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Stokes in “standard” formulation

◦ Ω domain, ν > 0 and f ∈ L2(Ω). Find u : Ω → R3 and p : Ω → R s.t.∫
Ω
p = 0 and

−ν∆u+ grad p = f in Ω, (momentum conservation)

divu = 0 in Ω, (mass conservation)

u = 0 on ∂Ω, (boundary condition)

◦ Weak formulation: Find (u, p) ∈ H0(grad,Ω)
d × L2(Ω) s.t.

∫
Ω
p = 0 and

ν(gradu,gradv)L2 − (p, div v)L2 = (f ,v)L2 ∀v ∈ H0(grad,Ω)
d,

(divu, q)L2 = 0 ∀q ∈ L2(Ω)

◦ A priori estimates require: (a ≲ b means a ≤ Cb with C independent of a, b.)

• Poincaré inequality: ∥·∥L2 ≲ ∥grad ·∥L2 on H0(grad,Ω),

• inf-sup supv∈H0(grad,Ω)
(p,div v)L2

∥v∥H0(grad,Ω)
≥ C∥p∥L2 , equivalent to:

Imdiv = L2(Ω)
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Stokes in curl-curl formulation: weak form

◦ Recasting the Stokes equations:

−ν∆u︷ ︸︸ ︷
ν(curl curlu− graddivu)+grad p = f in Ω, (momentum cons.)

divu = 0 in Ω, (mass cons.)

curlu× n = 0 and u · n = 0 on ∂Ω, (boundary conditions)∫
Ω
p = 0

◦ Weak formulation: Find (u, p) ∈ H(curl; Ω)×H(grad,Ω) such that∫
Ω
p = 0 and

ν(curlu, curlv)L2 + (grad p,v)L2 = (f ,v)L2 ∀v ∈ H(curl; Ω),

−(u,grad q)L2 = 0 ∀q ∈ H(grad,Ω).
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Stokes equations in curl-curl formulation: stability

ν(curlu, curlv)L2 + (grad p,v)L2 = (f ,v)L2 ∀v ∈ H(curl; Ω),

−(u,grad q)L2 = 0 ∀q ∈ H(grad,Ω)

◦ Make v = grad p to get ∥grad p∥L2 ≤ ∥f∥L2 since curl grad = 0.

◦ Make (v, q) = (u, p):

ν∥ curlu∥2L2 ≤ ∥f∥L2∥u∥L2 .

◦ If Ω does not have any tunnel,

Imgrad = Ker curl.

The incompressibility gives u⊥ Imgrad, so u ∈ (Ker curl)⊥ and the

Poincaré inequality: ∥·∥L2 ≲ ∥ curl ·∥L2 on (Ker curl)⊥

yields
∥u∥L2 ≲ ∥ curlu∥L2 .
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Take-home message

Analysis of these models requires:

◦ Poincaré inequalities: ∥z∥L2 ≲ ∥•z∥L2 for z ∈ (Ker •)⊥.

◦ Structural properties of the de Rham complex

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)
grad curl div

Preserving those at the discrete level is essential to design robust schemes.

6 / 53



Take-home message

Analysis of these models requires:
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The Finite Element way
Global complex

Th = {T} conforming tetrahedral/hexahedral
mesh.

◦ Define local polynomial spaces on each element, and glue them together to
form a sub-complex of the de Rham complex:

V 0
h V 1

h V 2
h V 3

h

H(grad,Ω) H(curl; Ω) H(div; Ω) L2(Ω)

grad curl div

grad curl div

Example: conforming Pk–Nédélec–Raviart-Thomas spaces [Arnold, 2018].

◦ Gluing only works on special meshes...
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The Finite Element way
Shortcomings

◦ Approach limited to conforming meshes with standard elements

=⇒ local refinement requires to trade mesh size for mesh quality
=⇒ complex geometries may require a large number of elements
=⇒ the element shape cannot be seamlessly adapted to the solution (e.g.

hexahedra in boundary layers + tetrahedra in the bulk for CFD
simulations)

◦ Need for (global) basis functions

=⇒ significant increase of DOFs on hexahedral elements
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Benefits of polytopal meshes

◦ Local refinement is easy, and preserves mesh regularity.

◦ Agglomeration of elements (e.g., for multigrid methods) is seamless.

◦ High-level approach can lead to leaner methods (fewer DOFs).

◦ Can be combined with standard Finite Elements on hybrid meshes (made
of tetrahedra/hexahedra + polyhedral elements).
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A practical example from CEA-CESTA

[Touzalin, 2025]

Problem: use a boundary element method to analyse the shielding
effectiveness of a perfectly conductive box with a very small slit.

τ1

τ2

τ3

2000mm

5000mm

2000mm
424mm

3000mm
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A practical example from CEA-CESTA

Meshes: conforming triangular for finite-element boundary method (bem),
non-conforming triangular (polygonal) for virtual element boundary method
(vbem-3z).

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z

bem vbem-1z vbem-1zQ

vbem-1zV vbem-3z vbem-4z
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A practical example from CEA-CESTA

Accuracy: comparison of modulus of reflected near fields at the top.
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Overview of the Discrete De Rham (DDR) complex

R C∞(Ω) C∞(Ω)3 C∞(Ω)3 C∞(Ω) 0

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) 0

Ik
grad,h

grad

Ik
curl,h

curl

Ik
div,h

div

Ik
L2,h

0

Gk
h Ck

h Dh 0

◦ Fully discrete complex (not sub-complex) of bespoke finite-dimensional
spaces and operators.

◦ Discrete spaces not made of functions but:

◦ Xk
•,h made of vectors of polynomials on vertices, edges, faces, ele-

ments.

◦ Discrete operators (differential and function reconstructions) built
from these DOFs via integration-by-parts formulas.

◦ Interpolators Ik
•,h give meaning to these polynomials/DOFs as mo-

ments.
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Guiding principles for the construction

Joint work with D. Di Pietro and F. Rapetti.
(Ref: [Di Pietro et al., 2020], [Di Pietro and Droniou, 2023].)

◦ Hierarchical construction: from vertices, to edges, to faces, to elements.

◦ Enhancement: on each (relevant) mesh entity,

◦ discrete differential operator first,
◦ potential reconstruction using the discrete differential operator.

(both polynomially consistent, both based on IBP formulas.)

◦ The definition of the spaces (DOFs) also guided by these IBP formulas.

Same guiding principles as the Hybrid High-Order (HHO) method

[Di Pietro et al., 2014], [Di Pietro and Droniou, 2020].
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Mesh notations

◦ Mesh Mh = (Th,Fh, Eh,Vh) of elements (T ), faces (F ), edges (E),
vertices (V ), with intrinsic orientations (tangent, normal).

◦ Pℓ(X) polynomial of degree ≤ ℓ on X = T, F,E.

nF

F

TtE

E
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Pk-consistent gradient
Edge E

◦ IBP is the starting point: if q ∈ Pk+1(E) then∫
E

q′r = −
∫
E

q r′︸︷︷︸
∈Pk−1(E)

+ q(xV2)r(xV2)− q(xV1)r(xV1) ∀r ∈ Pk(E)

with derivatives in the direction tE .

◦
◦ Edge gradient Gk

EqE ∈ Pk(E) s.t.∫
E

(Gk
EqE)r = −

∫
E

qEr
′ + qV2r(xV2)− qV1r(xV1) ∀r ∈ Pk(E).

◦ Potential reconstruction γk+1
E q

E
∈ Pk+1(E) s.t.∫

E

(γk+1
E q

E
)z′ = −

∫
E

(Gk
EqE)z+qV2

z(xV2
)−qV1

z(xV1
) ∀z ∈ Pk+2(E).

Polynomially consistent: Gk
EI

k
grad,Eq = q′ and γk+1

E Ikgrad,Eq = q for

all q ∈ Pk+1(E).
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Pk-consistent gradient
Face F

◦ IBP is the starting point: if q ∈ Pk+1(F ),∫
F

(gradF q)·v = −
∫
F

q divF v︸ ︷︷ ︸
∈Pk−1(F )

+
∑

E∈EF

ωFE

∫
E

qv·nFE ∀v ∈ Pk(F )2.

◦
◦ Face gradient Gk

F : q
F
∈ Pk(F )2 s.t.∫

F

(Gk
F qF )·v = −

∫
F

qF divF v+
∑

E∈EF

ωFE

∫
E

(γk+1
E q

E
)v·nFE ∀v ∈ Pk(F )2.

◦ Potential reconstruction γk+1
F q

F
∈ Pk+1(F ) s.t.∫

F

(γk+1
F q

F
) divF z = −

∫
F

Gk
F qF · z +

∑
E∈EF

ωFE

∫
F

(γk+1
E q

E
)z · nFE

∀z ∈ Rc,k+2(F ) := (x− xF )Pk+1(F ).

Polynomially consistent: Gk
F I

k
grad,Eq = grad q and γk+1

F Ikgrad,Eq = q

for all q ∈ Pk+1(F ).
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F

(gradF q)·v = −
∫
F

πk−1
P ,F q divF v+

∑
E∈EF

ωFE

∫
E

qv·nFE ∀v ∈ Pk(F )2.

◦ Space and interpolator:

Xk
grad,F =

{
q
F
= (qF , (qE)E∈EF

, (qV )V ∈VF
) :

qF ∈ Pk−1(F ) , qE ∈ Pk−1(E) , qV ∈ R
}
,

Ikgrad,F q = (πk−1
P ,F q, (π

k−1
P ,Eq|E)E∈EF

, (q(xV ))V ∈VF
) ∀q ∈ C(F ).

◦ Face gradient Gk
F : q

F
∈ Pk(F )2 s.t.∫

F

(Gk
F qF )·v = −

∫
F

qF divF v+
∑

E∈EF

ωFE

∫
E

(γk+1
E q

E
)v·nFE ∀v ∈ Pk(F )2.

◦ Potential reconstruction γk+1
F q

F
∈ Pk+1(F ) s.t.∫

F

(γk+1
F q

F
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F

Gk
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ωFE
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E q

E
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Pk-consistent gradient
Element T

Same principle! Based on IBP we determine:

◦ An additional unknown (qT ∈ Pk−1(T )) to get the space Xk
grad,T , and its

meaning (polynomial moment on T ) to get the interpolator Ikgrad,T .

◦ A formula for the element gradient Gk
T : Xk

grad,T → Pk(T )3.

◦ A potential reconstruction P k+1
grad,T : Xk

grad,T → Pk+1(T ).
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Xk
grad,h, the discrete H(grad,Ω) space

◦ Discrete H(grad,Ω) space:

Xk
grad,h :=

{
q
h
=

(
(qT )T∈Th

, (qF )F∈Fh
, (qE)E∈Eh

, (qV )V ∈Vh

)
:

qT ∈ Pk−1(T ), qF ∈ Pk−1(F ), qE ∈ Pk−1(E), qV ∈ R
}
.

◦ Interpolator: Ikgrad,hq = q
h
with

qV = q(xV ),

qX = L2-projection on Pk−1(X) of q, for X ∈ {E,F, T}.

◦ Operator reconstructions:

⋆ edge gradient Gk
EqE ∈ Pk(E) ⇝ edge trace γk+1

E q
E
∈ Pk+1(E),

⋆ face gradient Gk
F qF ∈ Pk(F )2 ⇝ face trace γk+1

F q
F
∈ Pk+1(F ),

⋆ element gradient Gk
T qT ∈ Pk(T )3 ⇝ el. potential P k+1

grad,T qT ∈ Pk+1(T ),

We want:

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) 0.

Ik
grad,h Gk

h Ck
h Dk

h 0
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Xk
curl,h, the discrete H(curl; Ω) space

◦ Discrete H(curl; Ω) space:

Xk
curl,h :=

{
vh =

(
(vT )T∈Th

, (vF )F∈Fh
, (vE)E∈Eh

)
:

vT ∈ RT k(T ), vF ∈ RT k(F ), vE ∈ Pk(E)
}
,

with RT k(X) = Pk−1(X)⊕ (x−xX)Pk−1(X) the Raviart–Thomas space.

◦ Interpolator: Ik
curl,hv = vh with

vE = L2-projection on Pk(E) of v · tE ,
vF = L2-projection on RT k(F ) of vt,F (tangential projection),

vT = L2-projection on RT k(T ) of v.

◦ Operator reconstructions:

⋆ face (scalar) curl Ck
FvF ∈ Pk(F ) ⇝ tangent trace γk

t,FvF ∈ Pk(F )2,

⋆ element curl Ck
TvT ∈ Pk(T )3 ⇝ element potential P k

curl,TvT ∈ Pk(T )3.
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Discrete gradient

◦ We want Xk
grad,h Xk

curl,h.
Gk

h

◦ We have:

⋆ Gk
EqE ∈ Pk(E), Gk

F qF ∈ Pk(F )2, Gk
T qT ∈ Pk(T )3,

⋆ Xk
curl,h :=

{
vh =

(
(vT )T∈Th

, (vF )F∈Fh
, (vE)E∈Eh

)
:

vT ∈ RT k(T ), vF ∈ RT k(F ), vE ∈ Pk(E)
}
.

⇝ Define Gk
h : Xk

grad,h → Xk
curl,h by projecting edge, face and element

reconstructed gradients onto the corresponding components:

Gk
hqh = ((πk

RT ,TG
k
T qh)T∈Th

, (πk
RT ,FG

k
F qh)F∈Fh

, (Gk
Eqh)E∈Eh

).
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DDR complex: summary

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) 0.

Ik
grad,h Gk

h Ck
h Dk

h 0

◦ No basis functions, Fully discrete spaces not made of functions, but of
vectors of polynomials (DOFs) attached to geometric entities (emulates
continuity properties of each space).

Space V E F T

Xk
grad,T R Pk−1(E) Pk−1(F ) Pk−1(T )

Xk
curl,T Pk(E) RT k(F ) RT k(T )

Xk
div,T Pk(F ) N k(T )

Pk(T ) Pk(T )

◦ Polynomial reconstructions of differential operator and potential by
mimicking IBPs.
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L2-like inner products

◦ Local L2-like inner product on the DDR spaces:

for • ∈ {grad, curl,div} and kgrad = k + 1, kcurl = kdiv = k,

(xT , yT )•,T =

∫
T

P k•
•,TxT · P k•

•,T yT + s•,T (xT , yT ) ∀xT , yT ∈ Xk
•(T ),

(s•,T penalises differences on the boundary between element and face/edge
potentials).

◦ Global L2-like product (·, ·)•,h by standard assembly of local ones.
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The DDR complex: algebraic properties

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) 0.

Ik
grad,h Gk

h Ck
h Dk

h 0

◦ Complex:
Ck

h ◦Gk
h = 0 , Dk

h ◦Ck
h = 0.

◦ Same cohomology as the continuous de Rham complex; in particular,
if Ω has a trivial topology,

ImGk
h = kerCk

h , ImCk
h = kerDk

h.

◦ Commutation properties between the interpolators and the continu-
ous/discrete operators. For example,

Gk
hI

k
grad,hq = Ik

curl,h(grad q).

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],
[Di Pietro et al., 2025a], [Di Pietro et al., 2025b].
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The DDR complex: analytical properties

R Xk
grad,h Xk

curl,h Xk
div,h Pk(Th) 0.

Ik
grad,h Gk

h Ck
h Dk

h 0

◦ Poincaré inequalities: for example,

∥uh∥curl,h ≲ ∥Ck
hvh∥div,h ∀vh ∈ (kerCk

h)
⊥.

◦ Primal consistency (optimal approximation properties): for example, if
q is smooth,

∥P k+1
grad,T I

k
grad,T q − q∥L2(T ) ≲ hk+2

T |q|Hk+2(T ) ,

∥(P k
curl,TG

k
h)I

k
grad,T q − grad q∥L2(T ) ≲ hk+1

T |grad q|H(k+1,2)(T ).

[Di Pietro et al., 2020], [Di Pietro et al., 2023], [Di Pietro and Hanot, 2024],
[Di Pietro et al., 2025a], [Di Pietro et al., 2025b].
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A DDR scheme for the Laplacian

Weak formulation Find p ∈ H0(grad,Ω) such that

(grad p,grad q)L2(Ω) =

∫
Ω

f q ∀q ∈ H0(grad,Ω)

DDR scheme: set

Xk
grad,h,0 :=

{
q
h
∈ Xk

grad,h : qV = qE = qF = 0 for all boundary V,E, F
}
.

and write: Find p
h
∈ Xk

grad,h,0 such that

(Gk
hph,G

k
hqh)curl,h =

∫
Ω

f P k+1
grad,hqh ∀q

h
∈ Xk

grad,h,0.
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Analysis of the scheme: error estimate

(Gk
hph,G

k
hqh)curl,h =

∫
Ω

f P k+1
grad,hqh ∀q

h
∈ Xk

grad,h,0.

◦ Introduce the consistency error

Eh(p, qh) :=
∫
Ω

f P k+1
grad,hqh − (Gk

hI
k
grad,hp,G

k
hqh)curl,h.

◦ Subtract from the scheme to get the error equation

(Gk
h(ph − Ikgrad,hp),G

k
hqh)curl,h = Eh(p, qh)

◦ Divide by ∥Gk
hqh∥curl,h and take the supremum over q

h
:

∥Gk
h(ph − Ikgrad,hp)∥curl,h ≤ max

q
h

Eh(p, qh)
∥Gk

hqh∥curl,h
.
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Analysis of the scheme: bounding the consistency error

◦ Consistency error:

Eh(p, qh) :=
∫
Ω

f P k+1
grad,hqh − (Gk

hI
k
grad,hp,G

k
hqh)curl,h.

◦ Set u = −grad p and use f = divu and Gk
hI

k
grad,hp = −Ik

curl,hu:

Eh(p, qh) = (divu, P k+1
grad,hqh)L2(Ω) + (Ik

curl,hu,G
k
hqh)curl,h.

⇝ Need to evaluate the non-conformity of the method: defect of
integration-by-parts coming from the discrete inner product and potential
reconstruction.
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Adjoint consistency

◦ Adjoint consistency: measures defect in discrete integration-by-
parts. For example, if q

h
∈ Xk

grad,h,0,∣∣∣(divuP k+1
grad,hqh)L2(Ω) + (Ik

curl,hu,G
k
hqh)curl,h

∣∣∣
≲ hk+1|u|H(k+1,2)(Th)∥G

k
hqh∥curl,h.

Note: proof uses a conforming lifting. [Di Pietro and Droniou, 2023],
[Di Pietro et al., 2025b].
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Discrete weak curl–curl formulations of Stokes

◦ Weak formulation: Find (u, p) ∈ H(curl; Ω)×H(grad,Ω) s.t.
∫
Ω
p = 0

and

ν(curlu, curlv)L2 + (grad p,v)L2 = (f ,v)L2 ∀v ∈ H(curl; Ω),

−(u,grad q)L2 = 0 ∀q ∈ H(grad,Ω).

◦ Set
Xk

grad,h,⋆ :=
{
q
h
∈ Xk

grad,h : (q
h
, Ikgrad,h1)grad,h = 0

}
.

◦ DDR scheme: Find (uh, ph) ∈ Xk
curl,h ×Xk

grad,h,⋆ such that, for all
(vh, qh),

ν(Ck
huh,C

k
hvh)div,h + (Gk

hph,vh)curl,h = (Ik
curl,hf ,vh)curl,h,

−(Gk
hqh,uh)curl,h = 0.

38 / 53



Error estimates

Theorem

Setting

∥vh∥2curl,1,h = ∥vh∥2curl,h + ∥Ck
hvh∥2div,h ,

∥q
h
∥2grad,1,h = ∥q

h
∥2grad,h + ∥Gk

hqh∥curl,h,

we have:

∥uh − Ik
curl,hu∥curl,1,h + ∥p

h
− Ihgrad,p∥grad,1,h ≲ C1(u)h

k+1.

with C1(u) depending u and some of its derivatives, but not p.

◦ Stability: using exactness of the complex and Poincaré inequalities, as for
the continuous model.

◦ Robustness with respect to the pressure: from the commutation
Gk

h(I
k
grad,hp) = Ik

curl,h(grad p).
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Numerical tests: setting

◦ Ω = (0, 1)3.

◦ Voronoi mesh families (similar results on tetrahedral meshes):

(a) Voronoi mesh
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Numerical tests: setting

◦ Exact solution: for some λ ≥ 0,

p(x, y, z) = λ sin(2πx) sin(2πy) sin(2πz) ,

u(x, y, z) =


1
2 sin(2πx) cos(2πy) cos(2πz)

1
2 cos(2πx) sin(2πy) cos(2πz)

− cos(2πx) cos(2πy) sin(2πz)

 .

◦ Measured errors:

⋆ Ed
u and Ed

p in discrete norms between the approximate solutions and the
interpolates of the exact solution (as in the theorems).

E.g: Ed
u = ∥uh − Ik

curl,hu∥curl,1,h.

⋆ Ec
u and Ec

p in continuous norms between reconstructed
potentials/projections of the approximate solutions and the exact
solution.

E.g: Ec
p = ∥ph − p∥H1(Ω).
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Numerical tests: results for λ = 1

Ec, k = 0; Ec, k = 1; Ec, k = 2

Ed, k = 0; Ed, k = 1; Ed, k = 2
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(a) Errors on u
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(b) Errors on p
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Numerical tests: results for λ = 105

Ec, k = 0; Ec, k = 1; Ec, k = 2

Ed, k = 0; Ed, k = 1; Ed, k = 2
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(b) Errors on p
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Rellich compactness

Theorem

If (qn)n is bounded in H(grad,Ω) then (qn)n is relatively compact in L2(Ω).

◦ Relatively easy because grad controls the variations in all directions.

44 / 53



Maxwell compactness

Theorem

If (vn)n is bounded in H(curl; Ω) and∫
Ω

vn · grad z = 0 ∀z ∈ H(grad,Ω),

then (vn)n is relatively compact in L2(Ω)3.

◦ Also a version for sequences in H(div; Ω) that are orthogonal to curls.

◦ Much more challenging than Rellich: curl does not control the variations
of the function [Weber, 1980], [Jochmann, 1997].

◦ Orthogonality condition equivalent to div vn = 0 and vn · nΩ = 0.
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Uses of Maxwell compactness

◦ Bound of curl and zero div classical in curl-div problems, such as models
in electromagnetism (possibly using vector potential fixed by gauge).

◦ Compactness required for eigenvalue analysis and nonlinear models.

◦ Convergence analysis of schemes requires discrete versions of this
compactness; see, e.g., [Kikuchi, 1987] for eigenvalue problems.

◦ Discrete compactness also allows for fine convergence analysis of schemes,
possibly with models with rough coefficients
[Chaumont-Frelet and Ern, 2023], [Chaumont-Frelet and Ern, 2024].
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Maxwell compactness for DDR

Theorem

Let vh ∈ Xk
curl,h be such that(

∥vh∥curl,h + ∥Ck
hvh∥div,h

)
h∈H is bounded,

(vh,G
k
hqh)curl,h = 0 ∀q

h
∈ Xk

grad,h.

Then, there exists v ∈ H(curl; Ω)∩H0(div; Ω) such that div v = 0 and, up
to a subsequence as h → 0, P k

curl,hvh → v in L2(Ω)3.

Proof relies on:

◦ commuting quasi-interpolators (interpolators defined on minimal-regularity
spaces),

◦ conforming lifting (the same as for adjoint consistency).

[Chaumont-Frelet et al., 2025]
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Conclusions

◦ Polytopal complexes essential to design stable schemes for certain PDE
models on generic meshes (flexibility for local refinement etc.).

◦ Construction is hierarchical on mesh entities (vertices → edges → faces →
cells).

◦ DDR: based on suitably chosen degrees of freedom and reconstruction
operators inspired by integration-by-parts formula.

◦ Range of results for analysis of schemes: Poincaré inequalities,
primal/adjoint consistency, commutation properties, compactness, etc.

◦ Fully discrete approach already extended to other complexes (e.g., div-div
complex).

◦ Maxwell compactness for DDR, allows for analysis of eigenvalue problems
and nonlinear PDEs.
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