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© The problem: numerical methods with inexact calculations
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Linear advection model

qﬁ% + div(uc) =0 on Qr:=Qx(0,T),
c(+,0) = cini on Q.

e Q: polygonal/polyhedral domain, with mesh M.

@ ¢: porosity, 0 < ¢ < ¢ < ¢*, piecewise constant on mesh.

e u: Darcy velocity, u € L>(0, T; L?(2)), divu = 0 and
u-n=20on 0.

@ cipi: initial concentration, ¢ € L>(9).
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ELLAM method

Time steps: Time discretisation
0=t <@ < <M =T with q(r+3) = ¢(r+D) _ 4(n)

Let u("t1) € [2(Q)9 approximate u on (t(", t("+1)) with
divu("1) = 0 and u(™) . n =0 on 9Q.
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ELLAM method

Time steps: Time discretisation

0=t <@ < <M =T with q(r+3) = ¢(r+D) _ 4(n)
Let u("t1) € [2(Q)9 approximate u on (t(", t("+1)) with
divu(™*1) =0 and u("*1) . n =0 on 0Q.

Test function: v satisfying

¢§f+u("+1>-w =0 on Qx (t™ ") (., 1)) given,

» Set F;(x) flow of u("1) /6, that is
dFe(x) _ ul™D(Fi(x))

dt  (F(x) Folx) = x.

Then
(n+3) (X)7 t(n+1))'

Y(x, tM) = y(F

ot
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ELLAM method

Test function: v satisfying

¢g_1f+u("+1)-v¢ =0 on Qx (¢ ) - y(., (") given.

» Set F;(x) flow of u(™1) /6, that is

dFe(x)  ulmD(F(x))
dt — ¢(F(x)

Fo(x) = x.

Then
Y(x, t(n)) = ¢(F&(n+%)(x), t(n+1))‘

Time stepping in ELLAM (=Eulerian Lagrangian Localised
Adjoint Method):

/ B x, eH) dx = / 6()(ct)(x, t") dix
Q Q



ELLAM method: global and local mass conservation

Global mass conservation: make v(x, t("1)) = 1:

/ S(x)c(x, €MD) dx = / (x)c(x, €M) dx.
Q Q
Local mass conservation: since divu = 0,

If c(-, t(M) =1 then c(-, t("t1)) = 1.
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ELLAM for piecewise constant approximations

» At each time, we are looking for cp(-, t(") = (C/(\;],))MEM
piecewise constant approximation of ¢ on M.

» Notation: the porous volume in a set A is

!A|¢>=/A¢-

ELLAM formulation: take 9(-, t{"t1)) = 1x for a cell K € M:

n+1
Kloed ™ = " IMOF__ 0 (K)locly-
MeM
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Global and local mass conservation

Klock ™ = 3" IMAOF__ iy (K)locky-
MeM
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Global and local mass conservation

Klock ™ = 3" IMAOF__ iy (K)locky-
MeM

Global mass conservation: OK by summing over K and using

D IMOF (K)o = Mg,
KeM
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Global and local mass conservation

1
Klged ™ = S IMOF__ ) (K)locly-
MeM

Global mass conservation: OK by summing over K and using

D IMOF (K)o = Mg,
KeM

Local mass conservation: OK because

S IMnF. o (Ko = 1F i3y (K)lo = Kls.
MeM
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ELLAM in practice: what needs to be computed

Transport of cells: K polygonal/polyhedral cell, but F_&(,,Jr%)(K)
is a generic potato, that needs to be approximated...

t(n+1)

VK|
N
\ N
.
N

Figure: Exact (left) and approximated (right) trace-back of K.
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ELLAM in practice: what needs to be computed

Intersection of regions: need to compute (porous volume of)

MOF 1K),

» Algorithms for areas of intersections of polygons (2D) are ok,
but expensive.

» Algorithms for volume of intersections of polyhedras (3D) are
terrible!
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ELLAM in practice: revisiting mass conservation

» Global and local mass conservation are based on

D IMOF ) (Kls =Ml (global),

KeM

MZM IMAF oy (Ko = IF iy (K)ls = 1Kl (local).
€

» Issue: we only compute K, and

IMN K[y~ |MN F—at("Jr%)(K)l‘b'

Not a problem for global mass conservation (as (K)ke forms a
partition of the domain), but breaks down local mass
conservation...
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e B-char method: cheap, and perfectly mass conservative
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An original idea...

Approximate polygons/polyhedras by balls,
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An original idea...

Approximate polygons/polyhedras by balls, track balls
(keeping them as balls), intersect balls.
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... that needs to be enhanced!

» Loss of volume in K when approximating by balls (gaps), and
loss of volume when intersecting balls.

» Very inaccurate approximation of K (and thus of F—&(”%)(K))
by tracked balls.

~> bad solutions, clearly not conserving mass.
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Initial adjustments

» Cell K with balls (B s)s=1...n.
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Initial adjustments

» Cell K with balls (B s)s=1...n.

Distribution of porous volume: introduce porous density pg,
constant during evolution, such that

nK
pK Y |Brslo = |Klo-

s=1

» pk|Bk s|s equivalent porous volume inside ball.
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Initial adjustments

» Cell K with balls (B s)s=1...n.

Distribution of porous volume: introduce porous density pg,
constant during evolution, such that

nK
pK Y |Brslo = |Klo-
s=1

» pk|Bk s|s equivalent porous volume inside ball.

Tracking of balls: assuming ¢ constant, the volume (and radius)
of Bk s remains constant during tracking (generalised Liouville
theorem).
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Initial adjustments

Intersections of balls without loss of mass: straight intersection
of balls in K and M leads to

’k\ﬂ M‘Qﬁ ~ ZZPM¢M’§K’S N BM,m"
s m
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Initial adjustments

Intersections of balls without loss of mass: straight intersection
of balls in K and M leads to

KN M|~ > pméml Brs N Buiyml.
m

s

» But loss of mass through intersection of balls. So we compute
the fraction of mass of By s that comes from B p:

pmdMm| Bk s N Bum|
Yotem 2orty PLoL|Br,s N Bryl

fK,s,M,m =
and we set

nkg v
IMO K|~ Vig jy =D pxds|Brosl Y ficomm:
s=1 m=1
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Mass conservations?

Local mass conservation: came from
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Mass conservations?

Local mass conservation: came from

%: IMOF iy (Kl = [F_ i (Ko = [Klo.

We therefore need

Z VR,M = |K|¢, OK because ZM Zm fk,s,M,m = 1.
M

Global mass conservation: came from

DIMAF gy (K)ls = M.
K

We therefore need

D Vi = IMly. KO!
K
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Second adjustment: redistributions

Global: Y Vi, =[M|s.  Local: Y Vi, =Kl
K M
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Second adjustment: redistributions

Global: Y Vg, =[M|s.  Local: Y Vi, =Kl
K M

» Step 0: set ngw = VR,M'
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Second adjustment: redistributions

Global: Y Vg, =[M|s.  Local: Y Vi, =Kl
K M

For n=0,..., N, iterate:

» Step 1: redistribute to get global mass conservation

YD) My V(n) '

K.M ZR V(n
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Second adjustment: redistributions

Global: Y Vg, =[M|s.  Local: Y Vi, =Kl
K M

For n=0,..., N, iterate:

» Step 1: redistribute to get global mass conservation

YD) My V(n) '

K.M (n
>R Ve
» Step 2: redistribute to get local mass conservation

VD) _ &V(w )
K,M n+) KM

21 Vg
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Second adjustment: redistributions

» Error in global/local mass tends to reduce at each iteration...
but very slowly after the first few steps.
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Second adjustment: redistributions

» Error in global/local mass tends to reduce at each iteration...
but very slowly after the first few steps.

Achieving exact conservation: after n ~ 10, stop iterations and
find, in the vicinity of the current (VI(?"L,)K,M, one solution to the
global and local mass conservation eqt]ations.

J. Droniou (Monash University)



Second adjustment: redistributions

Achieving exact conservation: after n ~ 10:
Find x = (XR,M)KvM such that:

~ (n) -
o ((1+ XKJV’)VR,M)K’M exactly satisfies the global and
local mass balance equations,
e 01+ X M <2,
o [x|2 is minimal.
Then, use Vi \, = (1+XR,M)V;(??\// as porous volumes of cell
intersections.
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Second adjustment: redistributions

Achieving exact conservation: after n ~ 10:
Find x = (XR,M)KvM such that:

o ((1+ XI?,M)V;(??\/I)KM exactly satisfies the global and
local mass balance equations,
0 0L 1+XR,MS2'
o [x|2 is minimal.
Then, use Vi \, = (1+XR,M)V;(??\// as porous volumes of cell
intersections.
> (XR M)KJV’ are ficells x fcells unknowns, but the actual

minimisation problem is much smaller (only a few V}%"?VI are

non-zero).
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© Numerical tests
@ 2D tests
@ 3D tests
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© Numerical tests
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Comparison with “polygonal” ELLAM: translation

» “Polygonal” ELLAM: classical approach, computing K and
intersection M N K.

» B-char: 4 balls in each cell.

Test case: Q = (0,1)?, cni = 1 on (15, %) ¥ (55, %), velocity
u=(%,0), final time T = 8.
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Comparison with “polygonal” ELLAM: translation

» “Polygonal” ELLAM: classical approach, computing K and
intersection M N K.
» B-char: 4 balls in each cell.

Test case: Q = (0,1)?, ni = 1 on (55, &) X (35, 15), velocity
u=(3%,0), final time T = 8.
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Figure: 16x16 grid, 6t = 0.8 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: translation

» “Polygonal” ELLAM: classical approach, computing K and
intersection M N K.
» B-char: 4 balls in each cell.

Test case: Q= (0,1)?, cini = 1 on (55, &) X (55, 1), velocity
u=(g%,0), final time T = 8.
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Figure: 32x32 grid, §t = 0.4 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: translation

» “Polygonal” ELLAM: classical approach, computing K and
intersection M N K.
» B-char: 4 balls in each cell.

Test case: Q = (0,1)?, gni = 1 on (55, =) X (3, 15), velocity

: 16 16
u=(g%,0), final time T = 8.
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Figure: 64x64 grid, t = 0.2 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: translation

» “Polygonal” ELLAM: classical approach, computing K and
intersection M N K.
» B-char: 4 balls in each cell.

Test case: Q= (0,1)?, cini = 1 on (55, &) X (55, =), velocity
u=(%,0), final time T = 8.

Polygonal B-char
Mesh | &t || CPU (1 step) | L? error | CPU (1 step) | L? error
16 x 16 | 0.8 0.5s 3.7e-01 0.1s 3.8e-01
32x32 1|04 6.5s 3.2e-01 0.4s 3.3e-01
64 x 64 | 0.2 97.4s 2.7e-01 3.5s 2.9e-01

Table: CPU runtime and errors
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Comparison with “polygonal” ELLAM: rotation

Test case: Q = (0,1)?, cui = 1 on disc of center (%, %) and
radius %, final time T = 8.
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Figure: Initial condition (left), final solution (right).
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Comparison with “polygonal” ELLAM: rotation

Results:
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Figure: 16x16 grid, t = 0.8 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: rotation

Results:
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Figure: 32x32 grid, t = 0.4 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: rotation

Results:
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Figure: 64x64 grid, 6t = 0.2 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: rotation

Results:
Polygonal B-char
Mesh | &t || CPU (1 step) | L? error | CPU (1 step) | L? error
16 x 16 | 0.8 2.7s 5.1e-01 0.2s 5.1e-01
32x32 |04 43s 4.2e-01 1.3s 4.1e-01
64 x 64 | 0.2 701s 3.6e-01 14.5s 3.6e-01

Table: CPU runtime and errors
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Solid body rotation

Velocity: simple rotation around the center of Q = (0,1)2.

106400

000400 000

Figure: Solid body rotation on a 128x128 mesh (left: initial condition;
right: numerical solution at T = 27).

» Underlying ELLAM discretisation allows for larger time steps

ot = % (in literature, usually, §t < %).
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Deformational flow

Velocity: velocity reverses at half-time T/2:

u = (sin?(7x) sin(2my) cos(wt/ T), — sin?(wy) sin(2mx) cos(nt/ T)).
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Deformational flow
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Figure: 64 x 64 mesh, §t = 0.5 (left: initial condition; right: numerical
solution at T =5).
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Deformational flow

Results:

008400

Figure: 128 x 128 mesh, 6t = 0.25 (left: initial condition; right:
numerical solution at T = 5).
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Deformational flow

Results:
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Figure: At halftime T = 2.5 (left: 64 x 64 cells; right: 128 x 128 cells).
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© Numerical tests

@ 3D tests
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»Q=(0,1)3 T =8
» B-char with 8 balls per cell, 163 mesh, 5t = 0.8.

» 3 test cases:
1. Piecewise constant ¢y, in cube, velocity: translation in x.

2. Piecewise constant ¢; in cylinder, velocity: rotation &
stretching in (x, y), translation in z.

3. Continuous bump ¢iit, same velocity as in 2.
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Test case | Ot CPU time LY error | L? error
(one time step)

1 0.8 37.2s 4.8e-01 | 4.1e-01

0.8 63.bs 9.6e-01 | 6.2e-01

3 0.8 63.2s 2.4e-01 | 2.4e-01

Table: CPU runtime and errors in 3D.
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Thanks.
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