## An HHO–DDR polytopal method for the Brinkman problem that is robust in pure Stokes and Darcy regimes

#### Jérôme Droniou

Joint work with D. Di Pietro (U. of Montpellier)

IMAG, CNRS & University of Montpellier, France, School of Mathematics, Monash University, Australia

https://imag.umontpellier.fr/~droniou/

23rd IACM Computational Fluids Conference









A polytopal method for the Brinkman problem robust in all regimes, D. A. Di Pietro and J. Droniou. Comput. Methods Appl. Mech. Engrg. **409**, Paper no. 115981, 33p, 2023. DOI: 10.1016/j.cma.2023.115981. URL: https://arxiv.org/abs/2301.03272

## Outline

#### 1 What regime-dependent error estimates should be

#### 2 The Brinkman model and its limiting regimes

- 3 Scheme and error estimate
  - An HHO scheme for Brinkman
  - Error analysis
  - HHO–DDR scheme
- 4 Numerical tests

#### Slides



Model: with  $\alpha, \beta$  physical parameters,

$$\mathcal{F}(u;\alpha,\beta)=0.$$

$$\begin{array}{ll} \mbox{Regime 1} & \mbox{Regime 2} \\ \alpha = 0, \ \beta > 0 & \mbox{$\alpha > 0$, $\beta = 0$} \end{array}$$

Model: with  $\alpha, \beta$  physical parameters,

$$\mathcal{F}(u;\alpha,\beta) = 0.$$

$$\begin{array}{ll} \mbox{Regime 1} & \mbox{Regime 2} \\ \alpha = 0, \ \beta > 0 & \ \alpha > 0, \ \beta = 0 \end{array}$$

#### Dominant regime?

- Depends on relative magnitude of  $\alpha$  and  $\beta$ , i.e., on  $C^{\alpha,\beta} := \alpha/\beta$ .
- $\circ~$  What does "Regime 1 dominates" mean?  $\mathcal{C}^{\alpha,\beta} \leq 1?~\mathcal{C}^{\alpha,\beta} \leq 10?$
- Requires a dimensionless number  $C^{\alpha,\beta}$ , that can then be compared to 1.

#### Scheme:

$$\mathcal{F}_h(u_h;\alpha,\beta)=0.$$

Error estimates:

• Should capture all regimes (not just  $\mathcal{C}^{\alpha,\beta} \to 0$ ,  $\mathcal{C}^{\alpha,\beta} \to \infty$ ).

#### Scheme:

$$\mathcal{F}_h(u_h;\alpha,\beta)=0.$$

Error estimates:

- Should capture all regimes (not just  $\mathcal{C}^{\alpha,\beta} \to 0$ ,  $\mathcal{C}^{\alpha,\beta} \to \infty$ ).
- Should take into account local dominant regime:  $C_T^{\alpha,\beta}$  attached to element T, treated according to its regime ( $C_T^{\alpha,\beta} \ge 1$  or  $C_T^{\alpha,\beta} < 1$ ).

#### Scheme:

$$\mathcal{F}_h(u_h;\alpha,\beta)=0.$$

Error estimates:

- $\circ \text{ Should capture all regimes (not just } \mathcal{C}^{\alpha,\beta} \to 0 \text{, } \mathcal{C}^{\alpha,\beta} \to \infty \text{)}.$
- Should take into account local dominant regime:  $C_T^{\alpha,\beta}$  attached to element T, treated according to its regime ( $C_T^{\alpha,\beta} \ge 1$  or  $C_T^{\alpha,\beta} < 1$ ).
- $\circ \ {\mathcal C}_T^{\alpha,\beta}$  often involves the local length  $h_T$  and can actually improve the error estimates.

## Capture transitional regimes

No transitional regimes: with  $g_i(0) = 0$ ,

$$\|u - u_h\| \lesssim \left[\sum_T g_1(\alpha_T) h_T^{r_2} |u|_{H^{\ell_2}(T)}^2 + \sum_T g_2(\beta_T) h_T^{r_1} |u|_{H^{\ell_1}(T)}^2\right]^{\frac{1}{2}}$$

[7, 8] (DG for advection-diffusion)
[1] (FE for Brinkman, robustness in Darcy limit)
[9] (VEM for Brinkman, robustness in Darcy limit)

### Capture transitional regimes

No transitional regimes: with  $g_i(0) = 0$ ,

$$\|u - u_h\| \lesssim \left[\sum_T g_1(\alpha_T) h_T^{r_2} |u|_{H^{\ell_2}(T)}^2 + \sum_T g_2(\beta_T) h_T^{r_1} |u|_{H^{\ell_1}(T)}^2\right]^{\frac{1}{2}}$$

[7, 8] (DG for advection–diffusion)
[1] (FE for Brinkman, robustness in Darcy limit)
[9] (VEM for Brinkman, robustness in Darcy limit)

Transitional regimes:

$$\|u-u_h\| \lesssim \left[\sum_T \min(1, \mathcal{C}_T^{\alpha, \beta}) h_T^{r_2} |u|_{H^{\ell_2}(T)}^2 + \sum_T \min(1, (\mathcal{C}_T^{\alpha, \beta})^{-1}) h_T^{r_1} |u|_{H^{\ell_1}(T)}^2\right]^{\frac{1}{2}}$$

Transitional regimes when  $\mathcal{C}_T^{\alpha,\beta}$  such that both terms have same magnitude.

[5] (Advection–diffusion with HHO) [2] (Brinkman with HHO on triangles).

## Outline

#### 1 What regime-dependent error estimates should be

#### 2 The Brinkman model and its limiting regimes

- 3 Scheme and error estimate
  - An HHO scheme for Brinkman
  - Error analysis
  - HHO–DDR scheme
- 4 Numerical tests

Slides



Flow of viscous fluid in porous matrix with fractures, bubbles, or channels.

Data:

- $\Omega$  polytopal domain in  $\mathbb{R}^d$ , d = 2, 3.
- $\circ~\mu:\Omega\to(0,\infty)$  viscosity,  $\nu:\Omega\to[0,\infty)$  inverse permeability.
- $\circ~ \boldsymbol{f}:\Omega\to\mathbb{R}^3,~g:\Omega\to\mathbb{R}$  volumetric source terms.

Model: find velocity  $\boldsymbol{u}:\Omega\to\mathbb{R}^3$  and pressure  $p:\Omega\to\mathbb{R}$  s.t.

$$\begin{aligned} -\operatorname{\mathbf{div}}(\mu \operatorname{\mathbf{grad}} \boldsymbol{u}) + \nu \boldsymbol{u} + \operatorname{\mathbf{grad}} p &= \boldsymbol{f} & \text{ in } \Omega, \\ \operatorname{\mathbf{div}} \boldsymbol{u} &= g & \text{ in } \Omega, \\ \boldsymbol{u} &= \boldsymbol{0} & \text{ on } \partial\Omega, \\ \int_{\Omega} p &= 0. \end{aligned}$$

Note:  $\operatorname{grad} u$  could be replaced by  $\operatorname{grad}_s u$ , and  $\mu, \nu$  could be tensors.

## Limiting models I

Stokes:

$$-\operatorname{div}(\mu \operatorname{grad} \boldsymbol{u}) \neq \boldsymbol{v}^{0} \boldsymbol{u} + \operatorname{grad} p = \boldsymbol{f} \quad \text{in } \Omega,$$
$$\operatorname{div} \boldsymbol{u} = \boldsymbol{j}^{0} \quad \text{in } \Omega,$$
$$\boldsymbol{u} = \boldsymbol{0} \quad \text{on } \partial\Omega,$$
$$\int_{\Omega} p = 0.$$

Characteristics influencing the discretisation:

- Primal formulation.
- $\circ L^2$ -estimate on  $\operatorname{\mathbf{grad}} u$ .
- $\circ$  Requires inf-sup condition for p.

## Limiting models II

Darcy:

$$-\operatorname{div}(\overset{0}{\operatorname{\mu grad}} \boldsymbol{u}) + \nu \boldsymbol{u} + \operatorname{grad} p = \overset{0}{\boldsymbol{f}} \quad \text{in } \Omega,$$
  
$$\operatorname{div} \boldsymbol{u} = g \quad \text{in } \Omega,$$
  
$$\boldsymbol{u} \cdot \mathbf{n} = 0 \quad \text{on } \partial\Omega,$$
  
$$\int_{\Omega} p = 0.$$

Characteristics influencing the discretisation:

- Mixed formulation.
- $\circ L^2$ -estimate on u.
- $\circ$  Requires inf-sup condition for p.

Dimensionless number: with L a characteristic length,

$$C_{\mathrm{f},\Omega} = \frac{\nu L^2}{\mu}.$$

#### Regimes:



## Outline

- 1 What regime-dependent error estimates should be
- 2 The Brinkman model and its limiting regimes
- 3 Scheme and error estimate
  - An HHO scheme for Brinkman
  - Error analysis
  - HHO–DDR scheme
- 4 Numerical tests

Slides



## Outline

#### 1 What regime-dependent error estimates should be

#### 2 The Brinkman model and its limiting regimes

#### 3 Scheme and error estimate

- An HHO scheme for Brinkman
- Error analysis
- HHO–DDR scheme

#### 4 Numerical tests

Slides



Mesh: polytopal mesh of  $\Omega$ .

- $\circ \mathcal{T}_h$ : set of elements T.
- $\mathcal{F}_h$ : set of faces F ( $\mathcal{F}_T$ : faces of T).
- $\circ \mathcal{P}^{\ell}(X)$ : polynomials of degree  $\leq \ell$  on X = T, F.

#### Data:

•  $\mu, \nu$  piecewise constant on  $\mathcal{T}_h$  (values  $\mu_T, \nu_T$  on  $T \in \mathcal{T}_h$ ).

#### Discrete spaces I

Fix  $k \ge 0$  polynomial degree.

Velocity space: Hybrid High-Order (HHO) space.

$$\begin{split} \underline{\boldsymbol{U}}_{h}^{k} &\coloneqq \Big\{ \underline{\boldsymbol{v}}_{h} = \big( (\boldsymbol{v}_{T})_{T \in \mathcal{T}_{h}}, (\boldsymbol{v}_{F})_{F \in \mathcal{F}_{h}} \big) : \\ \boldsymbol{v}_{T} \in \boldsymbol{\mathcal{P}}^{k}(T)^{d} \text{ for all } T \in \mathcal{T}_{h} \text{ and } \boldsymbol{v}_{F} \in \boldsymbol{\mathcal{P}}^{k}(F)^{d} \text{ for all } F \in \mathcal{F}_{h} \Big\}. \end{split}$$

With boundary conditions:

$$\underline{\boldsymbol{U}}_{h,0}^k := \{ \underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{U}}_h^k : \, \boldsymbol{v}_F = \boldsymbol{0} \quad \forall F \subset \partial \Omega \}.$$

Velocity interpolator: for  $v \in H^1(\Omega)^d$ , with  $\pi^\ell_X$  the  $L^2(X)$ -projector on  $\mathcal{P}^\ell(X)^d$ ,

$${oldsymbol{I}}_h^k oldsymbol{v}\coloneqq \left((oldsymbol{\pi}_T^koldsymbol{v})_{T\in\mathcal{T}_h},(oldsymbol{\pi}_F^koldsymbol{v})_{F\in\mathcal{F}_h}
ight)\in {oldsymbol{U}}_h^k.$$

(Replace subscript h with  $T \rightsquigarrow$  space and interpolator on element T.)

Pressure:

$$P_h^k := \left\{ q \in L^2(\Omega) : q_{|T} \in \mathcal{P}^k(T) \quad \forall T \in \mathcal{T}_h, \quad \int_{\Omega} q = 0 \right\}.$$

## Discretisation of diffusive term $-\operatorname{div}(\mu\operatorname{\mathbf{grad}} \boldsymbol{u})$ [4]

Discrete gradient reconstruction: 
$$G_T^k : \underline{U}_T^k \to \mathcal{P}^k(T)^{d \times d}$$
 s.t.  
$$\int_T G_T^k \underline{v}_T : \boldsymbol{\tau} = \int_T \operatorname{grad} \boldsymbol{v}_T : \boldsymbol{\tau} + \sum_{F \in \mathcal{F}_T} \int_F (\boldsymbol{v}_F - \boldsymbol{v}_T) \cdot \boldsymbol{\tau} \mathbf{n}_{TF} \qquad \forall \boldsymbol{\tau} \in \mathcal{P}^k(T)^{d \times d}.$$

Bilinear form:

$$a_{\mu,h}(\underline{\boldsymbol{w}}_h,\underline{\boldsymbol{v}}_h) \coloneqq \sum_{T \in \mathcal{T}_h} \mu_T a_{\mathrm{S},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T),$$
$$a_{\mathrm{S},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T) \coloneqq \int_T \boldsymbol{G}_T^k \underline{\boldsymbol{w}}_T : \boldsymbol{G}_T^k \underline{\boldsymbol{v}}_T + \mathrm{Stab}_{\mathrm{S},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T).$$

Local weighted  $H^1$ -like norm:

$$\|\underline{\boldsymbol{v}}_T\|_{\mu,T} := \mu_T^{1/2} a_{\mathrm{S},T} (\underline{\boldsymbol{v}}_T, \underline{\boldsymbol{v}}_T)^{1/2}.$$

$$\left(\sum_{F\in\mathcal{F}_T}\mu_T h_T^{-1} \| oldsymbol{v}_F - oldsymbol{v}_T \|_{L^2(F)}^2 
ight)^{1/2} \lesssim \| oldsymbol{v}_T \|_{\mu,T}.$$

Bilinear form:

$$a_{\nu,h}(\underline{\boldsymbol{w}}_h,\underline{\boldsymbol{v}}_h) \coloneqq \sum_{T \in \mathcal{T}_h} \nu_T a_{\mathrm{D},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T)$$
$$a_{\mathrm{D},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T) \coloneqq \int_T \boldsymbol{w}_T \cdot \boldsymbol{v}_T + \mathrm{Stab}_{\mathrm{D},T}(\underline{\boldsymbol{w}}_T,\underline{\boldsymbol{v}}_T).$$

Local weighted  $L^2$ -like norm:

$$\|\underline{\boldsymbol{v}}_T\|_{\nu,T} \coloneqq \nu_T^{1/2} a_{\mathrm{D},T} (\underline{\boldsymbol{v}}_T, \underline{\boldsymbol{v}}_T)^{1/2}$$

$$\left(\sum_{F\in\mathcal{F}_T} 
u_T \mathbf{h}_T \| \mathbf{v}_F - \mathbf{v}_T \|_{L^2(F)}^2 
ight)^{1/2} \lesssim \| \underline{v}_T \|_{
u,T}.$$

Discrete divergence: 
$$D_T^k : \underline{U}_T^k \to \mathcal{P}^k(T)$$
 s.t.

$$D_T^k \underline{\boldsymbol{v}}_T = \operatorname{tr}(\boldsymbol{G}_T^k \underline{\boldsymbol{v}}_T).$$

Coupling bilinear form: For  $(\underline{v}_h, q_h) \in \underline{U}_h^k \times \mathcal{P}^k(\mathcal{T}_h)$ ,

$$b_h(\underline{\boldsymbol{v}}_h, q_h) \coloneqq -\sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T q_T,$$

Source term:

$$\sum_{T\in\mathcal{T}_h}\int_T oldsymbol{f}\cdotoldsymbol{v}_T.$$

## Outline

#### 1 What regime-dependent error estimates should be

#### 2 The Brinkman model and its limiting regimes

#### 3 Scheme and error estimate

- An HHO scheme for Brinkman
- Error analysis
- HHO–DDR scheme

#### 4 Numerical tests

Slides



## Error estimate, using a local friction coefficient

$$C_{\mathbf{f},T} := \frac{\nu_T h_T^2}{\mu_T}$$

- $\circ \ C_{{\rm f},T} \ll 1: \ T \ {\rm Stokes-dominated}.$
- $\circ C_{\mathrm{f},T} \gg 1$ : T Darcy-dominated.
- $\circ~$  Intermediate regimes also measured by  $C_{\rm f, \it T}$  (e.g.  $C_{\rm f, \it T}\approx 1).$

Theorem (Error estimates for the HHO scheme)

$$\begin{split} \|\underline{\boldsymbol{u}}_{h} - \underline{\boldsymbol{I}}_{h}^{k} \boldsymbol{u}\|_{\mu,h}^{2} + \|\underline{\boldsymbol{u}}_{h} - \underline{\boldsymbol{I}}_{h}^{k} \boldsymbol{u}\|_{\nu,h}^{2} + \|p_{h} - \pi_{h}^{k} p\|_{L^{2}(\Omega)}^{2} \\ \lesssim \Bigg[ \sum_{T \in \mathcal{T}_{h}} \mu_{T} \min(1, C_{\mathrm{f},T}^{-1}) h_{T}^{2(k+1)} |\boldsymbol{u}|_{\boldsymbol{H}^{k+2}(T)}^{2} \\ + \sum_{T \in \mathcal{T}_{h}} \nu_{T} \min(1, C_{\mathrm{f},T}) h_{T}^{2(k+1)} |\boldsymbol{u}|_{\boldsymbol{H}^{k+1}(T)}^{2} \\ + \textit{Errors from coupling term} \Bigg]. \end{split}$$

## Consistency of diffusive term: $C_{f,T}$ saves the day (and h)

Consistency error:

$$\sum_{T \in \mathcal{T}_h} \int_T (-\operatorname{div}(\mu_T \operatorname{grad} \boldsymbol{u})) \cdot \boldsymbol{v}_T - \underbrace{\mu_T \int_T \boldsymbol{G}_T^k \underline{\boldsymbol{I}}_T^k \boldsymbol{u} : \boldsymbol{G}_T^k \underline{\boldsymbol{v}}_T + \mu_T \operatorname{Stab}}_{a_{\mu,\nu}(\underline{\boldsymbol{I}}_h^k \boldsymbol{u}, \underline{\boldsymbol{v}}_h)}$$

After IBP, element contribution (without stabilisation):

$$\sum_{F \in \mathcal{F}_T} \int_F \mu_T (\operatorname{grad} u - G_T^k \underline{I}_T^k u) \mathbf{n}_F \cdot (v_F - v_T)$$

$$\leq \mu_T^{1/2} \underbrace{h_T^{1/2}}_{\leq h_T^{k+1} |u|_{H^{k+2}(T)}} \underbrace{ \left( \mu_T h_T^{-1} \sum_{F \in \mathcal{F}_T} \|v_F - v_T\|_{L^2(F)}^2 \right)^{1/2}}_{\mathfrak{T}_T}.$$

## Consistency of diffusive term: $C_{f,T}$ saves the day (and h)

After IBP, element contribution (without stabilisation):

$$\sum_{F \in \mathcal{F}_T} \int_F \mu_T (\operatorname{\mathbf{grad}} \boldsymbol{u} - \boldsymbol{G}_T^k \underline{\boldsymbol{I}}_T^k \boldsymbol{u}) \mathbf{n}_F \cdot (\boldsymbol{v}_F - \boldsymbol{v}_T)$$

$$\leq \mu_T^{1/2} \underbrace{h_T^{1/2} \| \operatorname{\mathbf{grad}} \boldsymbol{u} - \boldsymbol{G}_T^k \underline{\boldsymbol{I}}_T^k \boldsymbol{u} \|_{L^2(\partial T)}}_{\lesssim h_T^{k+1} |\boldsymbol{u}|_{H^{k+2}(T)}} \underbrace{\left( \mu_T h_T^{-1} \sum_{F \in \mathcal{F}_T} \| \boldsymbol{v}_F - \boldsymbol{v}_T \|_{\boldsymbol{L}^2(F)}^2 \right)^{1/2}}_{\mathfrak{T}_T}$$

Stokes regime:  $\mathfrak{T}_T \lesssim \|\underline{\boldsymbol{v}}_T\|_{\mu,T}$ .

## Consistency of diffusive term: $C_{f,T}$ saves the day (and h)

After IBP, element contribution (without stabilisation):

$$\sum_{F \in \mathcal{F}_T} \int_F \mu_T (\operatorname{\mathbf{grad}} \boldsymbol{u} - \boldsymbol{G}_T^k \boldsymbol{\underline{I}}_T^k \boldsymbol{u}) \mathbf{n}_F \cdot (\boldsymbol{v}_F - \boldsymbol{v}_T)$$

$$\leq \mu_T^{1/2} \underbrace{h_T^{1/2} \| \operatorname{\mathbf{grad}} \boldsymbol{u} - \boldsymbol{G}_T^k \boldsymbol{\underline{I}}_T^k \boldsymbol{u} \|_{L^2(\partial T)}}_{\lesssim h_T^{k+1} |\boldsymbol{u}|_{H^{k+2}(T)}} \underbrace{\left( \mu_T h_T^{-1} \sum_{F \in \mathcal{F}_T} \| \boldsymbol{v}_F - \boldsymbol{v}_T \|_{\boldsymbol{L}^2(F)}^2 \right)^{1/2}}_{\mathfrak{T}_T}$$

Stokes regime:  $\mathfrak{T}_T \lesssim \|\underline{\boldsymbol{v}}_T\|_{\mu,T}$ .

Darcy regime:

$$C_{\mathrm{f},T} \geq 1$$
 so  $\mu_T \leq 
u_T h_T^2$ .

Thus:

$$\mathfrak{T}_T \leq \left( 
u_T \mathbf{h}_T \sum_{F \in \mathcal{F}_T} \| \boldsymbol{v}_F - \boldsymbol{v}_T \|_{\boldsymbol{L}^2(F)}^2 
ight)^{1/2} \lesssim \| \underline{\boldsymbol{v}}_T \|_{\boldsymbol{\nu},T}.$$

## Consistency of coupling term

Consistency error:

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} p \cdot \boldsymbol{v}_T + \underbrace{\sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T \ \pi_T^k p}_{-b_h(\underline{\boldsymbol{v}}_h, \pi_h^k p)}$$

After IBP, element contribution:

$$\sum_{F \in \mathcal{F}_{T}} \int_{F} (\pi_{T}^{k} p - p) (\boldsymbol{v}_{F} - \boldsymbol{v}_{T}) \cdot \mathbf{n}_{TF}$$

$$\leq \underbrace{h_{T}^{1/2} \| \pi_{T}^{k} p - p \|_{L^{2}(\partial T)}}_{\lesssim h_{T}^{k+1} |p|_{H^{k+1}(T)}} \underbrace{\left( \sum_{F \in \mathcal{F}_{T}} h_{T}^{-1} \| \boldsymbol{v}_{F} - \boldsymbol{v}_{T} \|_{L^{2}(F)}^{2} \right)^{1/2}}_{\mathfrak{T}_{T}}$$

After IBP, element contribution:

$$\sum_{F \in \mathcal{F}_{T}} \int_{F} (\pi_{T}^{k} p - p) (\boldsymbol{v}_{F} - \boldsymbol{v}_{T}) \cdot \mathbf{n}_{TF}$$

$$\leq \underbrace{h_{T}^{1/2} \| \pi_{T}^{k} p - p \|_{L^{2}(\partial T)}}_{\lesssim h_{T}^{k+1} |p|_{H^{k+1}(T)}} \underbrace{\left( \sum_{F \in \mathcal{F}_{T}} h_{T}^{-1} \| \boldsymbol{v}_{F} - \boldsymbol{v}_{T} \|_{L^{2}(F)}^{2} \right)^{1/2}}_{\mathfrak{T}_{T}}$$

Stokes regime:  $\mathfrak{T}_T \lesssim \mu_T^{-1/2} \| \underline{v}_T \|_{\mu,T}$ . Darcy regime:  $\mathfrak{T}_T \lesssim \nu_T^{-1/2} h_T^{-1} \| \underline{v}_T \|_{\mu,T}$ .

No  $C_{f,T}$  can help us gain an  $h_T$  here...

## Outline

#### 1 What regime-dependent error estimates should be

#### 2 The Brinkman model and its limiting regimes

#### 3 Scheme and error estimate

- An HHO scheme for Brinkman
- Error analysis
- HHO–DDR scheme

#### 4 Numerical tests

Slides



## Stronger IBP by choosing appropriate potential

New source term:

$$\sum_{T\in\mathcal{T}_h}\int_T \boldsymbol{f}\cdot\boldsymbol{P}_{\mathrm{D},T}^k\underline{\boldsymbol{v}}_T.$$

Consistency error:

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} p \cdot \boldsymbol{P}_{\mathrm{D},T}^k \boldsymbol{v}_T + \sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T \ \pi_T^k p.$$

## Stronger IBP by choosing appropriate potential

New source term:

$$\sum_{T\in\mathcal{T}_h}\int_T \boldsymbol{f}\cdot\boldsymbol{P}_{\mathrm{D},T}^k\underline{\boldsymbol{v}}_T.$$

Consistency error:

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} p \cdot \boldsymbol{P}_{\mathrm{D},T}^k \boldsymbol{v}_T + \sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T \ \pi_T^k p.$$

Discrete divergence-based potential:  $P^k_{\mathrm{D},T}: \underline{U}^k_T \to \mathcal{P}^k(T)^d$  such that

$$\int_{T} \operatorname{\mathbf{grad}} q \cdot \boldsymbol{P}_{\mathrm{D},T}^{k} \underline{\boldsymbol{v}}_{T} = -\int_{T} q D_{T}^{k} \underline{\boldsymbol{v}}_{T} + \sum_{F \in \mathcal{F}_{T}} \int_{F} q \left( \boldsymbol{v}_{F} \cdot \mathbf{n}_{TF} \right) \quad \forall q \in \mathcal{P}^{k+1}(T).$$

(Completed by fixing  $P_{D,T}^k \underline{v}_T$  on a complement of grad  $\mathcal{P}^{k+1}(T)$  in  $\mathcal{P}^k(T)^d$ .)

## Stronger IBP by choosing appropriate potential

New source term:

$$\sum_{T\in\mathcal{T}_h}\int_T \boldsymbol{f}\cdot\boldsymbol{P}_{\mathrm{D},T}^k\underline{\boldsymbol{v}}_T.$$

Consistency error:

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} p \cdot \boldsymbol{P}_{\mathrm{D},T}^k \boldsymbol{v}_T + \sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T \ \pi_T^k p.$$

Discrete divergence-based potential:  $P^k_{\mathrm{D},T}: \underline{U}^k_T \to \mathcal{P}^k(T)^d$  such that

$$\int_{T} \operatorname{\mathbf{grad}} q \cdot \boldsymbol{P}_{\mathrm{D},T}^{k} \underline{\boldsymbol{v}}_{T} = -\int_{T} q D_{T}^{k} \underline{\boldsymbol{v}}_{T} + \sum_{F \in \mathcal{F}_{T}} \int_{F} q \left( \boldsymbol{v}_{F} \cdot \mathbf{n}_{TF} \right) \quad \forall q \in \mathcal{P}^{k+1}(T).$$

(Completed by fixing  $P_{D,T}^k \underline{v}_T$  on a complement of grad  $\mathcal{P}^{k+1}(T)$  in  $\mathcal{P}^k(T)^d$ .)

 $D_T^k$  and  $P_{D,T}^k$  are the Discrete De Rham (DDR) divergence and potential.  $\underline{U}_T^k$  is an enrichment of the corresponding DDR space (that only has normal fluxes as face unknowns) [3, 6].

## Consistency in Darcy regime

Consistency error and definition of  $\boldsymbol{P}_{\mathrm{D},T}^k$ :

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} p \cdot \boldsymbol{P}_{\mathsf{D},T}^k \boldsymbol{v}_T + \sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T \ \pi_T^k p - \sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} \int_F p \ (\boldsymbol{v}_F \cdot \mathbf{n}_{TF}).$$

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} \pi_T^{k+1} p \cdot \boldsymbol{P}_{D,T}^k \underline{\boldsymbol{v}}_T + \sum_{T \in \mathcal{T}_h} \int_T \pi_T^{k+1} p D_T^k \underline{\boldsymbol{v}}_T - \sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} \int_F \pi_T^{k+1} p \left( \boldsymbol{v}_F \cdot \mathbf{n}_{TF} \right) = 0$$

## Consistency in Darcy regime

Consistency error and definition of  $\boldsymbol{P}_{\mathrm{D},T}^k$ :

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{\mathbf{grad}} p \cdot \boldsymbol{P}_{\mathrm{D},T}^k \boldsymbol{v}_T + \sum_{T \in \mathcal{T}_h} \int_T D_T^k \underline{\boldsymbol{v}}_T \ \pi_T^k p - \sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} \int_F p \ (\boldsymbol{v}_F \cdot \mathbf{n}_{TF}).$$

$$\sum_{T \in \mathcal{T}_h} \int_T \operatorname{grad} \pi_T^{k+1} p \cdot \boldsymbol{P}_{D,T}^k \underline{\boldsymbol{v}}_T + \sum_{T \in \mathcal{T}_h} \int_T \pi_T^{k+1} p D_T^k \underline{\boldsymbol{v}}_T - \sum_{T \in \mathcal{T}_h} \sum_{F \in \mathcal{F}_T} \int_F \pi_T^{k+1} p \left( \boldsymbol{v}_F \cdot \mathbf{n}_{TF} \right) = 0$$

Subtract:

$$\int_{T} \underbrace{\operatorname{\mathbf{grad}}(p - \pi_{T}^{k+1}p)}_{\mathcal{O}(h^{k+1})} \cdot \underbrace{\mathbf{P}_{D,T}^{k} \boldsymbol{v}_{T}}_{\mathcal{O}(\nu_{T}^{-1/2} \| \underline{\boldsymbol{v}}_{T} \|_{\nu,T})} + \int_{T} \underbrace{(\pi_{T}^{k}p - \pi_{T}^{k+1}p)}_{\mathcal{O}(h^{k+1})} D_{T}^{k} \underline{\boldsymbol{v}}_{T} \\ - \sum_{F \in \mathcal{F}_{T}} \int_{F} \underbrace{(p - \pi_{T}^{k+1}p)}_{\mathcal{O}(h^{k+3/2})} \underbrace{(\boldsymbol{v}_{F} \cdot \mathbf{n}_{TF})}_{\mathcal{O}(\nu_{T}^{-1/2} h_{T}^{-1/2} \| \underline{\boldsymbol{v}}_{T} \|_{\nu,T})}$$

Regime-dependent potential: with  $\langle P \rangle$  the truth value of P (1 if P is true, 0 otherwise),

$$\widetilde{\boldsymbol{P}}_{\mathrm{D},T}^{k}\underline{\boldsymbol{v}}_{T} \coloneqq \langle C_{\mathrm{f},T} < 1 \rangle \boldsymbol{v}_{T} + \langle C_{\mathrm{f},T} \geq 1 \rangle \boldsymbol{P}_{\mathrm{D},T}^{k}\underline{\boldsymbol{v}}_{T}.$$

Scheme: Find  $(\underline{u}_h, p_h) \in \underline{U}_{h,0}^k \times P_h^k$  such that

$$\begin{split} a_{\mu,h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + a_{\nu,h}(\underline{\boldsymbol{u}}_{h},\underline{\boldsymbol{v}}_{h}) + b_{h}(\underline{\boldsymbol{v}}_{h},p_{h}) \\ &= \sum_{T \in \mathcal{T}_{h}} \int_{T} \boldsymbol{f} \cdot \widetilde{\boldsymbol{P}}_{\mathrm{D},T}^{k} \underline{\boldsymbol{v}}_{T} \qquad \forall \underline{\boldsymbol{v}}_{h} \in \underline{\boldsymbol{U}}_{h,0}^{k}, \\ &- b_{h}(\underline{\boldsymbol{u}}_{h},q_{h}) = \int_{\Omega} gq_{h} \qquad \qquad \forall q_{h} \in P_{h}^{k}. \end{split}$$

#### Theorem (Error estimates for the HHO–DDR scheme)

With C depending only on the mesh regularity and  $\max(\mu, \nu)$ , it holds

$$\begin{split} \underline{u}_{h} &- \underline{I}_{h}^{k} \boldsymbol{u} \|_{\mu,h}^{2} + \|\underline{u}_{h} - \underline{I}_{h}^{k} \boldsymbol{u} \|_{\nu,h}^{2} + \|p_{h} - \pi_{h}^{k} p\|_{L^{2}(\Omega)}^{2} \\ &\leq C \bigg[ \sum_{T \in \mathcal{T}_{h}} \mu_{T} \min(1, C_{\mathbf{f},T}^{-1}) h_{T}^{2(k+1)} |\boldsymbol{u}|_{\boldsymbol{H}^{k+2}(T)}^{2} \\ &+ \sum_{T \in \mathcal{T}_{h}} \nu_{T} \min(1, C_{\mathbf{f},T}) h_{T}^{2(k+1)} |\boldsymbol{u}|_{\boldsymbol{H}^{k+1}(T)}^{2} \bigg] \\ &+ C \bigg[ \sum_{T \in \mathcal{T}_{h}} \mu_{T}^{-1} \langle C_{\mathbf{f},T} < 1 \rangle h_{T}^{2(k+1)} |p|_{H^{k+1}(T)}^{2} \\ &+ \sum_{T \in \mathcal{T}_{h}} \nu_{T}^{-1} \langle C_{\mathbf{f},T} \ge 1 \rangle h_{T}^{2(k+1)} |p|_{H^{k+2}(T)}^{2} \bigg]. \end{split}$$

• Works in pure Stokes ( $\mu = 0$ ) and pure Darcy ( $\nu = 0$ ) regimes, respectively removing the terms involving  $\mu_T^{-1}$  or  $\nu_T^{-1}$ .

## Outline

- 1 What regime-dependent error estimates should be
- 2 The Brinkman model and its limiting regimes
- 3 Scheme and error estimate
  - An HHO scheme for Brinkman
  - Error analysis
  - HHO–DDR scheme
- 4 Numerical tests

#### Slides



Domain and meshes:  $\Omega=(0,1)^3,$  tetrahedral and Voronoi meshes. Exact solution: set  $C_{\rm f,\Omega}=\nu/\mu$  and

$$p(x, y, z) = \sin(2\pi x) \sin(2\pi y) \sin(2\pi z) \quad \forall (x, y, z) \in \Omega,$$
$$\boldsymbol{u} = \exp(-C_{\mathrm{f},\Omega})\boldsymbol{u}_{\mathrm{S}} + (1 - \exp(-C_{\mathrm{f},\Omega}))\boldsymbol{u}_{\mathrm{D}},$$

with

$$\begin{split} \boldsymbol{u}_{\mathrm{S}}(x,y,z) &= \frac{1}{2} \begin{bmatrix} \sin(2\pi x)\cos(2\pi y)\cos(2\pi z)\\\cos(2\pi x)\sin(2\pi y)\cos(2\pi z)\\-2\cos(2\pi x)\cos(2\pi y)\sin(2\pi z) \end{bmatrix} \quad \forall (x,y,z) \in \Omega,\\ \boldsymbol{u}_{\mathrm{D}} &= \begin{cases} -\nu^{-1}\operatorname{\mathbf{grad}} p & \text{if } \nu > 0,\\ \mathbf{0} & \text{otherwise.} \end{cases} \end{split}$$

#### Global transition from Stokes to Darcy II

$$- - k = 0; - - k = 1; - - k = 2 - - k = 3$$



Figure: Voronoi meshes, relative errors in energy norm on (u, p) w.r.t. h

#### Global transition from Stokes to Darcy III

$$- - k = 0; - - k = 1; - - k = 2 - - k = 3$$



Figure: Tetrahedral meshes, relative errors in (u, p) vs. h

## Lid-driven cavity with porous surroundings I



- Green cavity: pure Stokes flow,  $\mu = 10^{-2}$ .
- $\circ\,$  Surroundings: pure Darcy flow with  $\nu^{-1}=10^{-7}$  in grey box,  $\nu^{-1}=10^{-2}$  in yellow wedge.
- $\circ~$  Forcing term:  $\boldsymbol{f}=(0,0,-0.98)$  (gravity).
- Boundary conditions: u = (x(1-x), 0, 0) on top of cavity, 0 elsewhere.

## Lid-driven cavity with porous surroundings II



Figure: Streamlines (cavity and wedge displayed in shadow).

## Lid-driven cavity with porous surroundings III



Figure: Convergence of flux values from the cavity to the wedge.

Increasing order is better than refining mesh.

- Polytopal scheme of arbitrary order from the Brinkman model.
- Regime (Stokes / Brinkman / Darcy) identified by local dimensionless friction coefficients.
- Robust error estimate across the whole range of regimes, including intermediate ones; clearly identifies contributions of each regime.
- Clear computational gain in going above lowest order scheme.



## NEMESIS

New generation methods for numerical simulations

Funded by the European Union (ERC Synergy, NEMESIS, project number 101115663). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

#### Thank you for your attention!

- V. Anaya, D. Mora, C. Reales, and R. Ruiz-Baier. "Vorticity-pressure formulations for the Brinkman-Darcy coupled problem". In: *Numer. Methods Partial Differential Equations* 35.2 (2019), pp. 528–544. ISSN: 0749-159X,1098-2426. DOI: 10.1002/num.22312. URL: https://doi.org/10.1002/num.22312.
- [2] L. Botti, D. A. Di Pietro, and J. Droniou. "A Hybrid High-Order discretisation of the Brinkman problem robust in the Darcy and Stokes limits". In: *Comput. Methods Appl. Mech. Engrg.* 341 (2018), pp. 278–310. DOI: 10.1016/j.cma.2018.07.004.
- [3] D. A. Di Pietro and J. Droniou. "An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency". In: *Found. Comput. Math.* 23 (2023), pp. 85–164. DOI: 10.1007/s10208-021-09542-8.

- [4] D. A. Di Pietro and J. Droniou. The Hybrid High-Order method for polytopal meshes. Design, analysis, and applications. Modeling, Simulation and Application 19. Springer International Publishing, 2020. DOI: 10.1007/978-3-030-37203-3.
- [5] D. A. Di Pietro, J. Droniou, and A. Ern. "A discontinuous-skeletal method for advection-diffusion-reaction on general meshes". In: SIAM J. Numer. Anal. 53.5 (2015), pp. 2135–2157. DOI: 10.1137/140993971.
- [6] D. A. Di Pietro, J. Droniou, and F. Rapetti. "Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra". In: *Math. Models Methods Appl. Sci.* 30.9 (2020), pp. 1809–1855. DOI: 10.1142/S0218202520500372.
- [7] D. A. Di Pietro, A. Ern, and J.-L. Guermond. "Discontinuous Galerkin methods for anisotropic semidefinite diffusion with advection". In: SIAM J. Numer. Anal. 46.2 (2008), pp. 805–831. DOI: 10.1137/060676106.

- [8] P. Houston, C. Schwab, and E. Süli. "Discontinuous hp-finite element methods for advection-diffusion-reaction problems". In: SIAM J. Numer. Anal. 39.6 (2002), pp. 2133–2163.
- [9] D. Mora, J. Vellojin, and N. Verma. Nitsche stabilized Virtual element approximations for a Brinkman problem with mixed boundary conditions. 2024. URL: https://arxiv.org/pdf/2406.07724.

#### More tests: various regimes in various parts of the domain I

Domain:  $\Omega = (0,1)^3$  split in

•  $\Omega_{
m S} = (0, 1/2) \times (0, 1)^2$  with  $(\mu, \nu) = (1, 10^7)$ ,

•  $\Omega_{\rm D} = (1/2, 1) \times (0, 1)^2$  with  $(\mu, \nu) = (0, 10^2)$ .

Mesh: Cartesian from  $2^3$  to  $32^3$  cubes.

Exact solution:  $u = u_0 + \chi_S u_S + \chi_D u_D$  with  $\chi_i$  characteristic functions of the subdomains and

$$\boldsymbol{u}_{0}(x,y,z) = \begin{bmatrix} \exp(-y-z)\\\sin(\pi y)\sin(\pi z)\\yz \end{bmatrix},$$
$$\boldsymbol{u}_{S}(x,y,z) = \cos(\pi x)(x-0.5)\begin{bmatrix} y+z\\y+\cos(\pi z)\\\sin(\pi y)\end{bmatrix},$$
$$\boldsymbol{u}_{D}(x,y,z) = \cos(\pi x)(x-0.5)\begin{bmatrix} \sin(\pi y)\sin(\pi z)\\z^{3}\\y^{2}z^{2} \end{bmatrix}$$

# More tests: various regimes in various parts of the domain II

$$- - k = 0; - - k = 1; - - k = 2 - - k = 3$$



Figure: Relative errors vs. h