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Spaces and operators

I Ω: open simply connected set in R3 with connected boundary.

Gradient:
H1(Ω) = {u ∈ L2(Ω) : grad u ∈ L2(Ω)3},

grad : H1(Ω)→ L2(Ω)3.

Curl:
H(curl; Ω) = {u ∈ L2(Ω)3 : curl u ∈ L2(Ω)3},

curl : H(curl; Ω)→ L2(Ω)3.

Divergence:

H(div; Ω) = {u ∈ L2(Ω)3 : div u ∈ L2(Ω)},

div : H(div; Ω)→ L2(Ω).
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Exact sequence

I iΩ : R→ H1(Ω) natural embedding.

Theorem (Exactness of de Rham sequence)

The following sequence is exact:

R H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) {0},iΩ grad curl div 0

which means that, if Di and Di+1 are two consecutive operators in the

sequence, then

ImDi = KerDi+1.

J. Droniou (Monash University)



Why is this exactness important?

R H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) {0},iΩ grad curl div 0

Stokes problem 
−∆u + grad p = f in Ω,

div u = 0 in Ω,

+BC

I Inf-sup condition: for all q ∈ L2(Ω),

sup
v∈H(div;Ω)

(div v , q)L2

‖v‖H(div)
≥ β‖q‖L2 .

Proof: Fix q ∈ L2(Ω), and let v ∈ H(div; Ω) such that div v = q...
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Why is this exactness important?

R H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) {0},iΩ grad curl div 0

Magnetostatic problem 
σ − curl u = 0 in Ω,

curlσ = f in Ω,

div u = 0 in Ω,

u × n = g on ∂Ω.

I Inf-sup condition: for all (τ , v) ∈ H(curl; Ω)×H(div; Ω),

sup
(µ,w)∈H(curl)×H(div)

A((τ , v), (µ,w))

‖(µ,w)‖H(curl)×H(div)
≥ β‖(µ, v)‖H(curl)×H(div),

with bilinear form

A((τ , v), (µ,w)) = (τ ,µ)L2 − (v , curlµ)L2 + (w , curl τ )L2 + (div v , divw)L2 .
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Why is this exactness important?

R H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) {0},iΩ grad curl div 0

Magnetostatic problem 
σ − curl u = 0 in Ω,

curlσ = f in Ω,

div u = 0 in Ω,

u × n = g on ∂Ω.

I bilinear form

A((τ , v), (µ,w)) = (τ ,µ)L2 − (v , curlµ)L2 + (w , curl τ )L2 + (div v , divw)L2 .

Proof: requires two exactness properties in the sequence, to estimate each

component of v on (Ker div)⊥ and Ker div.
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Objective

I Mimic exact sequence with discrete spaces and operators.

 To be used to design stable numerical schemes.

I Local construction (element by element), as in standard FE.

I Arbitrary order, based on polynomial spaces of degree k ≥ 0.

J. Droniou (Monash University)



Objective

Local discrete spaces and operators: for T mesh element,

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0
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R X k
grad,T X k
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I kgrad,T G
k
T C
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I Finite Element approach:

Finite Element Exterior Calculus (FEEC).

Requires elements of certain shapes (tetrahedras, hexahedras...) as in

usual FE.

Designed in very generic setting, with exterior derivatives etc.
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Objective

Local discrete spaces and operators: for T mesh element,

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

I Virtual Element approach:

Applicable on generic meshes with polyhedral elements.

Degree decreases by one at each application of differential operator.

Functions not fully known, only certain moments or values are accessible.

Exactness not usable in a scheme due to the variational crime in VEM.
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Features

I Applicable on polyhedral elements.

I Arbitrary order of exactness.

I Same order of accuracy along the entire sequence.

I Based on explicit spaces and reconstructed differential operators, exactness

holding for these objects.
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Principles

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

Gradient unknowns: q
T

= (qT , (qF )F∈FT , q∂2T ).

qT ∈ Pk−1(T )

qF ∈ Pk−1(F )

q∂2T ∈ Pk+1
c (∂2T )
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Principles

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

Gradient operator:

G
k
TqT

= (G k
TqT︸ ︷︷ ︸

∈Pk (T )3

, (G k
F (qF , q∂2T )︸ ︷︷ ︸
∈Pk (F )2

)F∈FT , (GEqE︸ ︷︷ ︸
∈Pk (E)

)E∈ET ).

I GE : derivative along edge.

I G k
F (≈ grad|F ): reconstruction from face and edge, based

on formal IBP (divergence formula),

I G k
T (≈ grad): reconstruction based on formal IBP & face

potentials (divergence formula).
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Principles

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

Curl unknowns: vT = (vT , (vF )F∈FT , (vE )E∈ET ).

vT ∈ Pk(T )3

vF ∈ Pk(F )2

vE ∈ Pk(E )
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Principles

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

Curl operator:

C
k
T vT = (C k

T vT︸ ︷︷ ︸
∈Pk(T )3

, (C k
F (vF , (vE )E∈EF )︸ ︷︷ ︸

∈Pk (F ))

)F∈FT ).

I C k
F (≈ curl ·nF ): reconstruction from face and edge, based

on formal IBP (rot formula in 2D),

I C k
T (≈ curl): reconstruction based on formal IBP & face

tangential potentials (curl formula).

J. Droniou (Monash University)



Principles

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.
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Divergence unknowns: vT = (vT , (vF )F∈FT ).
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Principles

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

Divergence operator:

Dk
T vT (≈ div) reconstructed in Pk(T ) from divergence formula.∫

T

(Dk
T vT )qT = −

∫
T

vT · grad qT +
∑

F∈FT

ωTF

∫
F

vFqT ∀qT ∈ Pk(T ).
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There’s a catch...

R X k
grad,T X k

curl,T X k
div,T Pk(T ) {0}.

I kgrad,T G
k
T C

k
T Dk

T 0

I The previous sequence is not exact!

For X = F ,T of dimension d = 2, 3 let:

IRk(X ) = curl(Pk+1(X )d), Rc,k(X ) complement in Pk(X )d .

I Gk(X ) = grad(Pk+1(X )d), Gc,k(X ) complement in Pk(X )d .

Trimmed spaces: face/cell gradients and curls have to be projected on

trimmed spaces.

Gradients in Pk(X )d projected on Rk−1(X )⊕Rc,k(X ).

Curls in Pk(X )d projected on Gk−1(X )⊕ Gc,k(X ).
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Other features

Commutative diagram

N k(T ) = Pk(T )3 + x × Pk(T )3 (Nédélec space),

RT k(T ) = Pk(T )3 + xPk(T ) (Raviart-Thomas space).

I The following diagram is commutative:

Pk+1(T ) N k(T ) RT k(T ) Pk(T )

X k
grad,T X k

curl,T X k
div,T Pk(T )

grad

I kgrad,T

curl

I
k
curl,T

div

I
k
div,T iT

G
k
T C

k
T Dk

T

I Ensures polynomial consistency up to degree k of the discrete sequence.

Reconstruction of potentials: scalar for gradient, vectorial for curl; enable

definition of L2-inner products used to write schemes in weak formulations.
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Going global

R X k
grad,Ω X k

curl,Ω X k
div,Ω Pk(Th) {0}.

I kgrad,Ω GΩ C
k
Ω Dk

Ω 0

Global spaces/operators: by patching local spaces/operators.

I Additional challenges:

Global exactness, especially KerDk
Ω ⊂ ImC k

Ω.

Poincaré inequalities (for stability), e.g.

‖vΩ‖X k
curl,Ω
≤ M‖C k

ΩvΩ‖X k
div,Ω

∀vΩ ∈ (X k
curl,Ω)⊥.
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Model and exact solution


σ − curl u = 0 in Ω,

curlσ = f in Ω,

div u = 0 in Ω,

u × n = g on ∂Ω.

on Ω = (0, 1)3, with exact solution

σ(x) = 3π

 sin(πx1) cos(πx2) sin(πx3)

0

− cos(πx1) cos(πx2) sin(πx3)

 ,

u(x) =

 cos(πx1) sin(πx2) sin(πx3)

−2 sin(πx1) cos(πx2) sin(πx3)

sin(πx1) sin(πx2) cos(πx3)

 .

J. Droniou (Monash University)



Implementation

I All spaces and operators entirely implemented in the HArD::Core3D library

(https://github.com/jdroniou/HArDCore).

Open source C++ code for numerical schemes on polyhedral meshes.

Based on Eigen linear algebra library (http://eigen.tuxfamily.org).

Complete and intuitive description of mesh.

Routines for handling polynomial spaces (on edges, faces and cells), for

quadrature rules, for Gram-like matrices (mass, stiffness), etc.

J. Droniou (Monash University)
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Convergence graphs in energy norm: cubic cells
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Convergence graphs in energy norm: tetrahedral cells
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Convergence graphs in energy norm: Voronoi cells 1
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Convergence graphs in energy norm: Voronoi cells 2
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Conclusion

I Design of a fully discrete (local and global) exact de Rham sequence.

I Purely based on explicit polynomial spaces.

I Applicable on generic polyhedral meshes, and of arbitrary accuracy order.

I Proofs of local and global exactness, and Poincaré inequalities.

I Automatically yields stable discretisations of PDEs.
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