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A (not so simple) model problem |

m Let Q ¢ R3 be an open connected polyhedral domain that does not
enclose any void

m Let a current density Je curl H(curl; Q) be given

m We consider the problem: Find the magnetic field H : Q — R? and the
vector potential A : Q — R3 s.t.

puH —curlA =0 in Q,
curlH = J in Q,
divA =0 in Q,
AXn=0 on 0Q

vector potential)
Ampere's law)

Coulomb's gauge)

—_—~ o~ o~ o~

boundary condition)
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A (not so simple) model problem Il

m In weak formulation: Find (H, A) € H(curl; Q) x H(div; Q) s.t.
/yH~T—/A~curl‘r:0 V1 € H(curl; Q),
Q Q
/curlH-v+/divAdivv =/J-v Vv € H(div; Q)
Q Q Q

m Well-posedness hinges on the exactness of the following portion of the
de Rham sequence:

SO g 0) Y Hewrl; @)~y H(div: Q) —2Y 12(Q) —23 {0}
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Well-posedness analysis

Re-cast weak formulation as A((H, A), (T,v)) = £(v) with

ﬂ((H,A),(T,v)):/,uH~‘r—/A~curl‘r+/curlH~v+/divAdivv
o) Q Q Q
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Well-posedness analysis

ﬂ((H,A),(T,v)):/,uH~‘r—/A~curl‘r+/curlH~v+/divAdivv
Q Q Q Q
Proof of inf-sup property:.

m Make (7,v) = (H, A) to estimate ||H||;2(q) and || div A||z2(q), then
(t,v) = (0, curl H) to estimate || curl H||2(q).
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Well-posedness analysis

ﬂ((H,A),(T,v)):/,uH~‘r—/A~curl‘r+/curlH~v+/divAdivv
Q Q Q Q

Proof of inf-sup property:.

m Make (7,v) = (H, A) to estimate ||H||;2(q) and || div A||z2(q), then
(t,v) = (0, curl H) to estimate || curl H||2(q).

m Write A = A* + A* € Kerdiv @(Ker div)*. Since Imdiv = L?(Q), we
have an isomorphism div : (Ker div)* — L2(Q) and thus

A% ]Iz2(@) < Clldiv ALz (q) = Cll div Allr2(q).-
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Well-posedness analysis

ﬂ((H,A),(T,v)):/,uH~‘r—/A~curl‘r+/curlH~v+/divAdivv
Q Q Q Q

Proof of inf-sup property:.

m Make (7,v) = (H, A) to estimate ||H||;2(q) and || div A||z2(q), then
(t,v) = (0, curl H) to estimate || curl H||2(q).

m Write A = A* + A* € Kerdiv @(Ker div)*. Since Imdiv = L?(Q), we
have an isomorphism div : (Ker div)* — L2(Q) and thus

A% ]Iz2(@) < Clldiv ALz (q) = Cll div Allr2(q).-

m Use Im curl = Ker div to see that curl : (Ker curl)* — Kerdiv is an
isomorphism and thus find 7 € (Ker curl)* s.t. curlt = —A* and
I7llE(eure) < CIlIA™]L2(0)-

~ Use (1,0) in A to estimate ||A™]|12(q).
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isomorphism and thus find 7 € (Ker curl)* s.t. curlt = —A* and
I7llE(eure) < CIlIA™]L2(0)-

~> Use (7,0) in A to estimate [|A*||.2(q)-

The exactness property is also essential at the discrete level!
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The Finite Element way

Local spaces

Key idea: define subspaces that form exact sequence

Let T ¢ R? be a polyhedron and set, for any k > —1,
PK(T) := {restrictions of 3-variate polynomials of degree < k to T’}

m Fix £k > 0 and write, taking xy €T,

PK(T)3 = grad P**(T) @ (x —x7) x PK1(T)?

Gk (r) Gk (T)
= curl P (T)3 @ (x — x7)PF1(T)

R (T) R (T)
m Define the trimmed spaces

NKUT) = GX(T) @ GFN(T)  [Nédélec, 1980]
RT*(T) = RY(T) @ R&*1(T)  [Raviart and Thomas, 1977]

7/40



The Finite Element way
Global FE sequence

Figure: Conforming tetrahedral mesh of the unit cube (clip)
m Let 7, = {T'} be a conforming tetrahedral mesh of Q and let k > 0
m Local spaces can be glued together to form the global FE sequence

R —2y phei(g) B2 Nk () Sy Rk (7)) —dYs ok () —2 (0

m This procedure only works on conforming meshes!
m See [Arnold, 2018] for a unified approach (FE Exterior Calculus)
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The Finite Element way

Shortcomings

A%

=

V%
<3

%

SR
e

oy

ay

m Approach limited to conforming meshes with standard elements
= local refinement requires to trade mesh size for mesh quality
= complex geometries may require a large number of elements
= the element shape cannot be adapted to the solution

m The implementation of high-order versions may be tricky
[ I
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The Virtual Elements way

grad

R io V\]fcrt Vk_l curl> Vk_2 div> Pk_?’(ﬁ) 0 {0}

edge face

m The good:
m Conforming: each discrete space is a subspace of the corresponding

continuous space.
m Applicable to generic meshes with polyhedral elements

m The bad:
m Degree decreases by one at each application of differential
operator
m Functions not fully known, only certain moments or values are
accessible
m Exactness not usable in a scheme due to the variational crime
(only certain projections of the functions are used in the scheme)
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The discrete de Rham (DDR) approach |

Figure: Examples of polytopal meshes supported by the DDR approach

m Key idea: replace spaces and operators by discrete counterparts:

—grad h

Dy 0
R > Xorad —> url,h —> X5 — PN(T) — {0}
m Support of general polyhedral meshes and high-order

m Exactness proved at the discrete level (directly usable for stability)

m (Relatively) simple implementation of high-order versions
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The discrete de Rham (DDR) approach Il

m The fully discrete spaces are spanned by vectors of polynomials

m Polynomial components attached to geometric objects to mimic
m full continuity for the approximation of H!(Q)
m continuity of tangential traces for the approximation of H(curl; Q)
m continuity of normal traces for the approximation of H(div; Q)

m Selected so as to enable the reconstruction of consistent

m discrete vector calculus operators
m (scalar or vector) discrete potentials
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Introduction and motivation

Discrete de Rham (DDR) sequences

Properties of the global DDR sequence

B Application to magnetostatics

13/40



The two-dimensional case

Continuous exact sequence

m Let F ¢ R? be a simply connected polygon embedded in R3
m let,forg: F >Randv:F — R2 smooth enough,

rotr g = 0_x,(gradg q) rotp v = divp (0-xv)
m We derive a discrete counterpart of the exact local sequence:
R~ HY(F) 2% Hot; F) 5 L2(F) — {0}
m We will need the following decompositions of P*(F)?:

PK(F)? =roty PHY(F) @ (x —xp)P* 1 (F)

R/\(F) (le(t,l\(l;v)
=grad; P*"1(F) & (x — xp) P 1(F)

GX(F) 6K (F)

14 /40



The two-dimensional case
A key remark

m Denote by 7% L the L2-orthogonal projector on P*~1(F)

m Let g € PX1(F). For any v € PX(F)?, we have

/Fgraqu'V=—/Fq divey + wFE/EtuaF(V'"FE)

Ee€&Ep
ePk-1(F)

k=1 3.
=—/F7T¢>,Ff/d1VFV+ Z wFE/EqmF(V'"FE)

EcEp

m Hence, grad; ¢ can be computed given n’;‘}q and g 5r

WFE =

te nrE
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The two-dimensional case
Discrete H'(F) space

m The discrete counterpart of H'(F) is

Xraar =14, = (@r.qor)  ar € P*1(F) and qor € sDCk*l(aF)}

( 7 - o

/
L J

k=0 k=1 k=2

: . k
Figure: Number of degrees of freedom for Kgrad,F for k € {0,1,2}

m The interpolator [fg‘r :CO%(F) — Xk oF s st Vg € CO(F),

10 r 0 = (4. qor) with

T 1 (qor)E =7 pqie VE € EF and qar (xy) = q(xy) YV € Vg
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The two-dimensional case

Reconstructions in Xg]rad F

m For all E € EF, the edge gradient G . Xk — PKE) is s.t.

—grad,F

G4, = (qor)g

m The full face gradient G XgmdF

/FGﬁgl,'V:—‘/F(IFdiVFV+ Z wFE/ECMF(V'nFE)

EESF

By construction, we have polynomial consistency:
Gk (Ig]rad rq)=gradpq Vg e P*(F)

Using another IBP, we reconstruct a face potential in PX*1(F)

— PK(F)?iss.t., Vv € PK(F)?,

17/40



The two-dimensional case
Discrete H(rot; F) space

m We reason starting from: Vv € N**1(F) := GK(F) @ G“F1(F),

/rothq=/v~ rotr g — Z wFE/(v-tE) q91E VqGSDk(F)
F F E

—— Ec&p ——
eRF1(F) ePk(E)

m This leads to the following discrete counterpart of H(rot; F):

k. )
Xt F = {Kp = (V‘R,F’V%,F’ (VE)Eegr) :

vr.F € RETV(E), vl o € ROK(F), v € PR(E) VE € & }

N "\ Z "\
L

LN A W |

k=1 k=2

Figure: Number of degrees of freedom for Xfot p for k €{0,1,2}
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The two-dimensional case

Reconstructions in Xrot e

m The face curl operator C Xrot e PK(F) is s.t.,
‘/CJI';K[: q:/VR,F'YOth_ Z wFE/VE q Yqe€PHF)
F F E<ér E

m Define the interpolator Imt p i HY(F)? — X* o p St Vv e HY(F)?,

Irot FY = (”R FY ";ekF (”I;J,E("IE ‘tE))EesF)~

C1’§ is polynomially consistent by construction:
CF(I]rot FV) =rtotp v vy € N¥HL(F)

m By another IBP, we reconstruct a vector potential in P*(F)?
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The two-dimensional case
Exact local sequence

Theorem (Exactness of the two-dimensional local DDR sequence)

If F is simply connected, the following local sequence is exact:

Agrad F,

,F Cfé k 0
R > X gradF : rotF 7 P (F) ? {0}7

where G s Xfot F Is the discrete gradient s.t., Vq e X¥

“—grad, F —grad,F’

Gha, = (mh 1 (Gha, ) 75" (Gha,). (Ghd,) pesy )
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The two-dimensional case
Summary

grad E

Ck
R grad F 7F 1 rot F - 7 pk(F) 4 ? {O}

Space ‘ V (vertex) E (edge)

F (polygon)
Xtar | R PL(E) PEL(F)
Xt PEE)  R¥HF) x ROK(F)
PE(F) PE(F)

Table: Polynomial components for the two-dimensional spaces

m Interpolators = component-wise L2-projections

m Discrete operators = L2-projections of full operator reconstructions
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The three-dimensional case |
Exact sequence

—grad, T,

Ly L xk Q§} k Qé} k DF ok 0
R Xgrad,T Xcurl,T X — P (T) — {0}

=div,T
Space |V E F (face) T (polyhedron)
Xérad,T R Pk_l(E) Pk_l(F) pk—l(T)
X PEE)  RLF) x REE(F) REN(T) x REH(T)
Xﬁiv,T PE(F) G U(T) x 6K (T)
Pk(T) pk(T)

Table: Polynomial components for the three-dimensional spaces

Theorem (Exactness of the three-dimensional local DDR sequence)

If the polyhedron T has a trivial topology, this sequence is exact.
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The three-dimensional case |l
Exact sequence

Lemma (Commutative diagram with the sequence of trimmed spaces)

The following commutative diagram holds, expressing the polynomial
consistency of the discrete vector calculus operators:

Pkﬂ(T) gfad; Nk+1(T) curl ,R.TkH(T) div; Pk(T)

k k k .
llgrad.T J/Icurl,T ll iv,T \L’T
G k k

C
X g — Xy ——— X 1 — PH()

“—grad,T —curl,T
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The three-dimensional case
Local discrete L2-products

m Emulating integration by part formulas, define the local potentials

k+1 . vk k+1
Pgrad,T . Kgrad,T - P (T)’

Pty XA o PR,

curl,7 * Zcurl,T

P<kliv,T : Lﬁiv,T — PX(T)?

m Based on these potentials, we construct local discrete L2-products

()_CT,yT)-,T = / Perxp 'P.,TyT +SeT ()_CT,yT) Ve € {grad, curl, div}
2 . b b

consistency stability

m The L?-products are polynomially exact
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The three-dimensional case
Global sequence

m Let Q ¢ R3 as before and let 7, be a polyhedral mesh
m Global DDR spaces are defined gluing boundary components:
k k k
Xgrad, h’ Xcurl, h’ Xdiv, h
m Global operators are obtained collecting local components:
Gy G D,
m Global L2-products (-, ). ), are obtained assembling element-wise
m The global DDR sequence is

Ik k k k
—grad,h k Qh & Qh X Dh k 0
Xgrad,h > X 7 Xdiv,h — P (7;1) — {O}

—curl,h
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Exactness

k
Lgrad,h

Theorem (Exactness properties of the global DDR sequence)

k
Xgrad,h

k
Qh

k

“curl,h

Xk —> PE(Th) —— {0)

Let Q c R? be an open connected polyhedral domain.

m If Q is connected, it holds

m IfQ is simply connected, it holds

k
Im !grad

A =KerQ’fl L

Im G} = Ker CK |

m /f Q does not enclose any void, it holds | Im Ck

m [t holds

Ika

P(T) |

Ker Dk .
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Exactnes: elements of proof |

» Im D = P¥(7;) follows from the classical Fortin's argument

m The inclusions Img’,i C KerD’Z and Imlgmd nC Kergﬁ result from
local exactness

m The inclusion Kerg‘l - Imgfl starts by creating a continuous
polynomial on the skeleton, integrating over edge paths the edge
components of y, € Kergﬁ.
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Exactnes: elements of proof Il

Most challenging: Ker DX c ImC}.

In two steps: ify, € KerDﬁ, then:

: k _Ck
m Local exactness gives T, € Xy s.t. v =Cpxp forall T €7,

m The local vectors are then glued together, by topological assembly of
the mesh using a succession of the following operations.
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Exactnes: elements of proof Ill

Add a new element by glueing one ot its faces to an element in the

¥

Glue together two faces of elements in the mesh s.t. the edges along
which the faces are already glued together form a connected path

This is only possible since Q2 does not enclose any void!
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Consistency and Poincaré inequalities

m Primal consistency: for e € {grad, curl, div}, optimal local
L2-approximation properties of Po71ls 7, €.8.

||P§,:}1 T lgaard — 4llL2(r) < Chy*21qlgrse (-
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Consistency and Poincaré inequalities

m Primal consistency: for e € {grad, curl, div}, optimal local
L2-approximation properties of Po71ls 7, €.8.

||P§,:}1 T lgaard — 4llL2(r) < Chy*21qlgrse (-

m Dual consistency: estimate error in discrete global integration-by-parts,
e.g.

k k
Z [(ldiv,TwT’gTKT)diV’T —‘/Tcurlw PcurlTvT]

TeT,

k k
< CH M wlggien s (119, leust + 1€ i) -
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Consistency and Poincaré inequalities

m Primal consistency: for e € {grad, curl, div}, optimal local
L2-approximation properties of Po71ls 7, €.8.

||P§,:}1 T lgaard — 4llL2(r) < Chy*21qlgrse (-

m Dual consistency: estimate error in discrete global integration-by-parts,
e.g.

k k
Z [(ldiv,TwT’gTKT)diV’T —‘/Tcurlw PcurlTvT]

TeT,

k k
< CH M wlggien s (119, leust + 1€ i) -

m Poincaré inequalities: for e € {grad, curl, div}, bound the norm of
v, € (Kere)* in terms of the norm of ey, , e.g.,

IWallaiv,n < CIDEY, llr2@) Vv, € (Ker D¥)*.
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A DDR scheme for magnetostatics
Discrete problem |

m Continuous weak formulation: Find (H, A) € H(curl; Q) x H(div; Q)
s.t.

/pH-‘r—/A-curl‘r:O V1 € H(curl; Q),
Q Q
/cur1H~v+/divAdivv =/J-v Vv € H(div; Q)
Q Q Q
m The global bilinear forms are approximated substituting
(Ehazh)cm‘l,h — /:uH T
(C WY h)dlv h < / curlt - v

/D,’;wh <—/d1vw divy
Q

m The current density linear form is [, defined similarly
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A DDR scheme for magnetostatics
Discrete problem I

m The DDR problem reads: Find (H,,u,) € X}, , x X5, st.
(H,,. T))ewtn — (W, ChT ) )divn =0 VT, € Xcurl b

(Qﬁﬂh’ﬁh)div,h +/QDiizh Diﬁh =ln(v,) Vv, € lgiv,h

m Stability hinges on the exactness of the portion

k

Dk 0
X s X PR~ (o)
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A DDR scheme for magnetostatics
Stability and well-posedness

Theorem (Well-posedness)

Let Q c R? be an open simply connected polyhedral domain that does
not enclose any void. Then, (H,,u,) € Xfml n X Xﬁiv , i unique and
there exists C > (0 independent of h s.t.

k k
H ) llewrt,n + 1€ By llaiv.n + 1, laiv.n + 14, 2@ < CllJ -

Proof.

Reproduce the proof of continuous case, replacing spaces/operators by
discrete ones. O
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Numerical examples
Setting

m Let (73)neq be a regular polyhedral mesh sequence
m We consider a known solution (H, A) to assess convergence rate

m The error
(e).8,) = (H, - curth u, - Igw nA)

is measured in the natural energy norm s.t.
1
”(g » €, )”en,h = (Q € )curl,h+(§ » €, )div,h 2
h&n hEn h&n

m The implementation is based on the HArDCore3D C++ library!

1See https://tinyurl.com/HarDCore3D
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Numerical examples
Meshes

D

Vo ———

-

(a) Cubic-Cells

(c) Voro-small-0 (d) Voro-small-1

Figure: Mesh families used in the numerical tests
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Numerical examples

Convergence in the energy norm

’Agszoglszlggszzg*sza‘

Cubic-Cells’ "Tetgen-Cube-0'
T T T T T
100} 10t
ol
w0k 10
L
102 10
1079 1072
1074 ko 107 . . .
107! 10706 1004 10702 100
"Voro-small-0' "Voro-small-1'
T T T T T T T
ol
10/ wl
107 39 107 F
2
1
1072 ¢ Z 407
1

Figure: Energy error versus mesh size h. We have ||(¢,,,&),) llen.n pk+l

L
10-0%

L L L
1006 1004 1002

o

L L
10-04 10-03
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Conclusions and perspectives

m A novel approach for the numerical solution of PDE problems

m Key features: support of general polyhedral meshes and high-order
m Novel computational strategies made possible

m Natural extensions to variable coefficients and nonlinearities

m Applications (electromagnetism, incompressible fluid mechanics,.. .)
m Formalization using differential forms (ongoing)

m Development of novel sequences (e.g., elasticity)

m .
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