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The Finite Element way

Th = {T} conforming tetrahedral/hexahedral
mesh.

◦ Define local polynomial spaces on each element, and glue them together to
form discrete subspaces of the energy space (e.g., H1(Ω) for 2nd-order
elliptic problems).
Example: conforming Pk spaces.

◦ Gluing only works on special meshes!
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The Finite Element way
Shortcomings

◦ Approach limited to conforming meshes with standard elements

=⇒ local refinement requires to trade mesh size for mesh quality
=⇒ complex geometries may require a large number of elements
=⇒ the element shape cannot be adapted to the solution

◦ Need for (global) basis functions

=⇒ significant increase of DOFs on hexahedral elements
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Benefits of polytopal meshes I

◦ Local refinement (to capture geometry or solution features) is seamless,
and can preserve mesh regularity.

◦ Agglomerated elements are also easy to handle (and useful, e.g., in
multi-grid methods).

◦ High-level approach can lead to leaner methods (fewer DOFs).
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Benefits of polytopal meshes II

Example of efficiency: Reissner–Mindlin plate problem.

Stabilised P2-(P1 + B3) scheme DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2
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Continuous setting I

Ω bounded Lipschitz domain of Rd.

H1(Ω)-seminorm: for v ∈ H1(Ω),

|v|1,Ω := ∥∇v∥L2(Ω).

H1/2(∂Ω)-seminorm: for w ∈ H1/2(∂Ω):

|w|1/2,∂Ω :=

(∫
∂Ω

∫
∂Ω

|w(x)− w(y)|2

|x− y|d
dxdy

)1/2

.
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Continuous setting II

Trace operator: γ : H1(Ω) → H1/2(∂Ω), γ(v) = v|∂Ω when v is smooth.

Theorem (Trace inequality)

|γ(v)|1/2,∂Ω ≲ |v|1,Ω ∀v ∈ H1(Ω).

Theorem (Lifting)

There exists a linear operator L : H1/2(∂Ω) → H1(Ω) such that:

γ(L(w)) = w and |L(w)|1,Ω ≲ |w|1/2,∂Ω ∀w ∈ H1/2(∂Ω).
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Polytopal mesh

Ω polytopal. Mesh Mh = (Th,Fh) with Th set of elements, Fh set of faces.

◦ standard mesh regularity assumption (elements/faces do not become too
elongated), and

◦ quasi-uniformity: with hX = diam(X),

∃ρ > 0 : ρht′ ≤ ht ∀t, t′ ∈ Th.

Set h := maxt∈Th
ht and write a ≲ b for “a ≤ Cb with C depending only on

the mesh regularity parameters”.
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Discrete H1(Ω) space and seminorm

Hybrid space: unknowns are polynomials in the elements and on the faces.
Fix k ≥ 0 and set

Uh := {vh = ((vt)t∈Th
, (vf )f∈Fh

) : vt ∈ Pk(t) , vf ∈ Pk(f)}.

Discrete H1(Ω)-seminorm: with vt = (vt, (vf )f∈Ft
) restriction of vh to t,

|vh|21,h :=
∑
t∈Th

|vt|21,t

with |vt|21,t := ∥∇vt∥2L2(t) +
∑
f∈Ft

h−1
t ∥vf − vt∥2L2(f).
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Discrete H1/2(∂Ω) space and seminorm

Boundary space: restriction to boundary of hybrid space (piecewise
polynomial functions).

Ubd
h := {wh = ((wf )f∈Fbd

h
) : wf ∈ Pk(f)} ⊂ L2(∂Ω).

Trace (restriction): γh : Uh → Ubd
h such that

γh(vh) = (vf )f∈Fbd
h

∀vh ∈ Uh.
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h
) : wf ∈ Pk(f)} ⊂ L2(∂Ω).

Discrete H1/2(∂Ω)-seminorm:

|wh|21/2,h :=
∑

f∈Fbd
h

h−1
f ∥wf − wf∥2L2(f)︸ ︷︷ ︸

local variation in each f

+
∑

(f,f ′)∈FFbd
h

|f |d−1|f ′|d−1
|wf − wf ′ |2

δdff ′︸ ︷︷ ︸
medium–long range interactions

(FFbd
h = pairs of all faces on ∂Ω).
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Main results

Theorem (Trace inequality)

|γh(vh)|1/2,h ≲ |vh|1,h ∀vh ∈ Uh. (1)

Theorem (Lifting)

There exists a linear operator Lh : Ubd
h → Uh such that:

γ(Lh(wh)) = wh and |Lh(wh)|1,h ≲ |wh|1/2,h ∀wh ∈ Ubd
h . (2)

◦ Hidden constant independent of diam(Ω).

◦ Directly gives trace/lifting for Hybridizable Discontinuous Galerkin
[Cockburn et al., 2009], Hybrid High-Order [Di Pietro and Droniou, 2020],
non-conforming Virtiual Elements [de Dios et al., 2016], etc.
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Why is that new?

Previous results: using only L2-norms on ∂Ω
[Eymard et al., 2000, Droniou et al., 2018].

◦ Allows for a trace inequality

∥γ(vh)∥L2(∂Ω) ≲ |vh|1,h + ∥vh∥L2(Ω) ∀vh ∈ Uh

(where (vh)|t = vt for all t ∈ Th).

◦ Does not allow for a (uniformly bounded) lifting.
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Why is that useful?

Domain decomposition methods: exchange information by trace and lifting.

Consider two domains Ω1,Ω2 with interface Γ. A typical construction in
substructuring non-overlapping DD is:

(i) Take v1 in Ω1.

(ii) Consider the trace (v1)|Γ of v1 on Γ.

(iii) Define v2 in Ω2 as the harmonic extension of (v1)|Γ.

The map v1 → v2 must be continuous for the H1 norms. We must therefore
set up a norm on Γ which is

◦ not too strong, for the continuity of the trace v1 → (v1)|Γ,

◦ strong enough, for the continuity of the lifting (v1)|Γ → v2.
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Approach

◦ Previous approaches attempted to interpolate discrete functions on H1

functions, to use the continuous trace/lifting
[Cowsar et al., 1995, Diosady and Darmofal, 2012, Cockburn et al., 2014].

⇝ restriction to FE meshes (triangular/tetrahedral or
rectangular/hexahedral).

◦ Here, following principles of Discrete Functional Analysis
[Eymard et al., 2010, Droniou et al., 2018], we do not use continuous
trace/lifting results but mimic their proofs in the fully discrete setting.
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Estimate I

Starting point: set y = x+ ρ and write

u(0, x+ ρ)− u(0, x)

= u(0, x+ ρ)− u(ρ, x+ ρ) + u(ρ, x+ ρ)− u(ρ, x) + u(ρ, x)− u(0, x)

=

∫ 0

ρ

∂1u(s, x+ ρ)ds+

∫ ρ

0

∂2u(ρ, x+ s)ds+

∫ ρ

0

∂1u(s, x)ds.

23 / 47



Estimate II

Starting point: set y = x+ ρ and write

u(0, x+ ρ)− u(0, x)

= u(0, x+ ρ)− u(ρ, x+ ρ) + u(ρ, x+ ρ)− u(ρ, x) + u(ρ, x)− u(0, x)

=

∫ 0

ρ

∂1u(s, x+ ρ)ds+

∫ ρ

0

∂2u(ρ, x+ s)ds+

∫ ρ

0

∂1u(s, x)ds.

Take L2-norms w.r.t. x (swap integrals):

∥u(0, ·+ ρ)− u(0, ·)∥L2(R)

≤
∫ ρ

0

∥∂1u(s, ·+ ρ)∥L2(R) ds+

∫ ρ

0

∥∂2u(ρ, ·+ s)∥L2(R) ds

+

∫ ρ

0

∥∂1u(s, ·)∥L2(R) ds

≤ ρ
( 2

ρ

∫ ρ

0

∥∂1u(s, ·)∥L2(R) ds︸ ︷︷ ︸
=:F1(ρ)

+ ∥∂2u(ρ, ·)∥L2(R)︸ ︷︷ ︸
=:F2(ρ)

)
.
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Estimate III

Change of variable (y = x+ ρ) in the H1/2 semi-norm:

|u(0, ·)|21/2,R =

∫
R

∫
R

|u(0, x)− u(0, y)|2

|x− y|2
dxdy

=

∫
R

∥u(0, ·)− u(0, ·+ ρ)∥2L2(R)

ρ2
dρ

≤ C(∥F1∥2L2(R) + ∥F2∥2L2(R))

where

F1(ρ) =
2

ρ

∫ ρ

0

∥∂1u(s, ·)∥L2(R) ds, F2(ρ) = ∥∂2u(ρ, ·)∥L2(R).
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Estimate IV

|u(0, ·)|21/2,R ≤ C(∥F1∥2L2(R) + ∥F2∥2L2(R))

F1(ρ) =
2

ρ

∫ ρ

0

∥∂1u(s, ·)∥L2(R) ds, F2(ρ) = ∥∂2u(ρ, ·)∥L2(R).

Conclusion:

∥F2∥2L2(R) = ∥∂2u∥2L2(R2) ≤ |u|2H1(R2).

By Hardy inequality:

∥F1∥2L2(R) ≤ C∥∂1u∥2L2(R2) ≤ C|u|2H1(R2).
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Driving principles

◦ Points become faces.
■ Continuous H1/2 seminorm integrates over x, y, discrete H1/2-seminorm
sums over pairs of faces.

◦ Integrate along lines ⇝ sum over cells/faces that intersect the line.

◦ Need a distance between faces/cells: has to be up to h.
■ Cannot consider all (f, f ′) ∈ Fbd

h such that δff ′ = ρ for a given ρ...
Instead, (f, f ′) ∈ Fbd

h are “at distance ℓh of each other” if
ℓh ≤ δff ′ < (ℓ+ 1)h.

■ Makes “change of variable” x+ ρ → x less straightforward.

◦ Need to be able to swap integrals.
■ Integrate vertically to ∂Ω then parallel to ∂Ω ⇝ layers along ∂Ω.

◦ Need a discrete Hardy inequality: rm ≥ 0 and Rl :=
1
l

∑l
m=0 rm, then

L∑
l=1

R2
l ≤ 32

L∑
l=0

r2l .
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Swap integrals and translate

Continuous manipulations: (for F2)

1

ρ
∥
∫ ρ

0

∂2u(ρ, ·+s) ds∥L2(R) ≤
1

ρ

∫ ρ

0

∥∂2u(ρ, ·+s)∥L2(R) ds = ∥∂2u(ρ, ·)∥L2(R).

Discrete manipulations:

◦ Take (f, f ′) “within distance ℓh” and consider

|vtff′,f − vtff′,f′ | ≲ h
2−d
2

∑
t∈Li(ff ′;δff′ )

|vt|1,t.
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Discrete manipulations:

◦ Estimate cardinality: #F(t, r) ≲ ℓd−2, so∑
{t :(ℓ−2)h≤dist(p(xt),∂Ω)≤ℓh}

|vt|21,t

◦ Conclude by summing over ℓ (each layer appears 3 times):

3
∑
t

|vt|21,t = 3|vh|21,h
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Construction of the lifting

Take w ∈ H1/2(Rd−1) and define v ∈ H1([0, 1)× Rd−1) by by averaging w
over the base of a cone, which becomes more and more narrow as we get
close to the boundary.

With ρx(y) = x−(d−1)ρ(x−1y) usual smoothing kernel,

v(x,y) = (ρx ⋆ w)(y).
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Some arguments in the estimates on partial derivatives

◦
∫
Rd−1 ∂iρ(x

−1y)dy = 0 to write (for i ≥ 2)

∂i(ρx ⋆ w)(y) =
1

xd

∫
R
(w(z)− w(y))∂iρ(x

−1(y − z))dz.

◦
∫
Rd−1 |∂i(ρx(z))|dz ≤ C/x to write, using Cauchy–Schwarz:

(∫
R
|w(y)− w(z)||∂i(ρx(y − z))dz|

)2

≤ C

x

∫
R
|w(y)− w(z)|2|∂i(ρx(y − z))|dz.
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Construction of the lifting

Also average on the base of a cone...

◦ For t ∈ Th, set δt = dist(xt, ∂Ω) and

At = {f ∈ Fbd
h : dist(p(xt), f) ≤ δt)}.

◦ Give to each f ∈ At an identical weight:

ρt(f) =

{ 1
#At

if f ∈ At,

0 otherwise.

◦ Lift wh = (wf )f∈Fbd
h

∈ Ubd
h into vh = ((vt)t∈Th

, (vf )f∈Fh
) such that

vt =
1

#At

∑
f∈At

wf =
∑

f∈Fbd
h

wfρt(f)

vf =

{ vt+vt′
2 if f internal face between t, t′ ∈ Th,

wf if f ∈ Fbd
h .
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Estimate of |vh|1,h I

Low order reconstruction: all vt are constant, so

|vh|21,h ≃
∑

(t,t′) neighbours

hd−2|vt − vt′ |2.
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Estimate of |vh|1,h II

Adaptation of arguments

□ Continuous:∫
Rd−1

∂iρ(x
−1y)dy = 0

⇝ ∂i(ρx ⋆ w)(y) =
1

xd

∫
R
(w(z)− w(y))∂iρ(x

−1(y − z))dz ∀y

□ Discrete:∑
f∈Fbd

h

(ρt(f)− ρt′(f))
(
=

∑
f∈Fbd

h

ρt(f)−
∑

f∈Fbd
h

ρt′(f) = 1− 1
)
= 0

⇝ vt − vt′ =
∑

f∈Fbd
h

(wf − wf ′)Dgρ(f) ∀f ′ ∈ Fbd
h ,

where Dgρ(f) = ρt(f)− ρt′(f) with (t, t′) cells on each side of g ∈ F in
h .
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Estimate of |vh|1,h III

□ Continuous:∫
Rd−1

|∂i(ρx(y)|dy ≤ C

x

⇝

(∫
R
|w(y)− w(z)||∂i(ρx(y − z))dz|

)2

≤ C

x

∫
R
|w(y)− w(z)|2|∂i(ρx(y − z))|dz.

□ Discrete:∑
f∈Fbd

h

|Dgρ(f)| ≲
h

δt

⇝ |vh|21,h ≲
∑

g∈F in
h

∑
f∈Fbd

h

(wf − wf ′)2|Dgρ(f)|
hd−1

δt
.

with f ′ ∈ Fbd
h such that g “projects close to f ′”.
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Estimate of |vh|1,h IV

∑
f∈Fbd

h

|Dgρt(f)| =
∑

f∈Fbd
h

|ρt(f)− ρt′(f)| ≲
h

δt
.

Requires:

□ #At ≃
(
δt
h

)d−1

□ #(At∆At′) ≲

(
δt
h

)d−2

□ ∀f ∈ At ∩ At′ , |ρt(f)− ρt′(f)| ≲
(
h

δt

)d

□ |ρt(f)− ρt′(f)| ≲
(
h

δt

)d−1

.
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Estimate of |vh|1,h V

|vh|21,h ≲
∑

g∈F in
h

∑
f∈Fbd

h

(wf − wf ′)2|Dgρ(f)|
hd−1

δt
.

Write
∑

g∈F in
h

as
∑

f ′∈Fbd
h

∑
g above f ′ and conclude by proving

∑
g above f ′

|Dgρ(f)|
hd−1

δt
≲

|f | |f ′|
δdff ′

.
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Equivalence of norms

◦ Let Eh : Ubd
h → Uh be the discrete harmonic extension for the discrete

H1-seminorm (minimises this norm with given boundary conditions).

◦ The discrete trace and lifting give

|Eh(wh)|1,h ≃ |wh|1/2,h ∀wh ∈ U∂
h .

◦ We assess this equivalence by solving a generalised eigenvalue problem to
evaluate the constants in the upper and lower bounds.
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Results

Ω: square. Cartesian mesh.

(a) Maximum eigenvalues (b) Minimum eigenvalues
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Conclusions

◦ Complete discrete trace theory, with definition of boundary norm, trace
inequality and lifting in discrete spaces of polytopal hybrid methods.

◦ Applicable to a range of schemes: HHO, VEM, HDG, etc. (and even FEM).

◦ Constructive proofs, obtained by mimicking proofs in the continuous
setting (more flexible than looking for lifting in conforming spaces).

◦ For the moment, requires quasi-uniform meshes, but with elements of
generic shapes.

◦ Allows for the analysis of BDDC and similar for polytopal methods.
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