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The Stokes problem in curl-curl formulation

Given Ω contractible, 𝜈 > 0 and 𝒇 ∈ 𝑳2 (Ω), the Stokes problem reads:

Find the velocity 𝒖 : Ω → R3 and pressure 𝑝 : Ω → R s.t.

−𝜈𝚫𝒖︷                              ︸︸                              ︷
𝜈(curl curl 𝒖 − grad div 𝒖) + grad 𝑝 = 𝒇 in Ω, (momentum conservation)

div 𝒖 = 0 in Ω, (mass conservation)

curl 𝒖 × 𝒏 = 0 and 𝒖 · 𝒏 = 0 on 𝜕Ω, (boundary conditions)∫
Ω
𝑝 = 0

Weak formulation: Find (𝒖, 𝑝) ∈ 𝑯(curl;Ω) ×𝐻1 (Ω) s.t.
∫
Ω
𝑝 = 0 and∫

Ω

𝜈 curl 𝒖 · curl 𝒗 +
∫
Ω

grad 𝑝 · 𝒗 =

∫
Ω

𝒇 · 𝒗 ∀𝒗 ∈ 𝑯(curl;Ω),

−
∫
Ω

𝒖 · grad 𝑞 = 0 ∀𝑞 ∈ 𝐻1 (Ω)
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De Rham complex

The de Rham sequence is

R 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω) {0}𝑖Ω grad curl div 0

It is a complex: the range of each operator is included in the kernel of
the next one (i.e. grad 𝑖Ω = 0, curl grad = 0, div curl = 0).

It is exact (inclusions { equalities) if Ω has a trivial topology:

R = ker grad , Im grad = ker curl , Im curl = ker div , Imdiv = 𝐿2 (Ω).

Exactness ⇒ well-posedness of the Stokes problem in curl–curl form
(same for the Stokes problem in Δ form...).

Reproducing this exactness at the discrete level is instrumental to
designing stable numerical approximations.
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The Finite Element way
Global complex

Tℎ = {𝑇} conforming tetrahedral/hexa-
hedral mesh of Ω.

Define local polynomial spaces on each element, and glue them
together to form a sub-complex of the de Rham complex:

R 𝑉ℎ,grad 𝑉ℎ,curl 𝑉ℎ,div 𝑉ℎ,𝐿2 {0}

R 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω) {0}

grad curl div 0

grad curl div 0

Example: conforming P𝑘–Nédélec–Raviart-Thomas spaces (see
[Arnold, 2018] for a generic approach).

Gluing only works on special meshes!
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The Finite Element way
Shortcomings

Approach limited to conforming meshes with standard elements

=⇒ local refinement requires to trade mesh size for mesh quality
=⇒ complex geometries may require a large number of elements
=⇒ the element shape cannot be adapted to the solution

Need for (global) basis functions

=⇒ significant increase of DOFs on hexahedral elements
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Polytopal meshes I

Local refinement (to capture geometry or solution features) is
seamless, and can preserve mesh regularity.

Agglomerated elements are also easy to handle (and useful, e.g., in
multi-grid methods).

High-level approach can lead to leaner methods (fewer DOFs).
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Polytopal meshes II

Example of efficiency: Reissner–Mindlin plate problem.

Stabilised P2-(P1 + B3) scheme DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2
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Key ideas for a discrete complex

Finite-dimensional spaces of vectors made of polynomials on relevant
mesh entities: vertices, edges, faces, elements.

Interpolators give meaning to these polynomials/DOFs.

Bespoke operators between the spaces, that represent grad, curl, div.

(PC) : R 𝑋𝑘
grad,ℎ

𝑿𝑘
curl,ℎ

𝑿𝑘
div,ℎ

𝑋𝑘
ℎ,𝐿2 {0}

(dR) : R 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω) {0}

grad𝑘
ℎ

curl𝑘
ℎ

div𝑘
ℎ 0

𝐼𝑘
grad,ℎ

grad

𝑰 𝑘
curl,ℎ

curl

𝑰 𝑘
div,ℎ

div

𝐼𝑘
𝐿2 ,ℎ

0

Note: interpolators are actually well-defined on smaller (more regular)
subspaces.

12 / 34



Key ideas for a discrete complex

(PC) : R 𝑋𝑘
grad,ℎ

𝑿𝑘
curl,ℎ

𝑿𝑘
div,ℎ

𝑋𝑘
ℎ,𝐿2 {0}

(dR) : R 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω) {0}

grad𝑘
ℎ

curl𝑘
ℎ

div𝑘
ℎ 0

𝐼𝑘
grad,ℎ

grad

𝑰 𝑘
curl,ℎ

curl

𝑰 𝑘
div,ℎ

div

𝐼𝑘
𝐿2 ,ℎ

0

Main properties:

Cohomology of (PC) ≃ cohomology of (dR), on generic topologies
[Di Pietro et al., 2022].

Local polynomial consistency: for D ∈ {grad, curl, div} and 𝑇 ∈ Tℎ,
there is 𝑷𝑘

D,𝑇
: 𝑋 𝑘

D,𝑇
→ P𝑘 (𝑇) s.t.

𝑷𝑘
D,𝑇 𝐼

𝑘
D,𝑇𝜔 = 𝜔 , D𝑘

𝑇 𝐼
𝑘
D,𝑇𝜔 = D𝜔 ∀𝜔 ∈ P𝑘 (𝑇).
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Degrees of freedom and interpolator

Degrees of freedom: (trimmed) polynomials on vertices, edges, faces,
elements.

Space 𝑉 𝐸 𝐹 𝑇

𝑋 𝑘
grad,𝑇 R P𝑘−1 (𝐸) P𝑘−1 (𝐹) P𝑘−1 (𝑇)

𝑿𝑘
curl,𝑇 P𝑘 (𝐸) R

𝑘−1 (𝐹) ⊕ R
c,𝑘 (𝐹) R

𝑘−1 (𝑇) ⊕ R
c,𝑘 (𝑇)

𝑿𝑘
div,𝑇 P𝑘 (𝐹) G

𝑘−1 (𝑇) ⊕ G
c,𝑘 (𝑇)

P𝑘 (𝑇) P𝑘 (𝑇)

R
𝑘−1 (P) = curlP𝑘 (P) , R

c,𝑘 (P) = (𝒙 − 𝒙𝑇 )P𝑘−1 (P) (P = 𝐹,𝑇)
G

𝑘−1 (𝑇) = gradP
𝑘 (𝑇) , G

c,𝑘 (𝑇) = (𝒙 − 𝒙𝑇 ) × P
𝑘−1 (𝑇).

Interpolators: 𝐿2-projections of (traces) of functions. E.g.:

∀𝒗 ∈ 𝐶0 (Ω)3, 𝑰𝑘curl,ℎ𝒗 = ((𝜋𝑘
P,𝐸 (𝒗 · 𝒕𝐸))𝐸∈Eℎ

,

(𝝅𝑘−1
R,𝐹

(𝒗t,𝐹), 𝝅c,𝑘
R,𝐹

(𝒗t,𝐹))𝐹∈Fℎ
,

(𝝅𝑘−1
R,𝑇

𝒗, 𝝅c,𝑘
R,𝑇

𝒗)𝑇∈Tℎ ).
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Potential reconstructions and discrete operators

Hierarchical constructions: from lowest-dimensional mesh entity to
higher-dimensional entities.

Enhancement: Discrete operator first (based on IBP, polynomially
consistent), then used for potential reconstruction (also based on IBP,
and also polynomially consistent).

Example with curl:

Face curl: 𝐶𝑘
𝐹
𝒗
𝐹
∈ P𝑘 (𝐹) such that∫

𝐹

𝐶𝑘
𝐹𝒗𝐹 𝑟𝐹 =

∫
𝐹

𝒗R,𝐹 · rot𝐹 𝑟𝐹 −
∑︁

𝐸∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸𝑟𝐹 ∀𝑟𝐹 ∈ P𝑘 (𝐹).

Tangential trace reconstruction: 𝜸𝑘
t,𝐹𝒗𝐹 ∈ P

𝑘 (𝐹) such that∫
𝐹

𝜸𝑘
t,𝐹𝒗𝐹 · (rot𝐹 𝑟𝐹 + 𝒘𝐹) =

∫
𝐹

𝐶𝑘
𝐹𝒗𝐹 𝑟𝐹 +

∑︁
𝐸∈E𝐹

𝜔𝐹𝐸

∫
𝐸

𝑣𝐸𝑟𝐹 +
∫
𝐹

𝒗c
R,𝐹

· 𝒘𝐹

∀(𝑟𝐹 , 𝒘𝐹) ∈ P0,𝑘+1 (𝐹) × R
c,𝑘 (𝐹).
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DDR complex

Patch local spaces (no continuity between elements), project local
(polynomial) operators on DOFs:

(DDR) : R 𝑋𝑘
grad,ℎ

𝑿𝑘
curl,ℎ

𝑿𝑘
div,ℎ

P𝑘 (Tℎ) {0}

(dR) : R 𝐻1 (Ω) 𝑯(curl;Ω) 𝑯(div;Ω) 𝐿2 (Ω) {0}

𝑮𝑘
ℎ

𝑪𝑘
ℎ

𝐷𝑘
ℎ 0

𝐼𝑘
grad,ℎ

grad

𝑰 𝑘
curl,ℎ

curl

𝑰 𝑘
div,ℎ

div

𝜋𝑘
P,ℎ

0

Properties for the design and analysis of stable numerical schemes:

Cohomology and polynomial consistency.

Analytical properties: Poincaré inequalities, primal and adjoint
consistency, commutation properties of interpolators and differential
operators, etc.
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DDR scheme for Stokes in curl-curl formulation

Weak formulation: Find (𝒖, 𝑝) ∈ 𝑯(curl;Ω) × 𝐻1 (Ω) s.t.
∫
Ω
𝑝 = 0 and∫

Ω

𝜈 curl 𝒖 · curl 𝒗 +
∫
Ω

grad 𝑝 · 𝒗 =

∫
Ω

𝒇 · 𝒗 ∀𝒗 ∈ 𝑯(curl;Ω),

−
∫
Ω

𝒖 · grad 𝑞 = 0 ∀𝑞 ∈ 𝐻1 (Ω)

Set
𝑋 𝑘
grad,ℎ,0 ≔

{
𝑞
ℎ
∈ 𝑋 𝑘

grad,ℎ : (𝑞
ℎ
, 𝐼𝑘grad,ℎ1)grad,ℎ = 0

}
.

DDR scheme: Find 𝒖
ℎ
∈ 𝑿𝑘

curl,ℎ and 𝑝
ℎ
∈ 𝑋 𝑘

grad,ℎ,0
such that

𝜈(𝑪𝑘
ℎ
𝒖
ℎ
,𝑪𝑘

ℎ
𝒗
ℎ
)div,ℎ + (𝑮𝑘

ℎ
𝑝
ℎ
, 𝒗

ℎ
)curl,ℎ = (𝑰𝑘curl,ℎ 𝒇 , 𝒗ℎ)curl,ℎ ∀𝒗

ℎ
∈ 𝑿𝑘

curl,ℎ,

−(𝑮𝑘
ℎ
𝑞
ℎ
, 𝒖

ℎ
)curl,ℎ = 0 ∀𝑞

ℎ
∈ 𝑋 𝑘

grad,ℎ,0.

17 / 34



Plan

1 Motivation for continuous and discrete complexes

2 Finite Elements approach, and its limitations

3 Overview of the Discrete De Rham complexes
Principles guiding arbitrary-order polytopal complexes
DDR – regular version
DDR – serendipity version

4 Numerical illustration

18 / 34



Key ideas to eliminate some DOFs

Lemma

Let 𝑘 ≥ 0, take 𝑇 a polyhedron with 𝜂𝑇 faces that are not pairwise
parallel, and set ℓ𝑇 = 𝑘 + 1 − 𝜂𝑇 .
Any 𝑞 ∈ P𝑘+1 (𝑇) is entirely determined by (𝑞 |𝐹)𝐹∈F𝑇 and 𝜋

ℓ𝑇
P,𝑇

𝑞, and

∥𝑞∥𝐿2 (𝑇 ) ≲ ∥𝜋ℓ𝑇P,𝑇
𝑞∥𝐿2 (𝑇 ) + ℎ

1
2

𝑇

∑︁
𝐹∈F𝑇

∥𝑞 |𝐹 ∥𝐿2 (𝐹 ) .

If 𝜂𝑇 > 𝑘 + 1, then 𝜋
ℓ𝑇
P,𝑇

𝑞 = 0 (only face values are required).

Also works with 𝑇 { 𝐹 polygon.

DDR spaces already fully encode traces on faces/elements boundaries
{ polynomial consistency should not require that much information
inside the faces/elements.
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Serendipity DDR: degrees of freedom

Space 𝑉 𝐸 𝐹 𝑇

𝑋 𝑘
grad,𝑇 R P𝑘−1 (𝐸) P𝑘−1 (𝐹) P𝑘−1 (𝑇)

𝑿𝑘
curl,𝑇 P𝑘 (𝐸) R

𝑘−1 (𝐹) ⊕ R
c,𝑘 (𝐹) R

𝑘−1 (𝑇) ⊕ R
c,𝑘 (𝑇)

𝑿𝑘
div,𝑇 P𝑘 (𝐹) G

𝑘−1 (𝑇) ⊕ G
c,𝑘 (𝑇)

P𝑘 (𝑇) P𝑘 (𝑇)
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𝑋
𝑘

grad,𝑇 R P𝑘−1 (𝐸) Pℓ𝐹 (𝐹) Pℓ𝑇 (𝑇)
𝑿̂

𝑘

curl,𝑇 P𝑘 (𝐸) R
𝑘−1 (𝐹) ⊕ R

c,ℓ𝐹+1 (𝐹) R
𝑘−1 (𝑇) ⊕ R

c,ℓ𝑇+1 (𝑇)
𝑿𝑘

div,𝑇 P𝑘 (𝐹) G
𝑘−1 (𝑇) ⊕ G

c,𝑘 (𝑇)
P𝑘 (𝑇) P𝑘 (𝑇)

Note that ℓ𝐹 < 𝑘 − 1 and ℓ𝑇 < 𝑘 − 1.

Why can’t we reduce more (e.g. the R
𝑘−1 components, or 𝑿𝑘

div,ℎ)?
Due to the constraints of preserving the complex properties...
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DDR vs. SDDR vs. Raviart-Thomas-Nédélec

Discrete space 𝑘 = 0 𝑘 = 1 𝑘 = 2

𝐻1 (𝑇) 4 ⋄ 4 ⋄ 4 15 ⋄ 10 ⋄ 10 32 ⋄ 20 ⋄ 20
𝑯(curl;𝑇) 6 ⋄ 6 ⋄ 6 28 ⋄ 23 ⋄ 20 65 ⋄ 53 ⋄ 45
𝑯(div;𝑇) 4 ⋄ 4 ⋄ 4 18 ⋄ 18 ⋄ 15 44 ⋄ 44 ⋄ 36
𝐿2 (𝑇) 1 ⋄ 1 ⋄ 1 4 ⋄ 4 ⋄ 4 10 ⋄ 10 ⋄ 10

Table: Tetrahedron: dimensions of the local spaces in the DDR ⋄ SDDR ⋄ RTN.

Discrete space 𝑘 = 0 𝑘 = 1 𝑘 = 2

𝐻1 (𝑇) 8 ⋄ 8 ⋄ 8 27 ⋄ 20 ⋄ 27 54 ⋄ 32 ⋄ 64
𝑯(curl;𝑇) 12 ⋄ 12 ⋄ 12 46 ⋄ 39 ⋄ 54 99 ⋄ 77 ⋄ 144
𝑯(div;𝑇) 6 ⋄ 6 ⋄ 6 24 ⋄ 24 ⋄ 36 56 ⋄ 56 ⋄ 108
𝐿2 (𝑇) 1 ⋄ 1 ⋄ 1 4 ⋄ 4 ⋄ 8 10 ⋄ 10 ⋄ 27

Table: Hexahedron: dimensions of the local spaces in the DDR ⋄ SDDR ⋄ RTN.
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SDDR complex

R 𝑋
𝑘

grad,ℎ 𝑿̂
𝑘

curl,ℎ 𝑿𝑘
div,ℎ P𝑘 (Tℎ) {0}

𝑮̂
𝑘

ℎ
𝑪

𝑘

ℎ
𝐷𝑘

ℎ 0

SDDR scheme: exactly as a DDR scheme, substituting spaces and
operators with those above.
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SDDR: analysis

(DDR) : · · · 𝑋 𝑘
grad,ℎ

𝑿𝑘
curl,ℎ 𝑿𝑘

div,ℎ · · ·

(SDDR) : · · · 𝑋
𝑘

grad,ℎ 𝑿̂
𝑘

curl,ℎ 𝑿𝑘
div,ℎ · · ·

𝑅grad,ℎ

𝑮𝑘
ℎ

𝑹̂curl,ℎ

𝑪𝑘
ℎ

Id𝐸grad,ℎ

𝑮̂
𝑘

ℎ

𝑬curl,ℎ

𝑪
𝑘

ℎ

Extensions and reduction link the two complexes.

Designed to ensure transfer of homological and analytical properties:
isomorphism of cohomologies, Poincaré inequalities, primal and adjoint
consistency, etc.

Generic blueprint that is applicable in many circumstances (e.g.:
analysis of cohomology of various discrete complexes, etc.).

23 / 34



SDDR: analysis

(DDR) : · · · 𝑋 𝑘
grad,ℎ

𝑿𝑘
curl,ℎ 𝑿𝑘

div,ℎ · · ·

(SDDR) : · · · 𝑋
𝑘

grad,ℎ 𝑿̂
𝑘

curl,ℎ 𝑿𝑘
div,ℎ · · ·

𝑅grad,ℎ

𝑮𝑘
ℎ

𝑹̂curl,ℎ

𝑪𝑘
ℎ

Id𝐸grad,ℎ

𝑮̂
𝑘

ℎ

𝑬curl,ℎ

𝑪
𝑘

ℎ

Extensions and reduction link the two complexes.

Designed to ensure transfer of homological and analytical properties:
isomorphism of cohomologies, Poincaré inequalities, primal and adjoint
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Plan

1 Motivation for continuous and discrete complexes

2 Finite Elements approach, and its limitations

3 Overview of the Discrete De Rham complexes
Principles guiding arbitrary-order polytopal complexes
DDR – regular version
DDR – serendipity version

4 Numerical illustration

24 / 34



Convergence of (S)DDR scheme for the Stokes problem in
curl-curl formulation

Theorem (Pressure-robust estimates [Beirão da Veiga et al., 2022])

Setting the graph norms

∥·∥2curl,1,ℎ = ∥·∥2curl,ℎ + ∥𝑪𝑘
ℎ
·∥2div,ℎ on 𝑿𝑘

curl,ℎ ,

∥·∥2grad,1,ℎ = ∥·∥2grad,ℎ + ∥𝑮𝑘
ℎ
·∥curl,ℎ on 𝑋 𝑘

grad,ℎ,

we have:

∥𝒖
ℎ
− 𝑰𝑘curl,ℎ𝒖∥curl,1,ℎ + ∥𝑝

ℎ
− 𝐼𝑘grad,ℎ𝑝∥grad,1,ℎ ≲ 𝐶1 (𝒖)ℎ𝑘+1.

with 𝐶1 (𝒖) depending 𝒖 and some of its derivatives, but not 𝑝.

Choice of discrete source term & commutation properties of DDR
operators ensures pressure robustness...
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Convergence test

𝑘 = 1 (DDR) 𝑘 = 2 (DDR) 𝑘 = 3 (DDR)

𝑘 = 1 (SDDR) 𝑘 = 2 (SDDR) 𝑘 = 3 (SDDR)
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(a) Voronoi meshes
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101
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1
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1

4

(b) Tetrahedral meshes

Figure: Relative errors in discrete 𝑯 (curl;Ω) × 𝐻1 (Ω) norm vs. ℎ: DDR (continuous
lines) and SDDR (dashed lines).
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Wall and CPU times on the finest meshes

𝑘 = 2 𝑘 = 3
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Conclusion I

DDR: discrete complex, of arbitrary degree of accuracy, applicable on
polytopal meshes, yields stable schemes even for models with
“incomplete” differential operators
[Di Pietro et al., 2020][Di Pietro and Droniou, 2021a].

Other approach: virtual element complexes
[Beirão da Veiga et al., 2018][Beirão da Veiga et al., 2022]

Systematic serendipity reduction of number of DOFs (on any polytopal

mesh) [Di Pietro and Droniou, 2022b].

Leaner complexes than FE approches on certain meshes (and fully
compatible with FE complexes on hybrid meshes).
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Conclusion II

Full set of homological and analytical results: cohomology, Poincaré
inequalities, primal and adjoint consistency, commutation properties,
etc.
(Facilitated by a generic framework to transfer properties from one
complex to another one.)

Some other applications/complexes:

div-div plates complex and serendipity version
[Di Pietro and Droniou, 2022a][Botti et al., 2023].

Magnetostatics equations [Di Pietro and Droniou, 2021b].

Yang–Mills equations [Droniou et al., 2023].

Stokes complex [Hanot, 2021].

Rot-rot complex [Di Pietro, 2023].
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Notes and series of introductory lectures to DDR:

https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html
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Thank you!
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Plan

5 Extension: transferring homological and analytical properties between
two complexes
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Setting I

Starting point: a complex with some analytical properties (including
some polynomial consistency).

P𝑘𝑖 P𝑘𝑖+1

· · · 𝑋𝑖 𝑋𝑖+1 · · ·

𝐼𝑖 𝐼𝑖+1

d𝑖
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Setting II

Objective: link a second complex, to ensure that homological and
analytical properties are also satisfied by this second complex.

P𝑘𝑖 P𝑘𝑖+1

· · · 𝑋𝑖 𝑋𝑖+1 · · ·

· · · 𝑋𝑖 𝑋𝑖+1 · · ·

𝐼𝑖 𝐼𝑖+1

d𝑖

𝑅𝑖 𝑅𝑖+1

d̂𝑖

𝐸𝑖 𝐸𝑖+1
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Homological properties

· · · 𝑋𝑖 𝑋𝑖+1 · · ·

· · · 𝑋𝑖 𝑋𝑖+1 · · ·

d𝑖

𝑅𝑖 𝑅𝑖+1

d̂𝑖

𝐸𝑖 𝐸𝑖+1

Theorem

If the extensions and reductions satisfy

𝑅𝑖𝐸𝑖 = Id for all 𝑖,

(𝐸𝑖+1𝑅𝑖+1 − Id) (ker d𝑖+1) ⊂ Imd𝑖 for all 𝑖,

𝐸 and 𝑅 are cochain maps (each one commutes with the differential
operators),

then:

★ the cohomologies of (𝑋𝑖 , d𝑖)𝑖 and (𝑋𝑖 , d̂𝑖)𝑖 are isomorphic.
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Analytical properties I

Take H𝑖 ⊃ P𝑘𝑖 (Sobolev-like space) and (·, ·)𝑖 𝐿2-like inner products on
the first complex.

H𝑖 H𝑖+1

· · · (𝑋𝑖 , (·, ·)𝑖) (𝑋𝑖+1, (·, ·)𝑖+1) · · ·

· · · (𝑋𝑖 , (𝐸𝑖 ·, 𝐸𝑖 ·)𝑖) (𝑋𝑖+1, (𝐸𝑖+1·, 𝐸𝑖+1·)𝑖+1) · · ·

𝐼𝑖 𝐼𝑖+1

d𝑖

𝑅𝑖 𝑅𝑖+1

d̂𝑖

𝐸𝑖 𝐸𝑖+1
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Analytical properties II

Theorem

If the extensions and reductions satisfy

𝑅𝑖 : 𝑋𝑖 → 𝑋𝑖 is continuous,

(polynomial consistency) 𝐸𝑖𝑅𝑖 𝐼𝑖 = 𝐼𝑖,

𝐼𝑖 : H𝑖 → 𝑋𝑖 is continuous,

then the following properties are transferred from (𝑋𝑖 , d𝑖)𝑖 to (𝑋𝑖 , d̂𝑖)𝑖:

★ Poincaré inequalities,

★ Consistency of the inner product (polynomial and in 𝐿2-like
norm on H𝑖),

★ Consistency of potential reconstruction,

and, under cochain map property:

★ Commutation property and consistency of differential operators,

★ Adjoint consistency (controls error in discrete IBP).
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Application to the SDDR complex

Construction of extensions and reductions for the SDDR complex {
limits on reduction of number of DOFs.

Gives all the properties required for analysis of schemes based on
SDDR:

SDDR has the same cohomology as the de Rham complex.
SDDR satisfies all analytical properties: Poincaré inequalities, primal
and adjoint consistency, commutation properties of interpolator and
differential operators...
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