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VEM-—fully discrete polytopal scheme for mixed-dimensional poromechanics with
frictional contact at matrix-fracture interfaces. Computer Methods in Applied
Mechanics and Engineering, 422:116838, 2024.
https://arxiv.org/abs/2312.09319

m Analysis for purely mechanical model with Tresca friction:

Droniou, J., Haidar, A., and Masson, R. Analysis of a VEM—fully discrete
polytopal scheme with bubble stabilisation for contact mechanics with tresca
friction. ESAIM: M2AN Math. Model. Numer. Anal. 59 (2), pp. 1043-1074,
2025. http://arxiv.org/abs/2404.03045.

See also references inside.
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Outline

Mixed-dimensional poromechanical model
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Matrix and fracture network

Notations: € domain (matrix), T" fracture, two sides + with outward normals
+
n-.

Unknowns: displacement u in matrix (discontinuous across fractures),
pressure p,, in matrix, pressure p ¢ in fracture.
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Poromechanics |

Flow equations: Darcy law for p,,, Poiseuille law for p .

O1¢m +divV,, = hy, on (0,7) x Q\T,
Vi = —K,’]" Vom on (0,7) x Q\T,
0;dy +divy —[Viula=hr on(0,T)xT,
on (0,T) x T,
YEV,, = 2‘;_-;'" Ir]* on (0,T)xT

with )
Ot = bdiv(dsu) + M@,pm, dy = d;; = [u]la-

Notations: [Vul]la =¥V =va Vi, [P]* =¥ Pm —py.
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Poromechanics |l

(w) =2u (u) +A(divu) I (Effective stress),
T (W, pm) = (W) = bpy I (Total stress),
T =yn " (W,ppn)+pm* (Traction).

Mechanical equations: quasi-static contact-mechanics for u with Coulomb
friction.

—div T(u,pn) =f on (0,7) x Q\T,
T*+T" =0 on (0,7) xT,
Th <0, [ula <0, [uu7w =0, on (0,T)xT,
IT,| < —F T, on (0,T) x T,
T; - O[u]lr — F T, 10;[u]| =0 on (0,T) xT.

Notations: X; and X,,: tangential and normal components of X along I

Other contact models: no friction (F = 0); Tresca friction (-F T, ~ g and
Or[[ul]l ~ [[u).
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Poromechanics 11l

Weak formulation for mechanical equations: using Lagrange multiplier
A =-T* to impose the contact conditions.

Spaces and cone:
Up = {ve H(Q\D? : vjpq = 0},
Cr() = {ue HTVAD? : uwr < (Fu, Iver

Vv € (HY2M)9 st. v, < o}.

Equations: find u: [0,7] — Ug and 4 : [0,T] — Cr(4,) s.t., for all
v:[0,T] > Up and p: [0,T] — Cr(4,),

/Q< (w : (v)—bpmdiv(v>>+<ﬁ,ﬂvﬂ>r+/rpf [[v]]n=/gf.v,
(n — A, [u]ln)r + (e — A2, [Sru]l)r < 0.
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Outline

Hybrid finite volume scheme for flow

Slides:
'l’-_ 1, T

8/37



Mesh and spaces

M, F,V cells (K), faces (o)
and vertices (s). X, entities X
on z.

Spaces for matricial and interface pressures: Xp = Xp,, X Xp, with

Xp,, = {PZ),,, =((PK)KeM, (Po)oer 7 (pKo')rreﬁ,KeM(,) :

Pk €R, ps €R, pK(TER},

Xop, = {Pﬂf :((pcr)(re‘f-'p (pe)eesr) :po €R, pe € R}-

X%: with zero boundary conditions.
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Reconstruction operators

Gradients: Vo, : Xp, — L*(Q)? such that (with pxs = po if o ¢ T)

1
(Vo,p0,)lk = 7= > |o|pkonke +stabilisation.
|K| oEFK

Similar for Vg, : Xp, — L*(I"? along the fracture.

¥

Function reconstructions: Ilp,, : Xp,, — L?(Q) such that
(Ip,,po, )|k = Pk-

Similar for Ilp, : Xp, — L*(T).

Jump reconstruction: [[-]* : Xp — L%(T") such that

(lpolHle = Pko — Po  with K on the + side.
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Flow scheme

Model:

By b — dlv( "‘me)zhm

atdf dw,( 4 v,pf) [Valla = iy
SV = 2]

on (0,7) x Q\T,

on (0,7) xT,
on (0, T)xTI'
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Flow scheme

Model:
Oy — div (K—"‘me) = on (0,7) x Q\T,
dydy — dw,( S Veps) = [Vila=hy  on (0,T)xT,
YaV 2Kf“|[ 1" on (0,T)xT

N e XN st Vap € X, Va=1,--- N,

.....

HFV scheme: Find (p}))n=1

K
/(5?%) Mp,,q90,, + _mVZ)mp'gl)m 'VZ)MCID,")
Q
(d” )5
/D
+ (5nd o lp,qp, + —5—Vop,pp Vo QD-)
/1_ t O 74Dy 12 ¥ Dy 4Dy

Kfn
+ Z / n—1 ﬂ:przl)]]aﬂ ﬂqD]]aD:/hmHDranm+/thZ)qu)f’
rdip Q r

ae{+,—}

nyp _ At-A"T!
where 6y A = S——.
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Outline

Bubble-enriched polytopal scheme for mechanical model
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Mesh

Polytopal mesh, compatible with fractures

m 7", faces of K on positive side of fracture.
m For s € V, Ks: set of cells on the same side of K.

m If 0 € F1: K on positive side, L on negative side.

Iy

gZ'/
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Discrete spaces

Displacement: nodal unknowns (discontinuous across fracture) and one
bubble on each fracture face (positive side).

Uo,p = {VZ) = ((vis)keM, sevi> (Vo) Ke M, oert )
vis €RY, Vg €RY, vy =0 if s € Ve

vys = Vs if K, L are on the same side of F}.

Lagrange multipliers: piecewise constant on fracture faces.

My = {Ap € L*(1)? : A, := (Ap)|+ is constant for all o € Fr}.

Discrete dual cone:

Cop (1pn) ={po = (Uom HDs) EMp : ptpn 20, |[Hpz| < Flpa}.
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Reconstructions in Ug p: faces

m From nodes, reconstruct edge values and use them to define the face

gradient:
1 Vs, T Vi
- Z |6|¥ @ Ny

e=5152€E,
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Reconstructions in Ug p: faces

m From nodes, reconstruct edge values and use them to define the face
gradient:

]. A% =+ Vg
=17 Z |€| us K ®Nge.

o 2
| e=5152€E,

m Reconstruct face averaged displacement:
lgovp = Z (’-)S—V‘K&
seVy
m Jump reconstructions, with the bubble:

[[VZ)]](J' = lgov—1Ilev + vgo .
— S~
fixed by vertex DOFs free
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Reconstructions in Ug p: cells

Same principles...

m Using reconstructed face values and bubble, define the cell gradient:

1 1
Vgvp = T4 Z |o[kov ® ngo + K| Z |0 VKo ® DKo

oeFK (reTl*K

m Reconstruct cell averaged displacement:

K
HKVD = Z Wy Vs

seVk

Global reconstructions: [-]|p, Vo, lp, o, divp, o.
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Mechanics scheme

Model:
/g( (W (V) = b pudiv(v)) + (4 [[V]]>l‘+/rpf Mn:/gfw,

</Jn — An, [u]]n>l" + (IJT - A, I[atu]]‘rh" <0.

Scheme:
/Q p(up) 1 o (Vo) +Suap (W), Vo) - /bHDmPD divpvyp

+/HD_[p'zl)f[[VZ)]]Z),n+/ [volo = /f" Mpvyp,
r r

KeM

[ (0= 2 Iy L+ (0 = 2 ) - [0 ] ) <0

Note: can also be written in virtual elements framework.
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Coupling equations

Model: 1
at¢m = bdiv(atu) + Matpm7

dy = &~ [u].
Discretisation:

1
5?¢D =b divyp ((5?11@) + M&?Hpmpz)m,

& =5y~ [0 o
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Outline

Theoretical results
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On the fully coupled system

Theorem (Discrete energy estimate)

Foralln=1,---,N,

1 1
o [ 5( o) o)+ 110 (up.up) + 11 1Mp, o, )
Q

+ /F Fa 18/up] o]
—-1\3
Ko fD) 2
+ [ —Vo,pp Vop,Dy +/’—I D:Pp |
[2 n Dm D r 12p 7 Z)f

ar Z /d" 1(|I D]]D)Q

ac{+,—}

S/hmnz)mp%m+‘/thDfprzl)f+ > /f;;.nocs;*ug.
Q r ’

KemvK

Moreover, d? D= dC
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On the pure mechanical model with Tresca friction

Theorem (Error estimate for Tresca)

Ifue H*(M) and A € H'(F7), then

IVoup = Vull ;2 o\F) + 4o = Al-1or S Cuaho.
(Q\I')

m || - ||_y,,r discrete H~"-like seminorm.

m Error analysis based on consistency and stability.

Tools: Korn inequality and conditions, ensured by the
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Tools: Korn and inf-sup

Discrete H'-norm:

2 2
IVol} p = IVovoliaq + D Sk(vo,vo).
KeM

Theorem (Discrete Korn inequality)

For all v e Uy, p,

2 2
Vol 5 s 1l 0032 + Y Sk(VD, VD).
KeM

Theorem (Discrete inf-sup condition)

oo - [volo
sup r - — — > [Apll-1/2r Ylp € Myp.
voeUop\(0y  IVollLo
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|deas for discrete inf-sup property |

r

/ /lz) * Vi

T i

lApll-vr = Z sup -
& viem @rroavoy Vil @)

Ingredients for inf-sup:
m Clément-like H'-stable interpolator adapted to fractures.

m Fortin property for jump: for v; € Hl(Q;’;Fi) and vy = interpolant of
extension by 0 of v; by 0,

//11) [volo =/ Ap - vi.
r I
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Outline

Numerical results

m Contact mechanics: convergence

m Contact mechanics: benefit of polyhedral meshes

m 3D full poro-mechanical model
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Mixed-dimensional poromechanical model

Hybrid finite volume scheme for flow
Bubble-enriched polytopal scheme for mechanical model
Theoretical results

Numerical results

m Contact mechanics: convergence

m Contact mechanics: benefit of polyhedral meshes
m 3D full poro-mechanical model
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Static contact (Tresca), 3D manufactured solution |

Setting:

Q= (-1,1)3T={0} x (-1,1)%
mg=1, u=4=1.

m Explicit analytical solution such that:

m sticky-contact for z < 0 ([u]ln =0, [u]]r =0)
m slippy-contact for z > 0 ([u]la =0, [[u]<| > 0)

m Cartesian, tetrahedral and generalised hexahedral meshes.

Figure: Generalised hexahedral meshes: cut (left) and barycentric subdivisions (right).
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Static contact (Tresca), 3D manufactured solution Il

Cartesian Tetrahedral
1 1
0.1 0.1
s
o 0.01 0.01
=
i}
N 0.001 0.001
~ u—e—
0.0001 0.0001 [u]
Vu — g
A 1.5th and 2nd order A Ist and 2nd order
le-05 J le-05 N
4 8 14 24 40 64 12 20 31 51 81 116
5 3
Ncell Ncell

Note: 1072 accuracy for u achieved with ~ 30% Cartesian cells, ~ 603
triangular cells.
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Static contact (Tresca), 3D manufactured solution Il

Hexahedral (cut) Hexahedral (bary)
1 0.1
0.1 *
0.01
-
o
= €
58} 0.01
N 0.001
~ u —e— u —e—
0.001 F [u] [u]
Vu —— Vu = Mﬁ.
A Ist and 2nd order 0.0001 A Ist and 2nd order
0.0001
4 8 14 24 40 8 14 24 40 64
1 1
3 3
Ncell Ncell

Note: 1072 accuracy for u achieved with ~ 303 Hexahedral cells.
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Outline

Numerical results

m Contact mechanics: benefit of polyhedral meshes
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Setting

m 6 fractures in a 2mXx1m quadrangle.
m Displacement: u =0 at the bottom, u = [0.005m, —0.002m] at the top.
m E =4GPa, v = 0.2, friction variable in the fractures.

m Triangular meshes, reference solution computed with 730 880 triangles.

Focus on stick-slip states of the fractures
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Results

Onu\ S!lck s1|p

—\
5
0.0009 F AN 7 00005 ‘ — ‘
7N R
7 N L ’
P N 0.0004 , v
7 \ RN
0.0006 | 0% % 1 o003l s \
y tri3 mesh —e— \“ 0-0002 - ,'/ . \-
0.0003 + 7 1 f tri3 mesh +\‘\
’/ tri3-tri4 mesh — B
p X 0.0001 + tri3-tri4 mesh
reference - - - \ i \
| ¥ reference - - - 1\
(o — }_\‘ 0 prommedd -—son
0 01 02 03 04 05 06 0 0.1 0.2 0.3 0.4

tri3: triangles.
tri3-tri4: triangles with one additional node at fracture edges (polygons).
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Mixed-dimensional poromechanical model

Hybrid finite volume scheme for flow
Bubble-enriched polytopal scheme for mechanical model
Theoretical results

Numerical results

m Contact mechanics: convergence

m Contact mechanics: benefit of polyhedral meshes
m 3D full poro-mechanical model
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Setting

Data: E =4Gpa, v=0.2, F =0.5, b =0.5, M = 10GPa.
Dirichlet BC: u =0 at bottom,

_ [ 0.002%[1,1,-1]T2 ifr<T/2,
u(tx,y,1) = { 0.002x [1,1,-1]T  ifr>T/2.

Fracture network:
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Results |

-1.2e-04 -5e-5 7.3e-19 -1.2e-04 -5e-5 7.3e-19

Figure: Normal displacement jumps using 47k cells (left) and 127k cells (right).
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Results |l

-1.5e-04 0  0.0002 0.0004 6.6e-04 -1.5e-04 0  0.0002 0.0004 6.6e-04

—

L I g N

Figure: Tangential displacement jumps (one direction) using 47k cells (left) and 127k cells
(right).
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Conclusions
m Polytopal scheme, applicable on generic meshes (including hanging nodes,
cut cells, local refinements). Seamlessly handles crossing fractures, etc.

m Bubble enrichment (first one for polytopal methods) to ensure inf-sup
conditions to bound Lagrange multipliers.

m Complete analysis for mechanical models.

m Robust simulations (including solver behaviour) for 3D poromechanical
model with network of fractures.

m Ongoing work: extension to arbitrary order of approximation.

~> Ritesh’s presentation, MS113, Friday 10am-12noon (Leacock
232)
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