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References for this presentation

Design of the method, application to poromechanics with Coulomb friction:
[Droniou et al., 2024a].

Analysis for purely mechanical model with Tresca friction:
[Droniou et al., 2024b].

See also references inside.
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Matrix and fracture network

Notations: Ω domain (matrix), Γ fracture, two sides ± with outward normals
n±.

Uknowns: displacement u in matrix (discontinuous at fractures), pressure 𝑝𝑚
in matrix, pressure 𝑝 𝑓 in fracture.

𝑝𝑚

u
𝑝 𝑓

Ω

−

Γ

+

n−n+
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Poromechanics I

Flow equations: Darcy law for 𝑝𝑚, Poiseuille law for 𝑝 𝑓 .

𝜕𝑡𝜙𝑚 + divV𝑚 = ℎ𝑚 on (0, 𝑇) ×Ω\Γ,
V𝑚 = −K𝑚

𝜂
∇𝑝𝑚 on (0, 𝑇) ×Ω\Γ,

𝜕𝑡d 𝑓 + div𝝉 V 𝑓 − ⟦V𝑚⟧𝑛 = ℎ 𝑓 on (0, 𝑇) × Γ,

V 𝑓 =
𝐶 𝑓

𝜂
∇𝝉 𝑝 𝑓 , on (0, 𝑇) × Γ,

𝛾±nV𝑚 = Λ 𝑓 ⟦𝑝⟧± on (0, 𝑇) × Γ.

Notations:

⟦·⟧: jump across Γ.

𝑿𝝉 and 𝑋n: tangential and normal components of 𝑿 along Γ.
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Poromechanics II

Set
σ(u) = 2𝜇ε(u) + 𝜆(div u) I (Effective stress),

σ⊤ (u, 𝑝𝑚) = σ(u) − 𝑏𝑝𝑚 I (Total stress),

T± = 𝛾±n σ⊤ (u, 𝑝𝑚) + 𝑝 𝑓 n± (Traction).

Mechanical equations: quasi-static contact-mechanics for u with Coulomb
friction. 

− div σ⊤ (u, 𝑝𝑚) = f on (0, 𝑇) ×Ω\Γ,
T+ + T− = 0 on (0, 𝑇) × Γ,

𝑇n ⩽ 0, ⟦u⟧n ⩽ 0, ⟦u⟧n𝑇n = 0, on (0, 𝑇) × Γ,

|T𝝉 | ⩽ −𝐹 𝑇n on (0, 𝑇) × Γ,

T𝝉 · 𝜕𝑡⟦u⟧𝝉 − 𝐹 𝑇n |𝜕𝑡⟦u⟧𝝉 | = 0 on (0, 𝑇) × Γ

Other contact models: no friction (𝐹 = 0); Tresca friction (−𝐹𝑇n { 𝑔 and
𝜕𝑡⟦u⟧ { ⟦u⟧.
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Poromechanics III

Weak formulation for mechanical equations: using Lagrange multiplier
𝝀 = −T+ to impose the contact conditions.

Spaces and cone:

U0 = {v ∈ 𝐻1 (Ω\Γ)𝑑 : v |𝜕Ω = 0},

𝑪 𝑓 (𝜆n) =
{
𝝁 ∈ 𝐻−1/2 (Γ)𝑑 : ⟨𝝁, v⟩Γ ≤ ⟨𝐹𝜆n, |v𝝉 |⟩Γ

∀v ∈ (𝐻1/2 (Γ))𝑑 s.t. 𝑣n ≤ 0
}
.

Equations: find u : [0, 𝑇] → U0 and 𝝀 : [0, 𝑇] → 𝑪 𝑓 (𝜆𝑛) s.t., for all
v : [0, 𝑇] → U0 and 𝝁 : [0, 𝑇] → 𝑪 𝑓 (𝜆𝑛),∫

Ω

(
σ(u) : ε(v) − 𝑏 𝑝𝑚div(v)

)
+ ⟨𝝀, ⟦v⟧⟩Γ +

∫
Γ

𝑝 𝑓 ⟦v⟧n =

∫
Ω

f · v,

⟨𝜇n − 𝜆n, ⟦u⟧n⟩Γ + ⟨𝝁𝝉 − 𝝀𝝉 , ⟦𝜕𝑡u⟧𝝉⟩Γ ≤ 0.

7 / 33



Outline

1 Mixed-dimensional poromechanical model

2 Bubble-enriched polytopal scheme for mechanical equations

3 Theoretical results

4 Numerical results
Contact-mechanics model
3D full poro-mechanical model

8 / 33



Mesh

Polytopal mesh, compatible with fractures

M, F ,V cells, faces and vertices. Xz entities X on z.

F +
Γ,𝐾

faces of 𝐾 on positive side of fracture.

For 𝑠 ∈ V, K𝑠: set of cells on the same side of 𝐾.

If 𝜎 ∈ FΓ: 𝐾 on positive side, 𝐿 on negative side.
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Discrete spaces

Displacement: nodal unknowns (discontinuous across fracture) and one
bubble on each fracture face (positive side).

U0,D =

{
vD = ((vK𝑠)𝐾∈M, 𝑠∈V𝐾 , (v𝐾𝜎)𝐾∈M, 𝜎∈F+

Γ,𝐾
) :

vK𝑠 ∈ R𝑑 , v𝐾𝜎 ∈ R𝑑 , vK𝑠 = 0 if 𝑠 ∈ Vext

vK𝑠 = vL𝑠 if 𝐾, 𝐿 are on the same side of Γ
}
.

Lagrange multipliers: piecewise constant on fracture faces.

MD =
{
𝝀D ∈ 𝐿2 (Γ)𝑑 : 𝝀𝜎 := (𝝀D) |𝜎 is constant for all 𝜎 ∈ FΓ

}
.

Discrete dual cone:

CD =
{
𝝀D ∈ MD : 𝜆D,n ≥ 0, |𝝀D,𝝉 | ≤ g

}
⊂ 𝑪 𝑓 .
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Reconstructions in U0,D: faces

From nodes, reconstruct edge values and use them to define the face
gradient:

∇𝐾𝜎vD =
1

|𝜎 |
∑︁

𝑒=𝑠1𝑠2∈E𝜎
|𝑒 |

vK𝑠1 + vK𝑠2
2

⊗ n𝜎𝑒 .

Reconstruct face averaged value from nodes, and face displacement:

v𝐾𝜎 =
∑︁
𝑠∈V𝜎

𝜔𝜎𝑠 vK𝑠 and Π𝐾𝜎vD (x) = ∇𝐾𝜎vD (x − x𝜎) + v𝐾𝜎 ∀x ∈ 𝜎.

Jump reconstructions:

⟦vD⟧𝜎 = v𝐾𝜎 − v𝐿𝜎 + v𝐾𝜎 .
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Reconstructions in U0,D: cells

Same principles...

Using reconstructed face values and bubble, define the cell gradient:

∇𝐾vD =
1

|𝐾 |
∑︁
𝜎∈F𝐾

|𝜎 |v𝐾𝜎 ⊗ n𝐾𝜎 + 1

|𝐾 |
∑︁

𝜎∈F+
Γ,𝐾

|𝜎 |v𝐾𝜎 ⊗ n𝐾𝜎 .

Reconstruct cell averaged value from nodes, and cell displacement:

v𝐾 =
∑︁
𝑠∈V𝐾

𝜔𝐾𝑠 vK𝑠 and Π𝐾vD (x) = ∇𝐾vD (x − x𝐾 ) + v𝐾 ∀x ∈ 𝐾.

Global reconstructions: ⟦·⟧D , ∇D , ΠD , εD , divD , σD .
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Scheme

Find uD ∈ U0,D and 𝝀D ∈ MD s.t.∫
Ω

σD (uD) : εD (vD) +
∑︁
𝐾∈M

(2𝜇𝐾 + 𝜆𝐾 )𝑆𝐾 (uD , v𝐷)

+
∫
Γ

𝝀D · ⟦vD⟧D =

∫
Ω

f · ΠDvD ∀vD ∈ U0,D

∫
Γ

(𝜇D − 𝝀D) · ⟦uD⟧D ≤ 0 ∀𝜇D ∈ MD ,

where

𝑆𝐾 (uD , vD) = ℎ𝑑−2𝐾

∑︁
𝑠∈V𝐾

(
uK𝑠 − Π𝐾uD (x𝑠)

)
·
(
vK𝑠 − Π𝐾vD (x𝑠)

)
+ ℎ𝑑−2𝐾

∑︁
𝜎∈F+

Γ,𝐾

u𝐾𝜎 · v𝐾𝜎 .

Note: can also be written in virtual elements framework.
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Error estimate

Theorem (Error estimate)

If u ∈ 𝐻2 (M) and 𝝀 ∈ 𝐻1 (FΓ), then

∥∇DuD − ∇u∥
𝐿2 (Ω\Γ) + ∥𝝀D − 𝝀∥−1/2,Γ ≲ 𝐶u,𝝀ℎD .

∥ · ∥−1/2,Γ discrete 𝐻−1/2-like seminorm.

Error estimate comes from a more abstract version that only requires
𝝀 ∈ 𝐿2 (Γ).
Error analysis based on consistency and stability.
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Tool 1: discrete Korn inequality

Discrete 𝐻1-norm:

∥vD ∥21,D :=
∑︁
𝐾∈M

(
∥∇𝐾vD ∥2

𝐿2 (𝐾 ) + 𝑆𝐾 (vD , vD)
)
.

Theorem (Discrete Korn inequality)

For all v ∈ U0,D ,

∥vD ∥21,D ≲ ∥εD (vD)∥2
𝐿2 (Ω\Γ) +

∑︁
𝐾∈M

𝑆𝐾 (vD , vD).
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Tool 2: Discrete inf–sup property I

ΩΩ

Γ

n+

Γ𝑖

Ω+
𝑖

Definition (Discrete 𝐻−1/2 (Γ)-norm)

For 𝝀D ∈ MD :

∥𝝀D ∥−1/2,Γ =
∑︁
𝑖∈𝐼

∥𝝀D ∥−1/2,Γ𝑖 with ∥𝝀D ∥−1/2,Γ𝑖 = sup
v𝑖∈𝐻1 (Ω+

𝑖
;Γ𝑖 )𝑑\{0}

∫
Γ𝑖
𝝀D · v𝑖

∥v𝑖 ∥𝐻1 (Ω+
𝑖
)
.
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Tool 2: Discrete inf–sup property II

Theorem (Discrete inf-sup condition)

sup
vD ∈U0,D\{0}

∫
Γ
𝝀D · ⟦vD⟧D

∥vD ∥1,D
≳ ∥𝝀D ∥−1/2,Γ ∀𝝀D ∈ MD .

Ingredient 1: Clément-like 𝐻1-stable interpolator adapted to fractures.

Ingredient 2: Fortin property for jump: for v𝑖 ∈ 𝐻1 (Ω+
𝑖
; Γ𝑖) and vD =

interpolant of extension by 0 of v𝑖 by 0,∫
Γ

𝝀D · ⟦vD⟧D =

∫
Γ𝑖

𝝀D · v𝑖 .
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2D domain with fracture under compression I

X

Y

Z

Analytical solution (𝜏 coordinate along fracture):

𝜆n = 𝜎 sin2 (𝜓),

|⟦u⟧𝝉 | =
4(1 − 𝜈)

𝐸
𝜎 sin(𝜓)

(
cos(𝜓) − g

𝜆n
sin(𝜓)

) √︁
ℓ2 − (ℓ2 − 𝜏2).

𝜓 = 𝜋/9, 2ℓ = 2 m, 𝐹 = 1/
√
3 (so g = 𝜆n/𝐹), 𝐸 = 25 GPa and 𝜈 = 0.25.
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2D domain with fracture under compression II
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2D domain with fracture under compression III

1st and 1.5th order

ℎ (m)

R
el
a
ti
ve
𝐿
2
E
rr
or

Note: error on 𝜆n away from the tip, super-convergence due to the fact that
the analytic 𝝀 is constant.
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3D manufactured solution I

Setting:

Ω = (−1, 1)3, Γ = {0} × (−1, 1)2.
g = 1, 𝜇 = 𝜆 = 1.

Explicit analytical solution such that:

sticky-contact for 𝑧 < 0 (⟦𝑢⟧n = 0, ⟦𝑢⟧𝝉 = 0)
slippy-contact for 𝑧 > 0 (⟦𝑢⟧n = 0, |⟦𝑢⟧𝝉 | > 0)

Cartesian, tetrahedral and generalised hexahedral meshes.

Figure: Generalised hexahedral meshes: cut (left) and barycentric subdivisions (right).
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3D manufactured solution II

1.5th and 2nd order

𝐿
2
E
rr
or

𝑁
1
3
cell

Cartesian

𝑁
1
3
cell

Tetrahedral

Note: 10−2 accuracy for u achieved with ∼ 403 Cartesian cells, ∼ 603

triangular cells.
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3D manufactured solution III

1st and 2nd order

𝐿
2
E
rr
or

𝑁
1
3
cell

Hexahedral (cut)

1st and 2nd order

𝑁
1
3
cell

Hexahedral (bary)

Note: 10−2 accuracy for u achieved with ∼ 303 Hexahedral cells.
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Setting

Data: 𝐸 = 4Gpa, 𝜈 = 0.2, 𝐹 = 0.5, 𝑏 = 0.5, 𝑀 = 10GPa.

Dirichlet BC at the top and bottom for u.

Fracture network:

Two tetrahedral meshes: 47k and 127k elements.
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Results I

Figure: Normal displacement jumps using 47k cells (left) and 127k cells (right).
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Results II

Figure: Tangential displacement jumps (one direction) using 47k cells (left) and 127k cells
(right).
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Conclusions

Polytopal scheme, applicable on generic meshes (including hanging nodes,
cut cells, local refinements). Seamlessly handles crossing fractures, etc.

Bubble enrichment (first one for polytopal methods) to ensure inf-sup
conditions to bound Lagrange multipliers.

Complete analysis for mechanical models.

Robust simulations (including solver behaviour) for 3D poromechanical
model with network of fractures.

Ongoing work: extension to arbitrary order of approximation, analysis for
complete poromechanical model.
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