* in L®(T; L2(Q2)),

dypr — dy strongly in L%(T; LP(T")) for 2 < p < 4,
M7, S (pe) = Sfi(pe)  strongly in L2(T; L*(Q)),

17, SF () — S§(vpe) ~ strongly in L*(T; L*(I),

e Previous convergence (Girault et al., '15): single-phase flow, linear case,
d} frozen

AustMS 2020 September 10-15, 2020  12/16



Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.
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Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.

@ Weak estimates on time translates
oIy, sy ](1) — [¢pIlp, sy )(7), 115 @)r2(a)

+{[dy, 0, s§1(7) = [dyp, 0T s§1(7), 1T, @)pamy| <
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Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.

@ Weak estimates on time translates
¢pllp, s, ](1) — [¢pllp, sy ] (7)), 15 @)r2(a)
+ [y, 1, s31(7) = [dy.p,TTp, sF1(7), T @) raqry| < -+
@ Strong convergence of s,

(@) Separate matrix from fractures above using cut-off functions
~~ strong local time translate estimates

T
2
|, S5 ) I s e <
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Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.
@ Weak estimates on time translates

@ Strong convergence of s,

(@) Separate matrix from fractures above using cut-off functions
~~ strong local time translate estimates

@ Space translate estimates from compactness of D),

@i Recover compactness on the full domain from s&, € [0, 1]
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Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.

@ Weak estimates on time translates
¢pllp, s, ](1) — [¢pllp, sy ] (7)), 15 @)r2(a)
+ [y, 1, s31(7) = [dy.p,TTp, sF1(7), T @) raqry| < -+

@ Strong convergence of s,

(@) Separate matrix from fractures above using cut-off functions
~ strong local time translate estimates

@ Space translate estimates from compactness of D),

@ Recover compactness on the full domain from s%, € [0, 1]

@ Strong convergences of ¢psy,, sy, dys§, df and s§

m
@ Uniform in time weak in space convergence.
o Uses discrete Ascoli—Arzela theorem,
o First for matrix (using cut-off), then for fracture (using the
convergence of matrix variables)
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Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.

@ Weak estimates on time translates

@ Strong convergence of s,

(@) Separate matrix from fractures above using cut-off functions
~~ strong local time translate estimates

@ Space translate estimates from compactness of D),

@i Recover compactness on the full domain from s&, € [0, 1]

@ Strong convergences of ¢pss,, s, dfs?, d? and s;‘;

@ Uniform in time weak in space convergence.

@) Strong compactness: combining uniform-in-time weak-in-space, and
compactness property in space.
Need to isolate fracture tips for compactness in space of sy
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Main convergence result — Steps

@ Energy estimates by taking the phase pressures as test functions in
Darcy, the discrete time derivative of the displacement in elasticity.

@ Weak estimates on time translates
@ Strong convergence of s,

(@) Separate matrix from fractures above using cut-off functions
~~ strong local time translate estimates
@ Space translate estimates from compactness of D),
@i Recover compactness on the full domain from s&, € [0, 1]
« (a7 « (o7 (03
@ Strong convergences of ¢pss,, s, dfsf, df and e

m?

@ Uniform in time weak in space convergence.

@) Strong compactness: combining uniform-in-time weak-in-space, and
compactness property in space.
Need to isolate fracture tips for compactness in space of sy

® Identification of the limit fields and weak solution

AustMS 2020 September 10-15, 2020  13/16



Numerical experiment: convergence test

T
m TPFA scheme for flows :
m P elements for Iy Ty
mechanics
I's

< SIA1ETETAANATATEANATATARTANAARNANRERANANRRRANANY ™

u=0on (0,7) x 0Q
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Numerical experiment: convergence test

1.1:1073
1.0-107%
9.0-10°4
8.0-10~*
7.0-10~*
6.0-10~1
5.0-10*
101074
3.010-1
2.0-10~*
101071

0.010°

Fracture width (m)

Relative error

Fracture width vs. 7 or y at times ¢ = 0 and t = T

R ™

T

M

N T

N
\!
N
%
\
ot
N

40 45

Fracture curvilinear abscissa & or y (m)

£ D7 () = Pfaec (O ()], No = 224

50 55

60

E— N\
P JE— \¥
I S
g ‘
-
-
10t 108 108

Time (s)

J. Droniou (Monash)

AustMS 2020

nw
m
8.1e-01

0.7
0.6
—05
—04
—03
0.2

0.0e+00

September 10-15, 2020 15/16



Conclusions & perspectives

Conclusions

B Analysis of a GD for a two-phase flow in deformable fractured porous media
Linear elastic mechanical behavior, open fractures
Porosity bounded from below and above by strictly positive constants
Fracture width larger than a nonnegative function vanishing only at the tips

Nonlinear flow/mechanics coupling, fracture conductivity di’c/lz not frozen

Convergence validation (P2 elements for mechanics, TPFA for flows)

Perspectives

B Discontinuous pressure models (just submitted)

B Contact, slip, friction between fracture surfaces

B More advanced discretizations (polytopal DG, etc.)
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Thanks for your attention
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