Chapitre 10

Parabolic Capacity and soft measures for nonlinear equations
Jéréme Droniou, Alessio Porretta!, Alain Prignet?.

10.1 Introduction

Let 2 be a bounded, open subset of R™, T a positive number and @ =]0, T[x2. Let p be a real number,
with 1 < p < 00, and let p' be its conjugate Holder exponent (i.e. 1/p+1/p' =1).
In this paper we deal with the parabolic initial boundary value problem

u+ A(u) =p in ]0,T[x9Q,
u=0 on |0, T[x 09, (10.1)
w(0) = ug in 0,

where A is a nonlinear monotone and coercive operator in divergence form which acts from the space
LP(0,T; W, *(Q)) into its dual L#' (0, T; W~1#(Q)). As a model example, problem (10.1) includes the
p—Laplace evolution equation:

up — div(|VulP~2Vu) = g in ]0,T[x 1,
u=0 on 10, T[x 09, (10.2)
1u(0) = ug in Q.

The main feature of our study is the presence of singular data p and wg, which are bounded measures
(respectively on @ and on Q). It is well known that, if u € L? (Q) and ug € L2(R), J. L. Lions [51]
proved existence and uniqueness of a weak solution. Under the general assumption that p and ug are
bounded measures, the existence of a distributional solution was proved in [9], by approximating (10.1)
with problems having regular data and using compactness arguments.

Unfortunately, due to the lack of regularity of the solutions, the distributional formulation is not strong
enough to have uniqueness, as it can be proved by adapting the counterexample of J. Serrin for the
stationary problem (see [68] and the refinement in [65]). In case of linear operators the difficulty can
be overcome by defining the solution through the adjoint operator, this method is used in [70] for the
stationary problem and yields a formulation having a unique solution. However, for nonlinear operators
a new concept of solution needs to be defined to get a well-posed problem. In case of problem (10.1) with
L! data, this was done independently in [5] and in [64] (see also [3]), where the notions of renormalized
solution, and of entropy solution, respectively, were introduced. Both these approaches are able to obtain
existence and uniqueness of solutions if u € L'(Q) and ug € L(Q).

Our main goal here is to extend the result of existence and uniqueness to a larger class of measures which
includes the L' case. Precisely, we prove (in the framework of renormalized solutions) that problem
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184 CHAPITRE 10. PARABOLIC CAPACITY AND SOFT MEASURES...

(10.1) has a unique solution for every measure p which is zero on subsets of zero capacity, where the
notion of capacity is suitably defined according to the operator u; + A(u). In fact, the importance of the
measures not charging sets of null capacity was first observed in the stationary case in [12], where the
authors prove existence and uniqueness of entropy solutions (as introduced in [4]) of the elliptic problem

A(u) =p in 9,
{ u=0 on 01, (10-3)

if p is a measure which does not charge the sets of zero p—capacity, i.e. the capacity defined from
the Sobolev space I/VO1 P(Q). Actually, this result relies on the fact that every such measure belongs to
LY(Q) + WLP(Q).

In order to use a similar approach in the evolution case, one needs to develop the theory of capacity
related to the parabolic operator u; + A(u) and then investigate the relationships between time—space
dependent measures and capacity. We introduce here the notion of capacity defined from the parabolic
p-laplace equation in the same spirit of [62], where the standard notion of capacity constructed from the
heat operator is presented in a useful functional approach (without any tool of potential theory or linear
arguments). Indeed, letting

W = {u e LP(0,T; W ™(©) N I()), w € L¥ (0,T; (W ™(@) n IX(2)))}

we define the capacity of a set B as, roughly speaking, minimizing the norm of W for functions greater than
1 on B. This approach allows us to use the same arguments as in [20] and then to obtain a representation
theorem for measures that are zero on subsets of @) that are of zero capacity (see Definition 10.5).

Thus our first main result extends the one in [12] for stationary measures and capacity.

Theorem 10.1 Let o be a bounded measure on () which does not charge the sets of null capacity. Then
there exist g1 € L¥' (0, T; W—27(Q)), go € LP(0,T; W, *(Q) N L*(Q)) and h € L'(Q), such that

T T
/wdu=/ <gl,so>dt—/ <<,ot,gz>dt+/ h dudt, (10.4)
Q 0 0 Q

for any o € C([0, T|xN), where (-,-) denotes the duality between (WyP (Q)NL*(Q))' and W, (Q)NL(R)
).

Thanks to this decomposition result, for such class of measures (continuous with respect to capacity)
we can still set our problem (10.1) in the framework of renormalized solutions. The idea is that, since
u can be splitted as in (10.4), problem (10.1) can be formally rewritten as (u — g2)¢ + A(u) = g1 + h,
and the renormalization argument can be applied to the difference u — go. We leave to Section 3 the
precise definition of renormalized solution, let us state here our result of existence and uniqueness of
renormalized solutions.

Theorem 10.2 Let p be a bounded measure on () which is zero on subsets of Q) that have zero capacity,
and let ug € LY(Q)). Then there exists a unique renormalized solution u (see Definition 10.7) of (10.1).
Moreover u satisfies the additional regularity: u € L>*(0,T; L*(Q)) and Ty(u) = max(—k, min(k,u)) €
L*(0,T; Wol’p(Q)) for every k > 0.

Let us stress that, as far as the initial datum is concerned, the class of measure data which do not charge
the parabolic capacity of the operator reduces to consider ug in L'(f2), so that no improvement can be
obtained with respect to previous results. This is a consequence of the following lemma, which we prove
in Section 2.

3Notice that, since W12 (Q) — (W} *(Q) N L2(Q))’, we have g1 € LP (0,T;(Wy'P(Q) N L2(2))') so that the term
involving g1 in (10.4) is well defined.
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Theorem 10.3 Let B be a Borel set in Q. Let to €]0,T[ fized. One has
cap,({to} x B) =0 if and only if measq(B) =0.

A counterpart of Lemma 10.3 will also be proved (Theorem 10.6), stating that, for any interval (¢o,%1) C
(0,T), cap,((to, t1) x B) = 0 if and only if the elliptic capacity (defined from WO1 P(Q)) of B is zero.
The plan of the paper is the following. In the next section, we give the definition and prove the basic
properties of parabolic capacity, among which the existence of a unique cap—quasi continuous represen-
tative for functions in W. We also prove Theorem 10.3 as far as the restriction of capacity to sections
{t} x Q is concerned. We investigate then the link between measures defined on the o—algebra of borelians
of @ and the previously defined capacity, and we prove the decomposition theorem stated above. In the
third section we give first a result of existence and uniqueness for (10.1) if 4 € W', the dual space of W,
which seems a natural extension of the classical result of J.L. Lions. Finally, we give the definition of
renormalized solution and we prove existence and uniqueness.

In the sequel C' will denote a constant that can change from line to line. For v a function of (¢,z) and
for k a real number, we will denote, for example, {v > k} the set {(¢,z) € @ : v > k}, while x4 denotes
the characteristic function of a set A.

10.2 Parabolic capacity and measures

10.2.1 Capacity

The approach followed to define the capacity is in the same spirit of Pierre ([62]).

Definition 10.1 Let us define V = W' (Q)NL2(Q), endowed with its natural norm ||-||W01,p(9)+||-||Lz(Q),
and
W= {u € LP(0,T;V), us € LP’(O,T;V’)},

endowed with its natural norm |lullw = ||ullLeo,1;v) + lluell o 0,757y We will also use the non-
homogeneous (when p # 2) quantity, linked to the energy estimates,

[u]W = ||u||ip(0’T;W011P(Q)) + ||ut||1£p, (0,T;V") + ||u||2L°°(0,T;L2(Q)) - (]‘05)

Remark 10.1 Since V — L*(Q2) — V', we see that W is continuously embedded in C([0,T]; L*(Q)) (cf
[24]), which means that there exists C' > 0 such that, for all u € W, |[ul|p~ (0 1;2()) < Cllullw. Thus
one has, for allu e W,

1

T

< € max {lully ol b by < € ma {ulf . (106)

Remark 10.2 When § € C®°(R x RY) and u € W, then u € W and there ezists C(6) not depending
on u such that ||0ul|lw < C(0)||ullw. Indeed, when u € LP(0,T;V), it is quite obvious, by the regularity
of 0, that Ou € LP(0,T;V) with ||0ul|tro,7;v) < CO)||ullLro,7;v). For the time derivative, it is a little
bit tricky; welhave, in the sense of distm’b,utions, (0u); = Oyu + Quy. The second term is not a problem:
since uy € L? (0,T; V"), one has Quy € L? (0,T; V") and ||0utl| o (o, 1,vy < COluell e 0,11y For the
first term, that is 6;u, we must use the injection of W in C([0,T); L2(R)), thus also in L¥' (0,T; L*(Q));
thanks to this injection, it is then easy to get 6;u € L? (0,T; L2(Q)) with ||0;ul| ;. o,1522()) < CO)lullw;
L%(Q) being injected in V', we have LP (0,T; L2(Q)) < L (0,T; V") which gives 6u € L? (0,T; V") and
0cull Lo (0,731 < CO)|lullw -
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Remark 10.3 Since L? (0 T;V') = (LP(0,T; V)" (see [32], V is a separable reflexive space), and since
Lr0,7,V) = L?(0,T; Wo’p(Q)) N Lr(0,T; L ( )) = ENF, with ENF being dense in E and F, we
have Lp' (0,T;V') = E'+ F' = L (0, T; W=1¢'(Q)) + L?' (0, T; L*()) and the norms of these spaces are
equivalent.

In fact, the natural space that appears in the study of the p-laplacian parabolic operator is not W but
W C W, defined as follows.

Definition 10.2 We define
W= {u € LP(0, T; WP () N L*°(0, T; L*(R)), uy € LP (o,T;W—LP’(Q))} .

Remark 10.4 W is continuously embedded in W .

We will define the parabolic capacity using the space W, whereas a more natural definition would perhaps
start from W. However, using this space instead of W would entail some technical difficulties and since,
as we will notice, the sets of null capacity with regards to W are the same than the sets of null capacity
with regards to W there is no loss in working with W instead of w (see Remark 10.7).

Definition 10.3 If U C @ is an open set, we define
cap,(U) = inf {[|ul|lw : v € W, u > Xy almost everywhere in Q} (10.7)

(we will use the convention that inf ) = +o00), then for any borelian subset B C @ the definition is
extended by setting:
cap,(B) = inf {cap,(U), U open subset of Q, BCU}. (10.8)

Proposition 10.1 The capacity previously defined satisfies the subadditivity property, that is

cap,, ([j Ez) < i cap,(E;), (10.9)

i=1
for every collection of borelian sets E;.

Proof. Let, for alli > 1, U; be an open set containing E; such that cap,(U;) < cap,(E;) + 57, and let u;
be such that u; > xv, a. e. in @ and |lusl|w < cap,(U;) + 5r. Without loss of generality we can assume
that Y772, cap,(E;) < oo (otherwise (10.9) is trivial); this implies that ) .2, u; is strongly convergent in
W. Let then u =, u;; clearly u > xy a.e. in Q where U = |J;2, U;, so that, U being open,

cap, (U) < lullw < 3" [luillw < zcap,, )+ 2.

i=1

Since |J;2, E; C U this implies (10.9). "

Remark 10.5 As usual, the capacity defined above depends in fact of the open ambient set Q and we
should have denoted capp(B,Q) to stress on this dependance. However, Proposition 10.1, along with
Remark 10.2, allows to see that, when B is a borel set of Q and cap,(B,Q) =0, then cap,(B,U) =0 for
all open sets U C @Q containing B. Indeed, take a sequence of compacts K, C U withU =J,,5, Kn, then
we have cap,(B,U) = cap,(Un>1BN Ky, U) < 3 -, cap, (BN K,,U). Since K, is a compact subset
of U and since cap,(B N Ky, Q) = 0, we can prove, using a nonnegative function ¢, € C°(U) such that
Co =1 on a neighborhood of K,,, that capp(B N K,,U) =0 for any n, which proves our assertion.
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The definition of capacity can be alternatively done starting from the compact sets in (), as follows. We
denote C°([0, T] x Q) the space of restrictions to @ of smooth functions in Rx RY with compact support
in R x Q.

Definition 10.4 Let K be a compact subset of Q. The p-capacity of K with respect to () is defined as:
CAP(K) = inf {||lullw : w € C°([0,T] x ), u > Xk }.
The p-capacity of any open subset U of Q) is then defined by:
CAP(U) = sup {CAP(K), K compact, K C U},
and the p-capacity of any Borelian set B C @) by
CAP(B) = inf {CAP(U), U open subset of Q, BC U}.
This second definition of capacity given for compact subsets is motivated by the following theorem.

Theorem 10.4 Let Q be an open bounded set in RY and 1 < p < co. Then C°([0,T] x Q) is dense in
w.

The proof of this theorem will be given in the appendix.

Remark 10.6 Notice also that, when v € W has a compact support in Q) and (pn)n>1 is a space-time
regularizing kernel, then u x p,, is well defined (at least for n large enough), is a function of C3°(Q)) and
u* pp, = uin W (see Lemma 10.7 in the appendix).

Proposition 10.2 The capacity CAP satisfies the subadditivity property.

Proof. Let us first prove the subadditivity for finite unions of open sets, starting from compact sets.
Indeed, let K7, K2 be compact subsets of @, then there exist two functions g, us € C3°([0,T] x Q) such
that u; > xk, and ||u;|]|w < CAP(K;) +¢€, i =1,2. Since

uyp +uz € C([0,T] % Q) ,u1 +u2 > XKyuKks > [un +uallw < luallw + [Juzllw ,

it follows that CAP(K; U K»2) < CAP(K;) + CAP(K5). Let now A, B be open subsets of @), and
let K be a compact subset of A U B. It is easy to find compact subsets K4, Kp such that K =
K4 UKpg, with K4 C A and Kp C B (for instance, define F = {z € A : dist(z,A°) > 2} where
m= gélﬁ [dist(z, A) + dist(z, B°)], then K4 = KN F and Kp = K N F¢ fit the requirement). Therefore
we have CAP(K) < CAP(K4) + CAP(Kg) < CAP(A) + CAP(B), and taking the supremum over
K C AU B we get

CAP(AUB) < CAP(A) + CAP(B), forallopensets A,BCQ. (10.10)

Finally, let {E;};>1 be borelian subsets of @, and let E = J,~ E;. Assume that )., CAP(E;) < o
and let A; be open sets such that E; C A; and CAP(4;) < CAP(E;) + 57, S0 that Y51 CAP(4;) <
> i>1 CAP(E;) +¢. Let A =|J,5; 4;, and take a compact subset K C A. Since the A; are a covering of

K, there exists a finite number [ such that K C Uézl A;, hence using (10.10) we get

l l (o)
CAP(K) < CAP (U A,-) <> CAP(4;) <) CAP(E;) +e¢.

i=1

Taking the supremum over K C A and since E C A we have

CAP(E) < CAP(4) <> CAP(E;) +¢,
i=1
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which concludes the proof as € tends to zero. [

Note that, in the elliptic case, the two possible constructions of the capacity in the space WO1 P(Q) (from
the open sets of from the compacts) coincide. Here, we are not able to prove the same result (because of
approximation difficulties), nevertheless we have that both capacities yield the same sets of zero capacity,
which is in fact what matters.

Proposition 10.3 Let B be a borelian subset of Q. Then one has CAP(B) = 0 if and only if cap,(B) =
0.

Proof. We first prove that CAP(B) > cap,,(B) for every borelian set B, which will imply cap,(B) = 0
whenever CAP(B) = 0.

Indeed, let A be open. Assume that CAP(A) is finite, and let K, = {z € A : dist(z,04) > 1}. By
definition there exists a sequence {y,} of functions in C°([0,T] x ) such that

1 1
®n Z XK, in Qa ||‘10n||W S CAP(Kn) + E S CAP(A) + E .

In particular we have that ¢, is a bounded sequence in W, which is a reflexive space, so that there exists
a subsequence, not relabeled, and a function ¢ € W such that:

On =@ weakly in LP(0,T;V),
(¢n)e = ¢ weakly in L¥' (0,T; V"),
e almost everywhere in Q.

Last convergence is a consequence of standard compactness arguments (see [69]). Since ¢, > xk, for
every n, we deduce that ¢ € W and ¢ > x4 almost everywhere in @, so that ¢ can be used in Definition
10.3 above. By lower semicontinuity of the norm we get, as n tends to infinity:

llollw < CAP(A),

which yields that cap,(A) < CAP(A). This inequality being satisfied for all open sets A, we deduce from
the definition that it is also true for all borelians of Q.

Now, let us obtain the reverse implication. We take B a borelian such that cap,(B) = 0. Since CAP is
sub-additive, it is enough to prove that, for any compact K C @, one has CAP(BN K) = 0. We take
thus K a compact subset of @ and ¢ € C°(Q) such that ( =1 on an open set O which contains K.
Since cap,(B) = 0, there exists, for all ¢ > 0, an open set A. containing B such that cap,(4:) < &; we
can then take u € W such that

u>xa, aein@ Jlulw <2.

We have (u € W and ||Cul|lw < 2C(¢)e, with C(¢) only depending on ¢ (see Remark 10.2).

We will now estimate CAP(A. N O). Let L be a compact subset of A. NO and (py,)n>1 be a regularizing
kernel in R x RY; since Cu has a compact support in Q, (Cu) * p,, € C°(Q) is well defined (at least for n
large enough) and ((u) * p,, strongly converges to (u in W (see Remark 10.6 and the appendix). We can
thus fix n(L, e) such that [|(Cu) * pn(L,c) — ((u)|lw < € and (Cu) *pp(r,) > 1in L (recall that (u > 1 on the
open set A.NO and that L is a compact subset of A.NO); with this choice of n(L, ), v = (Cu) * pr(L.c) €
Ceo(Q) € €2([0,T]x ) and v > xr. Thus, CAP(L) < |[v[lw < [lv—Cullw + |ISullw < (1+2C(¢))e. This
being true for any compact subset L of the open set A. NO, we deduce that CAP(A.NO) < (1+2C(¢))e.
But BNK C A. N O, so that CAP(BN K) < (1 +2C(¢))e for all £ > 0. Letting € — 0, we deduce that
CAP(BNK) = 0. .

However, henceforth we will make use of Definition 10.3 of capacity, which can be handled more easily
in many situations, as in the following result, where we give the characterization of sets of null capacity
contained in the sections {to} x © of the parabolic cylinder.
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Theorem 10.5 Let B be a borelian set in Q. Let to €]0,T| fixred. One has
cap,({to} x B) =0 if and only if measq(B) = 0.

Proof. Assume first that cap,({to} x B) = 0 and let K be any compact set contained in B, so that
cap,({to} x K) = 0. Since, by Proposition 10.3, we also have that CAP({to} x K) = 0, then, for all
0 > 0 there exists a function 15 € C°([0,7] x Q) such that ||¢s||w < and 15(tp) > 1 on K. Since W is
continuously imbedded in C([0,T], L?(f2)), we have

meas o (K) < /K s (o) 2 d < 1151120 0 21220y < CllWs I3 < O,

so we deduce that measq(K) < C42, and from the arbitrariness of § then measq(K) = 0. Since this
is true for any compact subset contained in B, by regularity of the Lebesgue measure we conclude that
measq(B) = 0.

Conversely, if measq(B) = 0 then there exists, for all § > 0, an open set As such that B C As and
meas q(A4s) < . Let us consider ¢ fixed in the following, and let K, be a sequence of compact sets
contained in As such that K, C Kpy1 C ..., Upe; Kn = As. Let ¢, € C.(As) be such that 0 < ¢, <1,
on =1o0n K, and ¢, < @npy1. Then we solve for ¢ € [to,T],

('an)t - diV(|V¢n|p_2v¢n) =0 in ]t07T[XQ7
v, =0 on Jto, T[x 01, (10.11)
Yn(to) = ¢n in Q.

Clearly we have that ¢, € L2(to, T; Wy ? () N L (to, T; L2()) and (¢,); € L¥ (to, T; W12 (). Let
us construct a function ¢, defined on [0, T], by setting

’(Zn = ¢n in ]tOJT] X QJ
~ T _
Fs = ¥n (T - t(tito)> in [0, fo] x 2.
0
It is not difficult to see that Jn belongs to W and by the energy estimates obtained from (10.11) by using
¥y, itself as test function we have (recall the notation in (10.5)) :
[Vnlw < Clignll}2q) < Cmeas(As) < C6. (10.12)

By regularity results on the p-laplacian evolution equation (see [27]) we have that 1), is continuous in
[to, T] x Q, hence ¢, € C([0,T] x Q). Thus we can define the open set U, : = {¢,, > 1}. Since U, is open
and 27Zn > xv, we have

cap,(Un) < 2|[thnllw < Cmax(65,5%). (10.13)
Since {¢n} is nondecreasing we have that {¢,,} is nondecreasing as well, hence Uy, C Up11, and cap,(Un)
is also a nondecreasing sequence, and bounded too. Setting Uy, = U;’ozl U,, we have that
cap,(Ux) = ILm cap,(Un) - (10.14)
n—oo

Indeed, since U, C U we have lim cap,(Un) < cap,(Us). On the other hand, let u, € W be such that
n— oo

. 1
Up > XU, a-e in @ and llunllw < Capp(Un) + n’

(in fact, it can also be chosen u, such that ||u,|[w = cap,(Uy), but this is not essential). It follows from
(10.13) that u,, is a bounded sequence in W, hence there exists a function u € W such that, up to a
subsequence,

Up = U weakly in W and a.e. in Q.
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The almost everywhere convergence of this subsequence and the fact that (Uy,),>1 is nondecreasing imply
that u > xy., almost everywhere in Q; since Uy, is open, we get

capy,(Uso) < lullw < liminf flun[lw < lim cap,(Us),

so that (10.14) is proved. Since ¢, = 1 on K, for each n and A5 = |J,-; K,, we have that Uy is an
open set which contains {to} x A5 D {to} x B, so that we conclude from (10.14) and (10.13)

cap, ({to} x B) < cap,(Uso) < C'max(§%,67"),

which implies that cap,({to} x B) = 0. L]

The following result can be considered a counterpart of the previous result, since we consider subsets
(0,T)yx B, BCqQ.

Theorem 10.6 Let B C 2 be a borelian set, and 0 <ty <ty <T. Then we have
cap,((to,t1) x B) =0 if and only if cap,(B) =0,
where capy, denotes the elliptic capacity defined from WO1 P(Q).

Proof.
If cap;(B) = 0, then there exists, for all 0 < J < 1, an open set Us with B C Us such that cap,(Us) < 0.

It is then a well-known result of the elliptic capacity that we can choose vs € WO1 P(Q) with 1 > vs > xu;
a.e. in 2 and ||v5||W3,p(Q) < 4. If p > 2, this also gives ||vs]|12(0) < C6 (C not depending on §); if p < 2,
since |vs] < 1, we have [, [vs|* < [, |vs|? < C&P (C still not depending on §), that is to say ||vs||r2(q) <
V/CP/2. Tn either case, we have thus vs > xp, such that ||1)5||W01,p(9) + [|vs||z2(@) < C max(é, 67/2).
Using then u(t, z) = vs(x) in (10.7) for the definition of the parabolic capacity of (tg,%1) x Us we deduce
that cap,((to,t1) x Us) < C max(, 67/2) and then as § goes to zero we get cap,((to,t1) x B) = 0.
Conversely, assume that cap,((to,t1) x B) = 0 and take to < t5 < #; < t1. Since cap,((to,1) x B) =0,
for all § > 0, there exists an open set As such that ((to,t1) x B) C As and cap,(As) < d. For every
fixed z € B, since the compact set [t,t]] X {z} is contained in the open set As, there exists an open
set U, C §Q such that (t5,17) x {z} C (tg,t1) x U C As. Hence, setting U = |J,5 U, we have that
B CUCQ,U is an open set and (t,t]) x U C As, so that cap,((ty, 1) x U) < cap,(As) < d. Let then
us € W be such that us > x(# +,)xv and ||us||lw < d. Defining

1 t p
Vg = —— ug dt
J ti _'t6 J(; J )

we easily check that vs € VVO1 ?(Q), vs > xv almost everywhere in  and

p—1 p—1

1 t T T»
v , < — U dedt < ——||u <—72y39.
el ooy < gy [l dode < gl <

Since U is open and contains B, the arbitrariness of § implies cap;,(B) = 0.

10.2.2 Quasicontinuous functions

Let us recall that a function u is called cap—quasi continuous if for every ¢ > 0 there exists an open set
F., with cap,(F.) < ¢, and such that ug\F, (the restriction of u to @\ F.) is continuous in @ \ F.. As
usual, a property will be said to hold cap—quasi everywhere if it holds everywhere except on a set of zero
capacity. The following lemma is essential to prove the existence of a cap—quasicontinuous representative
in W. In fact, remark that if u € W, one may have |u| € W, since the time derivative may lack of
regularity. To overcome this obstacle we use some ideas contained in [62].
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Lemma 10.1 (i) Let u belong to W ; then there exists a function z in W (see Definition 10.2) such that
lu| <z and

!

r r
|mms0mu@MWMWﬁ} (10.15)

(ii) If u belongs to LP(0,T; Wy P () NL®(Q) and uy is in LP' (0, T; W7 (Q)) + L'(Q) then there exists
z € W such that |u| < z and:

P 4
lZlw < © (”“”LP(O,T;WMQ)) Fllueller o -2 @420
Fllull Lo @ luell o 0,17 @)+ 22(Q) T 14llE o0, 7:22(02))

Remark 10.7 In case (i), notice that, when |lullw is small, so is ||z||5; this allows to prove that the

sets of null capacity coming from W are the same than the sets of null capacity coming from w.
The case (i1) of Lemma 10.1 will not be useful to us, but we state and prove it because it allows to see

that, if u is as in this case, then u has a unique cap—quasi continuous representative (see also Remark
10.12).

Proof. We divide the proof in two steps. We will denote Ap(uc) = div(|Vu[P72Vu,).
Step 1. Let us consider the penalizing problem

(ue)e — Ap(ue) = L(ue —u)~ in ]0,T[xQ,
ue =0 on 10, T[x 09, (10.16)
us(0) = u™(0) in Q,

which admits a nonnegative solution . in C([0, T]; L*(Q2))NLP(0, T; W, P(2)) by results in [51]. Choosing
ue — u as test function in (10.16) we get, for every ¢ in [0, T:

_ul? t K
/Md“//|Vus|”d~’vdt5//|WIIVuE|P—1da:dt
Q 2 0Ja

[ e

—/0<Ut,us— u)dt + 5 ||u||L°°(0TL2(Q))7

which yields, using also Young’s inequality, and (u. — u)(us —u)~ <0,

/'“5_“| dz + = //|Vus|”da:dt<0/ VulP dodt

. (10.17)
1 2
- /0 (ug,ue — u)dt + §||u”L°°(0,T;L2(Q)) :

If we are in case (i), u is in W and we have

t
/ (ug, ue — u)dt‘
0

T
S e e
0
T T
< [ Hutl lhae =l + [ Nl e = ullzzo
0 0 0
< ”ut”LP'(O,T;V’) llue — u”LP(O,T;WOI’P(Q)) + lluellzr vy lue = wllzoe(o,7;22(0))
<

lutll Lo 0,17y lue = ull oo, mywie )y + Cllutll Lo 0,190y llue = ullzes0,7:02(0))
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so that we easily deduce from (10.17), using Young’s inequality:
ote I 072250y + el g gy < € e {lulfys Nl } - (10.18)
If we are in case (44), then the duality product fot {ug, ue —u) in (10.17) is between the spaces

70, T; W= (Q)) + LYQ) and LP(0,T; WyP(R)) N L®(Q),

and we need to prove an L>((Q) estimate on u.. This can be easily achieved by choosing G (uc) = (ue —
k)T (let us recall that u. > 0) as test function in (10.16), with k& = [Jul| L= (q) : since G}, = Xjk,00[ = (G})?,
we have

1
/ VG (ue) P dzdt = / G}, (ue)|Vue|P dzdt < - / (ue —u)~ G (ue) dzdt,
Q Q Q

and since (ue —u)~ Gx(ue) = 0 for k = [|ul|p=(g), we deduce that ||uc||pe(g) < [[u]|z=(g). Thus, writing
wp = ul +u? with u} € LP (0, T; W17 (Q)) and u? € L'(Q) such that |[u} || o o 1. —1.0' o+ w2l 210y <
L? (0,T;W Q) (@)

2||uel| e (0,T;W=12"(Q))+L1(Q)>

t T
/0 <ut,u5—u>dt\ < / 1. gy 1t = llyyon gy dt + 102l e = ull =)

’ 1
1 2
S C”ut”ip’(o’T;W—l,p’ Q) + ZHUEHZEP(O,T;WOLP(Q)) + C”u”ip(()’T;WOl:p(Q)) + C||u||L°°(Q)||ut||L1(Q) .

Then

t
_ v
/0 (utaus u) dt‘ S C”ut”Lpl(O’T;W—l,pl(Q))_j’_Ll(Q)

1 P
* g etz oz » )+ Ol o mwen @y + Clull=@llueller o.w=2 @@ -

We deduce from (10.17) that, for all ¢ € [0, T,

¢
2 P
/Q |ue —ul?(t) dz+ /0/9 |Vu|P dzdt < C (/Q |Vul|P dzdt + ”ut”LP’(o,T;W—LP’(Q))+L1(Q)

il @) el (0,1 )4 £3(@) + NllEm 0,722 )
which implies
el 20,7222y + el 0 1wt

< O (Jlull + el

p p'
Lr(0,T; W3 % () L#' (0,T;W 1% (2) +L1(Q)
+||u||L°°(Q)||ut||Lp’(0’T;W—l,pl (Q))+L1(Q) + ||u||%°‘3(0,T,L2(Q))) . (1019)

From (10.18) or (10.19) we deduce that there exists a nonnegative function w in L>®(0,T;L%(Q)) N
L?(0,T; Wy?(R)) such that (up to subsequences)

u. »w  weakly in LP(0,T; W, *(Q)) and weakly-+ in L>(0,T; L2(2)).

Note also that if € < 7 then u. > u,; indeed, we have

¢ t
- / ((ue — un)t, (e —uy) ") dt — / / (|Vu5|p*2VuE - |Vu7,|p*2VuT,)V(uE —up)” dzdt
0 0JQ
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which yields, using the fact that the second term of the last equation is non negative and integrating by

parts,
/ |(u (t)]? de < // . —up) (l(un —u) - é(us _u)—> dedt
< /O/Q(Us = up)” (uy —u)” (% - %) drdt <0,

for every t in ]0,T[. Thus (u.). is a non negative sequence bounded in L'(Q), moreover it is increasing
as ¢ tends to zero, hence thanks to the monotone convergence theorem, u. converges to w in L!'(Q) and
almost everywhere in ). We have, choosing (u. — u)™ as test function in (10.16),

T T
/ ((ue)t, (ue —u)_)dt+/ |V [P2Vu V(ue —u)~ dedt = / |(ue —u)~|* dzxdt,
0 0

which implies

/ |(u )72 dacdt+/ IC )dx = /OT(ut,(uE —u)7)dt

—+ / |Vu5|”72Vu5 V(ue —u)~ dedt.
Q
Using either (10.18) in case (i) or (10.19) and the L™ estimate in case (i7) we deduce:

[ e =0 Pasde < (10.20)
Q

which implies, by Fatou’s lemma, that w > u, and w > u™* since w > 0.
Step 2: Let us now replace u. by a sequence converging in W. Precisely, we define z. the solution of the
following parabolic problem:

—2f — Apz® = —2A,u. in]0,T[xQ,
2 =0 on |0, T[x 09, (10.21)
25(T) = u(T) in Q.

Since —2Apue > —(ue): — Ap(ue) in distributional sense, we can easily deduce from (10.21) that 2° > w..
Moreover using z° itself as test function and integrating between ¢t and T', we have the following energy
estimates:

||Z ||L°° (0,75L2(Q)) + ||Z ||Lp(0 T; W1 P(Q)) (“uE”Lp(O TWl P(Q)) + ||u5||L°°(0 TL2(Q)))

_ (10.22)
124115

+ el

”zt”LP’(o,T;W—LP’(Q))— ¢ Lp(0,T;W57 (Q)) LP(o,T;Wg’P(Q)))‘

In virtue of (10.22), we get that 2° is bounded in W, hence there exists a function z € L? (0,T; WO1 PN
L*°(0,T; L*(Q)) and a function w € LP' (0,T; W% (Q)) such that (up to subsequences) z° — z weakly
in L?(0,T; WyP()) and weakly-* in L°(0,T; L%(Q)) and zf — w weakly-* in L? (0,T; W~1#'(Q)); it
is then quite easy to see that z; = w, so that z is in fact in W. The classical compactness argument
contained in [69] implies that 2¢ is also compact in L!(Q). Thus we deduce, up to subsequences, that 2°
almost everywhere converges to z in (), and since 2° > u. passing to the limit we obtain that:

z>w>ut a.e. in Q.

Moreover, using either (10.18) or (10.19) and (10.22), we deduce that, if u is in W, then

< Cmax {Ilullfy, lullfy }
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which implies (10.15), and if u is in LP(0, T; Wy ?(Q)) N L°°(Q) and u; belongs to L¥' (0, T; W17 (Q)) +
L'(Q), then

[Z]W < C(HUHZP(O,T;WOIW(Q)) + ”ut”ip’(O,T;W—l,P’(Q))_i_Ll(Q)

+||U||L°°(Q)||Ut||Lp’(o,T;W—LP’(Q))+L1(Q) + ||u||%oo(o,T;L2(Q))) .

A similar construction can be made for the negative part u~, so the conclusion of the lemma follows by
writing |u| = vt +u . n

The previous lemma has the following important consequence.

Proposition 10.4 If u is cap—quasi continuous and belongs to W, then, for all t > 0,

7

C 5 I
cap, ({ful > 1) < 5 maax { Il | (10.23)

Proof. Let us first handle a simple case, that is to say u € C°([0,T] x Q); then the set {|u| > ¢} is open
and its capacity can be computed according to (10.7). By Lemma 10.1 there exists a function z > |u|
satisfying (10.15). Since ¥ > 1 on the set {|u| >t} we have:

lelw _ © 5o
cap({Jul > 1)) < 20 < = mmax { lully  lully

Let us now prove the general case: u is cap—quasi continuous and belongs to W. Let ¢ > 0 and A, be
an open set such that cap,(A4.) < & and u g\ 4, is continuous in @ \ A.; by definition, this implies that
{lwigra.|l >t} N (Q \ A:) is an open set of Q \ A., i.e. that there exists an open set U of RN such that
{lugua.l > 1N (Q\ A:) =UN(Q\ A). Thus,

{lul > U Ae = ({lujgua. | >} N(Q\ A)) UA. = (UUA)NQ

is an open set. Let then z € W be such that z > |u| and (10.15) holds; let w € W be such that
lwllw < cap,(Ac) +e < 2e and w > xa,; we have w+ £ > 1 almost everywhere on { [u| >t} U A., hence

1 1
capp({lul >t} U A:) < flwllw + S llzllw < 26 + S lzllw -

Thus we get
1
cap, ({lu] > t}) < 2e + S llellw,
which implies again (10.23). L]

We can now prove the result on quasicontinuity, whose proof follows the standard approach with the help
of Lemma 10.1.

Lemma 10.2 Any element v of W has a cap—quasi continuous representative v which is cap—quasi ev-
erywhere unique, in the sense that two cap—quasi continuous representatives of v are equal except on a
set of null capacity.

Proof. By density of C°([0,T] x ) in W, there exists a sequence (v™) C CZ°([0,T] x Q) such that
(v™) converges to v in W. We can also construct (v,,) such that

¥ 2
J P

oo
Z 2™ max {||U'"+1 —o™||&, lo™ T = vm||W} < 400.
m=1

Let then define:
W™ = {|1)m+1 _ ,Uml > z—m}, QO = U w™ .
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Since v™+! — 9™ is continuous, w™ is an open set; moreover, by Proposition 10.4, we have

’

P b
capy (™) < C2m max { o = om0 = o L

Thus we get:

!

p P
cap, (@) <O Y 2™ max{nv’““ o e — vmnfv} .

m>r

This proves that lim cap,(2") = 0. Moreover for any r:
=00
V2 g Q' Ym>r, v —o™|(z) <27,

oo
hence (v™) converges uniformly on the complement of each Q" and pointwise in the complement of [ Q.

r=1
Since

o ]
cap, (ﬂ QT) < cap,(2") = 0 as r tends to infinity,
r=1
T
quasi continuous. Let us call ¥ this cap—quasi continuous representative of v, and assume that there exists
another representative z of v which is cap—quasi continuous and coincides with v almost everywhere in
@. Then we have, thanks to Proposition 10.4:

we have that capp(ﬂoi1 Q") = 0. Therefore the limit of v™ is defined cap—quasi everywhere and is cap—

1 L. B
cap, {10~ 21 > 1 < onmax {21 o~ =1 } =,

since ¥ — z = 0 almost everywhere. This being true for any n, we obtain that z = ¥ cap—quasi everywhere,
so that the cap—quasi continuous representative of v is unique up to sets of zero capacity. [

We can also prove the following result.

Lemma 10.3 Let (v,) be a sequence in W which converges to v in W, then there exists a subsequence
of (V) which converges to U cap—quasi everywhere.

Proof. Let us extract a subsequence of (v,,) such that

S max{nvn ol o —vnvpv} < too.
n=1

Thanks to Proposition 10.4 we have

!

P p_
cap,{ |0, — 9| > 27"} < C2" max{”vn —vll§y, llon — v||V’;,} . (10.24)

Using (10.24) we can repeat the proof of Lemma 10.2, which proves that @, converges to ¢ cap—quasi
everywhere. -

10.2.3 Measures

In the following, we denote by M;(Q) the space of bounded measures on the o—algebra of borelian subsets
of @, and M (Q) will denote the subsets of nonnegative measures of M;(Q).

Definition 10.5 We define
Mo(Q) = {pn € My(Q) : n(E) =0 for every subset E C Q such that cap,(E) = 0}.

The nonnegative measures in Mo(Q) will be said to belong to Mg (Q).
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We denote by ({,-)) the duality between W' and W. W' N M;y(Q) denotes the set of elements v € W'
such that there exists C' > 0 satisfying, for all ¢ € C°(Q), [{{7,¢))| < Cll@llL=(q); in such a case, by
the Riesz representation theorem there exists a unique ™= € M;(Q) such that, for all ¢ € C*(Q),
(v, ) = fQ p dy™=* (notice however that, if the knowledge of v € W' entirely defines y==** € M;(Q),

the converse is not true). We denote by W/NM; (Q) the set of v € W'NM,(Q) such that y==* € M (Q).
Now we investigate the link between measures in () and the notion of capacity defined above. The main
theorem in this sense can be obtained from the result on the “elliptic capacity”contained in [20], which
also applies to this context of parabolic spaces. We rewrite thus, with the necessary adaptations to the
parabolic case, the proof of G. Dal Maso.

Theorem 10.7 Let pu belong to M (Q). Then there exists v € W' N M, (Q) and a nonnegative function
f € LYQ,dy™) such that p = fy™=.

Proof. Let u € M{(Q). For any u in W, let @ be the cap—quasi continuous representative of u, which
exists by Lemma 10.2. Since 4 is uniquely defined up to sets of zero capacity we can define the functional
F:W — [0,00] by

F(u)z/@fﬁdu

(indeed, this definition does not depend on the cap—quasi continuous representative of u, since two cap—
quasi continuous representatives are equal except on a set of null capacity, that is to say u-a.e.). Clearly
F' is convex, and it is also lower semicontinuous in W thanks to Lemma 10.3 and Fatou’s lemma. By the
separability of W', there exists then a sequence {a,} of real numbers and a sequence {\,} in W' such
that:

F(u) = sup{((An, u)) + an}.

Since, for any positive t, tF'(u) = F(tu) > t({(An,u)) + a, for every n, dividing by ¢ and letting ¢ tend to
infinity we get F(u) > ((An,u)) for all u in W. For u = 0, we deduce that a,, <0, hence

F(u) > s%p{((/\na u))} > sip{<<)‘n7 w) +an} = F(u). (10.25)

By (10.25) and the definition of F, for all ¢ € C°(Q), we have

(o)) < /Q o du < lullm@llell=o): (10.26)

thus, applying this inequality to ¢ and —¢, we get [({(An, ©))| < ||pllaty (@) ll@llL= (@), which implies that
An € W'N My(Q); moreover, since F(—yp) = 0 for any nonnegative ¢ € C°(Q), we have 0 < {(Ap, p)) =
fQ @ dAze for all such ¢, which implies A=< € M (Q) (that is to say A\, € W' NM; (Q)) and, applying

once again (10.26) to any nonnegative ¢ € C°(Q),
A < gy (10.27)

We have thus, in particular, ||Az=*
Thus the series

Mo(@) < el my (@)

ad A
_ n 10.28
7= 2 (il 1) (1028)
is absolutely convergent in W' and we have, for all ¢ € C2°(Q),
oo
_ {((An, )
(o)) = ;MWHWH)
o>
A= @ llellz= (@)
< o
n=1
< lellam@llellze(q)
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\meas

so that v € W' N My(Q). The series Ei’f’:l PR (P D))

7 strongly converges in Mp(Q), and we can see,
applying (10.28) to functions of C°(Q), that

mene AR
s 2 27 (Pallw + 1)

In particular, y™=* is a nonnegative measure (each A=** is nonnegative).
Since A\me** << ™ there exists a nonnegative function f,, € L'(Q,dy™) such that \me = f, yme
thus (10.25) implies:

[ odu=swp [ fapar, (10.29)
Q n JQ

for any nonnegative ¢ in C°(Q). We also have, by (10.27), f,y™ < u, that is

[ o <o),
B

for any borelian subset B in () and every n. In particular, we have

/Bsup{flaf27"'afk}d7meas S N(B)a

for any borelian subset B in @) and any k > 1. Letting k tend to infinity we deduce by the monotone
convergence theorem:

/ fdy™= < u(B),
B

where f = sup f,. Then we conclude, using (10.29):
n

/cpduzsup/ fnsodv““"“s/fsod’f“"“s/cpdu,
Q n JQ Q Q

for any positive ¢ € C°(Q), which yields that 4 = fy™=, and since pu(Q) < +oo it follows that
f € LHQ, dy™=). .

In order to better specify the nature of a measure in Mo(Q), we need then to detail the structure of the
dual space W'.

Lemma 10.4 Let ¢ € W'. Then there exist g1 € LPI(O,T;W_I””(Q)), g2 € LP(0,T;V) and g3 €
LP(0,T; L*()) such that

T T
((g,u)):/o (91,U)+/0 (ut,g2)+/Qggudwdt YueW.

Moreover, we can choose (g1,92,93) such that
19100 =1 ey + 192l zo0730) + 1gall oo 73202 < Cllgll (10.30)
with C' not depending on g.

Proof. Let E = L?(0,T;V) x L? (0,T;V') and T : W ~ E such that T'(u) = (u,u;). If we endow E
with the norm

l(v1, v2)lle = llorllLe(o,mv) + ”v?“LI"(O,T;V');
then T is isometric from W to E. Let G = T(W), with the norm of E, thus T~! is defined on G. Let
g€ Whandlet @ : G = R, ®(vy,v2) = ({9, T (v1,v2))), then ® is a continuous linear form on G.
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Hence thanks to the Hahn-Banach theorem, it can be extended to a continuous linear form on E, also
denoted ®, with ||®||gr = ||g|lw+ (since T~! is isometric). There exists thus h; € (LP(0,7;V))" and
he € (LP (0,T;V"))" such that

®(v1,v2) = (h1,v1)(Lr(0,1;v)), 10 (0,1;v) T (A2, V2) (1o’ (0, 75v7)) 17" (0,13v)

and [|h1l(Leco,rsvyy + Ih2ll Lo o 2ivryy < Cll®[lmr. But LP(0,T;V) is reflexive and (L?(0,T;V)) =
LP (0, T; W12 (Q)) + L¥ (0, T; L?(Q)) (with equivalent norms), so that we can find g, € L?(0,T; V),
g1 € LP (0,T;W=17(Q)) and g3 € L? (0,T; L*(Q)) satisfying

T T
®(v1,v2) =/ (91701)+/ (U2,92)+/ g3v1
0 0 Q

and [lgall . ;w1 (@) T lg2llLr0,7;v) + ||93||Lz=’(o,T;L2(Q)) < C(llhllze,rvyy + ||h'2||(LP’ (O,T;V’))') <
Cligllw:-

Hence for all u € W, {{g,u)) = ®(T(u)) = fOT(gl,u) + fOT(ut,g2) + Jip 93u, which concludes the proof.
|

We will need, in the following, to construct suitable smooth approximations of elements v € W' N M (Q)
which at the same time converge strongly in W' and weakly-x in My(Q). As usual, we would like to
start with measures v having compact support. To this purpose, note that when 6 is a regular function,
since the multiplication ¢ — 8¢ is linear continuous from W to W, we can define the multiplication of
an element v € W' by 6 thanks to a duality method: fv € W' is defined by ({8v, ©)) = ((v,0p)).

Lemma 10.5 Let v € W' N My(Q) and 8 € C(Q). We take (pn)n>1 a sequence of symmetric (*)
mollifiers in R x RN and p = v € W'. Then p € W' 0N Mp(Q), p™* = v, u™* has a compact
support in Q) and

meas meas

s puller@) < ™ lmy@)>, W™ *pn—p  in W' (10.31)

Proof.
The fact that p € W' N My(Q) is quite obvious since, for all ¢ € C2(Q), |{({u, )| = [{{v,0p))] <
Cll0pl| L= (@) < Cll8l| L (@)ll®l|z=(qg)- Moreover, by definition, one has, for all ¢ € C(Q),

Cc

/ o dp™ = ({1, 0)) = ({1, 00)) = / bip due,
Q Q

so that p™<=* = fv™<>*; thus, the measure g™ has indeed a compact support and g™ * p,, is well defined
and is, for n large enough, a function in C3°(Q). By a classical result of convolution of measures, one has
e % pnllr@) < ™l mu(q)-

Let now (g1,92,93) € L¥ (0,T; W22 (Q)) x LP(0,T;V) x L¥ (0,T;L*(f)) be a decomposition of v
according to Lemma 10.4. Then, for all ¢ € W, one has

meas

() = / o0, 09) + / (00 + /Q Py
= /0T<091,s0)+/OT<s0t,692)+/OT<0t<p,gz)+/QHg3s0-

Since 6, € L*' (0,T; L2(Q)) (see Remark 10.2), the term f0T<9t<p, g2) is in fact [, 64pgs. Moreover, since
g1 € LP (0, T; W= (Q)), there exists G1 € (L? (Q))" such that g; = div(G1), so that

/OT<091,<p) = /OT(div(GGl),g;) - /0T<G1 V6, ).

4That is to say pn(—-) = pn(-).
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G1 -Vl € L? (Q) and we have thus in fact

/0T<091,<P) = /0T<div(9G1)’(P) _ /QG1 Voo,

Thus, for all ¢ € W, one has

({1, ) =/OT<diV(9G1),90>+/0T<<pt,092>+/Q€gsso—/QGl -v0¢+/Qotgz<p- (10.32)

From now on, we take n large enough so that Supp(6) + Supp(p,) be included in a fixed compact subset
K of ). The support of p™ % p,, = (fv™>") * p,, is then also contained in K; we take ¢ € C°(Q) such
that ¢ = 1 on a neighborhood of K. We also take n large enough so that Supp(¢) +Supp(p,) is a compact
subset of Q).

By definition of the natural injection C°(Q) C W', we have, for all ¢ € W,

meas

<<u“‘°“*pn,so))=/Q<pu * P

For all ¢ € C°([0,T] x ), we have then

(™ pn, ) = /Q Qo™= s pr, = /Q (Cp) * pr dp™,

since n has been chosen large enough so that the support of () * p, is a compact subset of @); but
() * pn, € C°(Q), so that, by definition and (10.32),

(™" % pp, 0))
= {{n, (Cp) * pn))

_ /0 L iv(0GY), (C) # pa) + /0

T

((C9) * pu)isbg2) + /Q 695(C¢) * pi
—/ G1 - VO(Cp) * pn + / 0:92(Cp) * pn-
Q Q
We have chosen n large enough according to the supports of § and ¢ to allow us to write

(™ % pry o))
T .
- / (div((8GL) * pu), o) + /

T

((Co)es692) * pa) + [ (B93) % pucie
Q
—/ (G1 - V8) * pny +/ (0192) * pnCep.
Q Q
But ¢ =1 on a neighborhood of Supp(é) + Supp(px), so that
(™ % pn, ©))
T T
= [ (@v(@6) 2 o)) + [ (o (092 ad + [ (B92) % pn
0 0 Q

—/(G1 -Vé’)*pn¢+/(0tgz)*pn90- (10.33)
Q Q

This equality has only been established for ¢ € C°([0,7] x ), but since this space is dense in W and
both sides are continuous with respect to the norm of W, this equality is still valid for all ¢ € W.
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We have (0G1) * pp — 0Gy in (LP (Q))N, (8g2) * pn — 0gs in LP(0,T;V), (8g3) * pn — 0g3 in
LP (0,T;L%(Q)), (G1-VO)xp, — G1-VOin LP (Q) and (0;92) * pn, — 0:g2 in LP(0,T; L?(Q)). Substracting
(10.32) and (10.33), we have, for all p € W,

(= pn = 1, )

= /0 (div((8G1) * pn — 6G1), ) + /0 (91 (092) * pn — Bg0) + /Q ((093) * pr — 05)c0

+ /Q (G- V6 — (Gy - V) % pu)p + /Q ((61g2) * pn — B1g2)

< |l(6G1) * pr — 0G1”(LP'(Q))N||v90||LP(Q) + |(6g2) * pr. — 092”LP(0,T;V)||90t||LP’(0,T;V’)
+1(8g3) * pr — 093l Lo (0,520 |0l L2 0,75 22(02)) + |G1 - VO — (G - V) * pu|| Lo (g 10l e (@)
+|(8e92) * pr — 6192 Lo 0,1 L2(2) 10l Lo (0,7;22(0))
< C (||('9G1) * pn — 0G| (Lo @y~ + 1(092) * pn — 092l Le(0,1;v) + [1(693) * P — 093] Lo (0,132 ()
+HIG1 - V8 = (G - V8) * pull o ) + 1(8u92) % pn = 0192l 50,7322 ) Ilellw
which proves the convergence of p™ x p,, to u in W'. n

Before stating and proving the decomposition theorem for elements of Mo (Q), let us first make a remark
on the preceding proof, that will be useful to approximate elements of Mo(Q) in a suitable way.

Remark 10.8 When L € W', we say,that (G1, 92,93, h1, ha) is a pseudo-decomposition of L if G1 €
(L (@)Y, g2 € LP(0,T;V), g3 € L? (0,T5L*(Q)), l € L*(Q), ha € LP(0,T;L*(Q)) and, for all
peW,

(o = | (@) + / o) + /Q gsp + /Q I+ /Q hap.

The proof of Lemma 10.5 states the following: if (div(G1), g2, g3) is a decomposition of v according to
Lemma 10.4, then (0G1,892,0g3,—G1 - V0,0.g2) is a pseudo-decomposition of u = v (see (10.32)) and
((0G1) * pn, (8g2) * pn, (0g3) * pn, (—G1 - V) * pp, (6:92) * pp) is a pseudo-decomposition of ™ * py, (see
(10.33)).

Thus, we have proven that o pseudo-decomposition of u™ * p, converges to a pseudo-decomposition of
w. It is o weaker result than the one that would state that o decomposition of p™ x p, (i.e. according
to Lemma 10.4) converges to a decomposition of u, but this last result is not clear. Indeed, to compute
the elements of a decomposition of u™ x p, we need to start from a decomposition of u such that each
term of the decomposition has a compact support; to obtain such a property, we need to introduce the
cut-off function 8 (because, in Lemma 10.4, it is not clear at all that, when g has a “compact support” —
notice that, in fact, this expression has no sense since g is not a distribution —, we can take (g1, 92,93)
with compact supports too), and the introduction of this cut-off function 6 entails the apparition of the
additional term 6;gs, which cannot in general (if p < 2) be put in one of the terms of a decomposition of
u according to Lemma 10.4. Moreover, when we want to represent the term in LP (0, T; W17 (Q)) of a
decomposition of u as the divergence of an element of (L”' (Q))N with compact support (to manipulate this
term using the convolution, we need such an hypothesis on the support), the introduction of the cut-off
function creates the additional term —G1 -V, and finally leads to a pseudo-decomposition of p as defined
above.

Notice however that, if p > 2, the term 6,95 € L?(0,T; L2(2)) can be put into the term LP (0, T; L*(Q)) but
the term G -V € L¥ (Q) remains; if p < 2, the term Gy - VO can be put into the term v (0,T; L3(52)),
but the term 6,92 remains. In the special case p = 2, both terms G1 - VO and 60:g2 can be put into
the term LP (0,T; L2(Q)) and, in this case, we have in fact proven that there exists a decomposition of
ure x p, € W' (in the sense of Lemma 10.4) which converges to a decomposition of u € W'.

Let us now prove a decomposition result as in [12].
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Theorem 10.8 If u € My(Q), then there exist g € W' and h € L*(Q), such that u = g+ h, in the sense
that

/ pdu={{g,9)) +/ hpdzdt, (10.34)
Q Q
for any ¢ € C°([0,T] x ).

Proof. We follow the proof of [12]. First of all, using the Hahn decomposition of u, if 4 € Mo(Q) also
ut, pm € Mo(Q), hence we can assume that u is nonnegative. Applying Theorem 10.7 above there exists
v € W'N M{(Q) and a nonnegative Borel function f € L'(Q,dy™), such that

uﬂﬂ==/;fdvm“

for every Borel set B in (). Now let us replace p with a compactly supported measure. To this end, it is
enough to use the fact that C°(Q) is dense in L' (Q, dy™*) since y™** is a regular measure; there exists
thus a sequence {f,} € C°(Q) such that f, strongly converges to f in L'(Q,dy™). Without loss of
generality we can assume that 0% || fn— fn—1ll11(Q,dymess) < 00, s0 that, defining v,, = (fr—fn—1)y € W',
we have, by Lemma 10.5, v, € W' N My(Q) and Y o° v = 3 °(fn — frn—1)7™* = p converges in the
strong topology of measures.

The convergence result of Lemma 10.5 applied to v, implies that p; % 2= strongly converges to v, in
W' as [ tends to infinity. We can therefore extract a subsequence I, such that ||p;, * V7> — v, ||y < o=
We have then

Z V;cneas — Z plk * V;cneas + z(yz:neas _ plk * V;sneas) . (10‘35)
k=0 k=0 k=0

The first member involved in this equality, denoted hereafter by m,,, is a measure with compact support.
The second term, denoted by h,, is a function in C°(Q). By letting g, = Y p_o(vk — pr, * V) €
W' N Mp(Q), the third term of (10.35) is gm==*; moreover, we can write g, = 6,9, with 6, € C°(Q)
(indeed, take 6, = 1 on a neighborhood of Supp(fo) U --- U Supp(f.) and on the neighborhood of the
support of the C°(Q) function Y p_ pr, * V). (10.35) is an equality in M,;(Q), i.e. involving g and
that can be applied only with test functions in C°(Q); but thanks to the preceding remarks concerning
the support of the elements involved in this equality, we can in fact deduce that, for all ¢ € C°([0,T]x ),

we have

/wwm=/¢M+«%mﬂ (10.36)
Q Q

Indeed, the measures in (10.35) having compact supports, this formula can be applied to functions in
C*°(Q) and since

< meas

9™ @) = (97" 0n) = ((gn, Onep)) = ({gn, 0)),
this gives (10.36).
Now, m,, is strongly convergent in My(Q) to u. h, strongly converges in L'(Q) (because |p;, *
el < vpellam, @) and > pe o v is totally convergent in My(Q)); we denote by h its limit.
We also have that g, is strongly convergent in W' (because ||p;, * vp<* — vg||lw+ < 2%), denoting by g its
limit we get, for every ¢ € C°([0,T] x ),

((gn. ) = ({9, 0))- (10.37)
By convergence of h,, to h in L*(Q), and since ¢ is bounded, we also have
/ hnp — / he. (10.38)
Q Q

To prove the convergence of fQ pdmy, to fQ pdp, we just recall that there is a natural injection

{ My (Q)—(Co(Q))
m—m  defined by m(f) = fodm
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which is linear and continuous. Thus, since m,, strongly converges in My(Q) to u, m,, strongly converges
in (Cp(Q))' to i and, since ¢ € Cp(Q),

/ pdmy, = (i) - Filp) = / odp. (10.39)
Q Q

Gathering (10.36), (10.37), (10.38) and (10.39), we get (10.34). n

Combining Theorem 10.8 and Lemma 10.4 we deduce the following.

Theorem 10.9 Let p € Mo(Q), then there exists a decomposition (f,g1,g2) of p in the sense that
f€LYQ), g1 € LP (0,T; W17 (Q)), g2 € LP(0,T5V) and

T T
/cpdu=/f90dwdt+/ <91,s0)dt—/ (pr,g2)dt, Vo eC([0,T]x Q).
Q Q 0 0

Of course, there are infinitely many possible different decompositions of the same measure u € Mo(Q),
so the following lemma will be useful for further purposes.

Lemma 10.6 Let u € Mo(Q), and let (f,91,92) and (f,g1,d2) be two different decompositions of u

according to Theorem 10.9. Then we have (g2 — o)t = f — f + §1 — g1 in distributional sense, go — g2 €
C([0,T); L' () and (g2 — §2)(0) = 0.

Proof. By assumption we have :
_ T T
[ G- pedstt+ [ (@ -a)rit=- [ (ong-mat oecE0.T)xD), (1040
Q 0 0

which implies, in particular, that (g2 — g2): = f-f+n — g1 in distributional sense. Thus g — g2 €
LP(0,T; Wy P(Q)) and (g2 — §2): € L(Q) + LP (0, T; W~7()). By Theorem 1.1 in [63] it follows that
g2 — g2 € C([0,T); L*(£2)). Since

T T
/0 (e, g2 — G2) b+ / (g2 — G2)er @) it = — /Q (92 — ) (0)(0) da

for all p € C°([0,T] x Q) such that ¢(T) = 0, we deduce from (10.40) (since (92— g2): = f—f+J1 —9g1)
that

/Q (92 — 32)(0)p(0) dz = 0

for all ¢ € C([0,T] x Q) such that ¢(T) = 0. Choosing ¢ = (T — t)y, with ¢ € C°(Q) implies that
(92 — 32)(0) = 0. =

We will now state and prove, thanks to what has been done in the proof of Theorem 10.8 and Remark
10.8, an approximation result concerning elements of Mq((), which will allow us to obtain additional
regularity results on the renormalized solution of (10.1).

Proposition 10.5 Let u € Mo(Q). Then there exist a decomposition (f,div(G1),g2) of p in the sense
of Theorem 10.9 and an approrimation p, of u satisfying:

pn € CX(Q),  unllrmy @) < C,T .
/ np dadt = / ¢ fo dudt + / (div(GY), o) di — / (pogB)dt Yo € C(0,T] x 9),
Q Q 0 0

fn€CRQ), fon—f strongly in LY(Q),
Gr e (C2@)N, Gr—Gy  strongly in (LP(Q))V,
g8 €CX(Q), 93— 92  strongly in LP(0,T;V).
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Proof. We will prove that there exists a decomposition (f, div(G1), g2) of u such that, for all € > 0, we
can find p. € C(Q) satisfying |||l (@) < C,

T T
/ pop dadt = / o f. dudt + / (div(GE), ) dt — / (p,g5) dt, Vi € C((0,T] x 9),
Q Q 0 0

with f. € C°(Q) such that || f- — fl|11(g) < Ce, G5 € (C*(Q))Y such that ||G§ = Gill(p» (@)~ < Ce and
g5 € C°(Q) such that [|g5 — g2l|Lr(0,1;v) < Ce (with C not depending on ¢).

We use the notations of the proof of Theorem 10.8.

Recalling that vy, = (fr — fr—1)7, we take (; € C°(Q) such that (; = 1 on a neighborhood of Supp(f —
fr—1); there exists C((;) only depending on (}, such that,

if E € {(L” (@)™, L*(0,T;V), L¥(0,T; L*(2))} and h € E, then ||kl < C(G)lIAl| 5,

if H € (L? (Q))" then [|H - Ve (@) < CUCIH (10 ()

if h € LP(0,T, L*(Q)), then [|(Cx)shllr(0,7:L2(0)) < C(Ck)I1BIlLr0.7:22(02)-
Instead of the Ij, chosen in the proof of Theorem 10.8, we take here I;, such that ||p;, * vpe>® — vgllwr <
1/(2¥(C(¢k) + 1)) and ¢ = 1 on a neighborhood of Supp(p;, * vp=**). With this choice and taking
(div(BY), bk, b%) a decomposition of vy, — py, * v* as in Lemma 10.4, satisfying moreover

meas

||B{c||(LP’(Q))N + ||b§||LP(0,T;v) + ||b3“LP’(0,T;L2(Q)) < Cllvk = puy, * v
with C not depending on % (this is possible thanks to (10.30)), we notice that
2kt (e BF converges in (Lp Q)N s 2kt (xbE converges in LP(0,T;V),

> k>1 Ckbs converges in L (0, T; LQ( ))» Yks1 BY - V(i converges in L (Q), (10.41)
> k>1(Cr)ebh converges in LP(0,T; L*(Q2)).

We denote by G1, —g2, fi, fo and f3 the respective limits of these terms; notice that the last three
convergences imply in particular the convergence in L'(Q).

Since vy — pi,, * VP = Ce(vk — pr, * V=) in W' (by choice of ¢ and ;) and (div(B¥),b%,b%) is
a decomposition of v, — py, * v, ((pBY, (ebs, (b5, —BF - Vi, (Ck):b%) is a pseudo-decomposition of
vk — pi, * vpe*® (see Remark 10.8).

Thus, by (10.36), for all ¢ € C°([0,T] x ),

/Qcpdmn = /Qcphn+/0 le(ZCkBl>a /0 ‘PtaZCkbz

T n
+ [ ater [ S (CBE VG + / S Gtk
0 k=0 @ k=0 @ k=0
and, by the convergences of m,, to u, of h, to h and (10.41), we deduce that

/Qsodu=/Q(h+f1—fz+f3)<p+/0T<diV(G1),s0)—/OTWt,gz),

ie. that (f =h+ fi — fo + f3,div(G1), 92) is a decomposition of y in the sense of Theorem 10.9.
We fix now ¢ > 0 and take n large enough (in fact n = n. is fixed in dependence of ¢ hereafter) so that

w!

> GBY -Gy <e, (10.42)

k=0 @ (@)Y

Z (kb5 + 9o <e, (10.43)
k=0 LP(O V)

<e. (10.44)
Q)

B +Z§kb —kZBk'VCk +k2gk )ebk —
0 =0
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Since vy, — py,, * Ve = (e (vr, — pi,, xvpe>) and (div(BY), bk, b%) is a decomposition of v — py, * Vo™, we
also know that, for j large enough, ((CxBF) * pj, (Ckb5) * pj, (CkbE) * pj, (= BY - Vi) * pj, ((Ck)eb5) * p;) is
a pseudo-decomposition of (vp<** — p;, * V=) x p; € C°(Q) (see Remark 10.8). We take jj,, such that,
for all k € [0,n],

k k
||(CkBl) *Pj, — By ||(Lp’(Q))N < n—+1 . (10.45)
1)
1(¢kb%) * pj, — CubEllLr(o,75v) < — (10.46)
1(¢kb5) * pj, — CebsllLi@) + I(BY - V) * pj, — Bf - VL (o)
g
HI((CR)eb8) * pin = (Ge)eb5lILr@) < 7 (10.47)

Define G} = 37;_,(GBY) * pj,, € (C°(Q))Y; we have, by (10.42) and (10.45), [|G} — G1ll 1+ gy~ < 2.
Let g5 = — > p_o(Ckb%) * pj, € C(Q); we have, by (10.43) and (10.46), |95 — g2llLe(0,1;v) < 26. If
fo = b+ X o (Gb) % 95, — S (BE -G g, + S50 ((Ge)eb) %0, € C2(Q), we have, by (10.44)
and (1047), ||f5 - f||L1(Q) < 2e.

Define now p. = f. + div(G5) + (¢5)¢ € C(Q); it remains to prove that [|p||z1(g) < C with C not
depending on e. To see this, we recall that ((Cx BY)*p;. , (Cb8)*pj., (b)) xpj.., (—BY-V k) *pj., ((Cr)ibE)*
Pj.) is a pseudo-decomposition of (vj=** — py, * Vpe*) * p;, so that

n n

pe = hn + Z(Vl?eas = P, ¥ V™) x pj, = hn + (Z(Vl?m — P % V/Icneas)> * Pjn = hn + 95" * pj, -
k=0 k=0

Since, by (10.35), gy = my — hp, we deduce that [|uel[z1(Q) < 2[|hnllzr(@) + [IMnllat,(@)- Since {hn}

converges in L'(Q) and {my} converges in My(Q), {l|hnll2(g)} and {||mun||r, ()} are bounded, which

imply the desired majoration on ||u.[|z1(@)- m

10.3 The IBV problem with data in My(Q).

Let us turn to the study of initial boundary value problems with data taken in My(Q). We start by
introducing the following nonlinear monotone operators.

Let a : ]0,T[xQ x RN — RN be a Carathéodory function (i.e., a(-,-,£) is measurable on Q for every &
in RV, and a(t,z,-) is continuous on RN for almost every (¢, ) in Q), such that the following holds:

a(t,z,§) - £ > alél?, p>1, (10.48)
la(t, 2, 9] < Bb(t,z) + [€P7'], (10.49)
[a(t7$7£) - a(trr:n)] : (5 - 77) > 07 (1050)

for almost every (¢,z) in Q, for every &,  in R, with £ # 1, where @ and 3 are two positive constants,
and b is a nonnegative function in L? (Q).
Let us define the differential operator

A(u) = —div(a(t,z,Vu)),  u€ LP(0,T;Wy?(Q)).

Under assumptions (10.48), (10.49) and (10.50), A is a coercive and pseudomonotone operator acting from
the space LP(0,T; W, P(Q)) into its dual L? (0,T;W~"#'(Q)), hence for u € L¥ (Q) and uo € L*(Q),
(10.1) has a unique solution in W (see Definition 10.2) in the weak sense (see [51]).
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10.3.1 Variational case

Let us justify the interest of W', giving the following existence and uniqueness theorem (this theorem
could also be stated with right-hand sides in W’ with no major modification in the proof).

Theorem 10.10 Let g belong to W', and let ug € L?(2). Assume that (10.48)-(10.50) hold true. Then
there exists a unique solution u of

u=0 on )0, T[x09, (10.51)

ur+ A(u) =g in]0,T[xQ,
u(0) = ug in Q,

in the sense that uw € L?(0,T;V) and satisfies
- [tenuydt = [ uap@do+ [ atz, Vu)Vpdsdt = ((g,0)) (10.52)
Q Q Q

for all p € W with o(T) = 0.
Remark 10.9 Since g € W', there exists
g1 € LP (0,T;W~"7(Q)), g2 € LP(0,T;V) and g3 € LP (0,T; L*(Q))

such that

({g,9)) :/0T<91,90>—/0T<80t;g2)+/Qg390, Yo € W.

For any such decomposition, we deduce that u satisfying (10.52) is such that (u—g2); = —A(u)+g1+9g3 €
LP (0, T; W-12'(Q)) + L¥ (0, T; L*(Q)) = L¥ (0,T;V"), so that u — g, € W < C([0,T]; L3()) and,
returning to (10.52), we find (u — g2)(0) = uq.

Moreover, for any two solutions u and v of (10.52), we have u —v = u — gy — (v — g2) € W and
(u—v)(0) =0.

Proof of Theorem 10.10. We take (g1, —¢2,93) a decomposition of g according to Lemma 10.4. Let
(g n>1 € C°(Q) strongly converge to gi in L? (0, T; W17 (Q)), (g5)n>1 € C°(Q) strongly converge to
g2 in LP(0,T;V) and (g§)n>1 € C°(Q) strongly converge to g3 in L” (0,T; L2(2)) (the existence of such
sequences is a consequence of Lemma 10.8 and Remark 10.17). Thanks to [51], there exists a solution u,,

of
up +Au") = g1 + g5 + (97)¢ in ]0,T[xQ,
u" =0 on |0, T[x0%,
u™(0) = ug in 0,

in the sense that u™ € W and

t
/Q (" — g7)()p(t) di — / (e, u" — g3)ds — / uop(0) da

// (s,z, Vu™) dewds—/ 97, ¥ ds+//g3<pdwds

for all ¢ € W and t € [0,T]. Note that since g € C°(Q), we have (u™ — ¢g%)(0) = u™(0) = ug. Using
u™ — g% as test function, and integrating by parts, we find

/Q(u —292) / // (s, 2, Vu)V(u" — gi) dzds
_/0<91’ — 9 d3+//93 u" — g) dzds
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thus, using (10.48), (10.49) and Young’s inequality,

n _ ,n\2 t
/wdx-i-//Wundeds
Q 2 0Je

2
< c (ngl 12 s o=ty * 19510 o 1951 o.7gyy + ol

1
bl gy) + ozl = g8 oo

IN

n n(|2 2
<||gl ”il’ (0,T; w-Lp @) + ”gZ ||Il)/p(0,T;W01aP(Q)) + ||g3 ||LP’(0,T;L2(Q)) + ||u0||L2(Q)
2
! T» n n
) + oz " = 98 o 10200
which implies
llu™ — g5 ”L°°(0 T;02(2) T [|u™ ||Lp(0 TWEP () = <C. (10.53)

Thanks to the equation, we deduce from this that (u” — g2); is bounded in L? (0,T;W~1#(Q)) +
L¥'(0,T; L2(Q)) = L¥' (0,T; V') so that, in fact, (u™ — g2) is bounded in W. There exists thus w € W
such that, up to a subsequence, u™ — g — w weakly in W. But, from (10. 53) (u™) is bounded in
LP(0,T; Wy P(Q)) and converges thus, up to a subsequence, weakly in L?(0,T; W, ?(Q)) to a functlon u.
Since gy — g» in LP(0,T; Wy (), thls implies that u™ — g% — u — ga weakly in L?(0,T; Wy P(R)) so
that w=u—go € W C C([O T); L?(£2)); note also that, since u — go € W and g2 € L?(0, T V) one has
u € LP(0,T; V).

Moreover, A(u™) is bounded in L?' (0, T; W~=2#'(Q)), thus (up to subsequences) it converges weakly to
an element f in L¥' (0,T; W 1#(Q)). Using the equation in the sense of the distributions, we have
(u—g2)t + f = g1 + g3, hence, since u — g, € W,

-/ = go)dt - | w=m©p o= o — oyt + /Q gsyp dedt.

for all ¢ € W such that ¢(T) = 0. On the other hand the equation implies, passing to the limit in n,
that, with ¢ € W such that ¢(T) =0,

T T
—/ <90t,u—gz)dt—/uw(0) d$=/ <91—f,90>dt+/ g3 dxdt
0 Q 0 Q

so that (u—g2)(0) = ug. Now using (u™—g%)—(u—g2) as test function (note that ((u™—g%)—(u—g2))(0) =
0), one has

(™ — g8) — (u— g2))%(T) T n_ on
/Q ! do + / (1 = ga)e, (u™ — gB) — (u — go))dt

+ / [a(t,z, Vu™) — a(t,z, Vu)|V (u" — u) dzdt + / a(t, z, Vu)V(u" — u) dedt
Q Q

+/ a(t,z, Vu™)V (g2 — 9%) dzdt
Q

T
= [ o8 0 = 8) e gat + [ gR1(" —3) — (= gn)
0
Since the second term and last four terms converge to 0, thanks to the positivity of the first one and to
(10.50), one gets
lim / [a(t,z, Vu™) — a(t,z, Vu)|V(u" — u) dzdt = 0

n—oo
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hence, using the standard monotonicity argument (see Lemma 5 in [13]), one has the convergence almost
everywhere of Vu™ to Vu and the strong convergence of a(t, z, Vu™) to a(t,z, Vu) in (LP (Q))N. This
proves the existence of a solution.

For uniqueness, let us suppose there are two solutions v and v, thanks to Remark 10.9, u —v € W so
that, subtracting the two equations, one can choose u — v as test function, obtaining:

(u—v)*(t) ! _
/Q W g 4 /0 /Q la(t, 7, V) — a(t, z, Vo)V (u — v) dedt =0, Vit €]0,T],

thus 4 = v using (10.50). n

10.3.2 Definition and properties of renormalized solutions

Now we want to deal with the general problem (10.1) when yu is a measure which does not charge sets of
zero capacity. In virtue of Theorem 10.8, this means that we consider measure data which split in a term
of W' and a term in L'(Q). Tt is then well known that, if dealing with L' data, the concept of solution
in the sense of distributions of problems like (10.1) may turn out to be not convenient in order to prove
uniqueness of solutions. Moreover, we will deal with functions that may not belong to Sobolev spaces, so
that we need to give a suitable definition of “gradient” for functions that enjoy some properties. To this
purpose, if k¥ > 0, we define

Tk (s) = max(—k, min(k, s)) , VseR,

the truncature at levels k and —k, and O(s) = fos Tk (t) dt. One has Ok(s) > 0.
The truncations will provide very useful for defining a good class of solutions, as in [4].

Definition 10.6 Let u be a measurable function on Q such that Ty (u) belongs to LP(0,T; W, *(Q)) for
every k > 0. Then (see [{], Lemma 2.1) there exists a unique measurable function v : Q — RY such that

VTi(u) = v X{jul<k}, olmost everywhere in Q, for every k > 0.

We will define the gradient of u as the function v, and we will denote it by v = Vu. If u belongs to
LY(0,T; Wol’l(Q)), then this gradient coincides with the usual gradient in distributional sense.

Let us introduce the definition of renormalized solution of (10.1).

Definition 10.7 Let p € Mo(Q). A measurable function u is a renormalized solution of (10.1) if there
exists a decomposition (f,g1,92) of u such that

u— gy € L®(0,T; L*(Q)), Tp(u— g2) € LP(0, T; Wol’p(ﬂ)) for every k > 0, (10.54)
lim / |Vul? dodt =0, (10.55)

{n<|u—ga|<n+1}

and, for every S € W2>(R) such that S’ has compact support,

(S(u = g2))e — div(a(t, z, Vu)S'(u — g2)) + S"(u — g2)alt, z, Vu)V(u — g2) =

= 5"(u—g2)f +G15"(u— g2)V(u — g2) — div(G1 S (u — g2)) (10.56)

in the sense of distributions (where g3 = —div(G1)) and

S(u — g2)(0) = S(up) in L*(Q). (10.57)
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Remark 10.10 Note that the distributional meaning of each term in (10.56) is well defined thanks to
the fact that Ti(u — g2) belongs to LP(0,T; WyP(Q)) for every k > 0 and since S' has compact support.
Indeed, by taking M such that Supp(S') C] — M, M|, since S'(u — g2) = S"(u — g2) = 0 as soon as
|u — go| > M, we can replace, everywhere in (10.56), V(u — g2) by V(Tar(u — g2)) € (LP(Q))N and Vu
by V(T (u = g2)) + Vgo € (LP(Q))N.

We also have, for all S as above, S(u — g2) = S(Tar(u — g2)) € LP(0,T; W, P(Q)); thus, by the equation
(10.56), (S(u — g2)); belongs to the space LP (0,T; W=1¢ (Q)) + L(Q), which implies that S(u — go)
belongs to C([O,TJ;Ll(Q)) (again see [63]). Thus condition (10.57) makes sense. Furthermore, since
(S(u— g2))e € LP (0, T; W=L7(Q)) + L1(Q) we can use, as test functions in (10.56), not only functions
in C(Q) but also functions in LP(0,T; Wy P(Q)) N L=(Q).

Finally, observe also that condition (10.55) is equivalent to

lim / V(1 = go)|P dadt =0,

n—00
{n<|u—g2|<n+1}

since g € LP(0,T; Wy () and u — go is almost everywhere finite.

Remark 10.11 The initial condition S(u—g2)(0) = S(uo) is the renormalized version of the requirement
that (u — g2)(0) = ug. However, it also expresses, in a weak sense, that u(0) = ug, as written in (10.1).
This is due to the fact that p is a measure on the o-algebra of the borelians of the open set @), which
implies that p is taken in a way that it does not charge the sets att = 0. More precisely, if & (t) = (52) 7,
for any ¢ € C°(N) we have, by Lebesgue’s theorem,

e—=0

lim | & du=0.
Q

It follows then for any decomposition of u

T 1 =
lim/fﬁswdwdH/ <gl,so>§sdt+—/ /gwdwdt=o,
e—0 Q 0 € 0 Q

which implies, by the time regularity of f and g1,

1
lim —
e—0 ¢

/ / g2pdzdt =0, VYpe(CX(Q). (10.58)
0o Jo

Note that (10.58) is a weak expression of the fact that g2(0) = 0, so that (u — ¢2)(0) = u(0) in some weak
sense thanks to the fact that the measure p is defined in the interior of Q.

On the other hand, it would also be possible to consider measures u on the o-algebra of borelians of
[0,T) x , hence pu would charge the level t = 0. However, this case easily reduces to the previous
one. Indeed, we can split p = pg + p;, where p; = p—o) is the restriction of p tot = 0 (i.e.
wi(E) = p(EN ({t = 0} x Q)) for any set E) and pg is the restriction to the open set Q). In this case
problem (10.1) is equivalent to problem

up + A(u) = pg  in]0,T[xQ,
u=0 on 10, T[x 012, (10.59)
u(0) =wug + p;  in .

If u is a measure which does not charge sets of zero capacity we have by Theorem 10.5 that u; € L'(Q),
and the study of (10.59) reduces to the one we can do for measures p only defined on the interior of Q.

Remark 10.12 As we have already noticed, when u is a renormalized solution of (10.1) and S is as in
Definition 10.7, we have S(u—gs) € LP(0,T; Wy P(Q))NL®(Q) and (S(u—g2)); € LP (0, T; W1 () +
LY(Q); this allows, thanks to (ii) in Lemma 10.1, to prove that S(u — g2) has a cap—quasi continuous
representative.
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In order to deal with the renormalized formulation, we will often make use of the following auxiliary
functions of real variable.

Definition 10.8 We define:
en(s) = Tl(s - Tn(s)) ’ hn(s) =1- |0n(3)| ’ Sn(s) = / hn(’l")dT, VseR.
0

Let us first prove that the formulation of renormalized solution does not depend on the decomposition of
1. This essentially relies on Lemma 10.6 proved before.

Proposition 10.6 Let u be a renormalized solution of (10.1). Then u satisfies (10.54), (10.55), (10.56)
and (10.57) for every decomposition (f,g1,92) of u.

Proof. Assume that u satisfies the conditions of Definition 10.7 for (f, g1, g2), and let (f,§1,32) be a
different decomposition of y. In the following we write §; = —div(G;). Note that since, by Lemma 10.6,
g2 — g2 € C([0,T); LY(Q)) we have u — g, € L*>(0,T; L*()), hence it is also almost everywhere finite.
First of all we prove that Tj(u — §a) € LP(0,T; W, P(Q)) for every k > 0. To do this, we let S = S, in

(10.56), where S, is defined in Definition 10.8, and we choose as test function Ty (S, (u — g2) + g2 — §2),
which belongs to L?(0,T; W, () N L®(Q). Using Lemma 10.6 we have:

/0T<(Sn(u = 92) + 92 — G2)t, T (Sn(u — g2) + g2 — G2)) dt
+ /Q Sl (u = g2)a(t,z, Vu)VTi(Sn(u — g2) + g2 — g2) dxdt
= —/ S (u— g2)a(t,z, Vu)V(u — g2) Te(Sn(u — g2) + g2 — §2) dzdt
N (10.60)
+ [ (S92 = D)F + ) TlSnl = 02) + 92 = ) dads
+ /Q((s;(u — 92) = 1)G1 + G1) VT (Sn(u — g2) + g2 — §o) dwdt
+ /Q Sl(u— g2)G1V(u — 92)Tk(Spn(u — g2) + g2 — o) dzdt .
Since by (10.49)
‘— /Q Si(u— g2)a(t,z, Vu)V(u — g2) T (Sn(u — g2) + g2 — o) dxdt
+ [ SHu= 0)G1 V0= g)TulSnl = 92 + 92 = )

< Ck / (IVul? + |Vgsl? + |Gyl + [bl?') dadt,

{n<lu—g2|<n+1}

thanks to (10.55) and the fact that u — g» is almost everywhere finite, we get

lim ‘—/ S (u — g2)a(t,z, Vu)V(u — ga) T, (Sn(u — g2) + g2 — Ga) dzdt
Q

n— o0

+/ Sl (u—g2)G1V(u — g2)T (Sn(u — g2) + g2 — §2) dzdt| = 0.
Q
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Let us denote by w(n) quantities going to zero as n tends to infinity. Integrating the first term of (10.60)
in time, using that k|s| > Or(s) >0, (g2 — §2)(0) = 0 and 0 < S/,(s) < 1, we obtain

/ S!(u— g2)a(t,z, Vu)VT(Sn(u — g2) + g2 — §2) dzdt
Q

< k(”.f”Ll(Q) + 1 fllz1(@) + lluollzr ()
+/ ((S! (u = g2) = 1)G1 + G1) VTi(Sn(u — g2) + g2 — §2) dzdt + w(n) .
Q

Setting E,, = {|Sn(u — g2) + 92 — §2| < k} we have:

/ [SE (u — g2))%al(t, x, Vu) Vu dzdt
E,
< k(e + I1Flloa@) + Iluollzicey) + /E (1G] + |Ga]) St (u — g2)|Vu| dadt
+/ Sy, (u = ga)la(t, z, Vu)| (|Vg2| + |Vga|) dzdt
En

+ / [S! (u — go2)*|a(t, z, Vu)||V g2 | drdt + 2/ (|G1] + 1G1]) (IV@2| + |Vgz|) dzdt + w(n).
E, Q

Young’s inequality then implies, using also (10.48), (10.49) and S}, (s) < S},(5)? + X{n<|s|<n+1}

/ [SL(u — g2)]*|Vul? dzdt

n

< Ck(Ifllni@) + I1fllni@) + lluollziey) +C /Q (G1P" +|Gi|P + |V gal? + [VgalP + b dedt

+C / |VulP dedt + w(n) .
{n<lu—ga|<n+1}

Using S;,(s)? < S8}(s) < S1,(5)® + X{n<|s|<nt1} (because 0 < S; < 1) and the fact that g» belongs to
L?(0,T; Wo1 "P(Q)), we deduce from the preceding inequality that, for all n > 1,

/ X7 |V (S — g2))P < C.
Q

Since V(T(Sn(u — g2) + g2 — 2)) = X, V(Sn(t — g2) + g2 — §2) and since g5, §o € L?(0, T; W, *(Q)),
this implies that v, = Tj(Sn(u — g2) + go — §2) is bounded in L?(0,T; W;P(Q)) and converges, up to a
subsequence, to v weakly in LP(0, T; WyP(R2)), thus also in D'(Q); but v, — Ty (u — ja) ae. in Q and is
bounded by k, so that v, — Tj(u — g2) in D'(Q). We have then Ty(u — o) = v € L?(0,T; W, ?(5)), for
all £ > 0.

Similarly we prove that (10.55) holds true for g» as well : we choose S = S, and test function 65, (Sy, (u —
92) + 92— g2) in (10.56). Reasoning as above we obtain, setting F,, = {h < |Sp(u—g2) + g2 — §2| < h+1}:

/ [S! (u — go2)]?a(t, z, Vu)Vu dzdt

n

- Sn(uo)
< /Q ((S'(u = g2) = 1) + F)Bn (Sl — g2) + g2 — §2) dardt + / / 01(r) dr dz

+ [ Siu=a)(Gil + (Gl Vuldodt + [ i = gt V)l (V] + Vo) dodt
F,

n

+ / (5! (u — go)la(t, 2, Vu)| Vs dadt + 2 / (1G] +1Gi 1) ([Vaol + [Vgal) dadt + w(n).

n Fp
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As before, thanks to Young’s inequality, (10.49) and by properties of S,, we get:
| 1810 = g2Vl dade
F,
- S (uo)
< O [+t —92) + g - gl dsde+ [ [ onrydr s
Q QJo
e / (G1” +|CrP + [Vl? + [Vgal? + |bP') dadt
F,

+C / |Vul?P dedt + w(n) .

{n<|u—ga|<n+1}
Letting n tend to infinity, using (10.55) and since xr, converges to X{r<|u—gs|<h+1} We obtain:

|Vu|P dedt < / |uo| dz

{h<|u—ga2|<h+1} {luo|>h}
+ / (|f| + Ifl + |G1|”I + |é1|p’ + Vg’ + Vg2 P + |b|pl) dzdt
{lu—g2|>n}

which yields, as h tends to infinity (recall that u — - is almost everywhere finite),

lim / |VulP dzdt = 0.
h—o0
{h<lu—g2|<h+1}

We are left with the proof that the renormalized equation (10.56) and the initial condition (10.57) hold
with g, as well. To this aim, we take S = S, in (10.56), we choose a function S such that S’ has compact
support and we take S'(S, (u — g2) + g2 — G2)¢ as test function in (10.56), with ¢ € C°(Q). By Lemma
10.6 we get:

T
/0 ((Sn(u—g2) + 92— 32)t, 5" (Sn(u — g2) + g2 — §2) ) dt

+ /Q Sy (u— g2)a(t,z, Vu)Ve S (Sp(u — g2) + g2 — §2) dzdt

+ /Q Sl (u— g2)a(t,z, Vu)V (S (Sp(u — g2) + g2 — Go))p dxdt

+ / S"(u — g2) alt,, Vu)V(u — g2) §'(Sn(t — g2) + g2 — §) o didt

@ ] (10.61)

- /Q ((S'y(u — g2) — 1) + F) S'(Suu — g2) + g2 — Gz) o dadt

+ /Q (St (u = g2) — )Gy + G1) Ve S' (S — g2) + g2 — o) dadt

+ /Q ((Sh(u = g2) = 1)1 + G1) V(S (Sl — g2) + g2 — o)) dardlt

+ / S (u— g2) G1V(u — g2)S'(Sn(u — g2) + g2 — §2) pdadt .
Q

We will now pass to the limit in each term of this equation.
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To handle the first one, we write ((S,(u—g2) + g2 — §2)t, S"(Sn(u — g2) + g2 — §2) ) = ((S(Sn(u — g2) +
92— 32))t, ), so that, by definition of the derivative in D'(Q), this term passes to the limit thanks to the
dominated convergence theorem:

T T T
/ ((S(Sn(u —g2) + 92— G2))t, ) = —/ S(Sn(u—g2) + g2 — §2) ot — —/ S(u — gG2)pt.
0 0 0

To handle the other terms, we take M such that Supp(S’) C [-M, M]. Since S,(z) —1 <z < Sp(z)+1
for all z € [-n — 1,n + 1], one has

Supp (S, (v — g2) S'(Sn(u — g2) + 92 — §2)) C{lu—g2| <n+1,Ju—go| < M + 1}

thus, in each of the integrals on @ of (10.61), Vu can be replaced by V. = V(Tyy1(u — §2) + §2) €
(LP(Q))Y; we can then pass to the limit with the help of the dominated convergence theorem. Since
u—ga = Tary1(u — ga) whenever S'(u — g2) # 0 or S”(u — g2) # 0, we can then replace V' by Vu in each
limit term.

Indeed, since S!, — 1 and is bounded by 1, we have

/ Sl (u— go)a(t,z, Vu)Vp S (Sp(u — g2) + g2 — Go) dzdt
Q
= / Sy (u— g2) a(t,z, V)V S'(Sn(u — g2) + g2 — §o) dadt
Q

— / a(t,z, V)V S'(u — g2) dedt = / a(t,z,Vu)Vp S’ (u — g2) dzdt.
Q Q
For the third term of (10.61), we write V(S'(S,(u — g2) + g2 — §2)) = S"(Sn(u — g2) + g2 — G2) (S}, (u —
92)V(u—g2) + V(g2 — §2)) = 5" (Sn(u—g2) + g2 — §2) (S (v — 92)(V — Vg2) + V(g2 — §2)) with V, Vg,
Vij2 € (LP(Q))Y so that this term tends to

/ S"(u — g2)a(t,z,V)(V — Vga)pdzdt = / S"(u — g2)a(t, z, Vu)V(u — o)y drdt.
Q Q

The fourth term tends to 0, because S]] — 0 and, in this term, a(t, z, Vu)V(u—g2) = a(t,z,V)(V—-Vgs) €
L'(Q). A straight application of the dominated convergence theorem show that the fifth term tends to
fQ fS'(u — §2)p and that the sixth term tends to fQ G1VpS'(u — §2).

To study the convergence of the seventh term, we write, as above, V(S' (S, (u—g2) +g2—g2) = S”(Sn(u—
92) + g2 — G2)(Sh,(u — g2)(V — Vga2) + V(g2 — g2)) so that, again thanks to the dominated convergence
theorem, the limit of this term is

/ S"(u = §2)C1 (V = Vin)p dodt = / S"(u = §2)Ca ¥ (u — o) davdl.

Q Q

Since V(u — g2) = V — Vg2 € (LP(Q))Y in the last term of (10.61), we see that this term tends to 0 as
n — oo. Gathering all the preceding convergences, we see that u satisfies (10.56) with g» instead of gs.
To get back the initial condition with g, instead of g2, we take ¢ = (T —t)y with ¢ € C°(Q2), and we use,
as before, (10.56) with S = S, and the test function (S, (u—g2)+g2—d2)p € LP(0,T; Wy P(Q))NL>®(Q);
this gives (10.61). Now, however, since ¢(0) # 0, the integration by parts in time in the first term of
(10.61) gives

T
/ ((S(Sn(u—g2) + 92— 2))es ) = — / S (S (u—g2)(0) + (92— 32) (0))p(0) — / S(Sn(u—g2)+ 92— o).
0 Q Q

Since Sy (u — g2)(0) = S (uo) and (g2 — §2)(0) = 0, we have S(Sn(u — g2)(0) + (92 — §2)(0)) = S(Sn(uo))
so that the first term of (10.61) tends now to

- / S(un)p(0) - /Q S(u—g2)er.
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The other terms tend to the same limits as before and we get thus

—/ S(ug)p(0) —/ S(u— g2)pt +/ a(t,z,Vu)Vp S'(u — §2) dzdt
Q Q Q

+ / S" (u — go)a(t,z, Vu)V(u — g2)p dzdt
Q

= / 8" (u— g2)g +/ G1VeS' (u — §2) +/ S"(u — §2)G1V (u — §o)g dadt. (10.62)
Q Q Q

On the other hand, since S(u — §2) € LP(0,T; W, *(Q)) satisfies (10.56) (with s instead of gs), we have
(S(u— §2))¢ € LP (0, T; W17 (Q)) + L1(Q), so that S(u — §2) € C([0,T]; L*(R)) and we can use ¢ as a
test function in (10.56) written with go; this gives

—/ S(u — g2)(0)p(0) — / S(u— G2)pt +/ a(t,z,Vu)Vp S’ (u — go) dzdt
Q Q Q
+/ S"(u — g2)a(t,z, Vu)V(u — o)y dxdt
Q
— / FS'(u =)o +/ G VS (u— §) +/ S"(u— §2)C1 YV (u — fo)pdadt.  (10.63)
Q Q Q

From (10.62) and (10.63) we deduce that [, S(u— §2)(0)¢ = [, S(uo)? for all ¢ € C(€), that is to say
S(u— §2)(0) = S(uo)- -

Remark 10.13 It should be noted that the definition of renormalized solution is not restricted to the case
that p is a measure, since (10.54)—(10.57) make sense whenever f € L*(Q), g1 € L? (0,T; W17 (Q)),
g2 € LP(0,T;V). Thus the definition of renormalized solution makes sense also if p € LY(Q) + W',
without being necessarily a measure. In this case (f,g1,g2) is a decomposition of u in L'(Q) + W'. Note
also that the conclusion of Lemma 10.6 is still true if p € L'(Q) + W', hence the result of Proposition
10.6 would remain true in this case too.

10.3.3 Proof of existence and uniqueness theorems

We can now start the proof of the existence result for problem (10.1). Following a standard approach,
we obtain the existence of a solution as limit of nonsingular approximating problems. To this purpose,
let p, be an approximation of u given by Proposition 10.5, and let {ug,} € L () converge to ug
strongly in L!'(Q). Then by classical results (see for instance [51]) there exists a unique solution u, in
LP(0,T; Wy P () N L®(0,T; L*(2)) of the CauchyDirichlet problem:

up, =0 on 10, T[x09Q, (10.64)

(un)t - div(a(t7w, vun)) = pn in ]07 T[XQJ
un(o) = Ugn in Q.

Moreover, from Proposition 10.5, u,, satisfies:

t t t
/ (un — g5)0,0) ds + / / a(5,, Vun) Vep dods = / / fup duds
0 0 Q 0 Q

¢ (10.65)
+/ (P o) ds, Ve LP(0,T;V), Vi€ [0,T].
0

Let us begin by getting a priori estimates on w,,.
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Proposition 10.7 Let u, be the solution of (10.64). Then we have:

||Un||L°°(0,T;L1(9)) <C,

/ [VTi(un)|P dedt < Ck ,
Q

lun = 93| (0,7;1(0)) < C,

/ VT (upn — 93)|P dzdt < C (k+1), (10.66)
Q

lim | sup / [Vug|Pdedt | =0, VE>0.

h—oo n

{h<|un—g3 [<h+k}

Moreover there ezists a measurable function u : @ — R such that Ty(u) and Ti(u — g2) belong to
L*(0,T; Wol’p(Q)), u and u — g belong to L= (0,T; L*(Q)) and, up to a subsequence, for any k >0 :

Uy — U a.e. in Q,
L _ (10.67)
Tr(upn — g3) = Ti(u — go) weakly in LP(0,T; Wy'*(Q2)) and a.e. in Q.
Finally, we have
lim / VulPdedt =0, Vk>0. (10.68)
—00

{h<|u—g2|<h+k}

Proof. First of all, we choose Tj(uy,) as test function in (10.64) and we integrate in ]0,¢[ to get:

t ¢
/ O (un)(t) dx +/ / a(s,x, Vu,)VT(uy) dzds =/ pin T (uy,) dxds +/ O (uon) dz
Q 0 Jo 0 Q
which yields, from (10.48) and the fact that ||uon|[z1(@) and ||pnllz1(@) are bounded:
¢
/ O (un)(t) dz +/ / VT (un)|P deds < Ck.
Q 0 Jo
Since ©(s) > 0, for t = T we get that Tj(u,) is bounded in L?(0, T; Wy P(Q)). If k = 1, we also get:
[ewiwsc  wep,
Q
which implies, since ©1(s) > |s| — 1, that
/ lun(t)|de < C  Vte[0,T].
Q

Taking the supremum on ]0,7[ we obtain the estimate of u, in L>(0,T; L'(Q)). Similarly we can get
the estimates on u, — g% : let us choose Ty (u, — g%) as test function in (10.65). Integrating by parts
(recall that g% has compact support, so that u™(0) — g%(0) = u™(0) = uo,) and using (10.48) this gives:

/@k —93) )dm+a/ / IVunl? X{jun—g5 1<k} dzds

S/Gk(UOn)d$+/ fnTk(un_gg)dmdt_'_/ /G?VUnX{\un—gﬂgk}dmds
Q Q 0o Ja

¢ t
—/ /G?Vggxﬂun_gygk}dxds-{-/ /Qa(s,x,Vun)VggX{|un_95|5k}dwds.
o Ja 0
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Using assumption (10.49) and by means of Young’s inequality we obtain:

a t
Q 0 JQ Q
+0/ leid dwdt+0/ |vgg|dedt+c/ |b(t,a:)|”'dxdt+k/ uon| dz .
Q Q Q Q

Since GT is bounded in L?' (Q), g% is bounded in L?(0, T} Wol’p(Q)) , frn is bounded in L'(Q) and ug, is
bounded in L!(Q), we obtain

| ot -gwda<c  veep,
Q
which implies the estimate of u,, — g% in L>(0,T; L*(Q)), and also
/ |Vu,|? X{|un,gg|§k}d$dt <C((k+1),
Q

which yields that Tj(u, — g%) is bounded in L?(0,T;Wy?(Q)) for any k > 0 (recall that g7 itself is
bounded in L?(0,T; W,*(2))). Now, let 1(s) = Ty(s — Tr(s)) and take 9 (u, — g%) as test function in
(10.65). Reasoning as above, using that ¥’ (s) = X{n<|s|<n++} and applying Young’s inequality we obtain:

/|Vun|pda:dt50k/ luon| dz + Clc/|fn|da:dt+ c/(|G?|P’+|Vg;|1’+|b(x,t)|ﬂ’)dxdt.

{h<|un—g3|<h+k} {lwon|>h} {lun—g3 [>h} {lun—g5[>h}

Since u,, — g% is bounded in L>(0,T; L'(Q2)) we have
lim (sup meas{|u, — g5| > h}) =0,
h—oo n

then by means of the equi-integrability of the sequences f,,, |G?[?' and |[Vg#|? in L'(Q) we deduce that:

lim | sup / |[Vu,|Pdzdt | =0, (10.69)

h—o0
{h<|lun—g3|<h+k}

for every k > 0.

We are going to prove now that, up to subsequences, u, converges almost everywhere in () towards a
measurable function u. To this aim, let 7;(s) be a C?(R), nondecreasing function such that 7 (s) = s
for |s| < £ and Ti(s) = sgn(s)k for |s| > k. If we multiply pointwise equation (10.64) by T} (u, — g%)
(equivalently if we choose T,/ (un — g5)¥ as test function in (10.65) with ¢ € C°(Q)) we get that:

(T (un = g5))e — div(a(t, z, Vun) Ty (un — g5))
+a(t,z, Vup)V(up — ¢5) T (un — 9%) (10.70)
= ﬁ(un —95)fn — diV(G?ﬁ(un —g3)) + 77911(“" - 95)GTV (un — 93) .

Observe that thanks to the fact that 7, has compact support and since |Vun[PX{|u, —gz|<k} is bounded
in L' (Q) we deduce from (10.49) that a(t,z, Vu,)V(un — g5) T (un, — g5) is bounded in L'(Q) and so is
T (ty— g3 GPV (ur,—g3) (since GT is bounded in (L?' (Q))N). Similarly, we have that a(t, z, Vi) T} (tn—
g2) as well as GPT}! (un, —g%) is bounded in (L (Q))N, so that we conclude from (10.70) that (T (un—g%)):
is bounded in L? (0,T; W~1%(Q)) + L*(Q). Since we have just proven that Ty (u, — g2) is bounded in
LP(0,T; W,y (9)) a classical compactness result (see [69]) allows us to deduce that Ty (u, —g3) is compact
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in L1(Q). Thus, for a subsequence, it also converges in measure. Let then o > 0 and, given € > 0, let us
fix h such that, for every n, meas {|u, — g%| > 2} <& (this is possible as a consequence of the estimate
of up, — g% in L*°(0,T; L*(2))). Since Tp(un — gF) converges in measure, for n and m sufficiently large
we have:

meas{|Th(un — 95) — Tn(um — g5')| > o0} <e.

On the other hand we have, by definition of 7:

meas{|(tn — g5) — (1 — 93%)| > 0} < meas{jun — g5/ > 0}
+ meas{um — 65'| > 2} -+ meas{| 7 (un — g5) — T um — 031)| > o},
hence the choice of h implies, for n and m sufficiently large,
meas{|(un — g5) — (um — g5")| > 0} < 3¢,

so that u, — g% is a Cauchy sequence in measure. Up to subsequences, we deduce that u,, — g7 almost
everywhere converges in @, and since g§ strongly converges to g, in LP(0,T;W,P(Q)), there exists a
measurable function u such that u, almost everywhere converges to v and Ty(u, — g%) weakly con-
verges to Tk(u — g2) in L1"(0,T;WO1 'P(Q)). The estimates previously obtained on w, also imply that
u € L®(0,T; L*(R2)) (indeed, use Fatou’s lemma on the estimate of (u,) in L>(0,7;L'())) and that
Ty (u,) weakly converges to Ty (u) in LP(0, T; Wy P (Q)).

Let us prove (10.68). Let 1(s) = Tk(s — Tx(s)); one has

/ |V (un — g5)|P dedt = / |V (un — g3)|P dzdt < / VT otk (un — g5)|P dadt < C,
@ {h<|un—g3 |<h+k} @

hence (u,, — g5) converges (up to subsequences) weakly in L?(0,T; Wy'?(€)) and almost everywhere in
Q to Y(u — g2). Thus

V(= go)|P dudt = / V(= go)|? dardt < lim inf / V4 — g |P dadlt
n—0o0
(h<lu—pa/<h k) © ©

Moreover
/ IV (un — g3) P dadt < C / (IVunl? + [V2|?) dudt
Q

{h<|un—g3|<h+k}

Hence, using (10.69), one gets

Jim / IV (4 — go)|P ddt = 0
h—o0
{h<|u—g2|<h+k}

as h tends to 0o, and (10.68) follows. n

Remark 10.14 In the proof of Proposition 10.7 we did not use the fact that the approximating sequence
Un converging to p is bounded in L'(Q) but for the first two estimates on u,. The estimates concerning
un — g% in (10.66) as well as (10.67) and (10.68) only needed the “separate”approximations of f, g1,
g2 in the respective functional spaces. In particular, they hold true if u belongs to L*(Q) + W', being
(f,91,92) a decomposition of u.
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Next we prove the strong convergence of Ty (u, — g&) in L?(0,T; W, ?()). To obtain this result, we use
the same technique as in [63] adapted to the sequence u,, — ¢7.

We need then to recall the following definition of a time-regularization of T} (u), which was first introduced
in [50], then used in several papers afterwards (see particularly [23], [9]). Let z, be a sequence of functions
such that:

2, €WgP(@)NL™(Q),  lzlle) <k,
2y = Tr(ug) a.e. in Q as v tends to infinity,
1

;'|ZV||€V§"’(Q) — 0  as v tends to infinity.

Then, for fixed ¥ > 0, and v > 0, we denote by T} (u), the unique solution of the problem

8Tk (u)y —
ot N
{ T (u)v (0)

Then T (u), belongs to LP(0, T; Wy P(Q)) N L°(Q) and % belongs to LP(0, T; W, ?(R)), and it can
be proved (see also [50]) that, up to a subsequence,

N

(Ty(u) — Tk(u),) %n gle sense of distributions, (10.71)
2y in Q.

Tr(u), = Tk (u) strongly in LP(0,T; Wol’p(Q)) and a.e. in Q,

10.72
ITk(u)yllLe@) <k Vv >0. (10.72)

Proposition 10.8 Let u,, be the solution of (10.64), where py,, is given by Proposition 10.5. Then there
exists a measurable function u in Q) and a subsequence, not relabeled, such that:

T (un — 93) = T (u — g2) strongly in LP(0,T; W, P(Q)) for any k > 0.

Proof.

We take a subsequence such that u,, — u almost everywhere in ). Let us denote, throughout what
follows, v, = u, — g%, and v = u — g5. By Proposition 10.7 we know that v € L*®(0,T; L'(Q)) (in
particular it is almost everywhere finite), Ty (v) € LP(0,T; W, *()) for every k > 0 and

Tk (vy) = Ti(v) weakly in LP(0,T; W, *(Q)) and a.e. in Q for any k > 0. (10.73)

We take a subsequence of Ty (v),, the approximation of Ty (v) defined in (10.71), such that T%(v), — Tk (v)
almost everywhere in @ (this subsequence only depends on v and k, i.e. quantities that will not vary in
the following proof). For h > 2k, we then introduce the function

Wp = T2k(“n - Th(Un) + Tk(vn) - Tk (U)V) .

The use of w,, as test function to prove the strong convergence of truncations was first introduced in the
stationary case in [52], then adapted to parabolic equations in [63]. The advantage in working with w,
is that, since

Vw, = V(vy — Th(vn) + Te(vn) — Te(v)y)XE, »

with E, = {|vp — Th(vn) + Tk(vn) — T (v),| < 2k}, in particular we have Vw,, = 0 if |v,| > h+4k. Thus
the estimate on T} (vy,) in LP(0,T; Wy*P(Q)) appearing in Proposition 10.7 implies that w,, is bounded in
Lr(0,T; WO1 'P(Q)), then by the almost everywhere convergence of v, to v we deduce:

wy, — Tog (v — Th(v) + T (v) — Tx(v), ) weakly in LP(0,T; W, () and a.e. in Q. (10.74)

In the following we set M = h+4k, moreover we will denote by w(n, v, h) all quantities (possibly different)
such that
lim lim limsup |w(n,v,h)| =0, (10.75)

h—+o00 ¥—=+00 4o
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and this will be the order in which the parameters we use will tend to infinity, that is, first n, then v,
and finally h. Similarly we will write only w(n), or w(n,v), to mean that the limits are made only on the
specified parameters. Choosing w,, as test function in (10.65) we have:

T T
/ ((vn)e, wy) dt + / a(t,z, Vuy)Vw, dedt = / frnwp dzdt + / (97}, wp) dt . (10.76)
0 Q Q 0

Then from (10.74) we obtain:

n— 00

lim | fpw,dzdt = / fTop(v = Th(v) + Ty (v) — Ty (v),) dzdt,
Q Q
T

T
Jim (g{‘,wn)dt:/o (g1, To(v — T (v) + Th(v) = Te(v),)) dt

n—o 0

Moreover we have that T}(v), converges to Tj(v) strongly in L?(0,T; W, *(2)) and almost everywhere
in @ as v tends to infinity, so that

lim fTok(v = Th(v) + Tk (v) — T (v),) dedt = /Q fTor (v —Th(v)) dedt,

V— 00 Q
lim ; (91, Tor(v — Th(v) + Ti(v) — Tr(v)y)) dt = /0 (91, Tor(v — Th(v))) dt .

V—0o0

By means of Lebesgue’s theorem we can conclude

lim/szk(v—Th(v))d:cdtzo.
Q

h—o0
Moreover, since

T
/ {91, Tor, (v — Th(v))) dt :/ G1Vvu X{h<|v|<h+2k} dxdt,
0 Q

Holder’s inequality implies

=

T
/ (g1, Tok (v — Th(0))) dt| < 1Gill o o / IV (u — go) P dudt
0

{(h<|u—ga|<h+2k}

Then thanks to (10.68) we obtain:

T
lim (91, Tor (v — Tp(v)))dt = 0.

h—oo Jo

Thus, recalling the notation introduced in (10.75), we have proven that
T
/ fnwy, dzdt + / (97", wy) dt = w(n,v, h). (10.77)
Q 0
Let us estimate the second term in (10.76). Since Vw,, = 0 if |v,| > M = h + 4k we have:

/a(t,x,Vun)andxdt:/ a(t,z, VunX{jv,|<m}) VWn .
Q Q
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Next we split the integral in the sets {|v,| < k} and {|v,| > k} so that we have, recalling that E, =
{lvn = Th(vn) + Tk (vn) — Tk(v)y| < 2k} and h > 2k:

/ a(t, z, Vuyp)Vw, drdt :/ a(t, =, VunX{jv,|<k})V(0n — Tk(v),) dedt
Q

Q
+ a(t, z, VunX{jv, V(vn = Th(vn  dzdt
/ ( X{1vn <3))V (U = T(vn)) X (107%)
{lvn|>k}
- / a(tawaVunX{\vn\gM})VTk(’U)y XE, dzdt.
{lvn|>k}

Let us denote (A), (B) and (C) the three terms of the right hand side in (10.78). Let us estimate (B).
Clearly we have

/ a(t, z, VunX{jv,|<m})V(0n = Th(vn)) X E, ddt

v | >k}

< / lalt, 2, Vun)| |V (un — g3)| dodt

{h<[vn|<h+4k}

and using (10.49) and Young’s inequality we get:

la(t, z, Vup)| |V (un — ¢7)| dzdt
{h<|vn|<htak}
<C / |V, [P dzdt + C / Vg2 |P dedt + C / b(z, )" dzdt .
{h<|vn|<h+ak} {h<|vn|<h+ak} {h<|vn|<h+ak}

Thanks to the equi-integrability of |VgZ|?, using (10.66) and that meas{h < |v,| < h + k} converges to
zero as h tends to infinity uniformly with respect to n we obtain:

h—oo  noco

lim limsup / a(t, z, VunX{ v, <m})V(0n — Th(vn))xE, dzdt| = 0,
[vn | >k}

that is (B) = w(n,h). For (C), let us remark that, since Vu,X{|v,|<m} is bounded in LP(Q), (10.49)

implies that |a(t,z, VunX{|v,|<m})| is bounded in L” (Q). The almost everywhere convergence of v, to
v implies that |VT%(v)|X{ v, |>k} strongly converges to zero in LP((Q), so that we have

lim / a(t, z, VunX{jv,1<m}) VTk(v) XE, dzdt = 0.

n—00
{lvn[>k}

Thus we get

a(t, @, VunX{jv,1<my) VTk (V)0 XE, dzdt
{lva|>k}
=w(n) + / a(t,z, VunX{jv,1<m}) V(T (), — Tr(v)) XE, dzdt.
{lva|>k}
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Using that |a(t, =, VunX{jv,|<m})| is bounded in L¥'(Q), applying Holder’s inequality and thanks to
(10.72) we also have

a(t,.’l}', VUHX{|Un\§M})V(Tk(v)V - Tk(’l))) XE, dzdt = w(n, V) 3
{lvn|>k}

therefore we conclude:

(C) = / a(t, 2, VunX{jv.|<m}) VT (), XB, dzdt = w(n,v).

{lva|>k}

We have then obtained from (10.78), using that (B) and (C) converge to 0:
/ a(t, z, Vuy,)Vw, dzdt = / a(t, z, VunXgjv,|<k})V(0n — T (v),) dzdt + w(n, v, h) . (10.79)
Q Q
Putting together (10.77), (10.79) and (10.76) we have:

T
/ ((vp)g, wy) dt + / a(t, , VunX{jv,|<k})V(Vn — T (v),) dzdt = w(n,v, h).
0 Q

As far as the first term is concerned, that is

/0 (@n)e> Tok(Un — T (vn) + Tk (vn) — T(0)0)) dt.,

we can apply Lemma 2.1 in [63] to the function v,, using the fact that wg, and z, strongly converge
to ug and to T (ug) respectively in L'(Q2). This lemma, based on the monotonicity properties of the
time-regularization Ty (v),, gives that

T
/ <(vn)t7wn) dt 2 UJ(TL,I/, h) )
0
hence we finally have:
/ a(t, z, VunX{jv, <k})V (0n — Tg(v),) dzdt < w(n,v,h). (10.80)
Q

Without loss of generality, we can assume that k is such that x{,, <k} almost everywhere converges to
X{lv|<k} (in fact this is true for almost every k, see also Lemma 3.2 in [9]). Then, the strong convergence

of g% in LP(0,T;WyP(Q)) and (10.49) imply that a(t,z, V(g5 + T (v))X{|vn|<k}) Strongly converges to
a(t,, V(g2 + Tk(v))X{j0|<k}) in L¥ (Q)V. Since
L a(ta Zz, V(gg + Tk(v))X{h}n \Sk})v(vn - Tk(v))
= ||t 93 + T ) Y Thlen) = To(0)

the weak convergence of Ty (vy) to Ty (v) in LP(0,T; Wy P (R)) allows to conclude that:

lim [ a(t,z, V(g5 + T (v))X{jvn|<k})V(Vn — T (v)) dzdt = 0,

n—oo
Q
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hence we obtain from (10.80), using also the strong convergence of Ty (v), to Tj(v) as v tends to infinity:

lim a(t, , VunX{|v, <k})
ey Q[ {Jvn <k} (10.81)

—a(t,z, V(95 + Tr(v))X{v.<k})] (Vtn — V(g5 + Tk (v))) dzdt = 0.

Using that x{|., <k} almost everywhere converges to Xx{,j<x} and that g3 strongly converges to g2 in

LP(0,T; W, *()), through the standard monotonicity argument which relies on (10.50) (see Lemma 5 in
[13]) we can deduce from (10.81) that

VunX{jv. <k} = V(92 + Tr(v))X{vj<k} = VUX{p<k}  ae in Q,

and then that a(t,z, ViunX{js, <k})Vin strongly converges to a(t,z, Vux{y<k}) Ve in L'(Q). Finally,
together with (10.48) this proves that the sequence |Vun[Px{|u, —gz <k} 18 equi-integrable in @, which as

a consequence of Vitali’s theorem and since g} strongly converges in L?(0,T; W, *(f)) yields
Tr(upn — g%) = Ti(u — g2) strongly in LP(0, T; W, P(9)).

In fact, since we have proved it for almost every k the result holds true for any k& as well. [

The proof of the existence of a renormalized solution will easily follow from the previous estimates and
compactness results.

Theorem 10.11 Assume that (10.48), (10.49), (10.50) hold true, and let p € Mo(Q), uo € L1(9).
Then there exists a renormalized solution u of problem (10.1) in the sense of Definition 10.7. Moreover
u belongs to L°°(0,T; L'(Q)) and Ty (u) € LP(0,T; Wy P(Q)) for every k > 0.

Remark 10.15 We already remarked that the definition of renormalized solution does not make use of
the fact that p is a measure (only its decomposition in L*(Q) + W' is needed), in particular all the
regularity asked on renormalized solutions concerns the difference u — g=. However, due to the fact that
w is a measure (and can be approxvimated by sequences bounded in L'(Q)) we have found a solution u
with the additional regularity properties u € L>®(0,T;L*(R)) and Ti(u) € LP(0,T; W, *(Q)) for every
k > 0. Last one in particular says that |Vu|Px{ju/<k} € LY(Q), which is not at all contained in the request
[VulPX {ju-go|<k} € L'(Q) for renormalized solutions. Actually, this regularity result is consistent with
the first existence result found in [10].

Proof. Let u, be the sequence of solutions of (10.64), where u,, and ug,, approximate p and ug respec-
tively in the sense specified above, and let v € L>(0,7; L'(Q)) be such that the results of Proposition
10.7 and Proposition 10.8 hold true. Then we have that

Up = U a.e. in Q,

10.82
Tr(upn — g5) = Tr(u — g2) strongly in LP(0, T; W, P(Q)) for any k > 0 and a.e. in Q. ( )

Let S € W2>(R) be such that S’ has compact support, and take S’ (u,, — g% )¢ as test function in (10.65),
with ¢ € C°(Q). Then we have:

— / 0 S(un — gy) dzdt + / a(t,z,Vu,)Veo S'(u, — g%) dzdt
Q Q
+ / S" (un, — g3)alt, z, Vun)V(un — g3) @ dxdt = / fnS' (un — g3 dzdt (10.83)
Q Q

+/ GV S'(uy — g%) dzdt + / S"(un, — 93)GT V(up — 93) pdzdt .
Q Q
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Since Supp(S’) is compact there exists M > 0 such that a(t,z, Vu,)S (un — %) = a(t,z, VTar(un —
g2)+Vg)S' (u, —g2), so that (10.82), the strong convergence of g% in L?(0, T; W, *(2)) and assumption
(10.49) imply that

a(t,x, Vuy)S' (un — g3) — a(t,z, Vu)S'(u — g2) strongly in (LP (Q))N.
Similarly we have that

S" (un, — g3)a(t,z, Vu,)V(un — g5) = S"(u — g2)a(t,z, Vu)V(u — go) strongly in L'(Q)

and

S"(un = g3)V (un — g5) = S"(u = 92)V(u — g2) strongly in (L?(Q))".

Therefore, by means of (10.82) and the dominated convergence theorem, we can pass to the limit in
(10.83) as n tends to infinity obtaining:

- / 0eS(u — go) dzdt + / a(t,z, Vu)VpS'(u — go) dzdt
Q Q
+ / S"(u — g2)a(t,z, Vu)V(u — g2) ¢ dxdt = / S (u — go2)p dzxdt (10.84)
Q Q

+/ G1V<p5'(u—g2)dxdt+/ S"(u — g2)G1 V(u — go) pdzdt.
Q Q

Thus v satisfies (10.56), while (10.55) is (10.68) with & = 1 and has been proved in Proposition 10.7.
Finally, passing to the limit (thanks to (10.82)) in (10.83) written in distributional sense we have

(S(un, — g3)): s strongly convergent in LP' (0, T; W~=22'(Q)) + L*(Q),
and since S(u, — g3) strongly converges in L?(0,T’; Wy ?(€)) we deduce (see Theorem 1.1 in [63]) that
S(u, —gy) = S(u—gs)  strongly in C([0,T]; L' ()).
In particular, being S(u, — g5)(0) = S(uon) we get that S(u — g2)(0) = S(up) in L*(2). This concludes

the proof that u is a renormalized solution of (10.1).

Here we prove the uniqueness of the renormalized solution of (10.1)

Theorem 10.12 Assume (10.48), (10.49), (10.50). Let p € Mo(Q), then there exists a unique renor-
malized solution of (10.1).

Proof. Let uy, us be two renormalized solutions of (10.1), let (f, g1, g2) be a decomposition of u, so that
u1 and uy both satisfy (10.56). Note that the same decomposition of p can be used for both equations of
uq and ug thanks to Proposition 10.6. Let S, be as defined in Definition 10.8, in particular we have that
Sy, (u1 — g2) belongs to LP(0, T; Wy P(2)) as well as Sy, (us — g2). We choose then Ty (S (11 — g2) — Sy (ug —
g2)) as test function in both the equations solved by u; and usy. In the following we write v; = u; — g2
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and v = uy — go; subtracting the equations then we have:

T
/0 (S (V1) — Su(v2))es Th(Sn(v1) — Sn(v2))) dt

+/ [S! (v1)a(t,z, Vur) — S}, (va)a(t, z, Vus)] - VTk(Sn(v1) — Sn(ve)) dzdt
Q

- / £ (Sh(01) = S1(09)) T (Sn(v1) — S (02)) derdt
Q (10.85)
+ / G1 (S;('Ul) - S;L(Ug)) VTk(Sn('Z}l) - Sn('l}z)) dzxdt
Q

+ /Q [S! (v1)G1 V1 — S (v2)G1 V] Tk (Sp(v1) — Sp(ve)) dzdt
+/ [SV (ve)a(t,z, Vua)Vvs — Sh(v1)a(t,z, Vur)Vur] T (Sn(v1) — Sp(v2)) dzdt .
Q

Let us denote by (A)—(F) the six integrals above, we study the behaviour of each as n tends to infinity.
To this purpose, let us recall that by definition of S,, we have that S/ (s) converges to 1 for every s in R.
This is enough to conclude by means of Lebesgue’s theorem that

lim (C) =0.

n—0o0

Let us study the limit of (E) now. We have (E) = (E;) + (E2), where
(El) = / SITZ(’U1)G1V’U1 Tk(Sn(’Ul) - Sn(’UQ)) dxdt .
Q

Since (E») has the same form of (E;) with the roles of v; and v, interchanged, it is enough to deal with
(E1). Recalling that S (s) = —sign(s)x{n<|s|<n+1}, We have:
B <k [ (Gl [Vuldodt,

{n<|v1|<n+1}

so that, using Holder’s inequality we get:

(BV)| < KIGll v () / Vur — Vgs|? dadt
{n<|uy—g2|<n+1}
Thus by (10.55) written for u; we get that (E;) converges to zero as n tends to infinity. The same is true

for (E»), hence we deduce:
lim (E) =0.

n—o0

The term (F') can be dealt with in the same way. First we write (F) = (F1) + (F3), with
() = / S"(03)alt, 2, Viuz) Vo Ty(Sp (1) — So(v2)) drdt
Q

Clearly, by symmetry between (F;) and (F») it is enough to prove that (F;) tends to zero. To this goal,
using again the properties of S, and (10.49) we have:

(F)| < Bk / V0| (b, 8)] + |Vua L) dadt,

{n<|v2|<n+1}
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which yields, by Young’s inequality:

[(F)| < C / (IVg2|P + |b(=, t)|P') dxdt + / |Vus|P dzdt
{n<luz—g2/<n+1} {n<|ua—g2/<n+1}

Using that us — g5 is almost everywhere finite and thanks to (10.55) written for us we conclude that (F})
converges to zero, and (F») as well, so that

lim (F) =0.

n—0o0

As regards (D) note that, since S/, (v1) — S, (v2) =0 in {|Jvi| < n,|va] < n}U{|vi| >n+1,|va] >n+1}
we can split the integral as follows:

Gl (S;l('Ul) - S;l(’l)2)) V(Sn(’l)l) — Sn(”2))X{\v1\§n} X{\v2|>n} dxzdt
{1Sn (v1)=Sn(v2)| <k}

+ / G1 (S;,(v1) = 8, (v2)) V(Sn(v1) = Sn(v2))X{n<|v1|<nt1} dzdt (10.86)
{|Sn(v1)=Sn(v2)| <k}
+ / Gl (S;z,('vl) - S;z,('v2)) V(Sn('Ul) - Sﬂ(v2))X{|Uz|§n+1} X{|v1|>n+1} dxdt .

{1Sn(v1)—=Sn(v2)| <k}

We call (D;)—(Ds3) the three integrals in (10.86). Using the properties of S, and S!, (recall that S, (t) =t
if |¢t| < m, that S, is nondecreasing and Supp(S),) C [-n — 1,n + 1]) we have:

|(Dy)] < / |G1] |V (u1 — g2)| dzdt + / |G1| |V (us — g2)| dzdt .
{n—k<|u1—g2|<n} {n<lug—ga|<n+1}
Applying Holder’s inequality and using property (10.55) for renormalized solutions we easily get that

(D7) converges to zero as n tends to infinity. Similarly, since |S,(t)| > n — k implies |t| > n — k we have:

@l [ GV - g)dedtr [ Gz - )] dodt.
{n<Ju1—g2|<n+1} {n—k<|uz—g2|<n+1}
Again, Holder ’s inequality together with (10.55) allow to deduce that (D2) converges to zero as well.

The term (D3) is dealt with in the same way (using that SJ,(t) = 0 if |¢| > n + 1), so that we finally get
that

g tP) =0
We deal with (B) splitting it as below:
(B) = / [a(t,z,Vu1) — a(t,x, Vus)] - VT (u1 — ue) dzdt
{lv1]<n,|v2|<n}
+ / [S],(v1)a(t, z, Vu1) — S, (va)a(t, z, Vus)] - V(Sn(v1) — Sp(v2)) dzdt
R
+ / [S] (v1)a(t,z, Vuy) — S, (va)a(t, z, Vuz)] - V(Sp(v1) — Sp(v2)) dzdt .

{ |Sn(v1)=Sn(v2)I<k }
[v1|>n
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Let us set (B;)—(Bs) the three integrals above. Since {|S,,(v1)—Sn(v2)| < k,|v1| > n} C {|v1| > n, |v2| >
n — k}, we have, using that S}, (t) =0if [¢| >n + 1
Bal< [ lalts V)| 9w - )| dod
{n<lu1—g2|<n+1}

+ / lat, 2, Vur)| [V (w2 — 2) X< g g <1} Al

{n<|u1—g2|<n+1} (10 87)

s [ laltn, Vudl 91 - ) biun ey dade
{n<lu1—g2|<n+1}

+ / la(t, z, Vus)| |V (uz — g2)| dzdt .
{n—k<|uz—g2|<n+1}

Using assumption (10.49), Young’s inequality and the condition (10.55) for renormalized solutions, we
can conclude as we did before that all the four terms in the right hand side of (10.87) converge to zero.
Thus we get that (Bs) converges to zero. Changing the roles of u; and us, the same arguments prove
that (B2) also converges to zero as n tends to infinity. Thus we conclude, using Fatou’s lemma, in (By):

liminf(B) > / (a(t,z,Vur) — a(t,z, Vua)) - VTi(u1 — uz) dzdt .
Q

n— o0

In the term (A) of (10.85) we can integrate using that S, (v1) and S, (v2) belong to C([0,T]; L*(Q)) and
Sn(v1)(0) = S, (v2)(0) = Sy, (up). We then obtain:

(4) = / O4(Sn(v1) — Sn(v2))(T) d

where ©(s) = [ Tk(t) dt, and since ©, is nonnegative we conclude that (A) > 0. Putting together the
results obtained on (A)—(F) we obtain from (10.85), as n tends to infinity:

(a(t7 T, vul) - a(t7 z, VUQ)) : V(’U.l - UQ) dxdt S 07
{lur—uz|<k}

and then, letting k tend to infinity:
/ (a(t, z,Vuy1) — a(t,z, Vua)) - V(ug — uz)dzdt <0.
Q
The strict monotonicity assumption (10.50) then implies that u; = us almost everywhere in Q. (]

Remark 10.16 In fact, the proof of the uniqueness of renormalized solutions does not need the strict
monotonicity assumption (10.50) but only that

(a(t,z,&) —a(t,z,n) - (E—n) >0 V() eRY.

This can be seen performing the same proof as in Theorem 10.12 above in the interval |0,t[, with t < T.
Using that the term (A) is not only nonnegative as we already remarked but indeed

n—oo

liminf(4) > / On(ur — up)(t) dz,
Q

we can obtain
/ Ok(ur —us)(t)de <0 Vit €0, T],
Q

hence it follows that u; = us.
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10.3.4 Data in L'+ W'.

It is possible to extend the result on existence and uniqueness of renormalized solutions to data which
belong to L' + W', without being necessarily measures. In fact, let u € L'(Q) + W', then a renormalized
solution of (10.1) is defined exactly as in Definition 10.7, where f, g1, g2 is a decomposition of p in
L'(Q) + W', moreover this definition does not depend on the decomposition of u (see Remark 10.13).
Then all the results proved in the previous section apply without any change except for the first two
estimates of Proposition 10.7 for which we used the fact that p was a bounded measure (see Remark
10.14). Thus, we obtain the following result.

Theorem 10.13 Let p € L' (Q) + W', and let ug € L'(Q). Assume that hypotheses (10.48), (10.49),
(10.50) hold true. Then there exists a unique renormalized solution of problem (10.1) in the sense of
Definition 10.7.

10.4 Appendix: Proof of the density theorem

10.4.1 The case of compactly supported functions

Lemma 10.7 Let u € W have a compact support in @ and (pp)n>1 be a smoothing kernel. Then, for n
large enough (depending on the support of u), u * p,, is well defined, is in C(Q) and u * p, = u in W
as n — 0o.

Proof. The fact that u * p, is well defined and is in C°(Q) for n large enough is a classical convolution
result. It is still classical, since u € LP(Q) N LP(0,T; L*(Q2)), that u * p,, — u in LP(Q) N LP(0,T; L*(Q)).
Moreover, in the sense of distributions, V(u * p,) = Vu * p,, so that, since Vu € (L?(Q))", one has
V(u* pp) = Vu in (LP(Q))V.

Thus, u * p, — u in LP(0,T;V) and it remains to prove the convergence of the time derivative.

To see this, we take v; € L' (0, T; W% (Q)) and v, € L¥ (0,T; L*(Q)) such that u; = vy +vs. We have
u = Qu for some 8 € C°(Q) so that u, = O,u + Ouy = vy + (Bva + Byu) with Buvy, € LP' (0, T; W17 (Q))
and vy +0;u € LP' (0,T; L2(R)) (because, u being in W, it is also in C([0, T]; L2(R))); moreover, fv; and
Ovs + 0;u have compact supports in ). Denote w; = fv; and ws = vy + 6,u.

We have then, in the sense of distributions, (u * p,); = ug * pp = w1 * py, + w2 * p, for n large enough.
Since wy € LP (0,T; L2(R)), we have ws * p, — wo in LP' (0, T; L2(2)). For the convergence of w; * p,
write v; = div(V4) for some Vi € (L¥ (Q))N; we have wy = div(dV;) — V4 - V8 with 6V; € (L¥' (Q)) and
Vi - V6 € L? (Q) having compact supports in @, so that wy * p, = div((8V1) % pn) — (Vi - V8) x py,; since
(OVA) % pr, — OVL in (LP(Q))N and (Vi - V) % p, — Vi - V6 in LP (Q), this gives the convergence of
wy % pp to wy in L (0, T; W=1¢' (Q)).

We have thus proven that (u * pn); — wi + we = u; in L (0,T; W57 (Q)) + L (0,T; L*(Q)) =
g (0,T; V"), and this concludes the proof. [

This technique of approximation is however limited to compactly supported elements of W; for general
elements of W, we must find another kind of approximation by regular functions.

10.4.2 The general case

We prove the density of C°([0,T] x Q) in W, that is Theorem 10.4. To prove this density result, we
will use two main tools: some results coming from the vector-valued integral and Sobolev space theory

and the following theorem, which states a density result in spaces of functions on Q. Let us recall that
V = WyP(Q) N L2 (9).

Theorem 10.14 If Q) is a bounded open subset of RV and 1 < p < oo, then C°(R) is dense in V.



10.4. APPENDIX: PROOF OF THE DENSITY THEOREM 227

Proof of Theorem 10.14.

Let u € V =W, ?(Q) N L*(N).

Let S € C*(R) such that S(s) = s when |s|] < 1 and S'(s) = 0 when |s| > 2. We define, for n > 1,
Sn(s) = nS(2); notice that S,(s) — s and S} (s) = S'(Z) — 1 when n — oo; moreover, |S,(s)| <
1S5l oo () |s] and [|Sy,[|Lo @) < [IS"[| Lo (r)-

Sp(u) = v on Q and is dominated by ||| r)|u| € LP(Q)NL*(Q); the convergence thus also happens in
Lr(Q)NL?(Q). Moreover, V(S (u)) = S;,(u)Vu — Vu on Q and is dominated by [|S’|| L )| Vu| € LP(Q),
which proves that V(S (u)) = Vu in (LP(Q))N as n — co. Thus, S,(u) = v in V as n = oo.

Let (9m)m>1 € C(Q) such that ¢, — u in Wy *(Q) (by definition of W, *(), such a sequence exists);
we can suppose, up to a subsequence, that ¢,, — u and Vg, = Vu a.e. on 2. We have, for all n > 1,
Sn(pm) € C(R2) and Sy (¢m) = Sn(u) a.e. on 2 when m — oo; since (Sp(¢¥m))m>1 is bounded in L ((2)
(by [|SnllLe(r)) and € is of finite measure, this implies that Sy, (¢m) — Sn(u) in LI() for all ¢ < oo, and
in particular in LP(Q2) and in L?(Q). We also have V(S,(¢m)) = S5 (pm)Vem = Sh(u)Vu = V(S,(u))
a.e. on ) and |V(Sn(¢m))| < [|Sl|ze®)|Vem|; this last inequality tells us that (V(Sn(¢m)))m>1 is
equi-integrable in (LP(2))N (because (V,,)m>1 is equi-integrable in this space, since it converges) and
thus that V(S,(om)) = V(Sn(u)) in (LP(Q2))N as m — .

We have proven that S,(¢m) — Snp(u) in V as m — oo. Take then m, > 1 such that ||S,(¥m,) —
Sp(u)|lv < 1/n; since Sp(u) = w in V, we deduce that S,,(pm,) = v in V and this concludes the proof
of this theorem. L]

The results coming from the vector-valued integral and Sobolev space theory we will use here are, for the
most part, very intuitive when one recalls the same results for scalar-valued integral and Sobolev spaces.
We will thus only give the ideas of the reasoning that lead to the use of Theorem 10.14, and refer the
interested reader to [32].

One of these results, however, is a little bit tricky; it comes from the density of simple functions in
L¥'(0,T;B), but it is not easy to explain without going further into the theory (and, especially, without
explaining the concept of u-mesurability, which we do not want here). We will thus state it, without
proof, in the following lemma.

Lemma 10.8 Let B be a Banach space and D be o dense subset in B. If 1 < q < o0, then the set

S(D) = {Zdi%, n>1,d; €D, p; € C°°([0,T];]R)}

i=1
is dense in L1(0,T; B).
Remark 10.17 In fact, the result of this lemma is still true if we take the functions @; in C°(]0,T[; R)

(see [32]).

Let us now give the ideas that lead from Lemma 10.8 and Theorem 10.14 to Theorem 10.4.
Proof of Theorem 10.4. Let u € W, that is to say u € L?(0,T;V) such that u, € L¥' (0,T;V"). We
want to find (v,)n>1 € C°([0,T] x Q) such that v, = u in LP(0,T;V) and (vn)¢ = u in LP (0,T;V").
Step 1: define @ : ]— T,2T[— V almost everywhere by:

u(—t) if te]-T,0],

a(t) = < u(t) if ¢ €]0,77,

u(2T —t) if t €]T, 2T7.
One has w € LP(—T,2T;V). Moreover, since we have made two even reflections, it is easy (as for the
classical Sobolev spaces) to see that u; € LP (—T,2T; V') with

— uy(—t) if t e]-T,0],

ﬂt(t) = ut(t) if ¢ € ]O,T[,
— (2T — 1) if ¢ €]T, 2T.
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Define w € LP(R; V') as the extension of & by 0 outside | — T, 27[ and take (pn)n>1 a smoothing kernel on R
such that Supp(p,) C]—T,T|. Let u, =T+ p, € LP(R; V') (the convolution product is defined exactly as
for scalar-valued integral, and the same results as in the scalar-valued case hold in the vector-valued case).
One has @, € C*(R; V) C C®(R; V') (since V — V') and u, — @ in L"(R;V); thus, u, = (n)0,7] €
C>([0,T]; V) c C*([0,T7]; V’) and u, = u in L?(0,T;V). Moreover, since u; € LP(—=T,2T; V"), one can
verify that, by defining v € L? (R; V) as the extension of & by 0 outside |- T,2T], we have (un)t =V*ppn
in C*°(R; V'). Thus, (un); = (v * pp)jo,r] = Yjjo,r[ = Ut in L (0,T; V).

We thus have found (up)n>1 € C([0,T);V) such that u, — w in LP(0,7;V) and (u,); — u; in
LP (0, T; V).

Step 2: to approximate u in W, we thus just need to approximate in W a given function v € C*°([0,T]; V).
Let v be such a function, and let D = C°(2). According to Theorem 10.14, D is a dense subset of V.
Since v’ € C°°([0 T);V) C L (0,T;V), using Lemma 10.8, there exists (wy)n>1 € S(D) which converges
to o' in L¥ (() T;V), and thus also in L? (0,T;V’). Moreover, in V, one has v(t) = v(0) + fo s) ds.

Define W, ( fo wn(s)ds; since w, — o' in LP'(0,T;V), one has W, — [;v'(s)ds = v — v(O)
in L°°(0,T V) and thus in L”(O T;V). Taking (d,)n>1 € D which converges to v(0) € V in V, the
functions v, = d,, +W,, converge to v in LP(0,T; V') and the derivatives of these functions, v}, = W, = w,,
converges to v' in L? (0,T;V").

By noticing that v, (t) = d, + fo wp(s)ds € S(D), we have proven that v is approximable in W by a
sequence of functions in S(D). Since S ( ) C C([0,T] x ), this concludes the proof. "



