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Complex geometries require skewed elements

Experimental device to measure rock permeability

CO2 Porous rock

(initially filled with CH4)

100mm

CH4 + CO2

38mm

0.57mm

Source: T. Hughes, Fac. of Engineering, Monash.

§ Numerical simulation of the flow  meshing the domain
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Complex geometries require skewed elements

Meshing junction free flow/porous flow: with regular elements, requires
specific, ad-hoc strategy.
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Complex geometries require skewed elements

Meshing junction free flow/porous flow: with elongated elements, more
straightforward and flexible.

J. Droniou (Monash University)



Plan

1 Motivation

2 Hybrid High-Order method
Model and framework for discretisation
Notations, local spaces and operators
Presentation of HHO scheme
Error analysis on skewed meshes

3 Numerical tests
HArDCore library
Anisotropic heterogeneous diffusion on isotropic regular mesh
Isotropic diffusion and skewed mesh
Interplay between diffusion and skewness

J. Droniou (Monash University)



Plan

1 Motivation

2 Hybrid High-Order method
Model and framework for discretisation
Notations, local spaces and operators
Presentation of HHO scheme
Error analysis on skewed meshes

3 Numerical tests
HArDCore library
Anisotropic heterogeneous diffusion on isotropic regular mesh
Isotropic diffusion and skewed mesh
Interplay between diffusion and skewness

J. Droniou (Monash University)



Model: anisotropic heterogeneous diffusion equation

´divpK∇uq “ f in Ω,

u “ 0 on BΩ.

Ω polytopal domain in Rd ,

K : Ω Ñ Rdˆd
sym uniformly elliptic and piecewise constant,

f P L2
pΩq.

J. Droniou (Monash University)



Weak formulation and approximation framework

Weak formulation: find u P H1
0 pΩq such that

apu, vq “ `pvq @v P H1
0 pΩq,

where apu, vq “ pK∇u,∇vqΩ and `pvq “ pf , vqΩ.

§ p¨, ¨qX : inner product on L2
pX q.

Numerical scheme requires:

Discretisation method Discretised operators

Vh finite dimensional space,

Ih : V Ñ Vh interpolator.

ah : Vh ˆ Vh Ñ R bilinear,

`h : Vh Ñ R linear.

Scheme: find uh P Vh such that

ahpuh, vhq “ `hpvhq @vh P Vh.
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Mesh

T

F

nTF

T : element (cell) / set of elements: Th;

F : face / set of faces: Fh;

nTF : outer normal to T on F ,

FT : set of faces of T ,

K constant on each element, value KT .

J. Droniou (Monash University)



Local unknowns

vT “ pvT , pvF qFPFT
q

T

vT P PkpT q

vF P PkpF q

Pk
pX q: polynomials of degree ď k on X “ T ,F ;

π0,k
X : L1

pX q Ñ Pk
pX q polynomial L2

pX q-projector;

Space: Uk
T “ tvT “ pvT , pvF qFPFT q : vT P Pk

pT q , vF P Pk
pF qu;

Interpolator: I kT : H1
pT q Ñ U

k
T such that I kTw “ pπ

0,k
T w , pπ0,k

F wqFPFT q.

J. Droniou (Monash University)



Diffusion-dependent potential reconstruction

Higher-order potential reconstruction: pk`1
K ,T : Uk

T Ñ Pk`1
pT q defined by:

For all vT P U
k
T and q P Pk`1

pT q,

pKT∇pk`1
K ,T vT ,∇qqT “ pKT∇vT ,∇qqT `

ÿ

FPFT

pvF ´ vT ,KT∇q¨nTF qF ,

ppk`1
K ,T vT , 1qT “ pvT , 1qT .

Note:
§ Oblique elliptic projector π1,k`1

K ,T : H1
pT q Ñ Pk`1

pT q defined by:

For all w P H1
pT q and all q P Pk`1

pT q,

pKT∇π1,k`1
K ,T w ,∇qqT “ pKT∇w ,∇qqT ,

pπ1,k`1
K ,T w , 1qT “ pw , 1qT .

§ Link with potential reconstruction:

pk`1
K ,T I

k
Tw “ π1,k`1

K ,T w .
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Local bilinear form

Consistent contribution plus stabilisation: aK ,T : Uk
T ˆ U

k
T Ñ R defined by

aK ,T pvT ,wT q “ pKT∇pk`1
K ,T vT ,∇pk`1

K ,TwT qT ` sK ,T pvT ,wT q.

(Example of) stabilisation:

sK ,T pvT ,wT q “
ÿ

FPFT

KTF

dTF

´

δkK ,TF vT ´ δ
k
K ,T vT , δ

k
K ,TFwT ´ δ

k
K ,TwT

¯

F

with

KTF “ KTnTF ¨nTF ,

dTF “
|T |d
|F |d´1

,

Face and element difference operators:

δkK ,TF vT “ π0,k
F ppk`1

K ,T vT ´ vF q , δkK ,T vT “ π0,k
T ppk`1

K ,T vT ´ vT q.

Equivalently: pδkK ,T vT , pδ
k
K ,TF vT qFPFT q “ I

k
Tpk`1

K ,T vT ´ vT
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HHO scheme

Discretisation method:

Space

U
k
h,0 “ tvh “ ppvT qTPTh , pvF qFPFh q : vT P Pk

pT q , vF P Pk
pF q ,

vF “ 0 if F Ă BΩu

Interpolator
I
k
hw “ ppπ

0,k
T wqTPTh , pπ

0,k
F wqFPFh q.

Discretised operators:

Bilinear form
aK ,hpvh,whq “

ÿ

TPTh

aK ,T pvT ,wT q

Linear form

`hpwhq “ pf ,whqΩ where pwhq|T “ wT for all T P Th.

HHO scheme: find uh P U
k
h,0 such that

aK ,hpuh,whq “ `hpwhq @wh P U
k
h,0,
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Finite volume presentation

Face residuals: RBT “ pRTF qFPFT : Uk
T Ñ

Ś

FPFT
Pk
pF q defined by

´
ÿ

FPFT

pRTF vT , qF qF “ sK ,T pvT , p0, pqF qFPFT qq @pqF qFPFT P
ą

FPFT

Pk
pF q.

Fluxes:
ΦTF pvT q “ ´KT∇pk`1

K ,T vT ¨nTF ` RTF vT .

Local balances and conservativity: HHO scheme equivalent to

pKT∇pk`1
K ,TuT ,∇vT qT

`
ÿ

FPFT

pΦTF puT q, vT qF “ pf , vT qT @T P Th , @vT P Pk
pT q,

ΦT1F puT1
q ` ΦT2F puT2

q “ 0 @F P Fh interface between T1 and T2.
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Standard regular meshes

§ hX : diameter of X “ T ,F .

Standard regularity assumptions for polytopal methods: isotropic elements.

Each T star-shaped with respect to a ball of diameter „ hT .

Each F star-shaped with respect to a disc of diameter „ hF , and hF „ hT
if F P FT .

Notable variations (but still mostly isotropic elements):

HHO: T not star-shaped, just existence of regular sub-division into
simplices.

(conforming) VEM: can deal with small faces (hF ! hT for F P FT ), and
large number of faces in each element.
§ But not a FV method...
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Skewed element

§ Polytope T that can be transported by linear map onto isotropic polytope pT ,
such that h

pT „ hT .

T

pT

φT

J. Droniou (Monash University)



Regular skewed mesh sequence

Definition: pMhqh “ pTh,Fhqh where each element T PMh is skewed, with pT
isotropic uniformly w.r.t. h (as in standard regular mesh).
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Regular skewed mesh sequence

Definition: pMhqh “ pTh,Fhqh where each element T PMh is skewed, with pT
isotropic uniformly w.r.t. h (as in standard regular mesh).

§ No direct relation between mappings φT and φT 1 of two neighbouring
elements.

T pT

xT 1

T 1

φT “ Id

φT 1 “

„

1 0
0 1{ε



§ Not ok for conforming FE/VEM [Weißer, 2019], [Antonietti et al, 2019]
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Regular skewed mesh sequence

Definition: pMhqh “ pTh,Fhqh where each element T PMh is skewed, with pT
isotropic uniformly w.r.t. h (as in standard regular mesh).

§ Does not accept small faces in otherwise isotropic elements.

T
T

J. Droniou (Monash University)



Main error estimate

Theorem (HHO error estimates on skewed meshes)

With u solution to the PDE, uh solution of HHO scheme, r P t0, . . . , ku:

}I
k
hu ´ uh}a,K ,h ď CAK ,hh

r`1
|u|Hr`2pThq

with AK ,h :“ max
TPTh

K
2
φ,T

Kφ,T

,

}¨}a,K ,h: norm associated to aK ,hp¨, ¨q,

Kφ,T and Kφ,T largest and smallest eigenvalues of the transported

diffusion Kφ, pT “ φTKTφ
t
T .

§ Estimate based on transport relations. As sharp as for standard regular
meshes.
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Interplay between mesh anisotropy and diffusion

}I
k
hu ´ uh}a,K ,h ď CAK ,hh

r`1
|u|Hr`2pThq

with AK ,h :“ max
TPTh

K
2
φ,T

Kφ,T

“ max
TPTh

ˆ

Kφ,T ˆ
Kφ,T

Kφ,T

˙

KT “

„

λT 0
0 1



φT “

„

aT 0
0 bT



.

§ Then:

AK ,h “ max
TPTh

»

–maxpaTλ
1
2
T , bT qmax

¨

˝

aTλ
1
2
T

bT
,

bT

aTλ
1
2
T

˛

‚

fi

fl .
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Interplay between mesh anisotropy and diffusion

KT “

„

λT 0
0 1



φT “

„

aT 0
0 bT



.

§ Then:

AK ,h “ max
TPTh

»

–maxpaTλ
1
2
T , bT qmax

¨

˝

aTλ
1
2
T

bT
,

bT

aTλ
1
2
T

˛

‚

fi

fl .

§ Consider K “ diagpλ, 1q with λ " 1.

All T elongated in direction Isotropic mesh
of strong diffusion

(aT “ 1 ! bT „ λ
1
2 ) (aT “ bT “ 1)

AK ,h „ λ
1
2 AK ,h „ λ
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HArDCore: Open-source C++ library for discretisations of PDEs.

§ Sources: https://github.com/jdroniou/HArDCore

Contributors (direct or indirect): D. Anderson, L. Botti, H. M. Cheng, D. Di Pietro, J.

Droniou, L. Grose, T. Lemaitre, L. Yemm.

Key features:

§ Handles 2D and 3D generic polytopal meshes.

§ Easy-to-use procedures for: quadrature rules on elements/faces/edges;
creation and management of various basis functions; calculations of
“Gram-like” matrices (mass, stiffness, etc.); etc.

§ For HHO (diffusion, advection...), an any other polytopal method (e.g.
magnetostatic with Discrete De Rham method).

§ Almost straightforward transition of code 2D Ø 3D.

§ Some level of optimisation in the procedures (mutli-threading, etc.)

J. Droniou (Monash University)
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Description of test

Mesh: locally refined non-conforming, but isotropic.

Solution and diffusion: upx , yq “ cospπxq cospπyq and, with
λ P t1, 10´6, 106

u,

Kpx , yq “

„

λ 0
0 1



if y ă 0.5, Kpx , yq “ Id if y ě 0.5.
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Rates of convergence w.r.t. h

§ Errors measured:

Ea,K ,h :“
}I

k
hu ´ uh}a,K ,h

}I
k
hu}a,K ,h

and E1,h :“
}I

k
hu ´ uh}1,h

}I
k
hu}1,h

,

where }¨}1,h is a diffusion-independent discrete H1-norm.

J. Droniou (Monash University)



Rates of convergence w.r.t. h

λ “ 1, k “ 1 λ “ 10´6, k “ 1 λ “ 106, k “ 1

λ “ 1, k “ 3 λ “ 10´6, k “ 3 λ “ 106, k “ 3
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(a) Ea,K,h vs. h.
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(b) E1,h vs. h.

Behaviour:
§ Ea,K ,h independent of λ.
§ E1,h impacted by λ, more for low orders.
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Description of test

Mesh: hexagonal stretched in x-direction as h is refined.

Solution and diffusion: upx , yq “ cospπxq cospπyq and K “ Id.
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Rates of convergence w.r.t. h

k “ 0 k “ 1 k “ 2 k “ 3

10´1.6 10´1.4 10´1.2 10´1

10´9

10´7

10´5

10´3

10´1

1

1

1

2

1

3

1

4
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(b) E1,h vs. h.

Behaviour: loss of optimal rate of convergence.
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Measure of mesh skewness effect

Element and mesh flatness: with ρT inradius of T ,

flT “
hT
ρT

, flh “ max
TPTh

flT .

Predicted error: λT “ 1, aT “ 1 and bT „ flT so AK ,h „ fl2
h and

Ea,K ,h

hk`1
„ fl2

h.

Rates w.r.t. flh:

h flh
Ea,K,h

hk`1 rate

0.13 10 8e-01 –
0.06 22 6.7e-01 -0.2
0.03 46 7.6e-01 0.2
0.02 70 1e+00 0.7

h flh
Ea,K,h

hk`1 rate

0.13 10 3.4e-01 –
0.06 22 2.1e-01 -0.6
0.03 46 2.3e-01 0.1
0.02 70 3.3e-01 0.8

k “ 0 k “ 1

h flh
Ea,K,h

hk`1 rate

0.13 10 1.4e-01 –
0.06 22 6.4e-02 -1
0.03 46 4.9e-02 -0.4
0.02 70 7.3e-02 0.9

h flh
Ea,K,h

hk`1 rate

0.13 10 4.4e-02 –
0.06 22 1.8e-02 -1.2
0.03 46 1.0e-02 -0.7
0.02 70 1.4e-02 0.7

k “ 2 k “ 3

§ Much lower impact of flh as expected.
§ E1,h even less sensitive to flh.
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Description of test

Meshes: hexagonal regular, and hexagonal stretched in x-direction (flh

doubling from one mesh to the next).

Regular:

Skewed:

Solution and diffusion: upx , yq “ cospπxq cospπyq,

K “

„

106 0
0 1



.
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Rates of convergence w.r.t. h

10´2 10´1

10´4

10´3

10´2

10´1

(a) Errors vs. h for k “ 0 (top four plots)
and k “ 1 (bottom four plots).

10´2 10´1

10´9

10´7

10´5

10´3

(b) Errors vs. h for k “ 2 (top four plots)
and k “ 3 (bottom four plots).

Dashed lines: regular meshes; Continuous lines: skewed meshes.

Round markers: Ea,K ,h; square markers: E1,h.

§ Clear improvement when using meshes that are skewed in the direction of the
diffusion.
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Rates of convergence w.r.t. nb degrees of freedom

103 104 105

10´4

10´3

10´2

10´1

(a) Errors vs. nb DOFs for k “ 0 (top four
plots) and k “ 1 (bottom four plots).

103 104 105 106

10´9

10´7

10´5

10´3

(b) Errors vs. nb DOFs for k “ 2 (top four
plots) and k “ 3 (bottom four plots).

Dashed lines: regular meshes; Continuous lines: skewed meshes.

Round markers: Ea,K ,h; square markers: E1,h.

§ Improvement less clear than w.r.t. h.
Meshes that are skewed “everywhere” have more edges than regular meshes.
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Conclusions

§ Error estimate for HHO, taking into account anisotropic diffusion and skewed
elements.

§ No particular tweak to the method, standard HHO method.

§ Interplay between mesh skewness and diffusion directions.

§ Numerical results confirm interplay, but also show more robustness of HHO
than in theoretical error estimate.

§ Future work:

Make theoretical error estimate sharper (only needs to be done for regular
meshes).

Tweak HHO to make it robust uniformly with respect to mesh skewness.

Deal with small faces and/or lots of faces per element.
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