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Jérôme Droniou

joint works with: T. Chaumont–Frelet & S. Lemaire

(and D. Di Pietro & S. Pitassi)

Institute of Mathematics Alexander Grothendieck, CNRS, France,
School of Mathematics, Monash University, Australia

https://imag.umontpellier.fr/~droniou/

Frontiers in Numerical Methods for Nonlinear PDEs (2025)

1 / 50

https://imag.umontpellier.fr/~droniou/


References for this presentation

◦ Commuting quasi-interpolators and Maxwell compactness for a polytopal
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◦ Conforming lifting and adjoint consistency for the Discrete de Rham
complex of differential forms,
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Minimal-regularity de Rham complex

Ω open bounded set of R3.

◦ H(grad,Ω) = {q ∈ L2(Ω) : grad q ∈ L2(Ω)3}.

◦ H(curl; Ω) = {v ∈ L2(Ω)3 : curlv ∈ L2(Ω)3}.

◦ H(div; Ω) = {w ∈ L2(Ω)3 : divw ∈ L2(Ω)}.

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)
grad curl div
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Rellich compactness

Theorem

If (qn)n is bounded in H(grad,Ω) then (qn)n is relatively compact in L2(Ω).

◦ Relatively easy because grad controls the variations in all directions.
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Maxwell compactness

Theorem

If (vn)n is bounded in H(curl; Ω) and∫
Ω

vn · grad z = 0 ∀z ∈ H(grad,Ω),

then (vn)n is relatively compact in L2(Ω)3.

◦ Also a version for sequences in H(div; Ω) that are orthogonal to curls.

◦ Much more challenging than Rellich: curl does not control the variations
of the function [Weber, 1980], [Jochmann, 1997].

◦ Orthogonality condition equivalent to div vn = 0 and vn · nΩ = 0.
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Uses of Maxwell compactness

◦ Bound of curl and zero div classical in curl-div problems, such as models
in electromagnetism (possibly using vector potential fixed by gauge).

◦ Compactness required for eigenvalue analysis and nonlinear models.

◦ Convergence analysis of schemes requires discrete versions of this
compactness; see, e.g., [Kikuchi, 1987] for eigenvalue problems.

◦ Discrete compactness also allows for fine convergence analysis of schemes,
possibly with models with rough coefficients
[Chaumont-Frelet and Ern, 2023], [Chaumont-Frelet and Ern, 2024].
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The Finite Element way
Global complex

Th = {T} conforming tetrahedral/hexahedral
mesh.

◦ Define local polynomial spaces on each element, and glue them together to
form a sub-complex of the de Rham complex:

V 0
h V 1

h V 2
h V 3

h

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

grad curl div

grad curl div

Example: conforming Pk–Nédélec–Raviart-Thomas spaces [Arnold, 2018].

◦ Gluing only works on special meshes...
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The Finite Element way
Shortcomings

◦ Approach limited to conforming meshes with standard elements

=⇒ local refinement requires to trade mesh size for mesh quality
=⇒ complex geometries may require a large number of elements
=⇒ the element shape cannot be seamlessly adapted to the solution (e.g.

hexahedra in boundary layers + tetrahedra in the bulk for CFD
simulations)

◦ Need for (global) basis functions

=⇒ significant increase of DOFs on hexahedral elements
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Benefits of polytopal meshes

◦ Local refinement is easy, and preserves mesh regularity.

◦ Agglomeration of elements (e.g., for multigrid methods) is seamless.

◦ High-level approach can lead to leaner methods (fewer DOFs).

◦ Can be combined with standard Finite Elements on hybrid meshes (made
of tetrahedra/hexahedra + polyhedral elements).
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A practical example from CEA-CESTA

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.

τ1

τ2

τ3

2000mm

5000mm

2000mm
424mm

3000mm

12 / 50



A practical example from CEA-CESTA

Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z
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A practical example from CEA-CESTA

Accuracy: comparison of modulus of reflected near fields at the top.
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Overview of the Discrete De Rham (DDR) complex

R C∞(Ω) C∞(Ω)3 C∞(Ω)3 C∞(Ω) {0}

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) {0}

Ik
grad,h

grad

Ik
curl,h

curl

Ik
div,h

div

Ik
L2,h

0

Gk
h Ck

h Dh 0

◦ Fully discrete complex (not sub-complex) of bespoke finite-dimensional
spaces and operators.

◦ Discrete spaces not made of functions but:

◦ Xk
•,h made of vectors of polynomials on vertices, edges, faces, ele-

ments.

◦ Discrete operators (differential and function reconstructions) built
from these DOFs via integration-by-parts formulas.

◦ Interpolators Ik
•,h give meaning to these polynomials/DOFs as mo-

ments.
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Guiding principles for the construction

Joint work with D. Di Pietro and F. Rapetti.
(Ref: [Di Pietro et al., 2020], [Di Pietro and Droniou, 2023].)

◦ Hierarchical construction: from vertices, to edges, to faces, to elements.

◦ Enhancement: on each (relevant) mesh entity,

◦ discrete differential operator first,
◦ potential reconstruction using the discrete differential operator.

(both polynomially consistent, both based on IBP formulas.)

◦ The definition of the spaces (DOFs) also guided by these IBP formulas.

Same guiding principles as the Hybrid High-Order (HHO) method

[Di Pietro et al., 2014], [Di Pietro and Droniou, 2020].
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Mesh notations

◦ Mesh Mh = (Th,Fh, Eh,Vh) of elements (T ), faces (F ), edges (E),
vertices (V ), with intrinsic orientations (tangent, normal).

◦ Pℓ(X) polynomial of degree ≤ ℓ on X = T, F,E.

◦ Raviart–Thomas space on X = T, F : for ℓ ≥ 0,

RT ℓ(X) = Pℓ−1(X)⊕ (x− xX)Pℓ−1(X).

nF

F

TtE

E
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Space and interpolator

Space: fix k ≥ 0 and set

Xk
curl,h :=

{
vh =

(
(vT )T∈Th

, (vF )F∈Fh
, (vE)E∈Eh

)
,

vT ∈ RT k(T ) ∀T ∈ Th , vF ∈ RT k(F ) ∀F ∈ Fh ,

vE ∈ Pk(E) ∀E ∈ Eh
}
.

Interpolators: for v : Ω → R3 such that the tangential traces vt,E , vt,F of v
on each E,F are single-valued and integrable,

Ik
curl,hv :=

(
(πk

RT ,Tv)T∈Th
, (πk

RT ,Fvt,F )F∈Fh
, (πk

P ,E(vt,E))E∈Eh

)
,

where πk
RT ,X and πk

P ,X are the L2(X)-orthogonal projection on RT k(X)

and Pk(X).
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Operators and potential reconstructions

Xk
curl,h :=

{
vh =

(
(vT )T∈Th

, (vF )F∈Fh
, (vE)E∈Eh

)
,

vT ∈ RT k(T ) ∀T ∈ Th , vF ∈ RT k(F ) ∀F ∈ Fh ,

vE ∈ Pk(E) ∀E ∈ Eh
}
.

Face curl: For F ∈ Fh and vh ∈ Xk
curl,h, define Ck

Fvh ∈ Pk(F ) by
mimicking IBP:∫

F

(Ck
Fvh)r =

∫
F

vF · rotF r −
∑

E∈EF

ωFE

∫
E

vE r ∀r ∈ Pk(F ).

Reconstructed face tangential trace:∫
F

γk
t,Fvh · (rotF r +w) =

∫
F

Ck
Fvh r +

∑
E∈EF

ωFE

∫
E

vEr +

∫
F

vF ·w.

Element curl and potential: Ck
Tvh ∈ Pk(T ) and P k

curl,TvT ∈ Pk(T ) also by
mimicking IBP.

All have polynomial consistency, e.g.:

Ck
T I

k
curl,hv = curlv ∀v ∈ N k+1(T ) (Nédélec space).
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Discrete curl

Ck
h : Xk

curl,h → Xk
div,h by projecting face and element reconstructed curls

onto the components in

Xk
div,h :=

{
zT = ((zT )T∈Th

, (zF )F∈Fh
) :

zT ∈ N k(T ) , zF ∈ Pk(F )
}
,

that is,
Ck

hvh = ((πk
N ,TC

k
Tvh)T∈Th

, (Ck
Fvh)F∈Fh

).
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DDR complex: summary

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) {0}.

Ik
grad,h Gk

h Ck
h Dk

h 0

◦ Do not seek any basis functions.
◦ Fully discrete spaces not made of functions, but of vectors of polynomials
(DOFs).

◦ Polynomials attached to geometric entities (emulates continuity properties
of each space).

◦ Polynomial reconstructions of differential operator and potential by
mimicking IBPs.

F

V

T
E
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L2-like inner products

◦ Local L2-like inner product on the DDR spaces:

for • ∈ {grad, curl,div} and kgrad = k + 1, kcurl = kdiv = k,

(xT , yT )•,T =

∫
T

P k•
•,TxT · P k•

•,T yT + s•,T (xT , yT ) ∀xT , yT ∈ Xk
•(T ),

(s•,T penalises differences on the boundary between element and face/edge
potentials).

◦ Global L2-like product (·, ·)•,h by standard assembly of local ones.
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DOF by mesh entities

Space V E F T

Xk
grad,T R Pk−1(E) Pk−1(F ) Pk−1(T )

Xk
curl,T Pk(E) RT k(F ) RT k(T )

Xk
div,T Pk(F ) N k(T )

Pk(T ) Pk(T )
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The DDR complex and its properties

◦ Complex with the same cohomology as the continuous de Rham com-
plex, applicable on generic polytopal meshes.

◦ Poincaré inequalities.

◦ Consistency (both primal and adjoint).

◦ Commutation properties between the interpolators and the continu-
ous/discrete operators.

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],

[Di Pietro and Droniou, 2021a]

⇝ optimally-convergent schemes (error in O(hk+1)) for a range of models:
magnetostatics, Stokes & Navier–Stokes, etc.

⇝ robust error estimates with respect to some physical parameters.
[Di Pietro and Droniou, 2021b], [Beirão da Veiga et al., 2022]
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Where this happened
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Construction of the quasi-interpolator

Quasi-interpolator on FE space: with Sh simplicial mesh and ℓ ≥ 1,

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

V ℓ
grad(Sh) V ℓ

curl(Sh) V ℓ
div(Sh) Pℓ(Sh)

grad

Ĵ ℓ
grad,h

curl

Ĵ ℓ
curl,h

div

Ĵ ℓ
div,h πℓ

P ,Sh

grad curl div

where V ℓ
grad(Sh), V

ℓ
curl(Sh) and V ℓ

div(Sh) are the conforming Lagrange,
Nédélec and Raviart–Thomas finite element spaces.
[Ern et al., 2022], [Chaumont-Frelet and Vohraĺık, 2024]

Quasi-interpolator on DDR: take Sh matching simplicial submesh of Th,
ℓ ≥ k + 1, and interpolate from the FE spaces...

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

V ℓ
grad(Sh) V ℓ

curl(Sh) V ℓ
div(Sh) Pℓ(Sh)

Xk
grad,h Xk

curl,h Xk
div,h Pk(Sh)

grad

Ĵ ℓ
grad,h

curl

Ĵ ℓ
curl,h

div

Ĵ ℓ
div,h πℓ

P ,Sh

grad

Ik
grad,h

curl

Ik
curl,h

div

Ik
div,h πk

P ,h

Gk
h Ck

h Dk
h
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A kind of magic...

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

V ℓ
grad(Sh) V ℓ

curl(Sh) V ℓ
div(Sh) Pℓ(Sh)

Xk
grad,h Xk

curl,h Xk
div,h Pk(Sh)

grad

Ĵ ℓ
grad,h

curl

Ĵ ℓ
curl,h

div

Ĵ ℓ
div,h πℓ

P ,Sh

grad

Ik
grad,h

curl

Ik
curl,h

div

Ik
div,h πk

P ,h

Gk
h Ck

h Dk
h

Why does this work?

◦ Ikgrad,h, I
k
curl,h and Ik

div,h can be applied to functions that have suitable
single-valued traces on mesh entities.
(e.g., single-valued tangential traces on edges and faces for Ik

curl,h)

◦ The FE spaces V ℓ
grad(Sh), V

ℓ
curl(Sh) and V ℓ

div(Sh) have such suitable
traces!
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Ĵ ℓ
curl,h

div
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Ĵ ℓ
grad,h

curl
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Properties

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

Xk
grad,h Xk

curl,h Xk
div,h Pk(Sh)

grad

Î
k

grad,h

curl

Î
k

curl,h

div

Î
k

div,h
πk
P ,Sh

Gk
h Ck

h Dk
h

◦ Bounded cochain maps: diagram commutes and the interpolators are
continuous.
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◦ Primal consistency: for • ∈ {grad, curl,div} and T̃ set of neighbours (by
vertices) of T ,

∥z − P k•
•,T Î

k

•,T z∥L2(T ) ≲ ∑
T ′∈T̃

[
∥z − πk•

P ,T ′z∥2L2(T ′) + h2
T ∥(•z)− πk•

P ,T ′(•z)∥2L2(T ′)

]1/2

.
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Î
k

curl,h

div

Î
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◦ Adjoint consistency: measures defect of discrete IBP, using minimal
regularity.
Example: for v ∈ H(curl; Ω) ∩H(div; Ω) such that v · nΩ ∈ L2(∂Ω),
and q

h
∈ Xk

grad,h,∣∣∣∣∣(Îk

curl,hv,G
k
hqh)curl,h +

∫
Ω

div(v)P k+1
grad,hqh

−
∫
∂Ω

v · nΩ γk+1
∂Ω q

h

∣∣∣∣∣ ≲ Ah(v)
(
∥q

h
∥grad,h + ∥Gk

hqh∥curl,h
)
,

with Ah(v) → 0 as h → 0.
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The curl case

Theorem (Conforming lifting)

There exists Lk
curl,h : Xk

curl,h → H(curl; Ω) such that, for all vh ∈ Xk
curl,h,

πk+1
RT ,T (L

k
curl,hvh) = P k

curl,Tvh ∀T ∈ Th,

Ik
curl,hLk

curl,hvh = vh,

∥Lk
curl,hvh∥L2(T ) ≲ ∥vh∥curl,T ,

∥ curlLk
curl,hvh)∥L2(T ) ≲ ∥Ck

hvh∥div,T .

◦ Lk
curl,hvh ∈ N k+3(Sh) ∩H(curl; Ω), with Sh matching simplicial

submesh of Th. Hence, tangential traces of Lk
curl,hvh are well-defined, and

Ĵ k+3
curl,hL

k
curl,hvh = Lk

curl,hvh, so Î
k

curl,hLk
curl,hvh = vh.
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curl,hLk

curl,hvh = vh,

∥Lk
curl,hvh∥L2(T ) ≲ ∥vh∥curl,T ,

∥ curlLk
curl,hvh)∥L2(T ) ≲ ∥Ck

hvh∥div,T .

◦ Not based on local solutions to PDEs, but rather by solving local algebraic
problems in cochains and trimmed polynomial spaces.

⇝ fine estimates, not a virtual function, no limit on dimension....
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Theorem (Conforming lifting)

There exists Lk
curl,h : Xk

curl,h → H(curl; Ω) such that, for all vh ∈ Xk
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curl,Tvh ∀T ∈ Th,

Ik
curl,hLk
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∥Lk
curl,hvh∥L2(T ) ≲ ∥vh∥curl,T ,

∥ curlLk
curl,hvh)∥L2(T ) ≲ ∥Ck

hvh∥div,T .

◦ Used to prove adjoint consistency, as well as Maxwell compactness.
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Exterior calculus de Rham

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

HΛ0(Ω) HΛ1(Ω) HΛ2(Ω) L2Λ3(Ω)

grad curl div

d0 d1 d2

◦ Λℓ(Ω): (alternate multilinear) ℓ-forms on Ω.

◦ dℓ : Λℓ(Ω) → Λℓ+1(Ω): exterior derivative.

◦ Allows for a unified analysis of all spaces/operators along the complex.
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Exterior calculus DDR

Xk
grad,h Xk

curl,h Xk
div,h Pk(Th)

Xk
0,h Xk

1,h Xk
2,h Xk

3,h

Gk
h Ck

h Dk
h

d0,h d1,h d2,h

◦ Xℓ
h: discrete DDR space of ℓ-forms on Ω.

◦ dℓh: discrete exterior derivative.

◦ Allows for a unified design and analysis of DDR and related tools.

37 / 50



Outline

1 Maxwell compactness: why?

2 Polytopal meshes: why?

3 Overview of the Discrete De Rham method
Generic principles
Discrete H(curl; Ω) space and curl/potential reconstructions
The DDR complex and its properties

4 Quasi-interpolator for DDR

5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)

6 Maxwell compactness for DDR

Slides

38 / 50



Statement

Theorem (Maxwell compactness for DDR)

Let vh ∈ Xk
curl,h be such that(

∥vh∥curl,h + ∥Ck
hvh∥div,h

)
h∈H is bounded,

(vh,G
k
hqh)curl,h = 0 ∀q

h
∈ Xk

grad,h.

Then, there exists v ∈ H(curl; Ω) ∩H0(div; Ω) such that div(v) ≡ 0 and,
up to a subsequence as h → 0, P k

curl,hvh → v in L2(Ω)3.

Also valid in Xk
div,h, for sequence of vectors with bounded discrete

divergence and that are orthogonal to discrete curls.
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Sketch of proof: initial stages

◦ Weak convergence: of P k
curl,hvh and Lk

curl,hvh towards the same limit
v ∈ H(curl; Ω).

(Same limit for both because πk+1
RT ,T (Lk

curl,hvh) = P k
curl,Tvh.)

◦ v ∈ H0(div; Ω): for all q ∈ C∞(Ω), use primal consistency on

(vh, I
k
curl,h grad q)curl,h = (vh,G

k
hI

k
grad,hq)curl,h = 0

to get ∫
Ω

v · grad q = 0.
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Sketch of proof: strong convergence

◦ Hodge decomposition:

v − Lk
curl,hvh = w(h) + grad q(h)

with q(h) ∈ H(grad,Ω) and w(h) ∈ H(curl; Ω) bounded in their spaces,
and ∫

Ω

w(h) · grad z = 0 ∀z ∈ H(grad,Ω).

◦ (w(h))h relatively compact in L2 by continuous Maxwell compactness.

◦ We have v⊥grad q(h) and, morally,

Lk
curl,hvh ⊥∼ grad q(h)

since (vh,G
k
h·)curl,h = 0. This should give grad q(h) ≃ 0...

◦ However, we only have∣∣∣∣∫
Ω

Lk
curl,hvh · grad q(h)

∣∣∣∣ ≤ C(q(h))o(1)

where C(q(h)) bounded if (q(h))h is relatively compact in H(grad,Ω).
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Sketch of proof: strong convergence

So, what do we do?

We go fully discrete, to avoid trading the exact orthogonality
(vh,G

k
h·)curl,h = 0 for an approximate orthogonality.
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Sketch of proof: strong convergence

v − Lk
curl,hvh = w(h) + grad q(h)

◦ Quasi-interpolate and use Î
k

curl,hLk
curl,hvh = vh as well as the commuting

properties:

Î
k

curl,hv − vh = Î
k

curl,hw(h) +Gk
h(Î

k

grad,hq(h)).

◦ Î
k

curl,hv − vh converges weakly to 0, (wh)h relatively compact in L2: by
primal consistency,

T1 → 0.

◦ Use adjoint consistency on the second term together with div v = 0 to get

T2 → 0.
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Conclusions

◦ DDR: Arbitrary-order de Rham complex, applicable on generic polyhedra,
but compatible with FE methods. Full set of algebraic and analytic results
(cohomology, consistencies, Poincaré inequalities, etc.)

◦ Quasi-interpolator to interpolate minimal-regularity functions onto DDR.

◦ Conforming lifting into finite element spaces (on submesh): tool to import
results of conforming space into DDR.

◦ Maxwell compactness for DDR, allows for analysis of eigenvalue problems
and nonlinear PDEs.
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https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html
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