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The Stokes problem in curl-curl formulation

m Given Q contractible, v > 0 and f € L?(Q), the Stokes problem reads:
Find the velocity u : Q — R3 and pressure p : Q — R s.t.

—vAu
v(curlcurlu — )+gradp = f in Q, (momentum conservation)
divu =0 inQ, (mass conservation)
curlu xn=0andu-n=0 on dQ, (boundary conditions)
Jap=0

m Weak formulation: Find (u, p) € H(curl; Q) x H' (Q) s.t. pr =0 and

/vcurlu~curlv+/gradp-v:/f~v Vv € H(curl; Q),
Q Q Q

—/u~gradq=0 Vg € HY(Q)
Q
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The Stokes problem in curl-curl formulation

m Given Q contractible, v > 0 and f € L?(Q), the Stokes problem reads:
Find the velocity u : @ — R3 and pressure p : Q — R s.t.
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v(curl curlu — )+gradp = f in Q, (momentum conservation)
divu=0 inQ, (mass conservation)
curlu xn=0andu-n=0 on dQ, (boundary conditions)
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and

/vcurlu-curlv +/gradp~v:/f-v Vv € H(curl; Q),
Q Q Q

controls curlu only...

ulgrad H (Q)
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De Rham complex

m The de Rham sequence is
B —25 BY(Q) 25 H(ewlQ) - H(divi@) 1% 12 —2 (0}

m It is a complex: the range of each operator is included in the kernel of
the next one (i.e. gradig =0, curlgrad = 0, divcurl =0).

m It is exact (inclusions ~ equalities) if Q has a trivial topology:

R = kergrad, Imgrad = ker curl, Im curl = ker div, Imdiv = L3(Q).
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De Rham complex

m The de Rham sequence is

gras

R —2% 5@ =Y H(cwl Q) < H(div;Q) 1Y 12(Q) —2 {0)

m It is a complex: the range of each operator is included in the kernel of
the next one (i.e. gradip =0, curlgrad = 0, div curl = 0).

m It is exact (inclusions ~» equalities) if Q has a trivial topology:

R = ker grad, , Im curl = ker div, Imdiv = L?(Q).

Im grad = ker curl

m Exactness = well-posedness of the Stokes problem in curl—curl form
(same for the Stokes problem in A form...).

Reproducing this exactness at the discrete level is instrumental to
designing stable numerical approximations.
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Motivation for continuous and discrete complexes

Finite Elements approach, and its limitations

Overview of the Discrete De Rham complexes
m Principles guiding arbitrary-order polytopal complexes
m DDR - regular version
m DDR - serendipity version

B Numerical illustration
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The Finite Element way

Global complex

Trn = {T} conforming tetrahedral /hexa-
hedral mesh of Q.

m Define local polynomial spaces on each element, and glue them
together to form a sub-complex of the de Rham complex:

gr

ad curl div 0
> Vi, curl > Vi,div > V2 —— {0}

[ | [

grad curl div

R — HY(Q) 2% H(cur; Q) % H(div;Q) —2¥% 12(Q) —%» {0}

R—— Vh,grad

m Example: conforming P¥~Nédélec—Raviart-Thomas spaces (see
[Arnold, 2018] for a generic approach).

m Gluing only works on special meshes!

6/34



The Finite Element way

Shortcomings

m Approach limited to conforming meshes with standard elements

= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
— the element shape cannot be adapted to the solution

m Need for (global) basis functions
= significant increase of DOFs on hexahedral elements
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Polytopal meshes |

m Local refinement (to capture geometry or solution features) is
seamless, and can preserve mesh regularity.

m Agglomerated elements are also easy to handle (and useful, e.g., in
multi-grid methods).

m High-level approach can lead to leaner methods (fewer DOFs).
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Polytopal meshes Il

Example of efficiency: Reissner—Mindlin plate problem.

Stabilised P2-(P! + B3) scheme DDR scheme

nb. DOFs Error nb. DOFs Error
2403 0.138 550 0.161
9603 6.82e-2 2121 6.77e-2
38402 3.40e-2 8329 3.1e-2
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Plan

Overview of the Discrete De Rham complexes
m Principles guiding arbitrary-order polytopal complexes
m DDR - regular version
m DDR - serendipity version
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Plan

Overview of the Discrete De Rham complexes
m Principles guiding arbitrary-order polytopal complexes
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Key ideas for a discrete complex

m Finite-dimensional spaces of vectors made of polynomials on relevant
mesh entities: vertices, edges, faces, elements.

m Interpolators give meaning to these polynomials/DOFs.

m Bespoke operators between the spaces, that represent grad, curl, div.

PC) - & gradz Xk curlﬁ Xk divﬁ k 0
( ) : R Xgrad,h Zcurl,h =div,h Xh,L2 {0}

k k k k
I rad,hT Lml,hT I iv,hT IL2 ,hT

R): R —— HY(Q) =% H(cwl; Q) -y H(div;Q) —4¥ 12(Q) — %3 (0}

Note: interpolators are actually well-defined on smaller (more regular)
subspaces.
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Key ideas for a discrete complex

k gradf & curlﬁ k divﬁ k 0
(PC): R — X — X — X — Xppo — {0}

—grad,h “curl,h

k k k k
I rad,hT Lml,hT I iv,hT IL2 ,hT

grad curl div

(dR): R — H(Q) -5 H(cwrl; Q) - H(div;Q) —4Y% 12(Q) —% {0}

Main properties:

m Cohomology of (PC) =~ cohomology of (dR), on generic topologies
[Di Pietro et al., 2022].

m Local polynomial consistency: for D € {grad, curl,div} and T € 7,
there is PY, . X5 . — PK(T) st

Py Iy jw=w, Dily w=Dw  YwePHT).
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Motivation for continuous and discrete complexes

Finite Elements approach, and its limitations
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m Principles guiding arbitrary-order polytopal complexes
m DDR - regular version
m DDR - serendipity version
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Degrees of freedom and interpolator

m Degrees of freedom: (trimmed) polynomials on vertices, edges, faces,

elements.
Space ‘ Vv E F T
Xlg(rad,T R Pk_l(E) Pk_l(F) Pk_l(T)
Xow.r PEE)  RUE) @ ROH(F)  RENT) @ ROK(T)
l(liiv,T Pk(F) gk_l(T) ® gc’k(T)
pk(T) pk(T)

RI(P) = curl PX(P), RK(P) = (x —xp)P*"'(P) (P=F.T)
G (D) =grad PX(T),  G°N(T) = (x —x7) x PFH(T).
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Degrees of freedom and interpolator

m Degrees of freedom: (trimmed) polynomials on vertices, edges, faces,

elements.

Space ‘ 74 E F T

X]g(rad,T R Pkil(E) Pkil(F) pk—l(T)
X7 PEE)  R<LF) @ REK(F)  RENT) @ ROEH(T)
Xz PE(F) G5 (T) & GH(T)
Pk(T) pk(T)

m Interpolators: L2-projections of (traces) of functions. E.g.:
W e ClQ?, I,y = ((xh £ (v - tE)Ece,
- Kk
(7.t (V. F), mg (Ve F)Fes,,

(”R V> 7713 TV)TG‘]L)
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Potential reconstructions and discrete operators

m Hierarchical constructions: from lowest-dimensional mesh entity to
higher-dimensional entities.

m Enhancement: Discrete operator first (based on IBP, polynomially
consistent), then used for potential reconstruction (also based on IBP,

and also polynomially consistent).
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Potential reconstructions and discrete operators

m Hierarchical constructions: from lowest-dimensional mesh entity to
higher-dimensional entities.

m Enhancement: Discrete operator first (based on IBP, polynomially
consistent), then used for potential reconstruction (also based on IBP,
and also polynomially consistent).

Example with curl:
m Face curl: C,’;KF € P¥(F) such that

/CIIEKF rpz/vR,F-rotprp— Z a)pE/vErp Vrr € PR(F).
F F e E
m Tangential trace reconstruction: yﬁFgF e P*(F) such that

k k
‘/’}’t’FKF'(I'OtFVF-FWF):/CFKF e+ Z wFE/vErF+/v§{F-wF
F F E F

EESF
Y(rp,wr) € PO (F) x ROK(F).
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DDR complex

Patch local spaces (no continuity between elements), project local
(polynomial) operators on DOFs:

k QZ k Qﬁ k D;; k 0
(DDR): R —— XE_,\ —— XE —" s XE —— P(T) — (0}

k K k nk
L, hT Lcurl,llT L., hT P.h

dR): R — HY(Q) 2% H(cur; @) 5 H(div;Q) —4Y3 12(Q) —% (0}

Properties for the design and analysis of stable numerical schemes:
m Cohomology and polynomial consistency.

m Analytical properties: Poincaré inequalities, primal and adjoint
consistency, commutation properties of interpolators and differential
operators, etc.
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DDR scheme for Stokes in curl-curl formulation

m Weak formulation: Find (u, p) € H(curl; Q) x H'(Q) s.t. fgp =0 and

/vcurluocur1v+/gradp'v=/f-v Vv € H(curl; Q),
Q Q Q
—/u-gradq:O Vg € H'(Q)
Q

m Set

k k —
Kgrad h, O {C] € Xgrad h - (2 ’lgrad,h l)grad,h - O} :

m DDR scheme: Find u, € Lnrl’h and p, € Xk Xivad,n,0 SUch that

k
V(giﬂh’gzzh)div,h + (Qip sKh)curl,h = (lcurl /7,f’ Kh)curl,h vvh € Xcurl h’
L ,

_(Q;;gh’ Eh)curl,h =0 vq € Xgrad h,0°
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Motivation for continuous and discrete complexes

Finite Elements approach, and its limitations

Overview of the Discrete De Rham complexes
m Principles guiding arbitrary-order polytopal complexes
m DDR - regular version
m DDR - serendipity version

B Numerical illustration
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Key ideas to eliminate some DOFs

Lemma

Let k > 0, take T a polyhedron with nt faces that are not pairwise
parallel, and set ¢y =k +1—nr.
Any g € P**1(T) is entirely determined by (q\F)Fes and np +4, and

¢ 1
lallLzcry < 7o rqllzcr) + by Z lgFllzz(F)-
Fe¥r

m If ny > k+1, then 7T 74 =0 (only face values are required).

m Also works with 7' ~» F polygon.
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Key ideas to eliminate some DOFs

Lemma

Let k > 0, take T a polyhedron with nt faces that are not pairwise
parallel, and set ¢y =k +1—nr.
Any g € P**1(T) is entirely determined by (q\F)Fes and np +4, and

lallzery s 17 pallezy + 2> llairlizace).
Fe¥r

m If ny > k+1, then nt Tq 0 (only face values are required).
m Also works with T ~» F polygon.

m DDR spaces already fully encode traces on faces/elements boundaries
~» polynomial consistency should not require that much information
inside the faces/elements.
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Serendipity DDR: degrees of freedom

Space |V E F T

Xpoar | R PUE) Pr-L(F) Pk-1(T)
Xewn.7 PEE)  REU(F) @ ROK(F)  RENT) @ ROK(T)
Xﬁiv,T Pk(F) gkfl(T) o g‘*k(T)

Pk(T) Pk(T)
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Serendipity DDR: degrees of freedom

Space | V E F T
—~k ] )

Xgrad,’l‘ R Pk (E) plr (F) plr (T)

Xewn.r PEE) RN F) e RTTI(F)  RMNT) @ ROTTHT)
K PHE) 6* (1)@ 67T
PK(T) PET)

m Note that {F < k-1 and ¢y < k — 1.
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Serendipity DDR: degrees of freedom

Space | V E F T
—~k ] )

Xgrad,'l‘ R Pk (E) Pplr (F) plr (T)

X PEE) RN F) e RTTI(F)  RMNT) @ ROTTHT)
K PHE) 6" (1) ® G°M(T)
PK(T) PET)

m Note that {F < k-1 and ¢y < k — 1.

m Why can't we reduce more (e.g. the R*"! components, or Xﬁiv w)?
Due to the constraints of preserving the complex properties...
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DDR vs. SDDR vs. Raviart-Thomas-Nédélec

Discrete space | k=0 k=1 k=2

HY(T) 40404 15010010 32020020
H(curl;T) 60606 280230620 65053045
H(div;T) 4odod 18018015 44044636

L%(T) lolol 4odod 10 ¢ 10 ¢ 10

Table: Tetrahedron: dimensions of the local spaces in the DDR ¢ SDDR ¢ RTN.

Discrete space | k=0 k=1 k=2
HY(T) 80808 27020027 54032064
H(curl;T) 12012012 46039054 99077 o 144
H(div;T) 60606 24 024 036 56 ¢ 56 ¢ 108
L%(T) lolol 40468 10 ¢ 10 ¢ 27

Table: Hexahedron: dimensions of the local spaces in the DDR o SDDR o RTN.
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SDDR complex

=k QZ sk QZ k Dlii k 0
R > X rad,h — Xcurl,h — X — P (ﬁ) — {0}

—8g =div,h

m SDDR scheme: exactly as a DDR scheme, substituting spaces and
operators with those above.
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SDDR: analysis

Gk
s k ~h s k =h s k s
( DD R) “—grad,h curl,h =div,h
\ \
\ \
\ \
\ - \
Egrad.h | Bgrad,h Q“rl.h | Bcurl,ll Id
1 1
/ !
v v

(SDDR) : -+ —— Xgradh —> Zeurl,h ” deh >

m Extensions and reduction link the two complexes.
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SDDR: analysis

Gk k
k G k Cn k
(DDR) — Xoradoh ? Xewth — 7 Xgiyp —
\ \
\ \
\ \
\ A o~
Epaan 1Ryt Eoutn 1R, 1d
] 1
/ /
v v
é k ¢

(SDDR) : e Xgradh —> Leurl,h —> —leh >

m Extensions and reduction link the two complexes.

m Designed to ensure transfer of homological and analytical properties:
isomorphism of cohomologies, Poincaré inequalities, primal and adjoint
consistency, etc.
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SDDR: analysis

Gk
s k ~h s k =h s k s
(DDR) “—grad,h curl,h =div,h
\ \
\ \
\ \
\ A \
Epaan 1Ryt Eoutn 1R, 1d
I I
/ /
Vo Vo
¢ k ¢

(SDDR) : e Xgradh —> Leurl,h —> —leh >

m Extensions and reduction link the two complexes.

m Designed to ensure transfer of homological and analytical properties:
isomorphism of cohomologies, Poincaré inequalities, primal and adjoint
consistency, etc.

m Generic blueprint that is applicable in many circumstances (e.g.:
analysis of cohomology of various discrete complexes, etc.).
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Motivation for continuous and discrete complexes

Finite Elements approach, and its limitations

Overview of the Discrete De Rham complexes
m Principles guiding arbitrary-order polytopal complexes
m DDR - regular version
m DDR - serendipity version

Numerical illustration
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Convergence of (S)DDR scheme for the Stokes problem in
curl-curl formulation

Theorem (Pressure-robust estimates [Beirdo da Veiga et al., 2022

Setting the graph norms

k 12
” ”curllh “ “curlh+ “Ch.”divh on Xcurlh’

2
02 g = N2 p + 1G lewrth 0N Koo 1o

we have:

k k k+1
”Zh - !curl,hu”curl,l,h + ”Bh - lgrad,hp”grad,l,h s G (u)h A
with C1(u) depending u and some of its derivatives, but not p.

Choice of discrete source term & commutation properties of DDR
operators ensures pressure robustness...
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Convergence test

—a— k=1 (DDR) —— k=2 (DDR) —=— k =3 (DDR)
~m- k=1 (SDDR)-e- k =2 (SDDR)- =- k = 3 (SDDR)

10" ¢ E

100} ; [
109 ¢ E

107t ¢ B

1071 E

1072 ¢ E [
1072 | E

Il Il Il Il t Il Il Il Il
10*0.8 10*0.6 10*&4 10*02 10*0.6 1070'4 10*0.2 100
(a) Voronoi meshes (b) Tetrahedral meshes

Figure: Relative errors in discrete H (curl; Q) x H'(Q) norm vs. h: DDR (continuous
lines) and SDDR (dashed lines).
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Wall and CPU times

Voronoi

Tetrahedral

on the finest meshes

k=2 k=3
! 9 104
4.103
4-10 L5k |
P 1 [ B
2.10°
0.5 8
0-10° \ \ 0 == ‘
Wall Proc Wall Proc
5L 60 |- .
0] 40 l
5L 20 |- b
0 ‘ 0 ‘ ‘
Wall Proc Wall Proc
Ooobr lospbr
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Conclusion |

m DDR: discrete complex, of arbitrary degree of accuracy, applicable on
polytopal meshes, yields stable schemes even for models with
“incomplete” differential operators
[Di Pietro et al., 2020][Di Pietro and Droniou, 2021a].

Other approach: virtual element complexes
[Beirdo da Veiga et al., 2018][Beirdo da Veiga et al., 2022]

m Systematic serendipity reduction of number of DOFs (on any polytopal
mesh) [Di Pietro and Droniou, 2022b].

m Leaner complexes than FE approches on certain meshes (and fully
compatible with FE complexes on hybrid meshes).
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Conclusion 11

m Full set of homological and analytical results: cohomology, Poincaré
inequalities, primal and adjoint consistency, commutation properties,
etc.

(Facilitated by a generic framework to transfer properties from one
complex to another one.)

m Some other applications/complexes:

m div-div plates complex and serendipity version

[Di Pietro and Droniou, 2022a][Botti et al., 2023].
Magnetostatics equations [Di Pietro and Droniou, 2021b].
Yang—Mills equations [Droniou et al., 2023].

Stokes complex [Hanot, 2021].

Rot-rot complex [Di Pietro, 2023].
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m Notes and series of introductory lectures to DDR:

https://math.unice.fr/~massonr/Cours-DDR/Cours-DDR.html

COURSE OF JEROME DRONIOU FROM MONASH UNIVERSITY, INVITED PROFESSOR AT UCA

« Introduction to Discrete De Rham complexes

Short description (in french)
summary of notations and formulas

Part 1, first course: the de Rham complex and its usefulness in PDEs, 22/09/22 (video)
Part 1, second course: Low order case, 29/09/22 (video)

Part 1, third course: Design of the DDR complex in 2D, 07/10/22 (video)

Part 1, fourth course: Exactness of the DDR complex in 2D, 10/10/22 (video)

Part 2, fifth course: DDR in 3D, analysis tools, 17/11/22 (video)
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Thank you!
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Extension: transferring homological and analytical properties between
two complexes
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Setting |

Starting point: a complex with some analytical properties (including
some polynomial consistency).

Ppki Pkis
I; Iiv1
d;
> Xi > Xiv1 > e
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Setting I

Objective: link a second complex, to ensure that homological and
analytical properties are also satisfied by this second complex.

Pki PkHl
I; lisa
d;
> Xi > Xiv1 >
\ \
\ \
v \
E; I R; Eiv1 1Rt
I I
/ /
- . =
N d; N
> Xi > Xiv1 >
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Homological properties

\ \
> X; > Xiy1 >
\ \
\ \
\ v
E; I R; Eiy1 | Ris1
] ]
Ve v
. a, N
> Xi > Xiv1 >

If the extensions and reductions satisfy
m R,E; =1d for all i,
m (Ei1Riv1 — 1d)(kerdiyq) c Imd; for all i,
m E and R are cochain maps (each one commutes with the differential
operators),
then:
* the cohomologies of (X;,d;); and (X;, ai),- are isomorphic.
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Analytical properties |

Take H; > Pk (Sobolev-like space) and (-,-); L2-like inner products on

the first complex.

H,

s> (X, (4 ))

oo — (X4, (Ei- Ei)))

(/_(i-H

lfin

d;
> (Xiv1, (4 0)ig1) ——— -+
\\
'
Eiv1 I Rj1
1
; v
——— (Xps1, (Eps1 Ei1)in) —> -
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Analytical properties Il

Theorem

If the extensions and reductions satisfy
m R, : X; — X; is continuous,

m (polynomial consistency) E:R;I; = I;,
m [; : H; — X; is continuous,

then the following properties are transferred from (X;,d;); to (X;, &i)i.'

x Poincaré inequalities,

% Consistency of the inner product (polynomial and in L?-like
norm on ‘H;),

* Consistency of potential reconstruction,
and, under cochain map property:

* Commutation property and consistency of differential operators,
* Adjoint consistency (controls error in discrete IBP).
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Application to the SDDR complex

m Construction of extensions and reductions for the SDDR complex ~»
limits on reduction of number of DOFs.

m Gives all the properties required for analysis of schemes based on
SDDR:
m SDDR has the same cohomology as the de Rham complex.
m SDDR satisfies all analytical properties: Poincaré inequalities, primal
and adjoint consistency, commutation properties of interpolator and
differential operators...
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