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Stokes in “standard” formulation

o Q domain, v >0and f € L*(Q). Findu:Q - R3>and p: Q — R s.t.
Jop=0and
—vAu+gradp=f inQ, (momentum conservation)
divu=0 in§, (mass conservation)
u=0 ondQ, (boundary condition)
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Stokes in “standard” formulation

o Q domain, v >0 and f € L*(). Findu:Q - R?>and p: Q — Rst.
Jop="0and

—vAu-+gradp=f in(, (momentum conservation)
divu=0 in€Q, (mass conservation)
u=0 on9Q, (boundary condition)
o Weak formulation: Find (u,p) € Ho(grad,Q)? x L*(2) s.t. [,p =0 and
v(gradu,gradv) > — (p,dive)2 = (f,v)2 Yo € Hy(grad, Q)?,
(divu,q)r2 =0 Vg € L*(Q)

Note: for e € {grad, curl, div},
H(o,) = {z € [3(Q) : oz € L2(Q)}

and 0 indicates zero boundary conditions.
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Stokes in “standard” formulation

o Q domain, v >0and f € L*(Q). Findu:Q - R3>and p: Q — R s.t.

Jop=0and
—vAu+gradp=f inQ, (momentum conservation)
divu =0 inQ, (mass conservation)
u=0 ondQ, (boundary condition)

o Weak formulation: Find (u,p) € Hy(grad,Q)* x L?(Q) s.t. [,p =0 and
— (p,dive) 2 = (f,v)2 Vv € Hy(grad,Q)?,

v(grad u,grad v) 2
(divu,q)rz =0 Vg € L*(Q)

o A priori estimates require: (a < b means a < Cb with C independent of a,b.)

e Poincaré inequality: ||-||z2 < || grad |2 on Ho(grad, ),

: (p,divv) 2 : .
® inf-sup SUPyc 1, (grad,0) Tol o eras > C||p||z2. equivalent to:

Im div = L2(9)
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Stokes in curl-curl formulation: weak form

o Recasting the Stokes equations:

—vAu

)+gradp=f inQ,  (momentum cons.)

divu =0 in€Q, (mass cons.)
(boundary conditions)

v(curlcurlu —

curlu xn=0andu-n=0 on 99,
Jop=0
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Stokes in curl-curl formulation: weak form

o Recasting the Stokes equations:

—vAu

)+gradp=f inQ,  (momentum cons.)

divu =0 in€Q, (mass cons.)
(boundary conditions)

v(curlcurlu —

curlu xn=0andu-n=0 on 99,
Jop=0

o Weak formulation: Find (u,p) € H(curl;Q) x H(grad, Q) such that
Jop="0and

v(curlu, curlv)p2 + (grad p,v)p2 = (f,v) 2
~(u,grad )= = 0

Vv € H(curl; Q),
Vg € H(grad, Q).
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Stokes equations in curl-curl formulation: stability

v(curlu, curlv)r: + (gradp,v)p2 = (f,v)2 Vv € H(curl; ),
—(u,gradq)rz =0 Vq € H(grad, Q)

o Make v = grad p to get || grad p|/zz < ||f||z2 since curlgrad = 0.
o Make (v,q) = (u,p):

vl curlul3, < ||fllzz|lull 2.
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Stokes equations in curl-curl formulation: stability

v(curlu, curlv)r: + (gradp,v)p2 = (f,v)2 Vv € H(curl; ),
—(u,gradq)rz =0 Vq € H(grad, Q)

o Make v = grad p to get || grad p|/zz < ||f||z2 since curlgrad = 0.
o Make (v,q) = (u,p):

vl curlu|2, < |||l zz]lwl Lz

o If  does not have any tunnel,

Im grad = Ker curl.

The incompressibility gives w | Im grad, so u € (Ker curl)* and the

Poincaré inequality: ||-]|z2 < || curl-|z2 on (Ker curl)*

yields
lu|lre < ||curlul|g:.
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Take-home message

Analysis of these models requires:

o Poincaré inequalities: ||z||z> < ||ez||z> for z € (Kere)t.

o Structural properties of the de Rham complex

grad

H(grad,Q) 225 H(curl; Q) <4 H(div; Q) —% L2(Q)
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Take-home message

Analysis of these models requires:

o Poincaré inequalities: ||z||z> < ||ez||z> for z € (Kere)t.

o Structural properties of the de Rham complex

grad

H(grad,Q) 225 H(curl; Q) <4 H(div; Q) —% L2(Q)

Preserving those at the discrete level is essential to design robust schemes.
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Polytopal complexes

Slides
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The Finite Element way

Global complex

Tn = {T'} conforming tetrahedral/hexahedral
mesh.

o Define local polynomial spaces on each element, and glue them together to
form a sub-complex of the de Rham complex:

grad

1 di
V}? Vhl cur Vh2 iv Vh3

I [ [ [

H(grad, Q) 229 H(curl; Q) <=L H(div;Q) —4% 12(Q)

Example: conforming P*—Nédélec—Raviart-Thomas spaces [Arnold, 2018].

o Gluing only works on special meshes...
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The Finite Element way
Shortcomings

o Approach limited to conforming meshes with standard elements

local refinement requires to trade mesh size for mesh quality
complex geometries may require a large number of elements

the element shape cannot be seamlessly adapted to the solution (e.g.
hexahedra in boundary layers + tetrahedra in the bulk for CFD
simulations)

iy

o Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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Benefits of polytopal meshes

Local refinement is easy, and preserves mesh regularity.

o

Agglomeration of elements (e.g., for multigrid methods) is seamless.

[¢]

High-level approach can lead to leaner methods (fewer DOFs).

[0}

Can be combined with standard Finite Elements on hybrid meshes (made
of tetrahedra/hexahedra + polyhedral elements).

[¢]
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A practical example from CEA-CESTA

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.

2000mm
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A practical example from CEA-CESTA

Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).

oS
DR

AV
AVAV4
]
\/
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A practical example from CEA-CESTA

Accuracy: comparison of modulus of reflected near fields at the top.

T T T T T T
—&— bem —A— vbem-1z -
20 [-| —o— vbem-12zQ —— vbem-3z T i
—— vbem-4z
) T
2 2
S <
g z
Y e
g E
£ E]
o &}
—H—ben —A— vbem-1z
—6— vbem-12Q —— vbem-3z
—+— vbem-4z
N O et A B N .’
10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
Fréquence (en MHz) Fréquence (en MHz)

Computational cost

Method | Assembly | Resolution
bem 813s 125s
vbem-3z 321s 19s
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The Discrete De Rham method
m DDR: generic principles
m Discrete H(grad, 2) space and gradient/potential reconstructions
m The DDR complex
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The Discrete De Rham method
m DDR: generic principles
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Overview of the Discrete De Rham (DDR) complex

cr Ds

(;
R—— Xgradh — Xcurlh — Xleh — ,Pk(ﬂl) L) 0

o Fully discrete complex (not sub-complex) of bespoke finite-dimensional
spaces and operators.

o Discrete spaces not made of functions but:

o X’f’h made of vectors of polynomials on vertices, edges, faces, ele-
ments.

o Discrete operators (differential and function reconstructions) built
from these DOFs via integration-by-parts formulas.
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Overview of the Discrete De Rham (DDR) complex

R« C=(Q) 224 oo@)? 2l coo(@)? 4, o) —2 0

k k k
llgrad n J’%url h J’ldiv h lle n
k

G k
R—— Xgradh — Xcurlh —> Xleh L ,Pk(ﬂl) L) 0

o Fully discrete complex (not sub-complex) of bespoke finite-dimensional
spaces and operators.
o Discrete spaces not made of functions but:

o X’f’h made of vectors of polynomials on vertices, edges, faces, ele-
ments.

o Discrete operators (differential and function reconstructions) built
from these DOFs via integration-by-parts formulas.

o Interpolators l’f’h give meaning to these polynomials/DOFs as mo-
ments.
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Guiding principles for the construction

Joint work with D. Di Pietro and F. Rapetti.
(Ref: [Di Pietro et al., 2020], [Di Pietro and Droniou, 2023].)

o Hierarchical construction: from vertices, to edges, to faces, to elements.
o Enhancement: on each (relevant) mesh entity,

o discrete differential operator first,

o potential reconstruction using the discrete differential operator.

(both polynomially consistent, both based on IBP formulas.)

o The definition of the spaces (DOFs) also guided by these IBP formulas.

Same guiding principles as the Hybrid High-Order (HHO) method
[Di Pietro et al., 2014], [Di Pietro and Droniou, 2020].

17/53



The Discrete De Rham method

m Discrete H(grad, (2) space and gradient/potential reconstructions
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Mesh notations

o Mesh My, = (Tp, F, En, Vi) of elements (T'), faces (F), edges (E),
vertices (V'), with intrinsic orientations (tangent, normal).

o P(X) polynomial of degree </ on X =T, F, E.
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P*-consistent gradient

Edge F
o IBP is the starting point: if ¢ € P**1(E) then

[ar=-[a o +a@urien) -gairia) e PE)
E E k—1
(S (E)

with derivatives in the direction tg.
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P*-consistent gradient

Edge F
o IBP is the starting point: if ¢ € P**1(E) then

/ qr = —/ ﬁ%ﬁéq ' +q(zy,)r(zy,)—q(zy,)r(zy,) Vr € P*(E)
B B EPE-1(E)

with 7% the L2-projection on P*~1(E).
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P*-consistent gradient

Edge E
o IBP is the starting point: if ¢ € P**1(E) then

[E dr == [ whar + @@ —dev)ren) Ve PHE)
FE

o Space and interpolator:
Xbadp = {QE = (e, (qv)vevs) : ae € P*HE), qv € R}7

Iy aa.nd = (Wéfglq, (q(zv))vevs,)  Vge C(E).
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P*-consistent gradient

Edge F
o IBP is the starting point: if ¢ € P**1(E) then

/ qr = —/ W%ﬁéq '+ q(zv,)r(zv,) — q(Tv, )r(TV,) Vr € P*(E)
E E

o Space: Xérad,E = {QE = (QEa (QV)VEVE) 1 gE € Pkil(E)) qv € R}
o Edge gradient G’,ﬁ;gE € P¥(E) st.

[ (Grapr == [ awr' + qvrt@n) ~avri@v) e PHE).
E E
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P

Ed

*_consistent gradient
ge B

o IBP is the starting point: if ¢ € P**1(E) then

/ qr = —/ W%ﬁéq '+ q(zv,)r(zv,) — q(Tv, )r(TV,) Vr € P*(E)
E E

o Space: Xérad,E = {QE = (QEa (QV)VEVE) 1 gE € Pkil(E)) qv € R}

o Edge gradient Gkq, € P*(E) s.t.

dg

| @rar == [ oo+ avr(ev) —aurtav)  vre PHD).
o Potential reconstruction 'ngrlgE € PHYE) st.

/E (itig, ) = - /E (Gha,)etav (@) —ave(@y) Ve € PH2(E).
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P*-consistent gradient

Edge F
o IBP is the starting point: if ¢ € P**1(E) then

/ qr = —/ W%Téq '+ q(zv,)r(zv,) — q(Tv, )r(TV,) Vr € P*(E)
E E

o Space: Xérad,E = {QE = (an (qV)VEVE) 1 gE € Pkil(E)7 qv € R}

o Edge gradient Gkq, € P*(E) s.t.

dg

| @rar == [ oo+ avr(ev) —aurtav)  vre PHD).
o Potential reconstruction 'yg“gE € PHYE) st.

/E (itlg )2 = — /E (Gha ) otavsz(@v,)—avz(@v) Yz € PH2(E).

Polynomially consistent: G¥I% .4 zq = ¢ and Y5 ' Ik g pa = g for

all ¢ € PFH(E).
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P*-consistent gradient

Face F'
o IBP is the starting point: if ¢ € P*+1(F),

/(graqu)-v:—/ q divpv + Z wFE/ qunpg Yv GPk(F)2.
F F S E

EPE-1(F) Ecér
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P*-consistent gradient

Face I
o IBP is the starting point: if ¢ € P*+1(F),

/(graqu)-v:—/ T pq divev + Z wFE/ qunpg Yo e PH(F)?
F F EPR-1(F) Eeér E
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P*-consistent gradient

Face F'
o IBP is the starting point: if ¢ € P*+1(F),

/(graqu)-vz —/ Tr;‘;}q divp v+ Z wFE/ qunpg Yv EPk(F)Q.
F F E€éf E

o Space and interpolator:
Xgrad,p = {QF = (qr, (qp)Eeer (qv)vevy) :
ar € P*TUF), qp € PFTUE), av € R},

Igrad,Fq = (ﬂ-’l;j}%'qv (W%TEl(ﬂE)EEgF’ (q(wv))VGVF) Vq € C(F)
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P*-consistent gradient

Face F'
o IBP is the starting point: if ¢ € P*+1(F),

/(graqu)-vz —/ Tr;‘;}q divp v+ Z wFE/ qunpg Yv EPk(F)Q.
F F E

E€éf

o) Space: Xgrad,F = {QF - (qF7 <QE)EEEF7 (QV)VEVF) :
ar € PYU(F), qw € PUE), av € R},

o Face gradient G, tq, € PF(F)? st

/(Gllggp)'v: —/ qr divp v+ Z wFE/(VnglgE)v-an Yo € PH(F)%
F F B

FEcér
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P*-consistent gradient

Face I

o Space: Xérad,p = {gF = (qr, (qr)Beer, (qv)vevy) :

ar € PXU(F), qu € PU(E), av €R},
o Face gradient G, : 4, € PH(F)* st.

/(G'f;gF)-v /qulvF'v+ Z wFE/ Ayt qE)v npp Yo € PH(F)2
F

Ecér

o Potential reconstruction yi'q,. € PFH(F) st.

/(fyjffqu)disz:—/ GFqF z+ Z wFE/ ’y@“qE z - -Nrg

EcEr
Vz € ROMHE) = (2 — )P (F).
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P*-consistent gradient

Face I

o Space: Xérad,p = {QF = (qr, (qr)Beer, (qv)vevy) :

ar € PXU(F), qu € PU(E), av €R},
o Face gradient G, : 4, € PH(F)* st.

/(G?QF)'U / qr divp v+ Z wFE/ Ayt qE)v npp Yo € PH(F)2
F F

Ecér
o Potential reconstruction 'yllf«"'lgF € PFL(F) s.t.

/(Pyjffqu)disz:—/ GFqF z+ Z wFE/ ’yE qE z - -Nrg

EcEr
Ve € ROVAE) = (@ — 2p) P (F).

Polynomially consistent: GFIgrad ¢ = grad g and y5" lgrad B0 =q
for all ¢ € PF+1(F).
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P*-consistent gradient

Element T’

Same principle! Based on IBP we determine:
o An additional unknown (g7 € P*~1(T)) to get the space XgradT, and its
meaning (polynomial moment on T') to get the interpolator Igrad T
o A formula for the element gradient G : Xgrad = PH(T)3.
RHL L xk s PEHL(T),

o A potential reconstruction P, 7 Xgraq,
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X*

the discrete H(grad, (2) space

<> grad,h’

o Discrete H(grad, ) space:

Xfraan = {gh = ((qr)rem., (ar)rer,, (aB)Eee, (qv)vev,) :

ar € PXUT), qp € PHU(F), qp € PEU(E), qv €R .
o Interpolator: igrad’hq = g, with

av = q(zv),
qx = L*-projection on P*~1(X) of ¢, for X € {E, F,T}.
o Operator reconstructions:
% edge gradient GEqE € PF(E) ~ edge trace 7§+1q € PF(E),
* face gradient GFgF € PF(F)? ~ face trace 'kaq 6 Pk“(F),
T € PHH(T),

* element gradient Gl"}QT € P*(T)3 ~ el. potential P grad
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X*

the discrete H(grad, (2) space

<> grad,h’

o Discrete H(grad, ) space:

Xfraan = {gh = ((qr)rem., (ar)rer,, (aB)Eee, (qv)vev,) :

ar € P*"UT), qp € P*"H(F), qp € P*H(E), qv €R }

o Interpolator: Igrad nd = ¢, with

qv = q(wV)7
qx = L*-projection on P*~1(X) of ¢, for X € {E, F,T}.

o Operator reconstructions:
* edge gradient GEqE € P*(E) ~ edge trace v, !¢, € P*(E),

* face gradient GFQF € PF(F)? ~ face trace 'kaq € PHL(F),
* element gradient Gl"}QT € P¥(T)? ~ el. potential Pg;}j’TgT € PETY(T),
We want:
lgrad,h k G Q;CL k D}lz k 0
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the discrete H (curl;(2) space

Xk

<= curl,h’

o Discrete H(curl; ) space:

Xcurlh = {Qh = ((”T)TeTha (UF)Fefh,(UE)Eesh) :

vr € RTHT), vp € RT*(F), vp € Pk(E)},

with RT"*(X) = P*1(X) @ (x — &x)P*1(X) the Raviart-Thomas space.
o Interpolator: fgurl’hv = v, with
vp = L*projection on P¥(E) of v - tg,
vp = L*-projection on RT"(F) of v; i (tangential projection),
vr = L*-projection on RT™(T) of v.
o Operator reconstructions:

x face (scalar) curl Ckv . € P*(F) ~ tangent trace 7{“7FQF € Pk(F)?,
* element curl Chv, € P¥(T)% ~ element potential Py, ., v, € PH(T)3.
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Discrete gradient

(;
k
o We want Xgrad h Lurl,h'

o We have:
* Ghq,, € PH(E), Grq, € P*(F)? Ghiq, € PH(T)?,

* Xcurlh = {Qh = ((UT)TETM (VF)FeF,; (UE)Eefh) :

vy € RTH(T), vp € RT*(F), vp € Pk(E)}.

~~ Define G} : X grad n— X’c“url,h by projecting edge, face and element
reconstructed gradients onto the corresponding components:

: k : k
thh ((W’I;ZT,TGTQ;L)TETM (W%T,FGFQh)FG}'m (G%Qh)Eesh)-
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The Discrete De Rham method

m The DDR complex
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DDR complex: summary

I¥ aan Gy ck Dy
= , & k Eh k h 0
R == Xérad,h Xcurl,h Xdiv,h pk (ﬁt) 0.

o No basis functions, Fully discrete spaces not made of functions, but of
vectors of polynomials (DOFs) attached to geometric entities (emulates
continuity properties of each space).

Space | V E F T
Xgrad,T R Pk_l(E) Pk_l(F) Pk_l(T)
P, G PHE)  RTHF) RTHT)
X PH(F) N*(T)

PH(T) PH(T)

o Polynomial reconstructions of differential operator and potential by
mimicking IBPs.

27/53



L?-like inner products

o Local L?like inner product on the DDR spaces:
for € {grad, curl, div} and kgraa = k + 1, kcurl = kaiv = k.

(x7,YT)e,r = / o LT .TZJT+SoT($T,Z/T) Var,yr € X5(T),

(se,7 penalises differences on the boundary between element and face/edge
potentials).

o Global L?-like product (-, )s by standard assembly of local ones.

28/53



Outline

Properties of the DDR complex
m Algebraic properties, Poincaré and primal consistency
= Adjoint consistency

Slides
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Outline

Properties of the DDR complex
m Algebraic properties, Poincaré and primal consistency
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The DDR complex: algebraic properties

I* fely cr Dk

~grad,h k ~h k ~h k h k 0
R Xgrad,h Xcurl,h Xdiv,h P (771) 0.
o Complex:

CioGr =0, DjoCy=0.

o Same cohomology as the continuous de Rham complex; in particular,
if 2 has a trivial topology,

ImGF = kergﬁ, ImCF = kerD;’i.

o Commutation properties between the interpolators and the continu-
ous/discrete operators. For example,

Giilgraand = Lo p(gradq).

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],
[Di Pietro et al., 2025a], [Di Pietro et al., 2025b].
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The DDR complex: analytical properties

I* an el ck DFk
= ) k Zh k ~h k h 0
R == Xgrad,h Lurl,h Xdiv,h Pk (ﬁl) 0.

o Poincaré inequalities: for example,
|y leurth S ICH VA llaiv,n Vo, € (ker CF)*.

o Primal consistency (optimal approximation properties): for example, if
q is smooth,

k k k
”Pgr:;}:l,Tlgrad,Tq - Q||L2(T) S, hT+2|q|Hk+2(T) )

”(Pléurl,TQZ)lgrad,Tq - grad QHL?'(T) 5 h§“+1| grad q|H(’“+1’2)(T)'

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],
[Di Pietro et al., 2025a], [Di Pietro et al., 2025b].
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Properties of the DDR complex

m Adjoint consistency
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A DDR scheme for the Laplacian

Weak formulation Find p € Hp(grad, ) such that

(grad p, grad q)12(q) = / fq Vqe Hy(grad,Q)
Q

DDR scheme: set

XgradhO = {qh € Xg,.adh qv = qe = qr = 0 for all boundary V,E,F}.

and write: Find p, € Xérad’h’o such that

k k k+1 k
(Glp,, Glg, )euri = / FPEL g Vg € XEaano
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Analysis of the scheme: error estimate

k k k+1 k
(Qhﬂhaghgh)curl,h = /Qng:;d,th Vﬂh € Kgrad,h,o-

o Introduce the consistency error

. k+1 E rk k
gh<p’ gh) = /prg:z;d,hgh - (thgrad,hj% thh)curl,h'
o Subtract from the scheme to get the error equation
k k k
(Qh (Bh - lgrad7hp)7ghgh)curl,h - 5’1 (p7 gh)

o Divide by ||Qﬁgh||curl’h and take the supremum over g, :

&n(p,q,)
IGF (P, — IE ad nP)lleurt,n < max — —— "
Ep, grad, cur. 4, ”gzzgh”cuth
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Analysis of the scheme: bounding the consistency error

o Consistency error:
ph+1 k 1k k
p’ qh / f grad hqh (thgrad,hp7 thh)curl,h-
o Set u = —gradp and use f = divu and Q’fblgrad’hp = —l’éurl’hu:

En(p,q,) = (divu, Py grad hqh)L2(Q) + (_curl hU; thh)curlh

~~ Need to evaluate the non-conformity of the method: defect of
integration-by-parts coming from the discrete inner product and potential
reconstruction.
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Adjoint consistency

o Adjoint consistency: measures defect in discrete integration-by-
parts. For example, if q, € Kérad,h,m

(leUP grad hqh)Lz(Q) + (L:url rlU, thh)curl h

S W ul o (73, |GG, leurt h-

Note: proof uses a conforming lifting. [Di Pietro and Droniou, 2023],
[Di Pietro et al., 2025b].
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Discrete weak curl—curl formulations of Stokes

o Weak formulation: Find (u,p) € H(curl;Q) x H(grad,Q) st. [,p=0
and

v(curlu, curlv)2 + (gradp,v)r2 = (f,v)2 Vv € H(curl;Q),
—(u,gradq)r2 =0 Vg € H(grad, Q).
o Set
Xgrad h,* = { € X grad,h : (ghvlgrad,hl)grad,h = 0} .

o DDR scheme: Find (u;,p,) € Xk
(Qhﬂgh)’

n X Xk such that, for all

<X curl, L grad,h,x

V(QZHh’QQQh)div,h + (Qﬁﬂh’ﬂh)curl,h = (l]guﬂ’hfyﬂh)curl,hv

_(QZQM Eh)curl,h =0.

38/53



Error estimates

Setting

k
||2h||<2:ur1,1,h = ||2h||<2:ur1,h + ||Qh2h||3iv,ha
k
||gh||érad,1,h = ||gh||érad,h + ||thh||0url,ha
we have:
||yh - llccurl,h’u’HCUrl,Lh + th Igrad pngad,l,h 5 Gy (u)hk+1'
with Cy(u) depending w and some of its derivatives, but not p.

o Stability: using exactness of the complex and Poincaré inequalities, as for
the continuous model.

o Robustness with respect to the pressure: from the commutation
k
G ( =grad, hp) lcurl h(gradp)
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Numerical tests: setting

o 2 =(0,1)3.

o Voronoi mesh families (similar results on tetrahedral meshes):

(a) Voronoi mesh
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Numerical tests: setting

o Exact solution: for some A > 0,

p(x,y, z) = Asin(2mx) sin(27y) sin(27z) ,
1 sin(2mz) cos(2my) cos(272)
u(z,y,z) = |3 cos(2rz)sin(2my) cos(27z)
— cos(2mz) cos(2my) sin(27z)
o Measured errors:

* B and Eg in discrete norms between the approximate solutions and the
interpolates of the exact solution (as in the theorems).

Eg: Eﬂ = |luy, — l’éurl,hU”curl,l,h-

* E;, and E7 in continuous norms between reconstructed
potentials/projections of the approximate solutions and the exact
solution.

Eg: Ej = |lpn — plla(o)-
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Numerical tests: results for A = 1

——F¢ k=0;,—eFE° k=1, FE° k=2
~x- B4 k=0;-e- EY k=1,-o EY k=2

10t E
10° 5
100 F E
107 §
107 F E
1072
I o 1
L 1 1 1 1 1 E 1 1 1 1
10-08  10-06  10-094  10-02 10-08  10-06  10-04 10-02
(a) Errors on u (b) Errors on p
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Numerical tests: results for

107t

1072

k:o;—.—EC,
-x- B9 k=0;-e- E4,
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=1;-o- F4 k=2
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(a) Errors on u

(b) Errors on p
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Maxwell compactness

Slides
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Rellich compactness

If (qn)n is bounded in H(grad, ) then (qy,), is relatively compact in L*(2).

o Relatively easy because grad controls the variations in all directions.
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Maxwell compactness

If (vy,)r, is bounded in H(curl; Q) and

/ v, -gradz =0 Vz € H(grad,2),
Q

then (v,,),, is relatively compact in L?(£2)3.

o Also a version for sequences in H (div;2) that are orthogonal to curls.
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then (v,,),, is relatively compact in L?(£2)3.

o Also a version for sequences in H (div;2) that are orthogonal to curls.

o Much more challenging than Rellich: curl does not control the variations
of the function [Weber, 1980], [Jochmann, 1997].
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Maxwell compactness

If (vy,)r, is bounded in H(curl; Q) and

/ v, -gradz =0 Vz € H(grad,2),
Q
then (v,,),, is relatively compact in L?(£2)3.

o Also a version for sequences in H (div;2) that are orthogonal to curls.

o Much more challenging than Rellich: curl does not control the variations
of the function [Weber, 1980], [Jochmann, 1997].

o Orthogonality condition equivalent to divwv,, = 0 and v, - ng = 0.
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Uses of Maxwell compactness

o Bound of curl and zero div classical in curl-div problems, such as models
in electromagnetism (possibly using vector potential fixed by gauge).

o Compactness required for eigenvalue analysis and nonlinear models.

o Convergence analysis of schemes requires discrete versions of this
compactness; see, e.g., [Kikuchi, 1987] for eigenvalue problems.

o Discrete compactness also allows for fine convergence analysis of schemes,
possibly with models with rough coefficients
[Chaumont-Frelet and Ern, 2023], [Chaumont-Frelet and Ern, 2024].
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Maxwell compactness for DDR

Let v, € X’guﬂ’h be such that

(lwplleurt,n + IChvpllaiv,n) epy is bounded,
(v, GRG,eurth =0 Vg, € Xhroq

Then, there exists v € H(curl; Q) N Hy(div; Q) such that divv = 0 and, up
to a subsequence as h — 0, P ., v, — v in L*(Q)%.

Proof relies on:

o commuting quasi-interpolators (interpolators defined on minimal-regularity
spaces),

o conforming lifting (the same as for adjoint consistency).

[Chaumont-Frelet et al., 2025]
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Conclusions

o Polytopal complexes essential to design stable schemes for certain PDE
models on generic meshes (flexibility for local refinement etc.).

o Construction is hierarchical on mesh entities (vertices — edges — faces —
cells).

o DDR: based on suitably chosen degrees of freedom and reconstruction
operators inspired by integration-by-parts formula.

o Range of results for analysis of schemes: Poincaré inequalities,
primal/adjoint consistency, commutation properties, compactness, etc.

o Fully discrete approach already extended to other complexes (e.g., div-div
complex).

o Maxwell compactness for DDR, allows for analysis of eigenvalue problems
and nonlinear PDEs.
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https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html

COURSE OF JEROME DRONIOU FROM MONASH UNIVERSITY, INVITED PROFESSOR AT UCA

- Introduction to Discrete De Rham complexes

Short description (in french)
Summary of notations and formulas

Part 1, first course: the de Rham complex and its usefulness in PDEs, 22/09/22 (video)
Part 1, second course: Low order case, 29/09/22 (video)

Part 1, third course: Design of the DDR complex in 2D, 07/10/22 (video)

Part 1, fourth course: Exactness of the DDR complex in 2D, 10/10/22 (video)

Part 2, fifth course: DDR in 3D, analysis tools, 17/11/22 (video)
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https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html

N NEMESIS

New generation
methods for numerical
simulations

Funded by European Research Council

the European Union

Funded by the European Union (ERC Synergy, NEMESIS, project number 101115663). Views and
opinions expressed are however those of the authors only and do not necessarily reflect those of the
European Union or the European Research Council Executive Agency. Neither the European Union nor

the granting authority can be held responsible for them.

Thank you for your attention!
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