# An arbitrary-order robust polygonal scheme for the Reissner-Mindlin plate problem 

Jérôme Droniou<br>joint work with D. A. Di Pietro<br>School of Mathematics, Monash University https://users.monash.edu/~jdroniou/

AustMS 2021

## Plan

1 Model and main idea

2 Framework for the polygonal scheme
(3) Error estimates

4 Numerical results

## Reissner-Mindlin plate model

$$
\begin{aligned}
\gamma+\operatorname{div}\left(\mathbf{C} \operatorname{grad}_{\mathbf{s}} \boldsymbol{\theta}\right) & =\mathbf{0} & & \text { in } \Omega, \\
-\operatorname{div} \gamma & =f & & \text { in } \Omega, \\
\gamma & =\frac{\kappa}{t^{2}}(\operatorname{grad} u-\boldsymbol{\theta}) & & \text { in } \Omega, \\
\boldsymbol{\theta} & =\mathbf{0}, \quad u=0 & & \text { on } \partial \Omega .
\end{aligned}
$$

- $\Omega$ polygonal domain.
- $\gamma: \Omega \rightarrow \mathbb{R}^{2}:$ shear strain; $\boldsymbol{\theta}: \Omega \rightarrow \mathbb{R}^{2}:$ fibers rotations; $u: \Omega \rightarrow \mathbb{R}:$ transverse displacement.
■ $f: \Omega \rightarrow \mathbb{R}$ : transverse load; $\mathbf{C}$ : linear elasticity tensor; $\kappa$ : shear modulus.
$t$ : plate thickness.


## Weak formulation

Find $(\boldsymbol{\theta}, u) \in \boldsymbol{H}_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{r}
a(\boldsymbol{\theta}, \boldsymbol{\eta})+\frac{\kappa}{t^{2}}(\boldsymbol{\theta}-\operatorname{grad} u, \boldsymbol{\eta}-\operatorname{grad} v)=\int_{\Omega} f v \\
\forall(\boldsymbol{\eta}, v) \in \boldsymbol{H}_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
\end{array}
$$

with

$$
a(\boldsymbol{\theta}, \boldsymbol{\eta}):=\int_{\Omega} \mathbf{C}_{\operatorname{grad}_{\mathrm{s}}} \boldsymbol{\theta}: \operatorname{grad}_{\mathrm{s}} \boldsymbol{\eta} .
$$

## Weak formulation

Find $(\boldsymbol{\theta}, u) \in \boldsymbol{H}_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)$ such that

$$
\begin{array}{r}
a(\boldsymbol{\theta}, \boldsymbol{\eta})+\frac{\kappa}{t^{2}}(\boldsymbol{\theta}-\operatorname{grad} u, \boldsymbol{\eta}-\operatorname{grad} v)=\int_{\Omega} f v \\
\forall(\boldsymbol{\eta}, v) \in \boldsymbol{H}_{0}^{1}(\Omega) \times H_{0}^{1}(\Omega)
\end{array}
$$

with

$$
a(\boldsymbol{\theta}, \boldsymbol{\eta}):=\int_{\Omega} \mathbf{C}_{\operatorname{grad}_{\mathrm{s}}} \boldsymbol{\theta}: \operatorname{grad}_{\mathrm{s}} \boldsymbol{\eta} .
$$

Expected estimates (uniform w.r.t. $t$ ):

$$
\|\boldsymbol{\theta}\|_{H^{2}}+\|\boldsymbol{\gamma}\|_{L^{2}}+t|\boldsymbol{\gamma}|_{H^{1}} \lesssim 1 .
$$

## General discrete form

Find $\left(\boldsymbol{\theta}_{h}, u_{h}\right) \in \boldsymbol{\Theta}_{h} \times U_{h}$ s.t.

$$
\begin{array}{r}
a_{h}\left(\boldsymbol{\tau}_{h}, \boldsymbol{\eta}_{h}\right)+\frac{\kappa}{t^{2}}\left(\boldsymbol{\theta}_{h}-\operatorname{grad}_{h} u_{h}, \boldsymbol{\eta}_{h}-\mathbf{g r a d}_{h} v_{h}\right)_{\mathbf{\Theta}, h}=\int_{\Omega} f \Pi_{h} v_{h} \\
\forall(\boldsymbol{\eta}, v) \in \boldsymbol{\Theta}_{h} \times U_{h} .
\end{array}
$$

## General discrete form

Find $\left(\boldsymbol{\theta}_{h}, u_{h}\right) \in \boldsymbol{\Theta}_{h} \times U_{h}$ s.t.

$$
\begin{array}{r}
a_{h}\left(\boldsymbol{\tau}_{h}, \boldsymbol{\eta}_{h}\right)+\frac{\kappa}{t^{2}}\left(\boldsymbol{\theta}_{h}-\operatorname{grad}_{h} u_{h}, \boldsymbol{\eta}_{h}-\operatorname{grad}_{h} v_{h}\right)_{\mathbf{\Theta}, h}=\int_{\Omega} f \Pi_{h} v_{h} \\
\forall(\boldsymbol{\eta}, v) \in \boldsymbol{\Theta}_{h} \times U_{h} .
\end{array}
$$

First challenge with robustness: take $I_{\boldsymbol{\Theta}, h} \boldsymbol{\theta} \in \boldsymbol{\Theta}_{h}$ and $I_{U_{h}} u \in U_{h}$ interpolates of the continuous solution. Assume

$$
\operatorname{grad}_{h} I_{U_{h}} u=I_{\boldsymbol{\Theta}, h}(\operatorname{grad} u)+\epsilon_{h} .
$$

Then

$$
\frac{\kappa}{t^{2}}\left(\boldsymbol{\theta}_{h}-\operatorname{grad}_{h} u_{h}\right)=I_{\mathbf{\Theta}, h} \gamma+\frac{\kappa}{t^{2}} \epsilon_{h} .
$$

We need $\epsilon_{h}=0$ to avoid a $t^{-2}$ factor in the error estimates!

## From the literature...

■ Brezzi-Fortin 86: additional unknowns (decompose shear strain).
■ Arnold-Falk 89: non-conforming FE and bubble for rotation.
■ Brezzi ea. 91, Durán-Liberman 92, Arnold-Falk 97, Lamichhane-Meylan 17: reduced integration/projections.
■ Arnold-Brezzi 93: mixed formulation with strain as unknown.
■ Arnold ea. 05: discontinuous Galerkin (but robustness only for continuous FE on rotation and non-conforming FE on displacement).
■ Lovadina 05, Chinosi ea. 06: non-conforming FE.
■ Beirão da Veiga-Mora 11: mimetic finite elements.
■ Beirão da Veiga ea. 15, 19: low order virtual elements on re-formulation with shear strain instead of rotation.

■ Gallistl-Schedensack 21: Taylor-Hood elements.

## Plan

1 Model and main idea

2 Framework for the polygonal scheme

3 Error estimates

4 Numerical results

## Why polygonal meshes?


(a) Hexagonal mesh

(b) Triangular mesh

(c) Locally refined mesh

■ Increased flexibility for meshing complex geometries (mesh with fine triangles, then agglomerate).
■ Easy local refinement to capture locally steep solutions.

## 2D de Rham complex

Setting $\operatorname{rot}\left(v_{1}, v_{2}\right)=\partial_{1} v_{2}-\partial_{2} v_{1}$ :

$$
\mathbb{R} \longleftrightarrow H^{1}(\Omega) \xrightarrow{\text { grad }} H(\operatorname{rot} ; \Omega) \xrightarrow{\text { rot }} L^{2}(\Omega) \xrightarrow{0} 0 .
$$

- Complex: range of an operator included in kernel of the next.

■ Exact complex (if $\Omega$ topologically trivial): equality.
Reproduction at discrete level has many essential advantages, in particular around stability of schemes for complicated models.

## 2D Discrete De Rham (DDR) complex

Given a mesh $\mathcal{T}_{h}$ made of general polygonal elements:

$$
\mathbb{R} \longleftrightarrow \underline{X}_{\mathrm{grad}, h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{-\mathrm{rot}, h}^{k} \xrightarrow{\stackrel{R}{n}_{k}^{\longrightarrow}} \underline{X}_{0, h}^{k} \xrightarrow{0} 0 .
$$

## Features

- Spaces $\underline{X}_{\bullet, h}^{k}$ fully discrete, made of vectors of polynomial functions attached to vertces, edges and elements.
- Complex, which is exact if $\Omega$ is topologically trivial.
- Arbitrary degree of exactness $k$.
- Consistent interpolators, discrete operators and inner products.


## 2D Discrete De Rham (DDR) complex

Given a mesh $\mathcal{T}_{h}$ made of general polygonal elements:

$$
\mathbb{R} \longleftrightarrow \underline{X}_{\mathrm{grad}, h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathrm{rot}, h}^{k} \xrightarrow{\stackrel{R}{n}_{k}} \underline{X}_{0, h}^{k} \xrightarrow{0} 0 .
$$

Commutating diagrams: in particular,

$$
\begin{array}{ll}
C^{1}(\bar{\Omega}) & \stackrel{\operatorname{grad}}{\longrightarrow} \\
& C^{0}(\bar{\Omega}) \\
& \underline{\underline{I}}_{\text {grad }, h} \\
\underline{X}_{\text {grad }, h}^{k} \xrightarrow{\underline{I}_{\text {rot }, h}} \\
\underline{G}_{h} & \underline{X}_{\mathrm{rot}, h}^{k}
\end{array}
$$

$$
\underline{G}_{h}\left(\underline{I}_{\operatorname{grad}, h} u\right)=\underline{I}_{\mathrm{rot}, h}(\operatorname{grad} u) .
$$

- This suggests $U_{h}=\underline{X}_{\text {grad }, h}^{k}$ (then $\epsilon_{h}=0$ ), and thus $\boldsymbol{\Theta}_{h}=\underline{X}_{\text {rot }, h}^{k}$.


## Extension of $\underline{X}_{\mathrm{rot}, h}^{k}$

- Issue: $\underline{X}_{\text {rot }, h}^{k}$ only encodes tangential components along the mesh edges (as is the case for the standard Nédélec space).
$\leadsto$ Not enough information to reconstruct a consistent robust grad $_{\text {s }}$.


## Extension of $\underline{X}_{\mathrm{rot}, h}^{k}$

- Issue: $\underline{X}_{\text {rot }, h}^{k}$ only encodes tangential components along the mesh edges (as is the case for the standard Nédélec space).
$\leadsto$ Not enough information to reconstruct a consistent robust grad $_{s}$.
- Solution: extend $\underline{X}_{\mathrm{rot}, h}^{k}$ into a space $\boldsymbol{\Theta}_{h}$ that includes normal components to the edges.
On $\boldsymbol{\Theta}_{h}$, which has element and edge vector polynomial unknowns, construct a full discrete gradient $\mathbf{G}_{h}^{k}: \boldsymbol{\Theta}_{h} \rightarrow \mathcal{P}^{k}\left(\mathcal{T}_{h}\right)^{2 \times 2}$ using Hybrid High-Order technology.


## Plan

1 Model and main idea

2 Framework for the polygonal scheme

3 Error estimates

4 Numerical results

## Arbitrary-order error estimates

## Theorem (Error estimate for arbitrary $k$ )

Assume that the exact solution $(\boldsymbol{\eta}, u)$ satisfies $u \in C^{1}(\bar{\Omega}) \cap H^{k+2}(\Omega)$ and $\boldsymbol{\theta} \in H^{1}(\Omega)^{2} \cap H^{k+2}(\Omega)^{2}$. Then,

$$
\left\|\left(\underline{\boldsymbol{\theta}}_{h}-\underline{I}_{\boldsymbol{\Theta}, h} \boldsymbol{\theta}, \underline{u}_{h}-\underline{\underline{I}}_{\mathrm{grad}, h} u\right)\right\|_{\boldsymbol{\Theta} \times U, h} \lesssim h^{k+1}\left(|\boldsymbol{\theta}|_{H^{k+2}}+|\gamma|_{H^{k+1}}\right) .
$$

- $\|\cdot\|_{\boldsymbol{\Theta} \times U, h}$ mimics $L^{2}$-norm on $\boldsymbol{\Theta}_{h} \times U_{h}$.


## Arbitrary-order error estimates

## Theorem (Error estimate for arbitrary $k$ )

Assume that the exact solution $(\boldsymbol{\eta}, u)$ satisfies $u \in C^{1}(\bar{\Omega}) \cap H^{k+2}(\Omega)$ and $\boldsymbol{\theta} \in H^{1}(\Omega)^{2} \cap H^{k+2}(\Omega)^{2}$. Then,

$$
\left\|\left(\underline{\boldsymbol{\theta}}_{h}-\underline{I}_{\boldsymbol{\Theta}, h} \boldsymbol{\theta}, \underline{u}_{h}-\underline{\underline{I}}_{\mathrm{grad}, h} u\right)\right\|_{\boldsymbol{\Theta} \times U, h} \lesssim h^{k+1}\left(|\boldsymbol{\theta}|_{H^{k+2}}+|\gamma|_{H^{k+1}}\right) .
$$

■ $\|\cdot\|_{\boldsymbol{\Theta} \times U, h}$ mimics $L^{2}$-norm on $\boldsymbol{\Theta}_{h} \times U_{h}$.
■ Optimal rate of convergence, but not robust w.r.t. $t$ (even for $k=0$ ).

## Arbitrary-order error estimates

## Theorem (Error estimate for arbitrary $k$ )

Assume that the exact solution $(\boldsymbol{\eta}, u)$ satisfies $u \in C^{1}(\bar{\Omega}) \cap H^{k+2}(\Omega)$ and $\boldsymbol{\theta} \in H^{1}(\Omega)^{2} \cap H^{k+2}(\Omega)^{2}$. Then,

$$
\left\|\left(\underline{\boldsymbol{\theta}}_{h}-\underline{I}_{\boldsymbol{\Theta}, h} \boldsymbol{\theta}, \underline{u}_{h}-\underline{\underline{I}}_{\mathrm{grad}, h} u\right)\right\|_{\boldsymbol{\Theta} \times U, h} \lesssim h^{k+1}\left(|\boldsymbol{\theta}|_{H^{k+2}}+|\gamma|_{H^{k+1}}\right) .
$$

- $\|\cdot\|_{\boldsymbol{\Theta} \times U, h}$ mimics $L^{2}$-norm on $\boldsymbol{\Theta}_{h} \times U_{h}$.

■ Optimal rate of convergence, but not robust w.r.t. $t$ (even for $k=0$ ).

- Actually, no method of order $k \geq 1$ is known to be robust w.r.t. $t$.


## Robust low-order error estimates

Theorem (Locking-free error estimate for $k=0$ )
Under the previous assumptions and $k=0$, it holds

$$
\begin{aligned}
\|\left(\underline{\boldsymbol{\theta}}_{h}-\underline{I}_{\boldsymbol{\Theta}, h} \boldsymbol{\theta}, \underline{u}_{h}-\right. & \left.\underline{\underline{I}}_{\mathrm{grad}, h} u\right) \|_{\boldsymbol{\Theta} \times U, h} \\
& \lesssim h\left(|\boldsymbol{\theta}|_{H^{2}\left(\mathcal{T}_{h}\right)^{2}}+t|\boldsymbol{\gamma}|_{H^{1}\left(\mathcal{T}_{h}\right)^{2}}+\|\gamma\|_{L^{2}(\Omega)^{2}}+\|f\|_{L^{2}(\Omega)}\right) .
\end{aligned}
$$

■ Fully robust w.r.t. $t:|\boldsymbol{\theta}|_{H^{2}\left(\mathcal{T}_{h}\right)^{2}}+t|\gamma|_{H^{1}\left(\mathcal{T}_{h}\right)^{2}}+\|\gamma\|_{L^{2}(\Omega)^{2}} \lesssim 1$.

## Robust low-order error estimates

## Theorem (Locking-free error estimate for $k=0$ )

Under the previous assumptions and $k=0$, it holds

$$
\begin{aligned}
&\left\|\left(\underline{\boldsymbol{\theta}}_{h}-\underline{I}_{\boldsymbol{\Theta}, h} \boldsymbol{\theta}, \underline{u}_{h}-\underline{\underline{I}}_{\mathrm{grad}, h} u\right)\right\|_{\boldsymbol{\Theta} \times U, h} \\
& \lesssim h\left(|\boldsymbol{\theta}|_{H^{2}\left(\mathcal{T}_{h}\right)^{2}}+t|\boldsymbol{\gamma}|_{H^{1}\left(\mathcal{T}_{h}\right)^{2}}+\|\boldsymbol{\gamma}\|_{L^{2}(\Omega)^{2}}+\|f\|_{L^{2}(\Omega)}\right) .
\end{aligned}
$$

■ Fully robust w.r.t. $t:|\boldsymbol{\theta}|_{H^{2}\left(\mathcal{T}_{h}\right)^{2}}+t|\gamma|_{H^{1}\left(\mathcal{T}_{h}\right)^{2}}+\|\gamma\|_{L^{2}(\Omega)^{2}} \lesssim 1$.

- Proof relies on:
- Commutation property $\underline{G}_{h}\left(\underline{I}_{\text {grad }, h} u\right)=\underline{I}_{\text {rot }, h}(\operatorname{grad} u)$,
- Fine lifting of $U_{h}$ in a conforming space, and a piecewise-constant lifting on $\boldsymbol{\Theta}_{h}$ based on a local discrete Hodge decomposition.


## Plan

1 Model and main idea

2 Framework for the polygonal scheme
[3 Error estimates

4 Numerical results

## Smooth polynomial solution

$$
\begin{aligned}
u(\boldsymbol{x})= & \frac{1}{3} x_{1}^{3}\left(1-x_{1}^{3}\right) x_{2}^{3}\left(1-x_{2}\right)^{3} \\
& -\frac{2 t^{2}}{5(1-v)}\left[x_{2}^{3}\left(x_{2}-1\right)^{3} x_{1}\left(x_{1}-1\right)\left(5 x_{1}^{2}-5 x_{1}+1\right)\right. \\
& \left.+x_{1}^{3}\left(x_{1}-1\right)^{3} x_{2}\left(x_{2}-1\right)\left(5 x_{2}^{2}-5 x_{2}+1\right)\right], \\
\boldsymbol{\theta}(\boldsymbol{x})= & {\left[\begin{array}{l}
x_{2}^{3}\left(x_{2}-1\right)^{3} x_{1}^{2}\left(x_{1}-1\right)^{2}\left(2 x_{1}-1\right) \\
x_{1}^{3}\left(x_{1}-1\right)^{3} x_{2}^{2}\left(x_{2}-1\right)^{2}\left(3 x_{2}-1\right)
\end{array}\right] . }
\end{aligned}
$$

■ All $|\boldsymbol{\theta}|_{H^{s}}$ and $|\gamma|_{H^{s}}$ uniformly bounded w.r.t. $t$ !

## Smooth polynomial solution: hexagonal meshes

$$
\rightarrow * k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots \cdots \cdots \cdots k=0, t=10^{-5}
$$



## Smooth polynomial solution: hexagonal meshes

$$
\begin{aligned}
& \rightarrow k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots \cdots \cdots k=0, t=10^{-5} \\
& \bullet-k=1, t=10^{-1}-k=1, t=10^{-3 \cdots \cdots} k=1, t=10^{-5}
\end{aligned}
$$



## Smooth polynomial solution: hexagonal meshes

$$
\begin{aligned}
& \rightarrow k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots \cdots \cdots k=0, t=10^{-5} \\
& \rightarrow k=1, t=10^{-1}-k=1, t=10^{-3} \cdots \cdots k=1, t=10^{-5} \\
& -k=3, t=10^{-1}-\text { - } k=3, t=10^{-3} \cdots \odot \cdots k=3, t=10^{-5}
\end{aligned}
$$



## Smooth polynomial solution: triangular meshes

$$
\begin{aligned}
& \rightarrow k=0, t=10^{-1}-\star-k=0, t=10^{-3} \cdots \cdots \cdots k=0, t=10^{-5} \\
& \rightarrow k=1, t=10^{-1}-\cdots k=1, t=10^{-3} \cdots \cdots k=1, t=10^{-5} \\
& -k=3, t=10^{-1}-\text { - } k=3, t=10^{-3 \cdots \cdots} k=3, t=10^{-5}
\end{aligned}
$$



## Smooth polynomial solution: locally refined meshes

$$
\begin{aligned}
& \rightarrow k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots \cdots \cdots k=0, t=10^{-5} \\
& \rightarrow k=1, t=10^{-1}-k=1, t=10^{-3} \cdots \cdots k=1, t=10^{-5} \\
& -k=3, t=10^{-1}-\text { - } k=3, t=10^{-3} \cdots \cdots \cdots k=3, t=10^{-5}
\end{aligned}
$$



## What is happening here?

Rounding errors.
■ For high $k$, local quantities (e.g. local $b_{h}$ ) have precision $\sim 10^{-14}$.
■ For $t=10^{-5}$, the $t^{-2}$ scaling factor brings precision to $\sim 10^{-4}$.
■ Many elements cumulates these...

## What is happening here?

Rounding errors.
■ For high $k$, local quantities (e.g. local $b_{h}$ ) have precision $\sim 10^{-14}$.
$■$ For $t=10^{-5}$, the $t^{-2}$ scaling factor brings precision to $\sim 10^{-4}$.
■ Many elements cumulates these...
No other tests in the literature went to this order and number of elements. Beirão da Veiga et al. used IGA with $k=3, t=10^{-3}$ and 300 elements max.


Figure: Locally refined meshes, $k=3$

## Analytical solution with expected behaviour

Smooth polynomial solution
■ As $t \rightarrow 0,|\boldsymbol{\theta}|_{H^{s}} \sim 1$ and $|\gamma|_{H^{s}} \sim 1$ for all $s!$
New analytical solution

- As $t \rightarrow 0,|\boldsymbol{\theta}|_{H^{2}} \sim 1$ and $|\boldsymbol{\gamma}|_{H^{s}} \sim t^{-s+\frac{1}{2}}$.


## New analytical solution: hexagonal meshes

$$
\begin{aligned}
& \star k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots * \cdots k=0, t=10^{-5} \\
& \rightarrow k=1, t=10^{-1}-k-k=1, t=10^{-3} \cdots \cdots k=1, t=10^{-5} \\
& \multimap k=3, t=10^{-1}-\ominus-k=3, t=10^{-3 \cdots \cdots} k=3, t=10^{-5}
\end{aligned}
$$



## New analytical solution: triangular meshes

$$
\begin{aligned}
& \rightarrow k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots \cdots \cdots k \\
& \longrightarrow-k=1, t=10^{-1}-\bullet-k=1, t=10^{-3} \cdots \cdots k=1, t=10^{-5} \\
&-k=3, t=10^{-1}-\text { - } k=3, t=10^{-3} \cdots \cdots k=3, t=10^{-5}
\end{aligned}
$$



## New analytical solution: locally refined meshes

$$
\begin{aligned}
& -k=0, t=10^{-1}-*-k=0, t=10^{-3} \cdots \cdots \cdots k=0, t=10^{-5} \\
& \cdots-k=1, t=10^{-1}-k-k=1, t=10^{-3} \cdots \cdots k=1, t=10^{-5} \\
& -k=3, t=10^{-1}-\ominus-k=3, t=10^{-3 \cdots \odot \cdots} k=3, t=10^{-5}
\end{aligned}
$$



## What do we see?

■ Completely robust w.r.t. $t$ for $k=0$, as expected!

## What do we see?

■ Completely robust w.r.t. $t$ for $k=0$, as expected!

- Increased degradation of convergence sooner (smaller $k \geq 1$, larger $t$ ) than for the polynomial solution.


## What do we see?

- Completely robust w.r.t. $t$ for $k=0$, as expected!
- Increased degradation of convergence sooner (smaller $k \geq 1$, larger $t$ ) than for the polynomial solution.
- Much less dependence w.r.t. $t$ than the error estimates lead us to believe.

$$
\text { E.g.: }|\gamma|_{H^{3}} \sim t^{-3.5} \text { so for } k=3 \text {, increase between } t=10^{-1} \text { and } t=10^{-3} \text { : }
$$

- expected $\sim 10^{7}$.
- actual: at most $10^{3}$ on these meshes.


## Thanks!

Arnold, D. (2018).
Finite Element Exterior Calculus.
SIAM.
Di Pietro, D. A. and Droniou, J. (2020).
The Hybrid High-Order method for polytopal meshes.
Number 19 in Modeling, Simulation and Application. Springer International Publishing.
Di Pietro, D. A. and Droniou, J. (2021a).
An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency.
Found. Comput. Math., page 80p.
Di Pietro, D. A. and Droniou, J. (2021b).
A ddr method for the reissner-mindlin plate bending problem on polygonal meshes. page 23p.

