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Outline

Maxwell compactness: why?
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Minimal-regularity de Rham complex

Q open bounded set of R3.
o H(grad,Q) = {q € L*(Q) : gradq € L*(Q)3}.
o H(curl;Q) = {v € L?*(Q)? : curlv € L?(Q)3}.

o H(div;Q) ={w € L*(Q)? : divw € L?(Q)}.

H(grad, Q) 2% H(curl;Q) 2L H(div; Q) 2% £2(Q)
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Rellich compactness

If (qn)n is bounded in H(grad, ) then (q,), is relatively compact in L*(2).

o Relatively easy because grad controls the variations in all directions.
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Maxwell compactness

If (v,)n is bounded in H (curl; Q) and

/ v, -gradz =0 Vz € H(grad, ),
Q

then (v,,), is relatively compact in L?(£2)3.

o Also a version for sequences in H (div; () that are orthogonal to curls.
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Maxwell compactness

Theorem
If (v,)n is bounded in H (curl; Q) and

/ v, -gradz =0 Vz € H(grad, ),
Q
then (v,,), is relatively compact in L?(£2)3.

o Also a version for sequences in H (div; () that are orthogonal to curls.

o Much more challenging than Rellich: curl does not control the variations
of the function [Weber, 1980], [Jochmann, 1997].

o Orthogonality condition equivalent to divwv,, =0 and v, - ng = 0.
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Uses of Maxwell compactness

o Bound of curl and zero div classical in curl-div problems, such as models
in electromagnetism (possibly using vector potential fixed by gauge).

o Compactness required for eigenvalue analysis and nonlinear models.

o Convergence analysis of schemes requires discrete versions of this
compactness; see, e.g., [Kikuchi, 1987] for eigenvalue problems.

o Discrete compactness also allows for fine convergence analysis of schemes,
possibly with models with rough coefficients
[Chaumont-Frelet and Ern, 2023], [Chaumont-Frelet and Ern, 2024].
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Polytopal meshes: why?
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The Finite Element way

Global complex

Trn, = {T'} conforming tetrahedral/hexahedral
mesh.

o Define local polynomial spaces on each element, and glue them together to
form a sub-complex of the de Rham complex:

grad

1 di
V}? V}} cur Vh2 iv V]—?

I [ [ [

grad

H(grad, Q) 225 H(curl; Q) <% H(div; Q) -2 L2(Q)

Example: conforming P¥—Nédélec—Raviart-Thomas spaces [Arnold, 2018].
o Gluing only works on special meshes...
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The Finite Element way
Shortcomings

o Approach limited to conforming meshes with standard elements

local refinement requires to trade mesh size for mesh quality
complex geometries may require a large number of elements

the element shape cannot be seamlessly adapted to the solution (e.g.
hexahedra in boundary layers + tetrahedra in the bulk for CFD
simulations)

Ll

o Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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Benefits of polytopal meshes

[¢]

Local refinement is easy, and preserves mesh regularity.

[}

Agglomeration of elements (e.g., for multigrid methods) is seamless.

o

High-level approach can lead to leaner methods (fewer DOFs).

Can be combined with standard Finite Elements on hybrid meshes (made
of tetrahedra/hexahedra + polyhedral elements).

e}
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A practical example from CEA-CESTA

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.

2000mm
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A practical example from CEA-CESTA

Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).

vbem-3z
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A practical example from CEA-CESTA

Accuracy: comparison of modulus of reflected near fields at the top.

—5-ben —a— vben-1z
20 || —o— vbem-12Q —+— vben-3z
—+— vbem-4z

Champ proche E
amp proche H

—B—bem —A—vbem-1z
—6— vbem-12Q —— vbem-3z
—+— vbem-4z

I T I I I I T T
10 20 30 40 50 60 70 8 90 100 2

T T I I I |
10 20 30 40 50 60 70 80 90 100
Fréquence (en MHz) Fréquence (en MHz)

Computational cost

Method | Assembly | Resolution
bem 813s 125s
vbem-3z 321s 19s
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Outline

Overview of the Discrete De Rham method
m Generic principles
m Discrete H (curl; 2) space and curl/potential reconstructions
m The DDR complex and its properties

15/50



Overview of the Discrete De Rham method
m Generic principles
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Overview of the Discrete De Rham (DDR) complex

(7k
R — X grad,h —> Xcurlh — Xdlvh —> Pk(ﬂl) L) {0}

o Fully discrete complex (not sub-complex) of bespoke finite-dimensional
spaces and operators.

o Discrete spaces not made of functions but:

o K’f 1, made of vectors of polynomials on vertices, edges, faces, ele-
ments.

o Discrete operators (differential and function reconstructions) built
from these DOFs via integration-by-parts formulas.
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Overview of the Discrete De Rham (DDR) complex

R« C=(Q) 224, coo@@)? <y, coo(@)3 4, o) —2 {0}

k k k k
llgrad h llcurl h lldlv h \LIL2 h
k

GF cr
R — X grad,h — Xcurlh — Xdlvh —> Pk(ﬁ) —> {0}

o Fully discrete complex (not sub-complex) of bespoke finite-dimensional
spaces and operators.

o Discrete spaces not made of functions but:

o K’f 1, made of vectors of polynomials on vertices, edges, faces, ele-
ments.

o Discrete operators (differential and function reconstructions) built
from these DOFs via integration-by-parts formulas.

o Interpolators l’f’h give meaning to these polynomials/DOFs as mo-
ments.
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Guiding principles for the construction

Joint work with D. Di Pietro and F. Rapetti.
(Ref: [Di Pietro et al., 2020], [Di Pietro and Droniou, 2023].)

o Hierarchical construction: from vertices, to edges, to faces, to elements.
o Enhancement: on each (relevant) mesh entity,

o discrete differential operator first,

o potential reconstruction using the discrete differential operator.

(both polynomially consistent, both based on IBP formulas.)

o The definition of the spaces (DOFs) also guided by these IBP formulas.

Same guiding principles as the Hybrid High-Order (HHO) method
[Di Pietro et al., 2014], [Di Pietro and Droniou, 2020)].
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Overview of the Discrete De Rham method

m Discrete H (curl; ) space and curl/potential reconstructions

5/ides
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Mesh notations

o Mesh My, = (Th, Fh, En, Vi) of elements (T), faces (F'), edges (E),
vertices (V'), with intrinsic orientations (tangent, normal).

o PY(X) polynomial of degree </ on X =T, F, E.
o Raviart-Thomas space on X =T, F: for { > 0,

RTHX) =P (X))@ (z — zx)PL(X).
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Space and interpolator

Space: fix k> 0 and set

Xt on = {vn = (v0)7reT,, (V) Fer,, (VE)Eee, )
vr € RTHT) VYT €T, vrpeRTHF) VFeF,,
VE € 'Pk(E) VE € 5h}.

Interpolators: for v : Q — R3 such that the tangential traces vy g, v¢ p Of ©
on each E, F are single-valued and integrable,
k o k k k
Lo nv = (7R o) 1reT, (TRr pvr)rer,, (Th 5(ve.B))Bee, ),

where 77%7—7)( and W%,X are the L2(X)-orthogonal projection on RT*(X)
and P*(X).
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Operators and potential reconstructions

Xﬁurl,h = {Qh = ((UT)TGTh7 (UF)FGJ:M (UE)EGEh)v
vr € RTHT) YT €Tw, vrpeRTHF) VFeF,,
vp € PH(E) VE € &,}.

Face curl: For F' € Fj, and ), € X}y, . define Chu, € PE(F) by
mimicking IBP:

/(Cllgyh)r:/UF.rotFr— Z wFE/vEr vr € PR(F).
F F B

Ecér
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Operators and potential reconstructions

Face curl:

/(C}Igyh)T:/’l}F~I‘OtFT— Z wFE/ VET Vre’Pk(F).
F F E

Ecér

Reconstructed face tangential trace: Define 'y,’f’FyF € P*(F) such that, for
all 7 € P*Y(F) and w € (x — zr)PF1(F),

/’Vf,Fﬂh'(rotpr+w):/Olliighr—k Z wFE/vEr+/vF~'w.
F F E F

Ecép
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Operators and potential reconstructions

Face curl:

/(C}?Qh)r:/vpmotpr— Z wFE/vET vr € PR(F).
F F B

Ecér

Reconstructed face tangential trace:

F F E F

Ecér

Element curl and potential: Ckv, € P*(T) and P’c“m,l’TyT € P*(T) also by
mimicking IBP.

All have polynomial consistency, e.g.:

Céﬂl’;uﬂ,hv = curlw Vo e N¥THT)  (Nédélec space).
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Discrete curl

ol ._le n— g’giv,h by projecting face and element reconstructed curls
onto the components in

Xhin = {zr = (@r)rem, (zr)rer,)

zr e N¥(T), zp € Pk(F)},

that is,
Qﬁﬂh = ((Wﬁ/,TlerQh)TeTm (C;C?yh)FE}'h)'
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Overview of the Discrete De Rham method

m The DDR complex and its properties

5/ides
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DDR complex: summary

Ik GF Df
Lgrad,h k k h k 0
R X grad,h Lurl h Xdlv h P (771) {0}

[}

Do not seek any basis functions.

Fully discrete spaces not made of functions, but of vectors of polynomials
(DOFs).

Polynomials attached to geometric entities (emulates continuity properties
of each space).

o Polynomial reconstructions of differential operator and potential by
mimicking IBPs.

o]

o

E
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L?-like inner products

o Local L?-like inner product on the DDR spaces:
for € {grad, curl,div} and kgraa = k + 1, kcurl = kaiv = k,

(@T,yr)e = / Piyar - PYyyr +ser(zr,yr) Yo, yr € Xo(T),
T

(se,z penalises differences on the boundary between element and face/edge
potentials).

o Global L?-like product (-, ), by standard assembly of local ones.

26 /50



DOF by mesh entities

Space ‘ Vv E " .
Xepaar | R PHE) PEYEF) PRNT)
Xléurl,T Pk (E> RTk <F) RTk (T)
Xﬁiv T Pk(F) Nk(T)
PH(T)
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The DDR complex and its properties

o Complex with the same cohomology as the continuous de Rham com-
plex, applicable on generic polytopal meshes.

o Poincaré inequalities.
o Consistency (both primal and adjoint).

o Commutation properties between the interpolators and the continu-
ous/discrete operators.

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],
[Di Pietro and Droniou, 2021a]
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The DDR complex and its properties

Complex with the same cohomology as the continuous de Rham com-
plex, applicable on generic polytopal meshes.

[0}

Poincaré inequalities.

[e]

Consistency (both primal and adjoint).

[0}

Commutation properties between the interpolators and the continu-
ous/discrete operators.

[¢]

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],
[Di Pietro and Droniou, 2021a]

~~ optimally-convergent schemes (error in O(h*¥*1)) for a range of models:
magnetostatics, Stokes & Navier-Stokes, etc.

~~ robust error estimates with respect to some physical parameters.

[Di Pietro and Droniou, 2021b], [Beirdo da Veiga et al., 2022]
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Quasi-interpolator for DDR
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Where this happened
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Where this happened
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Construction of the quasi-interpolator

Quasi-interpolator on FE space: with S, simplicial mesh and £ > 1,

H(grad, Q) &% H(curl;Q) <% H(div; Q) —2Y5 12(Q)

ljgrad h ljcurl h ljdiv 3 lﬂé,sh

rad ur iv
grad(sh) g chrl(Sh) C—1> Vd1v<8h) d—> Pe(Sh)
where V. rad(Sh), VY 1(Sh) and V4, (Sp) are the conforming Lagrange,

Nédélec and Raviart—-Thomas finite element spaces.
[Ern et al., 2022], [Chaumont-Frelet and Vohralik, 2024]
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Construction of the quasi-interpolator

Quasi-interpolator on FE space: with S, simplicial mesh and £ > 1,

H(grad, Q) 2% H(curl;Q) <% H(div; Q) —95 12(Q)

e Ze e L
ljgrad,h ljcurl,h ljdiv,h l”rp,sh

Ve a(Sn) 20 V(S L VL (Sh) —1 PUS,)

g

Quasi-interpolator on DDR: take &), matching simplicial submesh of 7y,
¢ >k + 1, and interpolate from the FE spaces...

H(grad, Q) 2% H(curl;Q) <% H(div; Q) —9Y £2(Q)

Ze e e i
ljgrad,h ljcurl,h ljdiv,h Tp,S),

Ve a(Sn) 2% VE(Sh) s Vi (S,) —I PUSy)

grad curl

k k k k
llgrad,h, llcurl,h lldiv.h TP . h

Gy k c; k Dy, &
—— XGwn — P(Sh)

—8 > <X curl,h
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A kind of magic...

H(grad, Q) 2% H(curl;Q) <% H(div; Q) —9% 12(Q)

ljgerad h lj(furl h ljégiv,h l” ,Sh
grdd 1 liv
grad(5h> \4 Sh) % le\ (811) % 77[(‘5]1

k k k
llgrad,h llcurl h lIdw h T

ar cF Dk
k —~h k —~h k
Xgrad,h Xcur],h Xle h P (Sh>

(‘url(

\\]?s‘

N
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A kind of magic...

H(grad, Q) 2% H(curl;Q) <% H(div; Q) —9% 12(Q)

Ze e e i
ljgrad,h ljcurl h ljdiv,h l”?,sh

) rrad div )
Viraa(Sh) = Sn) < VAL (Sh) —E% PUS)

V(‘url(
k k k
llérad,h llcurl,h, lldiv,h TP b
k k k

Gy k Cy k Dy k
X rad,h Xcurlh Xdiv,h P (Sh)

k
—g

Why does this work?

o Igrad o I’éurl’h and l’jimh can be applied to functions that have suitable
single-valued traces on mesh entities.
(e.g., single-valued tangential traces on edges and faces for I ’;url’h )
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A kind of magic...

H(grad, Q) 2% H(curl;Q) <% H(div; Q) —9% 12(Q)

Ze e e i
ljgrad,h ljcurl h ljdiv,h l”?,sh

rad 1 v o
‘/g{rad(s}l) & V(‘url(S}Z) & le\ (S/l) % 73(( h)

k k K k
llgrad,h llcurl,h, lldiv,h TP, h

k k k

Cy k Dy k
X h Xcurl h Xdiv,h P (Sh)

“Lgrad,

Why does this work?

o Igrad o I’éurl’h and l’jimh can be applied to functions that have suitable
single-valued traces on mesh entities.

(e.g., single-valued tangential traces on edges and faces for I ’;url’h )

o The FE spaces md(Sh) VY 1(Sk) and V4, (Sh) have such suitable
traces!
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Properties

H(grad, Q) 29 H(curl; Q) <%% H(div; Q) -4 £2(Q)

-k =k =k k
lgrad,h lcurl,h ldiv,h lﬂ—’P ,Sp,
k Zh k ~h k h k
Xgrad,h Xcurl,h Xdiv,h P (Sh)

o Bounded cochain maps: diagram commutes and the interpolators are
continuous.
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H(grad, Q) 2% H(curl;Q) <% H(div; Q) —9% £2(Q)
Ikgmd h i\:url,h f;iv,h ”;C’,sh
k (;k EZE k I)Z k
Xerad,h — Xcurl,h —— Xgyp — P (Sn)

o Primal consistency: for e € {grad, curl, div} and T set of neighbours (by
vertices) of T,

ke 7F
|2 = Pyl r2llLz(m) <
1/2

Z [||Z - ﬂ-;c?',T’z”iQ(T’) + h?r”(‘Z) - W;’,T/(W)H%%Tf)
T'eT
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H(grad, Q) 2% H(curl;Q) <% H(div; Q) -9 £2(Q)
Zgrad h f:url h lldw h l'";c’ Sh
k ck
Kgradh —> Xcurlh —> Xdlvh —> Pk( )

o Adjoint consistency: measures defect of discrete IBP, using minimal
regularity.
Example: for v € H(curl; Q) N H(div; Q) such that v - ng € L?(09),

and q, € Xgmd .

=k .
(lcurl,hv7gﬁgh)curlwh +/ le( )Pk:;il hqh
Q

= [ v manita,| £ 4n0) (lg,lran + 1Ghg, lewrn)
oN

with Aj(v) — 0 as h — 0.
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Conforming lifting for DDR (with D. Pietro and S. Pitassi)
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The curl case

Theorem (Conforming lifting)

There exists L. : : X — H(curl; Q) such that, for all v, € X~

<X curl, <X curl,h’

k4—1 k _ pk
TRT, T([’curl,hyh) - Pcurl,Tﬂh VT € 7;“

lléurl,h[’IéuthQh = Uy,
||£]§ur1,h2h||L2(T) S lwplleur,T,

| curl Eﬁurl,hgh)”LQ(T) S ||QZQh||div,T-

o L ntn € NFT3(S,) 0 H(curl; Q), with S, matching simplicial

submesh of 7;. Hence, tangential traces of Lk » Uy, are well-defined, and

curl,

FhE8 pk _ rk Ik _
curl,h curl,hyh_ curl,hyh’ so =curl,h curl,hyh_gh'
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The curl case

Theorem (Conforming lifting)

There exists ﬁcurl bt XE s — H(curl; Q) such that, for all v, € X*

<X curl, <X curl,h’

k4—1 k _ pk
’R’T T([’curl,hyh) - Pcurl,Tﬂh VT € 77“

lléurl,h‘cﬁurl,hgh = Up,
I|£’éurl,hyh”L2(T) S g lleur, T,

| curl ﬁlccurl,hﬁh)”L?(T) S ||Q22h||div,T-

o Not based on local solutions to PDEs, but rather by solving local algebraic
problems in cochains and trimmed polynomial spaces.

~~ fine estimates, not a virtual function, no limit on dimension....
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The curl case

Theorem (Conforming lifting)

<X curl,h’

There exists Ccuﬂ . ’éurl , — H(curl; Q) such that, for all v, € X*

k+1 k _ pk
7T’R,’T T(‘Ccurl,hyh) - Pcurl,Tyh VT € 77“

k k
lcurl,h[’curl,hyh = Uy,
k
”‘Ccurl,hyh”LQ(T) SJ ||yh||curl,T7

k k
| curl ‘Ccurl,hyh)”LZ(T) S ICrvpllawv,T-

o Used to prove adjoint consistency, as well as Maxwell compactness.
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Exterior calculus de Rham

H(grad, Q) grad, H(curl; Q) -4 H(div; Q) — L2(Q)

l ! ! !

HAYQ) — 5 gAY Q) —2 5 HA2(Q) —L o 22A3(Q)

o A*(Q): (alternate multilinear) ¢-forms on Q.
o d’: AY(Q) — A“TL(Q): exterior derivative.

o Allows for a unified analysis of all spaces/operators along the complex.
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Exterior calculus DDR

o X! discrete DDR space of (-forms on Q.
o df: discrete exterior derivative.

o Allows for a unified design and analysis of DDR and related tools.
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@ Maxwell compactness for DDR
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Statement

Theorem (Maxwell compactness for DDR)

Let v;, € X’éurl’h be such that

(”Qh”curl,h + ||szh||div,h)h€7_[ s bounded,
(Qhaglfigh)curl,h =0 Vgh € Xérad,h'

Then, there exists v € H(curl; Q) N Ho(div; Q) such that div(v) =0 and,

up to a subsequence as h — 0, PL,., v, — v in L?(Q)%.

Also valid in X ﬁiv) n, for sequence of vectors with bounded discrete
divergence and that are orthogonal to discrete curls.
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Sketch of proof: initial stages

o Weak convergence: of P’éurl,hyh and £F 1, v, towards the same limit
v € H(curl; Q).

(Same limit for both because ﬂg%,T(‘C’éurl,th) = P’éurl’Tyh.)

o v € Hy(div;Q): for all ¢ € C>(Q), use primal consistency on
k k 1k
(Qh7 lcurl’h grad Q)curl,h = (Qh?ghlgrad,hq)curl,h - 0

to get

/v-gradqu.
Q
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Sketch of proof: strong convergence

o Hodge decomposition:
v — cléurl,hﬂh = w(h) + grad q(h)

with ¢(h) € H(grad, ) and w(h) € H(curl; Q) bounded in their spaces,
and

/ w(h)-gradz=0  Vz € H(grad, ).
Q
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Sketch of proof: strong convergence

o Hodge decomposition:
v — cléurl,hﬂh = w(h) + grad q(h)

with ¢(h) € H(grad, ) and w(h) € H(curl; Q) bounded in their spaces,
and

/ w(h)-gradz=0  Vz € H(grad, ).
Q

o (w(h))y, relatively compact in L? by continuous Maxwell compactness.
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Sketch of proof: strong convergence

o Hodge decomposition:
v — cléurl,hﬂh = w(h) + grad q(h)

with ¢(h) € H(grad, ) and w(h) € H(curl; Q) bounded in their spaces,
and

/ w(h)-gradz=0  Vz € H(grad, ).
Q
o (w(h))y, relatively compact in L? by continuous Maxwell compactness.

o We have v_L grad ¢q(h) and, morally,
‘Cléurl,hyh % gradq(h)

since (gh,Qﬁ')cmlyh = 0. This should give grad ¢g(h) ~ 0...
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Sketch of proof: strong convergence

o Hodge decomposition:
v — Ugurl,hﬂh = w(h) + grad q(h)

with ¢(h) € H(grad, ) and w(h) € H(curl; Q) bounded in their spaces,
and

/ w(h)-gradz=0  Vz € H(grad, ).
Q
o (w(h))y, relatively compact in L? by continuous Maxwell compactness.
o We have v_L grad ¢q(h) and, morally,
‘Clgurl,hyh % gradq(h)

since (gh,Qﬁ')cmLh = 0. This should give grad ¢g(h) ~ 0...
o However, we only have
| e -gradan)| < Clatiot)

where C(q(h)) bounded if (g(h))p is relatively compact in H(grad, 2).
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Sketch of proof: strong convergence

So, what do we do?
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Sketch of proof: strong convergence

So, what do we do?
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Sketch of proof: strong convergence

So, what do we do?

We go fully discrete, to avoid trading the exact orthogonality
(Qh,(_?ﬁ)wﬂ,h = 0 for an approximate orthogonality.

42/50



Sketch of proof: strong convergence

v = ‘Cléurl nln = w<h) + gradQ(h)

£l

curl,h

o Quasi-interpolate and use I
properties:

Loy n v, = v,, as well as the commuting

~k ~k
lcurl,hv Uy = lcurl,hw( ) + Gh( grad, hq(h))
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Sketch of proof: strong convergence

ﬁl

curl,h

o Quasi-interpolate and use I
properties:

J v, = v, as well as the commuting

~k ~k
lcurl,hv —v, = lcurl,hw(h) + Gh( grad, hq(h))
o Take the X’éurl,h—inner product and use the discrete orthogonality:

~k ~k ~k
||lcurl,hv - yh”gurl,h = (lcurl,hv - yh’lcurl,hw(h))curl,h

~k ~k
+ (Lewrn? — 27 G (Lgraana(h)))eurt,n
=% +%s.
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Sketch of proof: strong convergence

o Take the Xﬁurl’h—inner product and use the discrete orthogonality:

~k ~k ~k
||lcurl,hv - gh”zurl,h = (lcurl,hv - thlcurl,hw(h))curl,h

~k ~k
+ (lcurl,hv’ Qﬁ (lgrad,hQ(h)))curl,h
=%+ %.

~k
0 I yp1 v — vy, converges weakly to 0, (wp )y, relatively compact in L*: by
primal consistency,

T1— 0.
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Sketch of proof: strong convergence

o Take the Xﬁurl’h—inner product and use the discrete orthogonality:

~k 9 ~k ~k
||lcurl,hv - gh”curl,h = (lcurl,hv - thlcurl,hw(h))curl,h

~k ~k
+ (lcurl,hv’ Qﬁ (lgrad,hQ(h)))curl,h
=%+ %.

~k
0 I yp1 v — vy, converges weakly to 0, (wp )y, relatively compact in L*: by
primal consistency,
T1— 0.

o Use adjoint consistency on the second term together with dive = 0 to get

12—)0.
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Conclusions

o DDR: Arbitrary-order de Rham complex, applicable on generic polyhedra,
but compatible with FE methods. Full set of algebraic and analytic results
(cohomology, consistencies, Poincaré inequalities, etc.)

o Quasi-interpolator to interpolate minimal-regularity functions onto DDR.

o Conforming lifting into finite element spaces (on submesh): tool to import
results of conforming space into DDR.

o Maxwell compactness for DDR, allows for analysis of eigenvalue problems
and nonlinear PDEs.
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https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html

COURSE OF JEROME DRONIOU FROM MONASH UNIVERSITY, INVITED PROFESSOR AT UCA

- Introduction to Discrete De Rham complexes

Short description (in french)
Summary of notations and formulas

Part 1, first course: the de Rham complex and its usefulness in PDEs, 22/09/22 (video)
Part 1, second course: Low order case, 29/09/22 (video)

Part 1, third course: Design of the DDR complex in 2D, 07/10/22 (video)

Part 1, fourth course: Exactness of the DDR complex in 2D, 10/10/22 (video)

Part 2, fifth course: DDR in 3D, analysis tools, 17/11/22 (video)
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N NEMESIS

New generation
Funded by European Research Council methods for numerical
the European Union simulations

Funded by the European Union (ERC Synergy, NEMESIS, project number 101115663). Views and
opinions expressed are however those of the authors only and do not necessarily reflect those of the
European Union or the European Research Council Executive Agency. Neither the European Union nor

the granting authority can be held responsible for them.

Thank you for your attention!
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