Conforming lifting, quasi-interpolators and Maxwell compactness for a polytopal de Rham complex

Jérôme Droniou

joint works with: T. Chaumont-Frelet & S. Lemaire
(and D. Di Pietro & S. Pitassi)

Institute of Mathematics Alexander Grothendieck, CNRS, France, School of Mathematics, Monash University, Australia https://imag.umontpellier.fr/~droniou/

Frontiers in Numerical Methods for Nonlinear PDEs (2025)

References for this presentation

- Commuting quasi-interpolators and Maxwell compactness for a polytopal de Rham complex,
 - T. Chaumont-Frelet, J. Droniou and S. Lemaire (2025), 29p. https://hal.science/hal-05304175
- Conforming lifting and adjoint consistency for the Discrete de Rham complex of differential forms,
 - D. A. Di Pietro, J. Droniou and S. Pitassi (2025), 28p.

https://arxiv.org/abs/2509.21449

Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl}/\mathbf{potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

Minimal-regularity de Rham complex

 Ω open bounded set of \mathbb{R}^3 .

- $\circ \ H(\mathbf{grad},\Omega) = \{q \in L^2(\Omega) \, : \, \mathbf{grad} \, q \in L^2(\Omega)^3\}.$
- $\circ \ \boldsymbol{H}(\boldsymbol{\operatorname{curl}};\Omega) = \{\boldsymbol{v} \in L^2(\Omega)^3 \, : \, \boldsymbol{\operatorname{curl}} \, \boldsymbol{v} \in L^2(\Omega)^3 \}.$
- $\circ \ \boldsymbol{H}(\operatorname{div};\Omega) = \{\boldsymbol{w} \in L^2(\Omega)^3 \, : \, \operatorname{div} \boldsymbol{w} \in L^2(\Omega)\}.$

$$H(\mathbf{grad},\Omega) \xrightarrow{\mathbf{grad}} \boldsymbol{H}(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} \boldsymbol{H}(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^2(\Omega)$$

Rellich compactness

Theorem

If $(q_n)_n$ is bounded in $H(\mathbf{grad},\Omega)$ then $(q_n)_n$ is relatively compact in $L^2(\Omega)$.

o Relatively easy because grad controls the variations in all directions.

Maxwell compactness

Theorem

If $(\boldsymbol{v}_n)_n$ is bounded in $\boldsymbol{H}(\mathbf{curl};\Omega)$ and

$$\int_{\Omega} \boldsymbol{v}_n \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega),$$

then $(v_n)_n$ is relatively compact in $L^2(\Omega)^3$.

 \circ Also a version for sequences in $H(\mathrm{div};\Omega)$ that are orthogonal to curls.

Maxwell compactness

Theorem

If $(\boldsymbol{v}_n)_n$ is bounded in $\boldsymbol{H}(\boldsymbol{\operatorname{curl}};\Omega)$ and

$$\int_{\Omega} \boldsymbol{v}_n \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega),$$

then $(v_n)_n$ is relatively compact in $L^2(\Omega)^3$.

- \circ Also a version for sequences in $H(\mathrm{div};\Omega)$ that are orthogonal to curls.
- Much more challenging than Rellich: curl does not control the variations of the function [Weber, 1980], [Jochmann, 1997].

Maxwell compactness

Theorem

If $(\boldsymbol{v}_n)_n$ is bounded in $\boldsymbol{H}(\boldsymbol{\operatorname{curl}};\Omega)$ and

$$\int_{\Omega} \boldsymbol{v}_n \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega),$$

then $(v_n)_n$ is relatively compact in $L^2(\Omega)^3$.

- \circ Also a version for sequences in $m{H}(ext{div};\Omega)$ that are orthogonal to curls.
- Much more challenging than Rellich: curl does not control the variations of the function [Weber, 1980], [Jochmann, 1997].
- Orthogonality condition equivalent to div $\mathbf{v}_n = 0$ and $\mathbf{v}_n \cdot \mathbf{n}_{\Omega} = 0$.

Uses of Maxwell compactness

- Bound of **curl** and zero div classical in curl-div problems, such as models in electromagnetism (possibly using vector potential fixed by gauge).
- o Compactness required for eigenvalue analysis and nonlinear models.
- Convergence analysis of schemes requires discrete versions of this compactness; see, e.g., [Kikuchi, 1987] for eigenvalue problems.
- Discrete compactness also allows for fine convergence analysis of schemes, possibly with models with rough coefficients [Chaumont-Frelet and Ern, 2023], [Chaumont-Frelet and Ern, 2024].

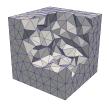
Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl}/\mathbf{potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

The Finite Element way

Global complex



 $\mathcal{T}_h = \{T\}$ conforming tetrahedral/hexahedral mesh.

 Define local polynomial spaces on each element, and glue them together to form a sub-complex of the de Rham complex:

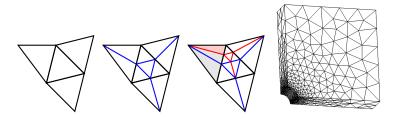
$$\begin{array}{cccc} V_h^0 & \xrightarrow{& \mathbf{grad} &} V_h^1 & \xrightarrow{& \mathbf{curl} &} V_h^2 & \xrightarrow{& \mathrm{div} &} V_h^3 \\ & & & & & & & & \downarrow \\ & & & & & & & \downarrow & & & \downarrow \\ H(\mathbf{grad}, \Omega) & \xrightarrow{& \mathbf{grad} &} & & & & H(\mathbf{curl}; \Omega) & \xrightarrow{& \mathbf{curl} &} & & H(\mathrm{div}; \Omega) & \xrightarrow{& \mathrm{div} &} & L^2(\Omega) \end{array}$$

Example: conforming \mathcal{P}^k -Nédélec-Raviart-Thomas spaces [Arnold, 2018].

o Gluing only works on special meshes...

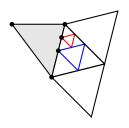
The Finite Element way

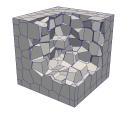
Shortcomings



- Approach limited to conforming meshes with standard elements
- ⇒ local refinement requires to trade mesh size for mesh quality
- ⇒ complex geometries may require a large number of elements
- the element shape cannot be seamlessly adapted to the solution (e.g. hexahedra in boundary layers + tetrahedra in the bulk for CFD simulations)
- Need for (global) basis functions
- ⇒ significant increase of DOFs on hexahedral elements

Benefits of polytopal meshes



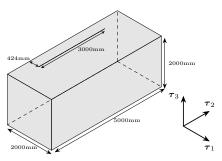


- Local refinement is easy, and preserves mesh regularity.
- Agglomeration of elements (e.g., for multigrid methods) is seamless.
- High-level approach can lead to leaner methods (fewer DOFs).
- Can be combined with standard Finite Elements on hybrid meshes (made of tetrahedra/hexahedra + polyhedral elements).

A practical example from CEA-CESTA

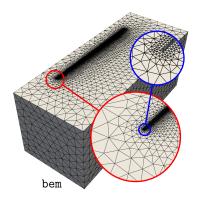
[Touzalin, 2025]

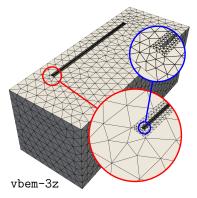
Problem: use a boundary element method to analyse the shielding effectiveness of a perfectly conductive box with a very small slit.



A practical example from CEA-CESTA

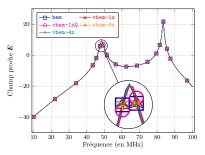
Meshes: conforming triangular for finite-element boundary method (bem), non-conforming triangular (polygonal) for virtual element boundary method (vbem-3z).

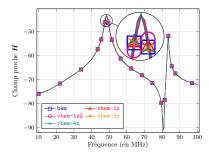




A practical example from CEA-CESTA

Accuracy: comparison of modulus of reflected near fields at the top.





Computational cost

Method	Assembly	Resolution	
bem	813s	125s	
vbem-3z	321s	19s	

Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl/potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl/potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi
- 6 Maxwell compactness for DDR

Slides

Overview of the Discrete De Rham (DDR) complex

$$\mathbb{R} \longrightarrow \underline{X}_{\mathbf{grad},h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathbf{curl},h}^{k} \xrightarrow{\underline{C}_{h}^{k}} \underline{X}_{\mathrm{div},h}^{k} \xrightarrow{D_{h}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

- Fully discrete complex (not sub-complex) of bespoke finite-dimensional spaces and operators.
- Discrete spaces not made of functions but:
 - o $\underline{X}_{\bullet,h}^k$ made of vectors of polynomials on vertices, edges, faces, elements.
 - Discrete operators (differential and function reconstructions) built from these DOFs via integration-by-parts formulas.

Overview of the Discrete De Rham (DDR) complex

$$\mathbb{R} \longleftrightarrow C^{\infty}(\overline{\Omega}) \xrightarrow{\mathbf{grad}} C^{\infty}(\overline{\Omega})^{3} \xrightarrow{\mathbf{curl}} C^{\infty}(\overline{\Omega})^{3} \xrightarrow{\mathrm{div}} C^{\infty}(\overline{\Omega}) \xrightarrow{0} \{0\}$$

$$\downarrow \underline{I}_{\mathbf{grad},h}^{k} \qquad \downarrow \underline{I}_{\mathbf{curl},h}^{k} \qquad \downarrow \underline{I}_{\mathrm{div},h}^{k} \qquad \downarrow I_{L^{2},h}^{k}$$

$$\mathbb{R} \longrightarrow \underline{X}_{\mathbf{grad},h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathbf{curl},h}^{k} \xrightarrow{\underline{C}_{h}^{k}} \underline{X}_{\mathrm{div},h}^{k} \xrightarrow{D_{h}} \mathcal{P}^{k}(\mathcal{T}_{h}) \xrightarrow{0} \{0\}$$

- Fully discrete complex (not sub-complex) of bespoke finite-dimensional spaces and operators.
- O Discrete spaces not made of functions but:
 - o $\underline{X}_{\bullet,h}^k$ made of vectors of polynomials on vertices, edges, faces, elements.
 - Discrete operators (differential and function reconstructions) built from these DOFs via integration-by-parts formulas.
 - o Interpolators $\underline{I}_{\bullet,h}^k$ give meaning to these polynomials/DOFs as moments.

Guiding principles for the construction

```
Joint work with D. Di Pietro and F. Rapetti. (Ref: [Di Pietro et al., 2020], [Di Pietro and Droniou, 2023].)
```

- Hierarchical construction: from vertices, to edges, to faces, to elements.
- o Enhancement: on each (relevant) mesh entity,
 - discrete differential operator first,
 - potential reconstruction using the discrete differential operator.
 (both polynomially consistent, both based on IBP formulas.)
- The definition of the spaces (DOFs) also guided by these IBP formulas.

Same guiding principles as the Hybrid High-Order (HHO) method [Di Pietro et al., 2014], [Di Pietro and Droniou, 2020].

Outline

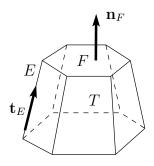
- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl/potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

Mesh notations

- Mesh $\mathcal{M}_h = (\mathcal{T}_h, \mathcal{F}_h, \mathcal{E}_h, \mathcal{V}_h)$ of elements (T), faces (F), edges (E), vertices (V), with intrinsic orientations (tangent, normal).
- $\circ \mathcal{P}^{\ell}(X)$ polynomial of degree $\leq \ell$ on X = T, F, E.
- \circ Raviart–Thomas space on X=T,F: for $\ell \geq 0$,

$$\mathcal{RT}^{\ell}(X) = \mathcal{P}^{\ell-1}(X) \oplus (x - x_X)\mathcal{P}^{\ell-1}(X).$$



Space and interpolator

Space: fix $k \ge 0$ and set

$$\underline{\boldsymbol{X}}_{\boldsymbol{\operatorname{curl}},h}^{k} \coloneqq \left\{ \underline{\boldsymbol{v}}_{h} = \left((\boldsymbol{v}_{T})_{T \in \mathcal{T}_{h}}, (\boldsymbol{v}_{F})_{F \in \mathcal{F}_{h}}, (v_{E})_{E \in \mathcal{E}_{h}} \right), \\
\boldsymbol{v}_{T} \in \mathcal{R} \mathcal{T}^{k}(T) \quad \forall T \in \mathcal{T}_{h}, \quad \boldsymbol{v}_{F} \in \mathcal{R} \mathcal{T}^{k}(F) \quad \forall F \in \mathcal{F}_{h}, \\
v_{E} \in \mathcal{P}^{k}(E) \quad \forall E \in \mathcal{E}_{h} \right\}.$$

Interpolators: for $v:\overline{\Omega}\to\mathbb{R}^3$ such that the tangential traces $v_{\mathrm{t},E}$, $v_{\mathrm{t},F}$ of v on each E,F are single-valued and integrable,

$$\underline{\boldsymbol{I}}_{\boldsymbol{\operatorname{curl}},h}^{k}\boldsymbol{v}\coloneqq \big((\boldsymbol{\pi}_{\mathcal{RT},T}^{k}\boldsymbol{v})_{T\in\mathcal{T}_{h}},(\boldsymbol{\pi}_{\mathcal{RT},F}^{k}\boldsymbol{v}_{\operatorname{t},F})_{F\in\mathcal{F}_{h}},(\boldsymbol{\pi}_{\mathcal{P},E}^{k}(\boldsymbol{v}_{\operatorname{t},E}))_{E\in\mathcal{E}_{h}}\big),$$

where $\pi^k_{\mathcal{RT},X}$ and $\pi^k_{\mathcal{P},X}$ are the $L^2(X)$ -orthogonal projection on $\mathcal{RT}^k(X)$ and $\mathcal{P}^k(X)$.

Operators and potential reconstructions

$$\underline{\boldsymbol{X}}_{\mathbf{curl},h}^{k} := \left\{ \underline{\boldsymbol{v}}_{h} = \left((\boldsymbol{v}_{T})_{T \in \mathcal{T}_{h}}, (\boldsymbol{v}_{F})_{F \in \mathcal{F}_{h}}, (\boldsymbol{v}_{E})_{E \in \mathcal{E}_{h}} \right), \\
\boldsymbol{v}_{T} \in \mathcal{R} \mathcal{T}^{k}(T) \quad \forall T \in \mathcal{T}_{h}, \quad \boldsymbol{v}_{F} \in \mathcal{R} \mathcal{T}^{k}(F) \quad \forall F \in \mathcal{F}_{h}, \\
\boldsymbol{v}_{E} \in \mathcal{P}^{k}(E) \quad \forall E \in \mathcal{E}_{h} \right\}.$$

Face curl: For $F \in \mathcal{F}_h$ and $\underline{\boldsymbol{v}}_h \in \underline{\boldsymbol{X}}_{\operatorname{\mathbf{curl}},h}^k$, define $C_F^k\underline{\boldsymbol{v}}_h \in \mathcal{P}^k(F)$ by mimicking IBP:

$$\int_F (C_F^k \underline{\boldsymbol{v}}_h) r = \int_F \boldsymbol{v}_F \cdot \mathbf{rot}_F \, r - \sum_{E \in \mathcal{E}_F} \omega_{FE} \int_E v_E \, r \qquad \forall r \in \mathcal{P}^k(F).$$

Operators and potential reconstructions

Face curl:

$$\int_{F} (C_F^k \underline{v}_h) r = \int_{F} v_F \cdot \mathbf{rot}_F \, r - \sum_{E \in \mathcal{E}_F} \omega_{FE} \int_{E} v_E \, r \qquad \forall r \in \mathcal{P}^k(F).$$

Reconstructed face tangential trace: Define $\gamma_{\mathrm{t},F}^k\underline{v}_F\in\mathcal{P}^k(F)$ such that, for all $r\in\mathcal{P}^{k+1}(F)$ and $\boldsymbol{w}\in(\boldsymbol{x}-\boldsymbol{x}_F)\mathcal{P}^{k-1}(F)$,

$$\int_{F} \pmb{\gamma}_{\mathrm{t},F}^{k} \underline{\pmb{v}}_{h} \cdot (\mathbf{rot}_{F}\,r + \pmb{w}) = \int_{F} \pmb{C}_{F}^{k} \underline{\pmb{v}}_{h}\,r + \sum_{E \in \mathcal{E}_{F}} \omega_{FE} \int_{E} v_{E}r + \int_{F} \pmb{v}_{F} \cdot \pmb{w}.$$

Operators and potential reconstructions

Face curl:

$$\int_{F} (C_F^k \underline{v}_h) r = \int_{F} v_F \cdot \mathbf{rot}_F \, r - \sum_{E \in \mathcal{E}_F} \omega_{FE} \int_{E} v_E \, r \qquad \forall r \in \mathcal{P}^k(F).$$

Reconstructed face tangential trace:

$$\int_{F} \boldsymbol{\gamma}_{t,F}^{k} \underline{\boldsymbol{v}}_{h} \cdot (\mathbf{rot}_{F} \, r + \boldsymbol{w}) = \int_{F} \underline{\boldsymbol{C}_{F}^{k}} \underline{\boldsymbol{v}}_{h} \, r + \sum_{E \in \mathcal{E}_{F}} \omega_{FE} \int_{E} v_{E} r + \int_{F} \boldsymbol{v}_{F} \cdot \boldsymbol{w}.$$

Element curl and potential: $\mathbf{C}_T^k \underline{v}_h \in \mathcal{P}^k(T)$ and $\mathbf{P}_{\mathbf{curl},T}^k \underline{v}_T \in \mathcal{P}^k(T)$ also by mimicking IBP.

All have polynomial consistency, e.g.:

$$\mathbf{C}_T^k \underline{I}_{\mathbf{curl},h}^k v = \mathbf{curl} v \qquad \forall v \in \mathcal{N}^{k+1}(T) \quad \text{(N\'ed\'elec space)}.$$

Discrete curl

 $\underline{C}_h^k: \underline{X}_{{
m curl},h}^k o \underline{X}_{{
m div},h}^k$ by projecting face and element reconstructed curls onto the components in

$$\underline{\boldsymbol{X}}_{\mathrm{div},h}^{k} \coloneqq \Big\{ \underline{\boldsymbol{z}}_{T} = ((\boldsymbol{z}_{T})_{T \in \mathcal{T}_{h}}, (z_{F})_{F \in \mathcal{F}_{h}}) : \\ \boldsymbol{z}_{T} \in \boldsymbol{\mathcal{N}}^{k}(T), \ z_{F} \in \mathcal{P}^{k}(F) \Big\},$$

that is,

$$\underline{\boldsymbol{C}}_h^k\underline{\boldsymbol{v}}_h = ((\boldsymbol{\pi}_{\mathcal{N},T}^k\mathbf{C}_T^k\underline{\boldsymbol{v}}_h)_{T\in\mathcal{T}_h}, (C_F^k\underline{\boldsymbol{v}}_h)_{F\in\mathcal{F}_h}).$$

Outline

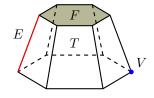
- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl/potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

DDR complex: summary

$$\mathbb{R} \xrightarrow{\underline{I}_{\mathbf{grad},h}^k} \underline{X}_{\mathbf{grad},h}^k \xrightarrow{\underline{G}_h^k} \underline{X}_{\mathbf{curl},h}^k \xrightarrow{\underline{C}_h^k} \underline{X}_{\mathrm{div},h}^k \xrightarrow{D_h^k} \mathcal{P}^k(\mathcal{T}_h) \xrightarrow{0} \{0\}.$$

- Do not seek any basis functions.
- Fully discrete spaces not made of functions, but of vectors of polynomials (DOFs).
- Polynomials attached to geometric entities (emulates continuity properties of each space).
- Polynomial reconstructions of differential operator and potential by mimicking IBPs.



L^2 -like inner products

• Local L^2 -like inner product on the DDR spaces:

for
$$\bullet \in \{\mathbf{grad}, \mathbf{curl}, \mathrm{div}\}\$$
and $k_{\mathbf{grad}} = k+1$, $k_{\mathbf{curl}} = k_{\mathrm{div}} = k$,
$$(x_T, y_T)_{\bullet,T} = \int_T P_{\bullet,T}^{k_{\bullet}} x_T \cdot P_{\bullet,T}^{k_{\bullet}} y_T + \mathbf{s}_{\bullet,T} (x_T, y_T) \qquad \forall x_T, y_T \in \underline{X}_{\bullet}^k(T),$$

 $(s_{\bullet,T}$ penalises differences on the boundary between element and face/edge potentials).

 \circ Global L^2 -like product $(\cdot,\cdot)_{ullet,h}$ by standard assembly of local ones.

DOF by mesh entities

Space		E	F	T
$\underline{X}_{\mathbf{grad},T}^k$	\mathbb{R}	$\mathcal{P}^{k-1}(E)$	$\mathcal{P}^{k-1}(F)$	$\mathcal{P}^{k-1}(T)$
$\underline{m{X}}_{ extbf{curl},T}^k$		$\mathcal{P}^k(E)$	$\mathcal{RT}^k(F)$	$\mathcal{RT}^k(T)$
$\underline{m{X}}_{ ext{div},T}^k$			$\mathcal{P}^k(F)$	$\mathcal{N}^k(T)$
$\mathcal{P}^k(T)$				$\mathcal{P}^k(T)$

The DDR complex and its properties

- Complex with the same cohomology as the continuous de Rham complex, applicable on generic polytopal meshes.
- o Poincaré inequalities.
- Consistency (both primal and adjoint).
- Commutation properties between the interpolators and the continuous/discrete operators.

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024], [Di Pietro and Droniou, 2021a]

The DDR complex and its properties

- Complex with the same cohomology as the continuous de Rham complex, applicable on generic polytopal meshes.
- o Poincaré inequalities.
- Consistency (both primal and adjoint).
- Commutation properties between the interpolators and the continuous/discrete operators.

```
[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024], [Di Pietro and Droniou, 2021a]
```

- \leadsto optimally-convergent schemes (error in $\mathcal{O}(h^{k+1})$) for a range of models: magnetostatics, Stokes & Navier–Stokes, etc.
- → robust error estimates with respect to some physical parameters.
- [Di Pietro and Droniou, 2021b], [Beirão da Veiga et al., 2022]

Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\text{curl}; \Omega)$ space and curl/potential reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

Where this happened

Where this happened

Construction of the quasi-interpolator

Quasi-interpolator on FE space: with \mathcal{S}_h simplicial mesh and $\ell \geq 1$,

$$H(\mathbf{grad}, \Omega) \xrightarrow{\mathbf{grad}} H(\mathbf{curl}; \Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div}; \Omega) \xrightarrow{\mathrm{div}} L^{2}(\Omega)$$

$$\downarrow \widehat{\mathcal{J}}_{\mathbf{grad},h}^{\ell} \qquad \downarrow \widehat{\mathcal{J}}_{\mathbf{curl},h}^{\ell} \qquad \downarrow \widehat{\mathcal{J}}_{\mathrm{div},h}^{\ell} \qquad \downarrow^{\pi_{\mathcal{P},\mathcal{S}_{h}}^{\ell}}$$

$$V_{\mathbf{grad}}^{\ell}(\mathcal{S}_{h}) \xrightarrow{\mathbf{grad}} V_{\mathbf{curl}}^{\ell}(\mathcal{S}_{h}) \xrightarrow{\mathbf{curl}} V_{\mathrm{div}}^{\ell}(\mathcal{S}_{h}) \xrightarrow{\mathrm{div}} \mathcal{P}^{\ell}(\mathcal{S}_{h})$$

where $V_{\mathbf{grad}}^{\ell}(\mathcal{S}_h)$, $V_{\mathbf{curl}}^{\ell}(\mathcal{S}_h)$ and $V_{\mathrm{div}}^{\ell}(\mathcal{S}_h)$ are the conforming Lagrange, Nédélec and Raviart–Thomas finite element spaces.

[Ern et al., 2022], [Chaumont-Frelet and Vohralík, 2024]

Construction of the quasi-interpolator

Quasi-interpolator on FE space: with \mathcal{S}_h simplicial mesh and $\ell \geq 1$,

$$H(\mathbf{grad}, \Omega) \xrightarrow{\mathbf{grad}} H(\mathbf{curl}; \Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div}; \Omega) \xrightarrow{\mathrm{div}} L^{2}(\Omega)$$

$$\downarrow \widehat{\mathcal{J}}_{\mathbf{grad},h}^{\ell} \qquad \downarrow \widehat{\mathcal{J}}_{\mathbf{curl},h}^{\ell} \qquad \downarrow \widehat{\mathcal{J}}_{\mathrm{div},h}^{\ell} \qquad \downarrow^{\pi_{\mathcal{P},\mathcal{S}_{h}}^{\ell}}$$

$$V_{\mathbf{grad}}^{\ell}(\mathcal{S}_{h}) \xrightarrow{\mathbf{grad}} V_{\mathbf{curl}}^{\ell}(\mathcal{S}_{h}) \xrightarrow{\mathbf{curl}} V_{\mathrm{div}}^{\ell}(\mathcal{S}_{h}) \xrightarrow{\mathrm{div}} \mathcal{P}^{\ell}(\mathcal{S}_{h})$$

Quasi-interpolator on DDR: take S_h matching simplicial submesh of T_h , $\ell \geq k+1$, and interpolate from the FE spaces...

$$\begin{split} H(\mathbf{grad},\Omega) & \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^2(\Omega) \\ & \downarrow \widehat{\mathcal{I}}^\ell_{\mathbf{grad},h} & \downarrow \widehat{\mathcal{I}}^\ell_{\mathbf{curl},h} & \downarrow \widehat{\mathcal{I}}^\ell_{\mathrm{div},h} & \downarrow \pi^\ell_{\mathcal{P},\mathcal{S}_h} \\ V^\ell_{\mathbf{grad}}(\mathcal{S}_h) \xrightarrow{\mathbf{grad}} V^\ell_{\mathbf{curl}}(\mathcal{S}_h) \xrightarrow{\mathbf{curl}} V^\ell_{\mathrm{div}}(\mathcal{S}_h) \xrightarrow{\mathrm{div}} \mathcal{P}^\ell(\mathcal{S}_h) \\ & \downarrow \underline{I}^k_{\mathbf{grad},h} & \downarrow \underline{I}^k_{\mathbf{curl},h} & \downarrow \underline{I}^k_{\mathrm{div},h} & \downarrow \pi^k_{\mathcal{P},h} \\ \underline{X}^k_{\mathbf{grad},h} \xrightarrow{\underline{G}^k_h} & \underline{X}^k_{\mathbf{curl},h} \xrightarrow{\underline{C}^k_h} & \underline{X}^k_{\mathrm{div},h} \xrightarrow{D^k_h} \mathcal{P}^k(\mathcal{S}_h) \end{split}$$

A kind of magic...

$$\begin{split} H(\mathbf{grad},\Omega) & \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^2(\Omega) \\ & \downarrow \widehat{\mathcal{I}}^\ell_{\mathbf{grad},h} & \downarrow \widehat{\mathcal{I}}^\ell_{\mathbf{curl},h} & \downarrow \widehat{\mathcal{I}}^\ell_{\mathrm{div},h} & \downarrow \pi^\ell_{\mathcal{P},\mathcal{S}_h} \\ V^\ell_{\mathbf{grad}}(\mathcal{S}_h) \xrightarrow{\mathbf{grad}} V^\ell_{\mathbf{curl}}(\mathcal{S}_h) \xrightarrow{\mathbf{curl}} V^\ell_{\mathrm{div}}(\mathcal{S}_h) \xrightarrow{\mathrm{div}} \mathcal{P}^\ell(\mathcal{S}_h) \\ & \downarrow \underline{I}^k_{\mathbf{grad},h} & \downarrow \underline{I}^k_{\mathbf{curl},h} & \downarrow \underline{I}^k_{\mathrm{div},h} & \downarrow \pi^k_{\mathcal{P},h} \\ \underline{X}^k_{\mathbf{grad},h} \xrightarrow{\underline{G}^k_h} & \underline{X}^k_{\mathbf{curl},h} \xrightarrow{\underline{C}^k_h} & \underline{X}^k_{\mathrm{div},h} \xrightarrow{D^k_h} \mathcal{P}^k(\mathcal{S}_h) \end{split}$$

A kind of magic...

$$\begin{split} H(\mathbf{grad},\Omega) & \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^2(\Omega) \\ & \downarrow \widehat{\mathcal{I}}_{\mathbf{grad},h}^{\ell} \qquad \downarrow \widehat{\mathcal{I}}_{\mathbf{curl},h}^{\ell} \qquad \downarrow \widehat{\mathcal{I}}_{\mathrm{div},h}^{\ell} \qquad \downarrow \pi_{\mathcal{P},\mathcal{S}_h}^{\ell} \\ V_{\mathbf{grad}}^{\ell}(\mathcal{S}_h) \xrightarrow{\mathbf{grad}} V_{\mathbf{curl}}^{\ell}(\mathcal{S}_h) \xrightarrow{\mathbf{curl}} V_{\mathrm{div}}^{\ell}(\mathcal{S}_h) \xrightarrow{\mathrm{div}} \mathcal{P}^{\ell}(\mathcal{S}_h) \\ & \downarrow \underline{I}_{\mathbf{grad},h}^{k} \qquad \downarrow \underline{I}_{\mathbf{curl},h}^{k} \qquad \downarrow \underline{I}_{\mathrm{div},h}^{k} \qquad \downarrow \pi_{\mathcal{P},h}^{k} \\ \underline{X}_{\mathbf{grad},h}^{k} \xrightarrow{\underline{G}_h^{k}} \underline{X}_{\mathbf{curl},h}^{k} \xrightarrow{\underline{C}_h^{k}} \underline{X}_{\mathrm{div},h}^{k} \xrightarrow{D_h^{k}} \mathcal{P}^{k}(\mathcal{S}_h) \end{split}$$

Why does this work?

 $\circ \ \underline{I}^k_{\mathbf{grad},h}$, $\underline{I}^k_{\mathbf{curl},h}$ and $\underline{I}^k_{\mathrm{div},h}$ can be applied to functions that have suitable single-valued traces on mesh entities.

(e.g., single-valued tangential traces on edges and faces for $\underline{I}_{\mathbf{curl},h}^k)$

A kind of magic...

$$\begin{split} H(\mathbf{grad},\Omega) & \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^2(\Omega) \\ & \downarrow \widehat{\mathcal{I}}^\ell_{\mathbf{grad},h} & \downarrow \widehat{\mathcal{I}}^\ell_{\mathbf{curl},h} & \downarrow \widehat{\mathcal{I}}^\ell_{\mathrm{div},h} & \downarrow \pi^\ell_{\mathcal{P},\mathcal{S}_h} \\ V^\ell_{\mathbf{grad}}(\mathcal{S}_h) \xrightarrow{\mathbf{grad}} V^\ell_{\mathbf{curl}}(\mathcal{S}_h) \xrightarrow{\mathbf{curl}} V^\ell_{\mathrm{div}}(\mathcal{S}_h) \xrightarrow{\mathrm{div}} \mathcal{P}^\ell(\mathcal{S}_h) \\ & \downarrow \underline{I}^k_{\mathbf{grad},h} & \downarrow \underline{I}^k_{\mathbf{curl},h} & \downarrow \underline{I}^k_{\mathrm{div},h} & \downarrow \pi^k_{\mathcal{P},h} \\ \underline{X}^k_{\mathbf{grad},h} \xrightarrow{\underline{G}^k_h} & \underline{X}^k_{\mathbf{curl},h} \xrightarrow{\underline{C}^k_h} & \underline{X}^k_{\mathrm{div},h} \xrightarrow{D^k_h} \mathcal{P}^k(\mathcal{S}_h) \end{split}$$

Why does this work?

- $\circ \ \underline{I}_{\mathbf{grad},h}^k, \ \underline{I}_{\mathbf{curl},h}^k \ \text{and} \ \underline{I}_{\mathrm{div},h}^k \ \text{can be applied to functions that have suitable single-valued traces on mesh entities.}$ (e.g., single-valued tangential traces on edges and faces for $\underline{I}_{\mathbf{curl},h}^k$)
- \circ The FE spaces $V_{\mathbf{grad}}^{\ell}(\mathcal{S}_h)$, $V_{\mathbf{curl}}^{\ell}(\mathcal{S}_h)$ and $V_{\mathrm{div}}^{\ell}(\mathcal{S}_h)$ have such suitable traces!

Properties

$$H(\mathbf{grad},\Omega) \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^{2}(\Omega)$$

$$\downarrow \widehat{\underline{I}}_{\mathbf{grad},h}^{k} \qquad \downarrow \widehat{\underline{I}}_{\mathbf{curl},h}^{k} \qquad \downarrow \widehat{\underline{I}}_{\mathrm{div},h}^{k} \qquad \downarrow \pi_{\mathcal{P},\mathcal{S}_{h}}^{k}$$

$$\underline{X}_{\mathbf{grad},h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathbf{curl},h}^{k} \xrightarrow{\underline{C}_{h}^{k}} \underline{X}_{\mathrm{div},h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{S}_{h})$$

 Bounded cochain maps: diagram commutes and the interpolators are continuous.

Properties

$$H(\mathbf{grad},\Omega) \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^{2}(\Omega)$$

$$\downarrow \widehat{I}_{\mathbf{grad},h}^{k} \qquad \downarrow \widehat{I}_{\mathbf{curl},h}^{k} \qquad \downarrow \widehat{I}_{\mathrm{div},h}^{k} \qquad \downarrow \pi_{\mathcal{P},\mathcal{S}_{h}}^{k}$$

$$\underline{X}_{\mathbf{grad},h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathbf{curl},h}^{k} \xrightarrow{\underline{C}_{h}^{k}} \underline{X}_{\mathrm{div},h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{S}_{h})$$

 \circ Primal consistency: for $\bullet \in \{\mathbf{grad}, \mathbf{curl}, \mathrm{div}\}$ and \widetilde{T} set of neighbours (by vertices) of T,

$$\begin{split} \|z - P_{\bullet,T}^{k_{\bullet}} \widehat{\underline{I}}_{\bullet,T}^{k} z\|_{L^{2}(T)} \lesssim \\ \left(\sum_{T' \in \widetilde{T}} \left[\|z - \pi_{\mathcal{P},T'}^{k_{\bullet}} z\|_{L^{2}(T')}^{2} + h_{T}^{2} \|(\bullet z) - \pi_{\mathcal{P},T'}^{k_{\bullet}}(\bullet z)\|_{L^{2}(T')}^{2} \right] \right)^{1/2}. \end{split}$$

Properties

$$H(\mathbf{grad},\Omega) \xrightarrow{\mathbf{grad}} H(\mathbf{curl};\Omega) \xrightarrow{\mathbf{curl}} H(\mathrm{div};\Omega) \xrightarrow{\mathrm{div}} L^{2}(\Omega)$$

$$\downarrow \widehat{\underline{I}}_{\mathbf{grad},h}^{k} \qquad \downarrow \widehat{\underline{I}}_{\mathbf{curl},h}^{k} \qquad \downarrow \widehat{\underline{I}}_{\mathrm{div},h}^{k} \qquad \downarrow \pi_{\mathcal{P},\mathcal{S}_{h}}^{k}$$

$$\underline{X}_{\mathbf{grad},h}^{k} \xrightarrow{\underline{G}_{h}^{k}} \underline{X}_{\mathbf{curl},h}^{k} \xrightarrow{\underline{C}_{h}^{k}} \underline{X}_{\mathrm{div},h}^{k} \xrightarrow{D_{h}^{k}} \mathcal{P}^{k}(\mathcal{S}_{h})$$

 Adjoint consistency: measures defect of discrete IBP, using minimal regularity.

Example: for $\boldsymbol{v} \in \boldsymbol{H}(\operatorname{\mathbf{curl}};\Omega) \cap \boldsymbol{H}(\operatorname{div};\Omega)$ such that $\boldsymbol{v} \cdot \mathbf{n}_{\Omega} \in L^2(\partial\Omega)$, and $\underline{q}_h \in \underline{X}^k_{\operatorname{\mathbf{grad}},h}$,

$$\begin{split} \left| (\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v}, \underline{\boldsymbol{G}}_h^k \underline{q}_h)_{\mathbf{curl},h} + \int_{\Omega} \operatorname{div}(\boldsymbol{v}) \, P_{\mathbf{grad},h}^{k+1} \underline{q}_h \\ - \int_{\partial \Omega} \boldsymbol{v} \cdot \mathbf{n}_{\Omega} \, \gamma_{\partial \Omega}^{k+1} \underline{q}_h \right| \lesssim A_h(\boldsymbol{v}) \left(\|\underline{q}_h\|_{\mathbf{grad},h} + \|\underline{\boldsymbol{G}}_h^k \underline{q}_h\|_{\mathbf{curl},h} \right), \end{split}$$

with $A_h(\boldsymbol{v}) \to 0$ as $h \to 0$.

Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\mathbf{curl}; \Omega)$ space and $\mathbf{curl/potential}$ reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

The curl case

Theorem (Conforming lifting)

There exists
$$\mathcal{L}^k_{\operatorname{\mathbf{curl}},h}: \underline{X}^k_{\operatorname{\mathbf{curl}},h} \to H(\operatorname{\mathbf{curl}};\Omega)$$
 such that, for all $\underline{v}_h \in \underline{X}^k_{\operatorname{\mathbf{curl}},h}$,
$$\pi^{k+1}_{\mathcal{RT},T}(\mathcal{L}^k_{\operatorname{\mathbf{curl}},h}\underline{v}_h) = P^k_{\operatorname{\mathbf{curl}},T}\underline{v}_h \quad \forall T \in \mathcal{T}_h,$$

$$\underline{I}^k_{\operatorname{\mathbf{curl}},h}\mathcal{L}^k_{\operatorname{\mathbf{curl}},h}\underline{v}_h = \underline{v}_h,$$

$$\|\mathcal{L}^k_{\operatorname{\mathbf{curl}},h}\underline{v}_h\|_{L^2(T)} \lesssim \|\underline{v}_h\|_{\operatorname{\mathbf{curl}},T},$$

$$\|\operatorname{\mathbf{curl}}\mathcal{L}^k_{\operatorname{\mathbf{curl}},h}\underline{v}_h\|_{L^2(T)} \lesssim \|\underline{C}^k_h\underline{v}_h\|_{\operatorname{div},T}.$$

o $\mathcal{L}_{\operatorname{\mathbf{curl}},h}^k \underline{v}_h \in \mathcal{N}^{k+3}(\mathcal{S}_h) \cap H(\operatorname{\mathbf{curl}};\Omega)$, with \mathcal{S}_h matching simplicial submesh of \mathcal{T}_h . Hence, tangential traces of $\mathcal{L}_{\operatorname{\mathbf{curl}},h}^k \underline{v}_h$ are well-defined, and

$$\widehat{\mathcal{J}}^{k+3}_{\mathbf{curl},h}\mathcal{L}^k_{\mathbf{curl},h}\underline{\boldsymbol{v}}_h = \mathcal{L}^k_{\mathbf{curl},h}\underline{\boldsymbol{v}}_h, \quad \text{so} \quad \widehat{\underline{\boldsymbol{I}}}^k_{\mathbf{curl},h}\mathcal{L}^k_{\mathbf{curl},h}\underline{\boldsymbol{v}}_h = \underline{\boldsymbol{v}}_h.$$

The curl case

Theorem (Conforming lifting)

There exists $\mathcal{L}_{\mathbf{curl},h}^k: \underline{X}_{\mathbf{curl},h}^k o H(\mathbf{curl};\Omega)$ such that, for all $\underline{v}_h \in \underline{X}_{\mathbf{curl},h}^k$, $\pi_{\mathcal{RT},T}^{k+1}(\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h) = P_{\mathbf{curl},T}^k\underline{v}_h \quad \forall T \in \mathcal{T}_h$, $\underline{I}_{\mathbf{curl},h}^k\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h = \underline{v}_h$, $\|\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h\|_{L^2(T)} \lesssim \|\underline{v}_h\|_{\mathbf{curl},T}$, $\|\mathbf{curl}\,\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h\|_{L^2(T)} \lesssim \|\underline{C}_h^k\underline{v}_h\|_{\mathrm{div},T}$.

- Not based on local solutions to PDEs, but rather by solving local algebraic problems in cochains and trimmed polynomial spaces.
 - → fine estimates, not a virtual function, no limit on dimension....

The curl case

Theorem (Conforming lifting)

There exists
$$\mathcal{L}_{\mathbf{curl},h}^k: \underline{X}_{\mathbf{curl},h}^k o H(\mathbf{curl};\Omega)$$
 such that, for all $\underline{v}_h \in \underline{X}_{\mathbf{curl},h}^k$,
$$\pi_{\mathcal{RT},T}^{k+1}(\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h) = P_{\mathbf{curl},T}^k\underline{v}_h \quad \forall T \in \mathcal{T}_h,$$

$$\underline{I}_{\mathbf{curl},h}^k\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h = \underline{v}_h,$$

$$\|\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h\|_{L^2(T)} \lesssim \|\underline{v}_h\|_{\mathbf{curl},T},$$

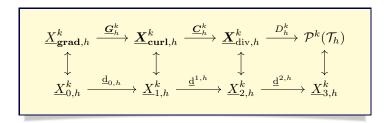
$$\|\mathbf{curl}\,\mathcal{L}_{\mathbf{curl},h}^k\underline{v}_h)\|_{L^2(T)} \lesssim \|\underline{C}_h^k\underline{v}_h\|_{\mathrm{div},T}.$$

Used to prove adjoint consistency, as well as Maxwell compactness.

Exterior calculus de Rham

- \circ $\Lambda^{\ell}(\Omega)$: (alternate multilinear) ℓ -forms on Ω .
- $\circ \ d^{\ell}: \Lambda^{\ell}(\Omega) \to \Lambda^{\ell+1}(\Omega)$: exterior derivative.
- Allows for a unified analysis of all spaces/operators along the complex.

Exterior calculus DDR



- $\circ X_h^{\ell}$: discrete DDR space of ℓ -forms on Ω .
- $\circ \ \underline{\mathrm{d}}_h^\ell$: discrete exterior derivative.
- Allows for a unified design and analysis of DDR and related tools.

Outline

- 1 Maxwell compactness: why?
- 2 Polytopal meshes: why?
- 3 Overview of the Discrete De Rham method
 - Generic principles
 - Discrete $H(\text{curl}; \Omega)$ space and curl/potential reconstructions
 - The DDR complex and its properties
- 4 Quasi-interpolator for DDR
- 5 Conforming lifting for DDR (with D. Pietro and S. Pitassi)
- 6 Maxwell compactness for DDR

Slides

Statement

Theorem (Maxwell compactness for DDR)

Let $\underline{oldsymbol{v}}_h \in \underline{oldsymbol{X}}_{\mathbf{curl},h}^k$ be such that

Then, there exists $\boldsymbol{v} \in \boldsymbol{H}(\operatorname{\mathbf{curl}};\Omega) \cap \boldsymbol{H}_0(\operatorname{div};\Omega)$ such that $\operatorname{div}(\boldsymbol{v}) \equiv 0$ and, up to a subsequence as $h \to 0$, $\operatorname{\mathbf{P}^k_{\operatorname{\mathbf{curl}},h}} \underline{\boldsymbol{v}}_h \to \boldsymbol{v}$ in $L^2(\Omega)^3$.

Also valid in $\underline{X}_{\mathrm{div},h}^k$, for sequence of vectors with bounded discrete divergence and that are orthogonal to discrete curls.

Sketch of proof: initial stages

 $\hbox{$\circ$ Weak convergence: of $P^k_{\operatorname{curl},h}\underline{v}_h$ and $\mathcal{L}^k_{\operatorname{curl},h}\underline{v}_h$ towards the same limit $v\in H(\operatorname{curl};\Omega)$. }$

(Same limit for both because $\pi^{k+1}_{\mathcal{RT},T}(\mathcal{L}^k_{\mathbf{curl},h}\underline{v}_h) = P^k_{\mathbf{curl},T}\underline{v}_h$.)

 $\circ \ m{v} \in m{H}_0(\mathrm{div};\Omega)$: for all $q \in C^\infty(\overline{\Omega})$, use primal consistency on

$$(\underline{\boldsymbol{v}}_h,\underline{\boldsymbol{I}}_{\operatorname{\mathbf{curl}},h}^k\operatorname{\mathbf{grad}} q)_{\operatorname{\mathbf{curl}},h}=(\underline{\boldsymbol{v}}_h,\underline{\boldsymbol{G}}_h^k\underline{\boldsymbol{I}}_{\operatorname{\mathbf{grad}},h}^kq)_{\operatorname{\mathbf{curl}},h}=0$$

to get

$$\int_{\Omega} \boldsymbol{v} \cdot \mathbf{grad} \, q = 0.$$

Hodge decomposition:

$$v - \mathcal{L}_{\mathbf{curl},h}^k \underline{v}_h = w(h) + \mathbf{grad}\,q(h)$$

with $q(h) \in H(\mathbf{grad},\Omega)$ and $\boldsymbol{w}(h) \in \boldsymbol{H}(\mathbf{curl};\Omega)$ bounded in their spaces, and

$$\int_{\Omega} \boldsymbol{w}(h) \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega).$$

Hodge decomposition:

$$v - \mathcal{L}_{\mathbf{curl},h}^k \underline{v}_h = w(h) + \mathbf{grad}\,q(h)$$

with $q(h) \in H(\mathbf{grad},\Omega)$ and $\boldsymbol{w}(h) \in \boldsymbol{H}(\mathbf{curl};\Omega)$ bounded in their spaces, and

$$\int_{\Omega} \boldsymbol{w}(h) \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega).$$

 \circ $(w(h))_h$ relatively compact in L^2 by continuous Maxwell compactness.

Hodge decomposition:

$$v - \mathcal{L}_{\mathbf{curl},h}^k \underline{v}_h = w(h) + \mathbf{grad} q(h)$$

with $q(h) \in H(\mathbf{grad}, \Omega)$ and $\boldsymbol{w}(h) \in \boldsymbol{H}(\mathbf{curl}; \Omega)$ bounded in their spaces, and

$$\int_{\Omega} \boldsymbol{w}(h) \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega).$$

- \circ $(w(h))_h$ relatively compact in L^2 by continuous Maxwell compactness.
- \circ We have $\boldsymbol{v} \perp \operatorname{\mathbf{grad}} q(h)$ and, morally,

$$\mathcal{L}^k_{\mathbf{curl},h}\underline{\boldsymbol{v}}_h \stackrel{\perp}{\sim} \mathbf{grad}\,q(h)$$

since $(\underline{\boldsymbol{v}}_h,\underline{\boldsymbol{G}}_h^k\cdot)_{\mathbf{curl},h}=0$. This should give $\operatorname{\mathbf{grad}} q(h)\simeq 0...$

Hodge decomposition:

$$v - \mathcal{L}_{\mathbf{curl}}^k {}_h \underline{v}_h = w(h) + \mathbf{grad} \, q(h)$$

with $q(h) \in H(\mathbf{grad}, \Omega)$ and $\boldsymbol{w}(h) \in \boldsymbol{H}(\mathbf{curl}; \Omega)$ bounded in their spaces, and

$$\int_{\Omega} \boldsymbol{w}(h) \cdot \mathbf{grad} \, z = 0 \qquad \forall z \in H(\mathbf{grad}, \Omega).$$

- $(w(h))_h$ relatively compact in L^2 by continuous Maxwell compactness.
- \circ We have $v \perp \operatorname{grad} q(h)$ and, morally,

$$\mathcal{L}_{\mathbf{curl},h}^{k}\underline{\boldsymbol{v}}_{h} \perp \mathbf{grad}\,q(h)$$

since $(\underline{v}_h, \underline{G}_h^k \cdot)_{\mathbf{curl},h} = 0$. This should give $\operatorname{\mathbf{grad}} q(h) \simeq 0$...

However, we only have

$$\left| \int_{\Omega} \mathcal{L}_{\mathbf{curl},h}^{k} \underline{v}_{h} \cdot \mathbf{grad} \, q(h) \right| \leq \frac{C(q(h))o(1)}{c(h)}$$

where C(q(h)) bounded if $(q(h))_h$ is relatively compact in $H(\mathbf{grad}, \Omega)$.

41 / 50

So, what do we do?

So, what do we do?

So, what do we do?

We go fully discrete, to avoid trading the exact orthogonality $(\underline{v}_h, \underline{G}_h^k)_{\mathbf{curl},h} = 0$ for an approximate orthogonality.

$$v - \mathcal{L}_{\mathbf{curl},h}^k \underline{v}_h = w(h) + \mathbf{grad}\,q(h)$$

• Quasi-interpolate and use $\widehat{\underline{I}}_{{\bf curl},h}^k \mathcal{L}_{{\bf curl},h}^k \underline{v}_h = \underline{v}_h$ as well as the commuting properties:

$$\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v} - \underline{\boldsymbol{v}}_h = \widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{w}(h) + \underline{\boldsymbol{G}}_h^k (\widehat{\underline{I}}_{\mathbf{grad},h}^k q(h)).$$

• Quasi-interpolate and use $\widehat{\underline{I}}_{{\rm curl},h}^k \mathcal{L}_{{\rm curl},h}^k \underline{v}_h = \underline{v}_h$ as well as the commuting properties:

$$\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v} - \underline{\boldsymbol{v}}_h = \widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{w}(h) + \underline{\boldsymbol{G}}_h^k (\widehat{\underline{I}}_{\mathbf{grad},h}^k q(h)).$$

• Take the $\underline{X}_{\text{curl }h}^{k}$ -inner product and use the discrete orthogonality:

$$\begin{split} \|\underline{\hat{I}}_{\mathbf{curl},h}^k v - \underline{v}_h\|_{\mathbf{curl},h}^2 &= (\underline{\hat{I}}_{\mathbf{curl},h}^k v - \underline{v}_h, \underline{\hat{I}}_{\mathbf{curl},h}^k w(h))_{\mathbf{curl},h} \\ &+ (\underline{\hat{I}}_{\mathbf{curl},h}^k v - \underline{v}_h, \underline{G}_h^k (\underline{\hat{I}}_{\mathbf{grad},h}^k q(h)))_{\mathbf{curl},h} \\ &= \mathfrak{T}_1 + \mathfrak{T}_2. \end{split}$$

 \circ Take the $\underline{X}_{\mathbf{curl},h}^k$ -inner product and use the discrete orthogonality:

$$\begin{split} \|\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v} - \underline{\boldsymbol{v}}_h\|_{\mathbf{curl},h}^2 &= (\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v} - \underline{\boldsymbol{v}}_h, \widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{w}(h))_{\mathbf{curl},h} \\ &+ (\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v}, \underline{\boldsymbol{G}}_h^k (\widehat{\underline{I}}_{\mathbf{grad},h}^k q(h)))_{\mathbf{curl},h} \\ &= \mathfrak{T}_1 + \mathfrak{T}_2. \end{split}$$

 \circ $\hat{\underline{I}}_{\mathbf{curl},h}^k v - \underline{v}_h$ converges weakly to 0, $(w_h)_h$ relatively compact in L^2 : by primal consistency,

$$\mathfrak{T}_1 \to 0$$
.

 \circ Take the $\underline{X}_{\text{curl},h}^k$ -inner product and use the discrete orthogonality:

$$\begin{split} \|\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v} - \underline{\boldsymbol{v}}_h\|_{\mathbf{curl},h}^2 &= (\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v} - \underline{\boldsymbol{v}}_h, \widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{w}(h))_{\mathbf{curl},h} \\ &+ (\widehat{\underline{I}}_{\mathbf{curl},h}^k \boldsymbol{v}, \underline{\boldsymbol{G}}_h^k (\widehat{\underline{I}}_{\mathbf{grad},h}^k q(h)))_{\mathbf{curl},h} \\ &= \mathfrak{T}_1 + \mathfrak{T}_2. \end{split}$$

 \circ $\hat{\underline{I}}_{\mathbf{curl},h}^k v - \underline{v}_h$ converges weakly to 0, $(w_h)_h$ relatively compact in L^2 : by primal consistency,

$$\mathfrak{T}_1 \to 0$$
.

 $\circ~$ Use adjoint consistency on the second term together with ${\rm div}\, {m v}=0$ to get

$$\mathfrak{T}_2 \to 0.$$

Conclusions

- DDR: Arbitrary-order de Rham complex, applicable on generic polyhedra, but compatible with FE methods. Full set of algebraic and analytic results (cohomology, consistencies, Poincaré inequalities, etc.)
- Quasi-interpolator to interpolate minimal-regularity functions onto DDR.
- Conforming lifting into finite element spaces (on submesh): tool to import results of conforming space into DDR.
- Maxwell compactness for DDR, allows for analysis of eigenvalue problems and nonlinear PDEs.

https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html

COURSE OF JEROME DRONIOU FROM MONASH UNIVERSITY, INVITED PROFESSOR AT UCA

- · Introduction to Discrete De Rham complexes
 - Short description (in french)
 - Summary of notations and formulas
 - Part 1, first course: the de Rham complex and its usefulness in PDEs, 22/09/22 (video)
 - Part 1, second course: Low order case, 29/09/22 (video)
 - Part 1, third course: Design of the DDR complex in 2D, 07/10/22 (video)
 - Part 1, fourth course: Exactness of the DDR complex in 2D, 10/10/22 (video)
 - Part 2, fifth course: DDR in 3D, analysis tools, 17/11/22 (video)

New generation methods for numerical simulations

Funded by the European Union (ERC Synergy, NEMESIS, project number 101115663). Views and opinions expressed are however those of the authors only and do not necessarily reflect those of the European Union or the European Research Council Executive Agency. Neither the European Union nor the granting authority can be held responsible for them.

Thank you for your attention!

Arnold, D. (2018).

Finite Element Exterior Calculus. SIAM.

Beirão da Veiga, L., Dassi, F., Di Pietro, D. A., and Droniou, J. (2022).

Arbitrary-order pressure-robust ddr and vem methods for the stokes problem on polyhedral meshes.

Comput. Methods Appl. Mech. Engrg., 397:Paper No. 115061.

Chaumont-Frelet, T. and Ern, A. (2023).

Asymptotic optimality of the edge finite element approximation of the time-harmonic maxwell's equations.

Chaumont-Frelet, T. and Ern. A. (2024).

A priori and a posteriori analysis of the discontinuous galerkin approximation of the time-harmonic maxwell's equations under minimal regularity assumptions.

Chaumont-Frelet, T. and Vohralík, M. (2024).

A stable local commuting projector and optimal hp approximation estimates in $H({\rm curl})$. Numer. Math., 156(6):2293–2342.

Di Pietro, D. A. and Droniou, J. (2020).

The Hybrid High-Order method for polytopal meshes.

Number 19 in Modeling, Simulation and Application. Springer International Publishing.

Di Pietro, D. A. and Droniou, J. (2021a).

An arbitrary-order method for magnetostatics on polyhedral meshes based on a discrete de Rham sequence.

J. Comput. Phys., 429(109991).

Di Pietro, D. A. and Droniou, J. (2021b).

A DDR method for the Reissner–Mindlin plate bending problem on polygonal meshes.

Di Pietro, D. A. and Droniou, J. (2023).

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency.

Found. Comput. Math., 23:85-164.

Di Pietro, D. A., Droniou, J., and Pitassi, S. (2023).

Cohomology of the discrete de Rham complex on domains of general topology. *Calcolo*.

Published online.

Di Pietro, D. A., Droniou, J., and Rapetti, F. (2020).

Fully discrete polynomial de Rham sequences of arbitrary degree on polygons and polyhedra. *Math. Models Methods Appl. Sci.*, 30(9):1809–1855.

Di Pietro, D. A., Ern, A., and Lemaire, S. (2014).

An arbitrary-order and compact-stencil discretization of diffusion on general meshes based on local reconstruction operators.

Comput. Meth. Appl. Math., 14(4):461-472.

Di Pietro, D. A. and Hanot, M.-L. (2024).

Uniform poincaré inequalities for the discrete de rham complex on general domains. Results Appl. Math., 23(100496).

Ern, A., Gudi, T., Smears, I., and Vohralík, M. (2022).

Equivalence of local-and global-best approximations, a simple stable local commuting projector, and optimal hp approximation estimates in h(div).

IMA J. Numer. Anal., 42(2):1023-1049.

Jochmann, F. (1997).

A compactness result for vector fields with divergence and curl in $L^q(\Omega)$ involving mixed boundary conditions.

Appl. Anal., 66(1-2):189-203.

Kikuchi, F. (1987).

Mixed and penalty formulations for finite element analysis of an eigenvalue problem in electromagnetism.

In Proceedings of the first world congress on computational mechanics (Austin, Tex., 1986), volume 64, pages 509–521.

Touzalin, A. (2025).

Méthode des éléments virtuels pour la discrétisation des équations intégrales de frontière en électromagnétisme dans le domaine fréquentiel.

PhD Thesis. CEA-CESTA.

Weber, C. (1980).

A local compactness theorem for Maxwell's equations.

Math. Methods Appl. Sci., 2(1):12-25.