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Linear advection model




φ
∂c

∂t
+ div(uc) = 0 on QT := Ω× (0,T ),

c(·, 0) = cini on Ω.

Ω: polygonal/polyhedral domain, with mesh M.

φ: porosity, 0 < φ∗ ≤ φ ≤ φ∗, piecewise constant on mesh.

u: Darcy velocity, u ∈ L∞(0,T ; L2(Ω)), divu = 0 and
u · n = 0 on ∂Ω.

cini: initial concentration, cini ∈ L∞(Ω).
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ELLAM method

Time steps: Time discretisation

0 = t(0) < t(1) < . . . < t(N) = T , with δt(n+ 1
2

) = t(n+1) − t(n).

Let u(n+1) ∈ L2(Ω)d approximate u on (t(n), t(n+1)), with
divu(n+1) = 0 and u(n+1) · n = 0 on ∂Ω.

Test function: ψ satisfying

φ
∂ψ

∂t
+u(n+1) ·∇ψ = 0 on Ω×(t(n), t(n+1)) , ψ(·, t(n+1)) given.

I Set Ft(x) flow of u(n+1)/φ, that is

dFt(x)

dt
=

u(n+1)(Ft(x))

φ(Ft(x))
, F0(x) = x .

Then
ψ(x , t(n)) = ψ(F

δt(n+ 1
2 )(x), t(n+1)).

Time stepping in ELLAM (=Eulerian Lagrangian Localised
Adjoint Method):

∫

Ω
φ(x)(cψ)(x , t(n+1)) dx =

∫

Ω
φ(x)(cψ)(x , t(n)) dx
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ELLAM method: global and local mass conservation

Global mass conservation: make ψ(x , t(n+1)) ≡ 1:

∫

Ω
φ(x)c(x , t(n+1)) dx =

∫

Ω
φ(x)c(x , t(n)) dx .

Local mass conservation: since divu = 0,

If c(·, t(n)) = 1 then c(·, t(n+1)) = 1.
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ELLAM for piecewise constant approximations

I At each time, we are looking for ch(·, t(n)) = (c
(n)
M )M∈M

piecewise constant approximation of c on M.

I Notation: the porous volume in a set A is

|A|φ =

∫

A
φ.

ELLAM formulation: take ψ(·, t(n+1)) = 1K for a cell K ∈M:

|K |φc(n+1)
K =

∑

M∈M
|M ∩ F

−δt(n+ 1
2 )(K )|φc(n)

M .
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Global and local mass conservation

|K |φc(n+1)
K =

∑

M∈M
|M ∩ F

−δt(n+ 1
2 )(K )|φc(n)

M .

Global mass conservation: OK by summing over K and using

∑

K∈M
|M ∩ F

−δt(n+ 1
2 )(K )|φ = |M|φ.

Local mass conservation: OK because

∑

M∈M
|M ∩ F

−δt(n+ 1
2 )(K )|φ = |F

−δt(n+ 1
2 )(K )|φ = |K |φ.
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ELLAM in practice: what needs to be computed

Transport of cells: K polygonal/polyhedral cell, but F
−δt(n+ 1

2 )(K )

is a generic potato, that needs to be approximated...

K

F
−δt(n+

1
2)
(K)

t(n+1)

t(n)

K

˜K

t(n+1)

t(n)

Figure: Exact (left) and approximated (right) trace-back of K .
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ELLAM in practice: what needs to be computed

Intersection of regions: need to compute (porous volume of)
M ∩ F

−δt(n+ 1
2 )(K ).

I Algorithms for areas of intersections of polygons (2D) are ok,
but expensive.

I Algorithms for volume of intersections of polyhedras (3D) are
terrible!
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ELLAM in practice: revisiting mass conservation

I Global and local mass conservation are based on
∑

K∈M
|M ∩ F

−δt(n+ 1
2 )(K )|φ = |M|φ (global),

∑

M∈M
|M ∩ F

−δt(n+ 1
2 )(K )|φ = |F

−δt(n+ 1
2 )(K )|φ = |K |φ (local).

I Issue: we only compute K̂ , and

|M ∩ K̂ |φ ≈ |M ∩ F
−δt(n+ 1

2 )(K )|φ.

Not a problem for global mass conservation (as (K̂ )K∈M forms a
partition of the domain), but breaks down local mass
conservation...
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An original idea...

Approximate polygons/polyhedras by balls,

track balls
(keeping them as balls), intersect balls.

K
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... that needs to be enhanced!

I Loss of volume in K when approximating by balls (gaps), and
loss of volume when intersecting balls.

I Very inaccurate approximation of K̂ (and thus of F
−δt(n+ 1

2 )(K ))

by tracked balls.

 bad solutions, clearly not conserving mass.

J. Droniou (Monash University)



Initial adjustments

I Cell K with balls (BK ,s)s=1,...,nK .

Distribution of porous volume: introduce porous density ρK ,
constant during evolution, such that

ρK

nK∑

s=1

|BK ,s |φ = |K |φ.

I ρK |BK ,s |φ equivalent porous volume inside ball.

Tracking of balls: assuming φ constant, the volume (and radius)
of BK ,s remains constant during tracking (generalised Liouville
theorem).
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Initial adjustments

Intersections of balls without loss of mass: straight intersection
of balls in K̂ and M leads to

|K̂ ∩M|φ ≈
∑

s

∑

m

ρMφM |B̂K ,s ∩ BM,m|.

I But loss of mass through intersection of balls. So we compute
the fraction of mass of B̂K ,s that comes from BM,m:

fK ,s,M,m =
ρMφM |B̂K ,s ∩ BM,m|∑

L∈M
∑nL

`=1 ρLφL|B̂K ,s ∩ BL,`|

and we set

|M ∩ K̂ |φ ≈ V
K̂ ,M

=

nK∑

s=1

ρK φ̂K ,s |B̂K ,s |
nM∑

m=1

fK ,s,M,m.
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Mass conservations?

Local mass conservation: came from
∑

M

|M ∩ F
−δt(n+ 1

2 )(K )|φ = |F
−δt(n+ 1

2 )(K )|φ = |K |φ.

We therefore need
∑

M

V
K̂ ,M

= |K |φ. OK because
∑

M

∑
m fK ,s,M,m = 1.

Global mass conservation: came from
∑

K

|M ∩ F
−δt(n+ 1

2 )(K )|φ = |M|φ.

We therefore need
∑

K

V
K̂ ,M

= |M|φ. KO!
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Second adjustment: redistributions

Global:
∑

K

V
K̂ ,M

= |M|φ. Local:
∑

M

V
K̂ ,M

= |K |φ.

I Step 2: redistribute to get local mass conservation

V
(n+1)

K̂ ,M
=

|K |φ
∑

L V
(n+ 1

2
)

K̂ ,L

V
(n+ 1

2
)

K̂ ,M
.
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Global:
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V
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Second adjustment: redistributions

I Error in global/local mass tends to reduce at each iteration...
but very slowly after the first few steps.

Achieving exact conservation: after n ∼ 10
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Second adjustment: redistributions

I Error in global/local mass tends to reduce at each iteration...
but very slowly after the first few steps.

Achieving exact conservation: after n ∼ 10, stop iterations and

find, in the vicinity of the current (V
(n)

K̂ ,M
)K ,M , one solution to the

global and local mass conservation equations.
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Second adjustment: redistributions

Achieving exact conservation: after n ∼ 10:

Find x = (x
K̂ ,M

)K ,M such that:

((1 + x
K̂ ,M

)V
(n)

K̂ ,M
)K ,M exactly satisfies the global and

local mass balance equations,

0 ≤ 1 + x
K̂ ,M
≤ 2,

|x|2 is minimal.

Then, use V
K̂ ,M

= (1 +x
K̂ ,M

)V
(n)

K̂ ,M
as porous volumes of cell

intersections.

I (x
K̂ ,M

)K ,M are ]cells× ]cells unknowns, but the actual

minimisation problem is much smaller (only a few V
(n)

K̂ ,M
are

non-zero).
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Comparison with “polygonal” ELLAM: translation

I “Polygonal” ELLAM: classical approach, computing K̂ and
intersection M ∩ K̂ .
I B-char: 4 balls in each cell.

Test case: Ω = (0, 1)2, cini = 1 on ( 1
16 ,

5
16 )× ( 1

16 ,
5

16 ), velocity
u = ( 1

16 , 0), final time T = 8.
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Comparison with “polygonal” ELLAM: translation

I “Polygonal” ELLAM: classical approach, computing K̂ and
intersection M ∩ K̂ .
I B-char: 4 balls in each cell.

Test case: Ω = (0, 1)2, cini = 1 on ( 1
16 ,

5
16 )× ( 1

16 ,
5

16 ), velocity
u = ( 1

16 , 0), final time T = 8.

Polygonal B-char

Mesh δt CPU (1 step) L2 error CPU (1 step) L2 error

16× 16 0.8 0.5s 3.7e-01 0.1s 3.8e-01

32× 32 0.4 6.5s 3.2e-01 0.4s 3.3e-01

64× 64 0.2 97.4s 2.7e-01 3.5s 2.9e-01

Table: CPU runtime and errors
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Comparison with “polygonal” ELLAM: rotation

Test case: Ω = (0, 1)2, cini = 1 on disc of center ( 1
4 ,

3
4 ) and

radius 1
8 , final time T = 8. Streamlines of velocity:

Figure: Streamlines of the velocity field
u = ((1− 2y)(x − x2),−(1− 2x)(y − y2)).
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Comparison with “polygonal” ELLAM: rotation

Test case: Ω = (0, 1)2, cini = 1 on disc of center ( 1
4 ,

3
4 ) and

radius 1
8 , final time T = 8.

Figure: Initial condition (left), final solution (right).
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Comparison with “polygonal” ELLAM: rotation

Results:

Figure: 16×16 grid, δt = 0.8 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: rotation

Results:

Figure: 32×32 grid, δt = 0.4 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: rotation

Results:

Figure: 64×64 grid, δt = 0.2 (left: polygonal; right: B-char).
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Comparison with “polygonal” ELLAM: rotation

Results:

Polygonal B-char

Mesh δt CPU (1 step) L2 error CPU (1 step) L2 error

16× 16 0.8 2.7s 5.1e-01 0.2s 5.1e-01

32× 32 0.4 43s 4.2e-01 1.3s 4.1e-01

64× 64 0.2 701s 3.6e-01 14.5s 3.6e-01

Table: CPU runtime and errors
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Solid body rotation

Velocity: simple rotation around the center of Ω = (0, 1)2.

Figure: Solid body rotation on a 128×128 mesh (left: initial condition;
right: numerical solution at T = 2π).

I Underlying ELLAM discretisation allows for larger time steps
δt = 2π

10 (in literature, usually, δt ≤ 2π
810 ).
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Deformational flow

Velocity: velocity reverses at half-time T/2:

u = (sin2(πx) sin(2πy) cos(πt/T ),− sin2(πy) sin(2πx) cos(πt/T )).
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Deformational flow

Results:

Figure: 64× 64 mesh, δt = 0.5 (left: initial condition; right: numerical
solution at T = 5).
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Deformational flow

Results:

Figure: 128× 128 mesh, δt = 0.25 (left: initial condition; right:
numerical solution at T = 5).

J. Droniou (Monash University)



Deformational flow

Results:

Figure: At halftime T = 2.5 (left: 64× 64 cells; right: 128× 128 cells).
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Plan

1 The problem: numerical methods with inexact calculations

2 B-char method: cheap, and perfectly mass conservative

3 Numerical tests
2D tests
3D tests
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Setting

I Ω = (0, 1)3, T = 8.

I B-char with 8 balls per cell, 163 mesh, δt = 0.8.

I 3 test cases:

1. Piecewise constant cini in cube, velocity: translation in x .

2. Piecewise constant cini in cylinder, velocity: rotation &
stretching in (x , y), translation in z .

3. Continuous bump cinit, same velocity as in 2.
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Results

Test case δt CPU time L1 error L2 error
(one time step)

1 0.8 37.2s 4.8e-01 4.1e-01

2 0.8 63.5s 9.6e-01 6.2e-01

3 0.8 63.2s 2.4e-01 2.4e-01

Table: CPU runtime and errors in 3D.
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