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Stokes equations: standard formulation

Ω domain, ν > 0 and f ∈ L2(Ω).

◦ Strong form: Find u : Ω → R3 and p : Ω → R s.t.
∫
Ω
p = 0 and

−ν∆u+ grad p = f in Ω, (momentum conservation)

divu = 0 in Ω, (mass conservation)

u = 0 on ∂Ω, (boundary condition)

◦ Weak form: Find (u, p) ∈ H1
0 (Ω)

d × L2(Ω) s.t.
∫
Ω
p = 0 and

ν(gradu,gradv)L2 − (p,div v)L2 = (f ,v)L2 ∀v ∈ H1
0 (Ω),

(divu, q)L2 = 0 ∀q ∈ L2(Ω)

◦ A priori estimates require:

• Poincaré inequality: ∥·∥L2 ≲ ∥grad ·∥L2 on H1
0 (Ω),

• inf-sup: supv∈H1
0

(p,div v)L2

∥v∥
H1

0

≥ C∥p∥L2 , i.e. Imdiv = L2(Ω).
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Stokes in curl-curl formulation: weak form

◦ Strong form:

−ν∆u︷ ︸︸ ︷
ν(curl curlu− grad divu)+grad p = f in Ω, (momentum cons.)

divu = 0 in Ω, (mass conservation)

curlu× n = 0 and u · n = 0 on ∂Ω, (boundary conditions)∫
Ω
p = 0

◦ Weak form: Find (u, p) ∈ H(curl; Ω)×H1(Ω) s.t.
∫
Ω
p = 0 and

ν(curlu, curlv)L2 + (grad p,v)L2 = (f ,v)L2 ∀v ∈ H(curl; Ω),

−(u,grad q)L2 = 0 ∀q ∈ H1(Ω),

where
H(curl; Ω) :=

{
v ∈ L2(Ω) : curlv ∈ L2(Ω)

}
.
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Stokes equations in curl-curl formulation: stability

ν(curlu, curlv)L2 + (grad p,v)L2 = (f ,v)L2 ∀v ∈ H(curl; Ω),

−(u,grad q)L2 = 0 ∀q ∈ H1(Ω)

◦ Make v = grad p to get ∥grad p∥L2 ≤ ∥f∥L2 since curl grad = 0.

◦ Make (v, q) = (u, p):

ν∥ curlu∥2L2 ≤ ∥f∥L2∥u∥L2 .

◦ If Ω “is nice”,

Imgrad = Ker curl.

The incompressibility then gives u ∈ (Imgrad)⊥ = (Ker curl)⊥ and the

Poincaré inequality: ∥·∥L2 ≲ ∥ curl ·∥L2 on (Ker curl)⊥

yields
∥u∥L2 ≲ ∥ curlu∥L2 .

7 / 50



Stokes equations in curl-curl formulation: stability

ν(curlu, curlv)L2 + (grad p,v)L2 = (f ,v)L2 ∀v ∈ H(curl; Ω),

−(u,grad q)L2 = 0 ∀q ∈ H1(Ω)

◦ Make v = grad p to get ∥grad p∥L2 ≤ ∥f∥L2 since curl grad = 0.

◦ Make (v, q) = (u, p):

ν∥ curlu∥2L2 ≤ ∥f∥L2∥u∥L2 .

◦ If Ω “is nice”,

Imgrad = Ker curl.

The incompressibility then gives u ∈ (Imgrad)⊥ = (Ker curl)⊥ and the
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Navier-Stokes equations

◦ Additional convective term:

div(u⊗ u) = (divu)u+ (curlu)× u+
1

2
grad |u|2.

so

− ν∆u+ (u · ∇)u+ grad p

= ν curl curlu+ (curlu)× u︸ ︷︷ ︸
additional term

+grad

(
p+

1

2
|u|2

)
︸ ︷︷ ︸
new pressure p′

◦ Additional term in weak formulation∫
Ω

[(curlu)× u] · v.

It vanishes for v = u.
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Magnetostatics: weak formulation

◦ Strong form: For µ > 0 and J∈ curlH(curl; Ω), the magnetostatics
problem reads:

Find the magnetic field H : Ω → R3 and vector potential A : Ω → R3 s.t.

µH − curlA = 0 in Ω, (vector potential)

curlH = J in Ω, (Ampère’s law)

divA = 0 in Ω, (Coulomb’s gauge)

A× n = 0 on ∂Ω (boundary condition)

◦ Weak form: Find (H,A) ∈ H(curl; Ω)×H(div; Ω) s.t.∫
Ω

µH · τ −
∫
Ω

A · curl τ = 0 ∀τ ∈ H(curl; Ω),∫
Ω

curlH · v +

∫
Ω

divAdiv v =

∫
Ω

J · v ∀v ∈ H(div; Ω).
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Magnetostatics: requirements for stability

Relations images/kernels:

Im curl = Ker div ,

Imdiv = L2(Ω).

Poincaré inequalities:

∥·∥L2 ≤ C∥ div ·∥L2 on (Ker div)⊥

∥·∥L2 ≤ C∥ curl ·∥L2 on (Ker curl)⊥.
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De Rham complex

H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω) {0}grad curl div 0

◦ Complex: image of an operator included in kernel of the next one.

That is, the composition of two subsequent operators vanishes.

◦ Depending on the topology of Ω, some inclusions can be equalities:

no “tunnels” =⇒ Imgrad = Ker curl (Stokes in curl-curl)

no “voids” =⇒ Im curl = Ker div (magnetostatics)

Imdiv = L2(Ω) (magnetostatics, standard Stokes)

◦ If Ω has a non-trivial topology, the de Rham’s cohomology characterizes

Ker curl / Imgrad and Ker div / Im curl

Reproducing these properties at the discrete level is key for stable schemes.
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The finite element approach and its limitations
Global complex

Th = {T} conforming tetrahedral/hexahedral
mesh.

◦ Define local polynomial spaces on each element, and glue them together to
form a sub-complex of the de Rham complex:

V 0
h V 1

h V 2
h V 3

h

H1(Ω) H(curl; Ω) H(div; Ω) L2(Ω)

grad curl div

grad curl div

Example: conforming Pk–Nédélec–Raviart-Thomas spaces [Arnold, 2018].

◦ Gluing only works on special meshes!
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The Finite Element way
Shortcomings

◦ Approach limited to conforming meshes with standard elements

=⇒ local refinement requires to trade mesh size for mesh quality
=⇒ complex geometries may require a large number of elements
=⇒ the element shape cannot be adapted to the solution

◦ Need for (global) basis functions

=⇒ significant increase of DOFs on hexahedral elements
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Benefits of polytopal meshes I

◦ Local refinement (to capture geometry or solution features) is seamless, and
can preserve mesh regularity.

◦ Agglomerated elements are also easy to handle (and useful, e.g., in multi-grid
methods).

◦ Even on standard meshes, high-level approach can lead to leaner methods
(fewer DOFs).
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Benefits of polytopal meshes II

Discrete space k = 0 k = 1 k = 2

H1(T ) 4 ♢ 4 10 ♢ 10 20 ♢ 20
H(curl;T ) 6 ♢ 6 23 ♢ 20 53 ♢ 45
H(div;T ) 4 ♢ 4 18 ♢ 15 44 ♢ 36
L2(T ) 1 ♢ 1 4 ♢ 4 10 ♢ 10

Table: Tetrahedron: SDDR polytopal complex ♢ RTN.

Discrete space k = 0 k = 1 k = 2

H1(T ) 8 ♢ 8 20 ♢ 27 32 ♢ 64
H(curl;T ) 12 ♢ 12 39 ♢ 54 77 ♢ 144
H(div;T ) 6 ♢ 6 24 ♢ 36 56 ♢ 108
L2(T ) 1 ♢ 1 4 ♢ 8 10 ♢ 27

Table: Hexahedron: SDDR polytopal complex ♢ RTN.

[Di Pietro and Droniou, 2023c]
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Building blocks of the Discrete De Rham complex

Refs.: [Di Pietro et al., 2020, Di Pietro and Droniou, 2023a]

◦ Hierarchical constructions: from lowest-dimensional mesh entity to
higher-dimensional entities.

◦ Enhancement:

discrete differential operator first,
potential reconstruction using the discrete differential operator.

(both polynomially consistent, both based on IBP formulas.)

◦ The definition of the spaces (DOFs) also guided by these IBP formulas.

Same guiding principles as the Hybrid High-Order (HHO) method

[Di Pietro and Droniou, 2020].
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Mesh notations

◦ Mesh Mh = (Th,Fh, Eh,Vh) of elements/faces/edges/vertices, with intrinsic
orientations (tangent, normal).

◦ ωTF ∈ {+1,−1} such that ωTFnF outer normal to T .
◦ ωFE ∈ {+1,−1} such that ωFEtE clockwise on F .

nF

F

TtE

E
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Pk-consistent gradient
Edge E

◦ IBP is the starting point: if q ∈ Pk+1(E) then∫
E

q′r = −
∫
E

q r′︸︷︷︸
∈Pk−1(E)

+ q(xV2
)r(xV2

)− q(xV1
)r(xV1

) ∀r ∈ Pk(E)

with derivatives in the direction tE .

◦
◦ Edge gradient Gk

E : Xk
grad,E → Pk(E) s.t.∫

E

(Gk
EqE)r = −

∫
E

qEr
′ + qV2r(xV2)− qV1r(xV1) ∀r ∈ Pk(E).

◦ Potential reconstruction γk+1
E : Xk

grad,E → Pk+1(E) s.t.∫
E

(γk+1
E q

E
)z′ = −

∫
E

(Gk
EqE)z+ qV2

z(xV2
)− qV1

z(xV1
) ∀z ∈ Pk+2(E).

(Works because d
dx : Pk+2(E)/R → Pk+2(E) is an isomorphism.)
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Pk-consistent gradient
Face F

◦ IBP is the starting point: if q ∈ Pk+1(F ),∫
F

(gradF q) ·v = −
∫
F

q divF v︸ ︷︷ ︸
∈Pk−1(F )

+
∑

E∈EF

ωFE

∫
E

qv ·nFE ∀v ∈ Pk(F )2.

◦ Space :

Xk
grad,F =

{
q
F
= (qF , (qE)E∈EF

, (qV )V ∈VF
) :

qF ∈ Pk−1(F ) , qE ∈ Pk−1(E) , qV ∈ R
}
,

◦ Face gradient Gk
F : Xk

grad,F → Pk(F )2 s.t.∫
F

(Gk
F qF )·v = −

∫
F

qF divF v+
∑

E∈EF

ωFE

∫
E

(γk+1
E q

E
)v·nFE ∀v ∈ Pk(F )2.

◦ Potential reconstruction γk+1
F : Xk

grad,F → Pk+1(F ) s.t.∫
F

(γk+1
F q

F
) divF z = −

∫
F

Gk
F qF · z +

∑
E∈EF

ωFE

∫
F

(γk+1
E q

E
)z · nFE

∀z ∈ Rc,k+2(F ) := (x− xF )Pk+1(F ).
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∀z ∈ Rc,k+2(F ) := (x− xF )Pk+1(F ).
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Pk-consistent gradient
Face F

◦ Space :

Xk
grad,F =

{
q
F
= (qF , (qE)E∈EF

, (qV )V ∈VF
) :

qF ∈ Pk−1(F ) , qE ∈ Pk−1(E) , qV ∈ R
}
,

◦ Face gradient Gk
F : Xk

grad,F → Pk(F )2 s.t.∫
F

(Gk
F qF )·v = −

∫
F

qF divF v+
∑

E∈EF

ωFE

∫
E

(γk+1
E q

E
)v·nFE ∀v ∈ Pk(F )2.

◦ Potential reconstruction γk+1
F : Xk

grad,F → Pk+1(F ) s.t.∫
F

(γk+1
F q

F
) divF z = −

∫
F

Gk
F qF · z +

∑
E∈EF

ωFE

∫
F

(γk+1
E q

E
)z · nFE

∀z ∈ Rc,k+2(F ) := (x− xF )Pk+1(F ).

(divF : Rc,k+2(F ) → Pk+1(F ) is an isomorphism.)
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Pk-consistent gradient
Element T

Same principle! Based on IBP we determine:

◦ An additional unknown (qT ∈ Pk−1(T )) to get the space Xk
grad,T , and its

meaning (polynomial moment on T ) to get the interpolator Ikgrad,T .

◦ A formula for the element gradient Gk
T : Xk

grad,T → Pk(T )3.

◦ A potential reconstruction P k+1
grad,T : Xk

grad,T → Pk+1(T ).
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The Discrete de Rham method I

◦ Contrary to FE, do not seek explicit (or any!) basis functions.

◦ Fully discrete spaces made of vectors of polynomials, representing polynomial
moments when interpreted through the interpolator.

◦ Polynomials attached to geometric entities to emulate expected continuity
properties of each space,

◦ Create discrete operators (differential, potential reconstruction) between the
spaces.

F

V

T
E
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The Discrete de Rham method II

DDR complex:

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) {0}.

Ik
grad,h Gk

h Ck
h Dk

h 0

◦ Reproduces key properties of the continuous de Rham complex:

Same cohomology [Di Pietro et al., 2023] (exact complex if trivial topology.)
Uniform Poincaré inequalities [Di Pietro and Droniou, 2021a,

Di Pietro and Droniou, 2023a, Di Pietro and Hanot, 2024b].

◦ Analytical properties [Di Pietro et al., 2023]:

Primal consistency: approximation properties of potential reconstructions,
discrete operators and inner products
Adjoint consistency: estimate the error in discrete integration-by-parts
involving the discrete operators.

26 / 50



The Discrete de Rham method III

L2-like inner products: for • ∈ {grad, curl,div}, on Xk
•,h,

(vh,wh)•,h :=
∑
T∈Th

(vh,wh)•,T

with (vh,wh)•,T =

∫
T

P k
•,hvh · P k

•,hwh + s•,T (vh,wh),

where s•,T penalises differences on the boundary between element and
face/edge potentials on T .

DDR scheme: replace continuous spaces/operators/L2-products with discrete
space/operators/L2-like inner products.

Open-source C++ implementation available in HArDCore
(https://github.com/jdroniou/HArDCore).
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Stokes equations in curl-curl formulation: theorem

Theorem (Error estimates [Beirão da Veiga et al., 2022])

With the discrete H(curl)-like and H1-like norms

∥vh∥2curl,1,h = ∥vh∥2curl,h + ∥Ck
hvh∥2div,h ,

∥q
h
∥2grad,1,h = ∥q

h
∥2grad,h + ∥Gk

hqh∥curl,h,

we have the pressure robust estimates

∥uh − Ik
curl,hu∥curl,1,h + ∥p

h
− Ikgrad,hp∥grad,1,h ≲ C1(u)h

k+1.

with C1(u) depending u and some of its derivatives, but not p.

Robustness comes from:

Commutation property Gk
h(I

k
grad,hp) = Ik

curl,h(grad p).
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Stokes equations in curl-curl formulation: tests I

◦ Ω = (0, 1)3.

◦ Voronoi mesh families (similar results on tetrahedral meshes):

(a) Voronoi mesh
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Stokes equations in curl-curl formulation: tests II

◦ Exact solution: for some λ ≥ 0,

p(x, y, z) = λ sin(2πx) sin(2πy) sin(2πz) ,

u(x, y, z) =


1
2 sin(2πx) cos(2πy) cos(2πz)

1
2 cos(2πx) sin(2πy) cos(2πz)

− cos(2πx) cos(2πy) sin(2πz)

 .

◦ Measured errors:

Ed in discrete norms between the approximate solutions and the
interpolates of the exact solution (as in the theorems).
Ec in continuous norms between reconstructed potentials of the
approximate solutions and the exact solution.
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Stokes equations in curl-curl formulation: tests III

Ec, k = 0; Ec, k = 1; Ec, k = 2

Ed, k = 0; Ed, k = 1; Ed, k = 2
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(a) Errors on u, λ = 1
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(b) Errors on u, λ = 1e5
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Stokes equations in curl-curl formulation: tests IV

Ec, k = 0; Ec, k = 1; Ec, k = 2

Ed, k = 0; Ed, k = 1; Ed, k = 2
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(b) Errors on grad p, λ = 1e5
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Navier–Stokes in curl-curl formulation: theorem

Theorem (Error estimates [Di Pietro et al., 2024])

Define the discrete L4-Sobolev constant by

CS,h := max

{
∥P k

curl,hvh∥L4(Ω)

∥Ck
hvh∥div,h

: vh ∈ (ImGk
h)

⊥\{0}

}
.

With Ru solenoidal part of forcing term f (depends only on u), if

C2
S,h∥I

k
curl,h(Ru)∥curl,h is small enough,

then

∥uh − Ik
curl,hu∥curl,h + ∥Ck

h(uh − Ik
curl,hu)∥div,h ≲ C(u)hk+1.

◦ Robust estimate with respect to the pressure.

◦ Boundedness of CS,h w.r.t. h still an open question (expected for convex
domains).
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Navier–Stokes in curl-curl formulation: convergence tests I

Ec, k = 0; Ec, k = 1; Ec, k = 2
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(b) Errors on u, λ = 102
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Navier–Stokes in curl-curl formulation: convergence tests II

Ec, k = 0; Ec, k = 1; Ec, k = 2

Ed, k = 0; Ed, k = 1; Ed, k = 2
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(a) Errors on grad p, λ = 1
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(b) Errors on grad p, λ = 102
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Navier–Stokes: flow in cavity with mixed BCs I

In the unit cube Ω = (0, 1)3:

◦ Essential BCs (pressure and tangential velocity):

p(x, y, z) = −z and u× n = 0

on the bottom corner {0} × (0, 0.25)× (0, 0.25) of the face x = 0.

◦ Natural BCs (tangential vorticity and flux):

curlu× n = 0 and u · n = 1

on the bottom corner {1} × (0, 0.25)× (0, 0.25) of the face x = 1,

◦ Homogeneous natural BCs elsewhere.
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Navier–Stokes: flow in cavity with mixed BCs II

(a) Velocity (b) Pressure

Figure: Velocity streamlines and pressure
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Reissner–Mindlin

Model:

γ + div(C grads θ) = 0 in Ω,

−div γ = f in Ω,

γ =
κ

t2
(gradu− θ) in Ω,

θ = 0, u = 0 on ∂Ω.

◦ Ω polygonal domain (2D), t: plate thickness.

◦ γ: shear strain; θ: fibers rotations; u: transverse displacement.

◦ f : transverse load; C: linear elasticity tensor; κ: shear modulus.

Scheme: [Di Pietro and Droniou, 2021b].

◦ Approximation space for u: Xk
grad,h.

◦ Approximation space for θ: Xk
curl,h enriched with full vector-valued

polynomials on the edges (not just tangential components).
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Reissner–Mindlin: theorems I

Theorem (Error estimate for arbitrary k)

If the solution (η, u) satisfies u ∈ C1(Ω) ∩Hk+2(Ω) and
θ ∈ H1(Ω)2 ∩Hk+2(Ω)2, then

∥(θh − IΘ,hθ, uh − Igrad,hu)∥L2 ≲ hk+1 (|θ|Hk+2 + |γ|Hk+1) .

◦ Optimal rate of convergence, but not robust w.r.t. t → 0 (even for k = 0).

◦ Lack of robustness for k ≥ 1 observed on solutions s.t. |γ|Hk+1 ∼ t−k− 1
2 .
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Reissner–Mindlin: theorems II

Theorem (Locking-free error estimate for k = 0)

Under the previous assumptions and k = 0, it holds

∥(θh − IΘ,hθ, uh − Igrad,hu)∥L2

≲ h (|θ|H2 + t|γ|H1 + ∥γ∥L2 + ∥f∥L2) .

◦ Fully robust w.r.t. t: |θ|H2 + t|γ|H1 + ∥γ∥L2 + ∥f∥L2 ≲ 1.
⇝ Observed in numerical tests.

◦ Proof relies on:

Commutation property Gk
h(I

k
grad,hu) = Ik

curl,h(gradu),
Conforming lifting of Uh, and a piecewise-constant lifting on Θh based
on a local discrete Hodge decomposition.

Both challenging because of the polygonal mesh...
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Reissner–Mindlin: test

Stabilised P2-(P1 + B3) scheme DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2
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Conclusions and extensions I

◦ Discrete version of the de Rham complex, of arbitrary degree of accuracy and
applicable to polytopal meshes.
Other discrete polytopal complex based on VEM [Beirão da Veiga et al., 2018],
see connexions in [Beirão da Veiga et al., 2022].

◦ Full theory:

Algebraic properties: same cohomology as the continuous de Rham
complex on any domain, commutation properties between interpolants
and discrete operators, etc.
Analytic properties: Poincaré inequalities, primal and adjoint
consistency, etc.

◦ Polytopal exterior calculus version: complex written in the framework of
differential forms (see Finite Element Exterior Calculus for FE methods).
[Bonaldi et al., 2024].

◦ DDR on manifolds, with application to Maxwell [Droniou et al., 2024].
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Conclusions and extensions II

◦ Other polytopal complexes based on DDR approach (see Marwa Salah’s
presentation to follow): plate complexes, divdiv complexes (2D and 3D),
Stokes complex...

◦ Applications:

Magnetostatics. [Di Pietro and Droniou, 2021a]

Stokes equations in standard form. [Hanot, 2023]

Kirchoff plate. [Di Pietro and Droniou, 2023b]

Quad-rot problem. [Di Pietro, 2024]

Biharmonic problems. [Di Pietro and Hanot, 2024a]
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◦ Notes and series of introductory lectures to DDR:

https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html
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