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Chapitre 8

A Density Result in Sobolev Spaces

J. Droniou.

Abstract We prove, when 1 < p < oo and Q is a polygonal or regular open set in R” the density
in WhP(Q) of a space of regular functions satisfying a Neumann condition on Q. We also give some
applications of this result and a generalization concerning mixed Dirichlet-Neumann boundary conditions.

8.1 Introduction

8.1.1 Definitions

N is an integer greater than or equal to 2. The usual Euclidean scalar product of two vectors (z,y) of
RY is denoted by z - y; | - | is the induced norm and “dist” the associated distance. For § > 0, By (6)
is the Euclidean ball in R of center 0 and radius . When E is a measurable subset of R |E| is the
Lebesgue measure of E. For x € RN we denote 2’ = (z1,...,2y_1) € RV 7L

If Q is an open set of RY and p € [1, 00, WP(Q) is the usual Sobolev space, endowed with the norm

lullwey = [|ullLr@) + | [Vl [|Lrq)-

Definition 8.1 Let k € N and U be an open set of R' (I > 1) or of a submanifold of R'. A function
o : U = R is C"-continuous on U if ¢ is k times continuously differentiable on U, if the k first
derivatives of ¢ are bounded on U and if the k'™ derivative of ¢ is Lipschitz continuous on U. A function
is C>1-continuous on U if it is C*''-continuous on U for all k € N. When a function takes its values
into R™ for a m > 1, it is C*'*-continuous if each of its component is C*''-continuous.

We denote by C*¥1(U) the set of C*'1-continuous functions on U and by C¥1(U) the set of functions in
C*1(U) which have a compact support in U. Notice that, for all k € N U {oo}, if ¢ € (C¥1(U))™ and
f € CHIR™), then fop e CHY(U).

Definition 8.2 Let Q be an open bounded set of RN (N > 2) and k € NU {o}.

i) Q has a CF1-continuous boundary if, for all a € 09, there exists an orthonormal coordinate system
R centered at a, an open set V of RY containing a, such that V = V'x] — a,af in R, and a
Ck:1-continuous function  : V' =] — a,af such that, in R, 02NV = {(y',n(y")), ¥ € V'} and
QnV ={(¢,yv) €V [yn >n(y)}-

i) Q has a Lipschitz continuous boundary if it has a C%!-continuous boundary.

ii1) Q is polygonal if it has a Lipschitz continuous boundary and if its boundary is included in a finite
unton of affine hyperplanes.
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144 CHAPITRE 8. A DENSITY RESULT IN SOBOLEV SPACES

In the sequel, the open sets Q2 we consider have at least a Lipschitz continuous boundary. We can then
define a (N — 1)-dimensional measure o on Q and a unit normal n € (L (9Q))" to 9Q outward to Q
(when Q has a C¥!-continuous boundary, n € (C*~11(9Q))V).

For ¢ : RY - R and a € 9Q, we denote, when such a quantity exists,

dp .. pla+tn(a) — p(a)
an @) = 1m t '

If ¢ is Cl-continuous, this limit exists and is equal to Vi(a) - n(a).

Definition 8.3 Let k € NU {co}. We define E*(Q) as the space of the restrictions to Q of functions
© € CHYHRYN) satisfying, for o-a.e. a € 09, g—ﬁ(a) =0.

8.1.2 Main Results

Theorem 8.1 Let p € [1,00[. If k € N\{0} or k = o0 and Q has a C*'-continuous boundary, then
E*=1(Q) is dense in WP (Q).

Remark 8.1 i) There is, in [55], an alternate proof of this result to the one we present here. However,
this proof (which relies on the idea of transporting the problem with well-chosen diffeomorphisms)
can only be applied to open sets with at least C?'-continuous boundaries.

i) We will in fact prove a more general result than Theorem 8.1, not asking for Q to have a C*-
continuous boundary “everywhere” (see Theorem 8.3).

Theorem 8.2 Let p € [1,00[. If Q is a polygonal open set of RY, then E>°(Q) is dense in WP (Q).

Remark 8.2 i) We will see in Section 8.4 that there exists open sets Q with a Lipschitz continuous
boundary such that the space of the restrictions to Q of functions in C(RY) satisfying a Neumann
boundary condition on 9 is not dense in W1P(Q).

it) (Thierry Gallouét [40]) There is an alternate result to Theorem 8.1 which avoid the loss of a
derivative (with respect to the regularity of the open set): if Q has a CHt-continuous boundary or
is polygonal convez, then for all u € H'(Q), there exists (u,)n>1 € H*(Q) satisfying, for all n > 1,
Vu, -n=0c-ae ondQ and such that u, — u in H(Q).

The idea s to solve the following Neumann problem

ve — AV, = u n Q,
{ Ve n=0 on 0. (8.1)
Q having a Ch'-continuous boundary or being polygonal convez, the variational solution to this
problem is in H*(Q); by multiplying the equation by Av., we notice that (v:)eso is bounded in
H(Q) and that it converges weakly in this space to u; by Mazur’s lemma, a convex combination of
the (ve)eso converges strongly to u.

If this technique avoids the loss of a derivative (we get the density of H? functions when Q has a
CY1-continuous boundary), in contrary to Theorem 8.1 (density of C%'-continuous functions under
the same hypothesis), the derivatives are however far less regular than in Theorem 8.1 (in L? instead
of L* ). Moreover, in the case of a polygonal open set, Theorem 8.2 gives a far better result than
the method up above.
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8.2 Theorem 8.1 and a generalization

As said before, we will prove a more general result than Theorem 8.1. To state this result, we need a
generalization of Definition 8.2: when K is a compact subset of RY and k € NU {co}, we say that Q has
a CFl-continuous boundary on the neighborhood of K if it satisfies item i) of Definition 8.2 not for all
a € 022, but for all a € Q2 N K.

With this definition, the generalization of Theorem 8.1 is the following.

Theorem 8.3 Let p € [1,00[ and Q be an open set of R with a Lipschitz continuous boundary. Let K
be a compact subset of R, k € N\{0} or k = oo and suppose that Q has a C*:*-continuous boundary on
the neighborhood of K. If K is a compact subset of RY and u € W1?(Q) has a compact support in the
interior of K (*), there exists a sequence of functions (un)n>1 € C¥~V1(RYN) with supports in the interior
of K such that u, — u in WYP(Q) as n — oo and, for alln > 1 and alla € 0QNK, %L—J(a) =0.

Remark 8.3 i) The global hypothesis on the boundary of Q (i.e. the Lipschitz continuity of 0Q2) is
only used, in the proof, to ensure that the restrictions to Q of functions in C=°(RY) are dense in
WLP(Q); thus, we could replace this hypothesis by a weaker one (for example asking that Q satisfies
the segment property, see [1]).

it) Notice that the Neumann boundary condition is satisfied for all a € QN K, even when k =1 (in
which case it is even not obvious that aaun" (a) is defined for o-a.e. a € 02N K, let alone for all
a€ednNk).

This Theorem is an easy consequence of the following proposition (which states in fact the result of
Theorem 8.3 when u is regular and K = K).

Proposition 8.1 Let p € [1,00[, K be a compact subset of RY and Q be an open set of RN. Ifu €
C°(RYN) has its support in the interior of K and Q has a C**-continuous boundary on the neighborhood
of K, there erists a sequence of functions (up)n>1 € CE~HYRN) with supports in the interior of K such

that u, — u in WHP(Q) as n — oo and, for alln > 1 and all a € 09, aa“; (a) = 0.

Proof of Theorem 8.3
Thanks to the definition of “Q has a C*'-continuous boundary on the neighborhood of K”, we see that
there exists a compact set K’ of RY containing K in its interior such that Q has a C*:!-continuous

boundary on the neighborhood of K’; let § € C¢°(int(K’)) such that = 1 on the neighborhood of K.

Q having a Lipschitz continuous boundary, there exists (pn)n>1 € C°(RY) which converges to u in
Whe(Q).

Let (9( E) C°(int(K)) such that © = 1 on the neighborhood of supp(u) and define v, = Oy, € C=(RY).
v, — O0u = fu in WHP(Q) as n — oo and the support of v, is included in the interior of X' N K;
by Proposition 8.1, there exists thus w, € C*~11(RY) with support in the interior of K’ N K such that
[|vn — wnllwirqy < 1/n and, for all a € 99, Qs (q) = 0.

Let u, = w, +(1—0)0p, € C*~LI(RYN); the support of u, is a compact subset of the interior of K (since
supp(wy) U supp(©) C int(K)). Since 1 — 0§ = 0 on the neighborhood of K, one has W =0 on
KNoQ, so that, for alla € XN OKQ, aa“n" (@) = 0. Since w, — fu and (1 -0)Op,, — (1—0)Ou = (1 —0)uin
WLP(Q) as n — oo, we have u, — u in WHP(Q) as n — oo, and this concludes the proof of the theorem.
m

It remains now to prove Proposition 8.1.

1That is to say, the extension of u to RY by 0 outside £ has a compact support in int(K)
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The idea is the following: the function g = Vu - n is C¥~"!-continuous on the neighborhood of 4Q N K;
we construct a sequence (7, )n>1 € CF~LL(RY) which converges to 0 in W1?(Q) and such that, for all

n>1, (?; = g on 9Q N K; the sequence u, = u — 7, converges then to u in W1?(Q) and satisfies the
Neumann boundary condition on 0Q N K.
The main difficulty of this proof is to construct the sequence (v, )n>1-

The first lemma is quite classical when 9 is a regular submanifold of RY. We however prove it completely
because, when 9 is only C!''-continuous, the main tool of the proof is not so common.

Lemma 8.1 Let Q be an open set of RYN. If K is a compact subset of RN, k € N\{0} or k = co and Q
has a C*'-continuous boundary on the neighborhood of K, there exists an open set U of RY containing
QN K and a CF~V'-continuous application P : U — 0Q such that, for all y € U, P(y) is the unique
z € 0Q satisfying dist(y, 0R) = |y — z|. Moreover, for all a € K N IQ, there exists t, > 0 such that, for
all |t| < tq, Pla+1n(a)) = a.

Remark 8.4 We will also see, in the course of the proof, that U can be chosen so that

Yy € UNOQ, n(P(y)) - (y— P(y)) # 0. (82)

Proof of Lemma 8.1

Step 1: local construction.

We prove in this step that, for all @ € dQ N K, there exists an open set U, of RV containing ¢ and
a C*~1l_continuous application P, : U, — 09 such that, for all y € U,, P,(y) is the unique z € 9Q
satisfying dist(y, 0Q) = |y — z|.

Let a € 0QNK and R, V =V'x] —a,a[and n: V' =] — a, af given for a by the definition of “Q has a
C*1-continuous boundary on the neighborhood of K”. From now on, all the coordinates are taken in R
(notice that the norm and the distance are not modified by this change of coordinates).

Let us first study, for a given y = (¢, yn), the solutions z’ to ' — y' + (n(2’) — yn)Vn(z') = 0.

F(z',y) = 2’ — ¢ + (n(=') — yn)Vn(z') is C*~Ll-continuous on V’ x RY and is null at (z’,y) = (0,0).
Moreover, when it exists, gf, (z',y) = Id+ V(=) Vn(z")T + (n(z') — yn)n" (z') (where "' (z') is confused
with the Hessian matrix of n).

If £ > 2, then F being C¥~'-continuous and %(0, 0) = Id + Vn(0)Vn(0)? being definite positive, thus
invertible, the classical implicit function theorem gives an open set W C V'’ of RY~! containing 0, an open
set U of RY containing 0 and a C*~-continuous application f : U — W such that, for all (z’,y) € W x U,
Fk(a:’, y) = 0 if and only if 2’ = f(y). Moreover, since f'(y) = — (gf,(f(y), y)) Yo %(f(y), y) and F is
C -1,1

-continuous, f is in fact C¥~11-continuous (even if it means to reduce U).

If £ = 1, then V5 is Lipschitz continuous on V'; there exists thus C' > 0 such that, for every z’ € V/,
if o (2') exists, then ||n”(2")|| < C (|| - || denotes a norm on the space of (N — 1) x (N — 1) matrices).
Thus, for all ¢ € RV=1 if (2, y) is such that gf, (2',y) exists, we have

oF

5 (& YE-E> €1 + (Vn(2')7€)* = Cln(z") — yn €.
Supposing that (z',y) — (0,0) and that lim ) (0,0 %(r’, y) exists, passing to the limit in this in-
equality lets us see that limz/ ) (0,0 %(m’, y) is a l-coercive matrix (that is tosay a (N —1) x (N —1)

matrix A such that, for all ¢ € RV=1 A¢ - ¢ > |€|?). Thus, any convex combination that can be made
with such limits is also 1-coercive; this implies that, by denoting S the set of (z’,y) € V' x RY such that
F is differentiable with respect to z’ at (2, y), the set

co{( lim a—F(;l",y), (z',y) € S}

«'y)—(0,0) Oz’
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is made of invertible matrices. The Lipschitz implicit function theorem of [19] gives then an open set
W C V' of RV~ containing 0, an open set U/ of R containing 0 and a Lipschitz continuous application
f:U — W such that, for all (2/,y) € W x U, F(2',y) = 0 if and only if 2’ = f(y).

Let 5 > 0 such that By(8) CV, By_1(8) C W and Bx(6/2) C U;let y € By (0,5/2). By compacity of
99, there exists some points in 982 that are at distance dist(y, 9Q) of y. Moreover, since 0 € 9Q, when
z is such a point, we have |z| < |y| + |z — y| < |y| + |y — 0] < 3, that is to say @ € By (5) C V.

z can thus be written as (2’,n(2’)) for a 2’ € By_1(8) C W; 2’ is then a minimum of the C!-continuous
function |- —y'|? + |n(-) — yn|? on V' and we deduce that 2’ — y' + (n(z’) — yn)Vn(z') = 0.

Since (2',y) € W x U, &' is unique and 2’ = f(y) (f has been constructed up above).

There can thus be only one projection of y on 9%2; it is given by a function of y which is -continuous

on By (d/2). This concludes this step (with U, = By (6/2) and P,(y) = (f(y), n(f(y))) in R).

Ck—l,l

Step 2: we cover the compact set K NI by a finite number of U,,, i = 1,...,{, constructed in step 1.
UL_, U,, being an open set of RY containing K N L, there exists an open set U of R containing K NI
and relatively compact in U:_,U,,. Define P : U — 9Q by: Vy € U, P(y) is the unique point of 9Q
at distance dist(y, 9Q) of y (since y € Uy, for a certain ¢ € [1,[], we know that this point exists and is
unique).

By construction of P and of the (P, )ie1,], and by uniqueness of the point at distance dist(y, 9Q) of y
when y € U, we have P = P,, on U,,. P is thus C¥~11-continuous on U.

Let us now check that, for all @ € KX N 9Q and ¢ small enough, we have P(a + tn(a)) = a. Since the
projection of a point of U on 9% is unique, we have, on the neighborhood of a, P = P,. By the study
made in step 1, and using the notations introduced on the neighborhood of @ (in which case the expression
of n(a) is (/14 |Vn(0)[2)~1(Vn(0),—1)T), we see that, for ¢ small enough, P(a + tn(a)) = (', n(z'))
where z’ is the unique solution on the neighborhood of 0 to z’ — t(y/1 + |Vn(0)]2)=tVn(0) + (n(=') +
t(\/1+1Vn(0)]2)~1)Vn(z') = 0; but 2’ = 0 is a solution to this equation. This means that P(a+tn(a)) =
(0,7(0)) = 0 in R, that is to say P(a+ tn(a)) = a.

To conclude this proof, we see that the open set U given above satisfies (8.2).

Let y € U; there exists i € [1,{] such that y € U,,; by the study made in step 1, and with the notations
of this step, we have P(y) = (2',n(z')) where 2’ € V' satisfies ' — ¢y + (n(2') — yn)Vn(2') = 0.
If n(P(y)) - (y — P(y)) = 0, then (Vn(z'),-1)T - (¢ — 2',ynv — n(z'))T = 0 (because n(P(y)) =
(V14 |Vn(z)]?)~1(Vn(z'), —1)), so that (¥ — z’') - Vn(2') — (yn — n(z')) = 0. By using the equa-
tion satisfied by 2/, we deduce that (n(z’) — yn)(|Vn(z’)|* + 1) = 0, that is to say yny = n(z’) and, once
again thanks to the equation satisfied by #’, ' = y'. This gives y = P(y) € 99Q.

Thus, if y € U\JQ, we have n(P(y)) - (y — P(y)) # O.m

The following lemma gives the existence of the (v,)n>1 needed in the proof of Proposition 8.1.

Lemma 8.2 Let p € [1,40co[, Q be an open set of RN and K be a compact subset of RY. If k € N\{0}
or k = co, g € Ck=V1(RYN) has its support in the interior of K and Q has a C*''-continuous boundary on
the neighborhood of K, then for all ¢ > 0, there exists v € C¥~VY(RY) with support in the interior of K
such that ||y|lw1.rq) < € and, for all a € 69, g—l(a) =g(a).

Proof of Lemma 8.2

Let U and P given for K by Lemma 8.1; we can suppose that U is bounded and satisfies (8.2). Let
6 € C (int(K)NU) such that § = 1 on the neighborhood of supp(g) N 9.

Let h € C°(] — 1, 1]) such that A(0) = 0 and A'(0) = 1; when § > 0, we take hs(z) = dh(z/9).

Define v5(y) = 0(y)g(P(y))hs (n(P(y)) - (y — P(y))); this function is well defined and C*~!!-continuous
on U; since its support is a compact subset of int(K) N U, its extension to R™ by 0 outside U is in
Ck~L1(RY) and has a compact support in the interior of K.
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Let us first check that, for all a € 09Q, %irf(a) exists and is equal to g(a). We study different cases,
depending on the position of a on 9f2.

When a € 9Q\K, it is quite clear because, for ¢ small enough, (a,a + tn(a)) ¢ supp(f) so that v5(a +
tn(a)) = 75(a) = 0 = g(a).

When a € 9Q N (K\supp(g)), we have, by Lemma 8.1, P(a + tn(a)) = a for ¢ small enough, so that
g(P(a+tn(a))) = g(a) = 0; this implies ys(a + tn(a)) = ys(a) = 0 = g(a).

When a € 9Q Nsupp(g), then, for ¢ small enough, 8(a + tn(a)) = f(a) = 1 (# = 1 on the neighborhood
of supp(g) N9Q) and P(a + tn(a)) = a, so that y5(a + tn(a)) —vs(a) = g(a)hs(n(a) - (e + tn(a) — a)) —
g(a)hs(n(a) - (¢ — a)) = g(a)hs(t); since hs(0) = 0 and hj5(0) = 1, we deduce that %ilf(a) exists and is
equal to g(a).

Let us now prove that v5 — 0 in W!?(Q) as § — 0; this will conclude the proof of the lemma (by taking
vy = 75 for § small enough).

Notice first that, for all z € Q, [ys(2)| < 0[|h||Leo)||0]|L=®~)||g]|L=(~); thus, when § — 0, v5 — 0 in
L (), and so in LF ().

Since hg is regular and g o P, no P - (Id — P) are Lipschitz continuous, we have, on U,

Vvs = hs(noP-(Id— P))V(fgo P)
+0g o Phi(no P (Id— P))V(no P -(Id — P)).

But ||hs(no P - (Id — P))V(0g o P)||L=(q) < d|[h]|Lem)||V(8g 0 P)||L() — 0 as § — 0. Moreover, by
(8.2), for ally e UNQ, n(P(y)) - (y — P(y)) # 0, so that h(n(P(y)) - (y — P(y))) = 0 as § — 0 (the
support of hj is included in | — 4§, d[); thus, 8g o Phf(no P - (Id— P))V(no P - (Id— P)) — 0 on Q; since
[|A5]| oo &) < ||A||L=(r), we deduce, by the dominated convergence theorem, that g o Phi(no P - (Id —
P))V(noP - -(Id—P))—= 0in LP(Q) (no P - (Id — P) is Lipschitz continuous on U, thus its gradient is
essentially bounded on U). m

Proof of Proposition 8.1
Step 1: we prove that Vu-n : 9Q — R has an extension g € C*~11(R¥Y) with support in the interior of
K.

Cover K N 9Q by a finite number of open sets (Vi)iep iy of RY such that, for all i € [1,{], there exists an
orthonormal coordinate system R; in which V; = V/x]—a;, a;[ and a C*'!-continuous application n; : V/ —
] — @i, o4 satisfying, in Ry, QN V; = {(¢/,yv) € Vi [yv > mi(y')} and 02N V; = {(v',m(¥')), ¥' € V{'}.
Take (0;)iep,) such that, for all ¢ € [1,1], 0; € CZ°(V;) and Zi’:l #; =1 on KN oQ.

Let ¢ € [1,{]. Using the coordinates R;, we have, at a point (¢, n;(y')) € IQ N Vi, n(y',ni(y')) =

(V14 |Vni(y)]2)~H(Vni(y'), —1)T; define then, for (v, yn) € Vi,

9y yn) = 0: (Y mi(y))Vuly', i (v) - (V1I+IVm() )~ (Vm(y), —1)T)
(i.e. g; does not depend on yy). g; is C¥~11-continuous on V; and has a compact support in V;; its

extension, still denoted g;, to RY by 0 outside V; is thus in C¥~1H(RY).

Let © € C°(int(K)) such that © = 1 on the neighborhood of supp(u) and ¢ = © 22:1 gi. g € CF-LI(RY)
has a compact support in the interior of . On 9Q, one has g; = #; Vu -n, so that g = © Ei’:l 6;Vu-n=
(Zi’:l 0;)©Vu-n; but © = Zi:l 6; = 1 on supp(Vu-n) (because supp(Vu-n) C KNIQ and Zi’:l 0; =1
on KN 9JQ), and we have thus g = Vu -n on 99Q.

Step 2: conclusion.
By Lemma 8.2, we can find, for all n > 1, 7, € C5~L1(R¥) with support in the interior of K such that
[[7nllw1pq) < 1/n and % =g =Vu-non 0Q. The sequence (u — 7y, )n>1 satisfies thus the conclusion
of the proposition. m
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8.3 Polygonal open set

The idea of the proof of Theorem 8.2 is to approximate any regular function by functions that, on the
neighborhood of each affine part of 9€2, only depend on the coordinates along this affine part (for example,
on the neighborhood of a vertex of 9€2, the approximating functions will be constant; on the neighborhood
of an edge of 99, it will only depend on the 1-dimensional coordinate along this edge; etc...).

We first introduce some notations and then prove a lemma that entails Theorem 8.2.

Let Q be a polygonal open set of R and H;, ..., H,, some affine hyperplanes, the union of which contains
9Q (we also choose these hyperplanes pairwise distincts and such that, for all 7 € [1, ], H; N 9Q # §).
For i € [1,71], let F} = H;NOQ. Define ¢ = sup{s > 1| 3J C [1,71] of cardinal s such that N;e s F} # 0};
for d € [1,q], we denote J{,.. .,erd the subsets of cardinal d of [1,71] such that, for all i € [1,r4],
Ff = Nea ' # 0.

When d € [1,q] and i € [1,74], A(F) denotes the affine space of minimal dimension containing F? (%)
and V (F) the vector space parallel to A(F{). The orthogonal projection on V (F#) is denoted by ﬁid; we
also take f¢ € A(F{), so that the orthogonal projection of a point = on A(Ff)is P2(z) = fl»d—i—lsid(x—fid).

When d € [1,q + 1], we say that a function u € C°(RY) satisfies B, if, for all m € [d,q] and for all
i € [1,7m], u = uo P™ on the neighborhood of F/® (i.e., on the neighborhood of F/”, u only depends
on the coordinates along F/"). Notice that any function in C°(R?™) satisfies By41 (there exists no

meE[g+1,4q]).

Lemma 8.3 Let p € [1,00[, d € [2,9+ 1] and K be a compact subset of RYN. If u € C=°(RY) has its
support in the interior of K and satisfies By, there erists a sequence of fuctions u, € C°(RY) with
supports in the interior of K such that u, — u in WHP(Q) as n — oo and, for all n > 1, u, satisfies

Ba—1.

Proof of Lemma 8.3
Before beginning the proof itself, let us make some remarks:

Ifi # 7, Fl-d_1 N iji_l is either empty or equal to a certain F}", for a m € [d, ¢]

and a k € [1,rp]. (8.3)
If F* C Ff and x € F}" 4+ By (6), then P(z) € F[" + By (d). (8.4)
If F™ C Ff, then P o P! = P{'o P[" = PI". (8.5)

e Proof of (8.3): by definition, Fid_1 = ﬂlejg_l Fl1 and iji_l = ﬂlejjq_l Fll, with Jz-d_l and J]‘»i_l distinct
(since i # j) subsets of cardinal d—1 of [1, r1]. Thus, Jﬁ‘lujf‘l has a cardinal m > d; if 1172»0{_10117]»01_1 + 0,
then mlE(Jld—luJ;i—l)Fll = Fid_1 N Fjd_1 is not empty, so that, by definition, m < ¢ and Jid_1 U J;l_l is a
certain JJ, for a k € [1, rp,]; we get then FJ" = mlej)anll = Fid_1 N iji_l.

e Proof of (8.4): we have x = 2 + h, where z € F]" C A(F#) and |h| < J; since z belongs to A(FZ), it is
equal to its projection on this affine space, so that Pf(z) = f2 + ﬁid(z -9+ Ed(h) =z+ ﬁid(h); ﬁid
being an orthogonal projection, we have |15id(h)| < |h| < 4, and this proves the result.

e Proof of (8.5): we first notice that the range of P/ is included in A(F["), thus in A(Ff); since
P& is equal to the identity mapping on A(Fid), we deduce that Pf o P = P/™; it remains to prove
the second equality. Let z € RY; P"(z) is the unique z € A(FJ") such that (z — z)LV(F]"); but
r— ij(PZ»d(;l‘)) =z — Pi(z)+ Pi(z) - ij(PZ»d(;l‘)) with  — P{(z) orthogonal to V(F¢) (by definition of
P4), thus also to V(F™) C V(FY), and P2(z) — ij(PZ»d(r)) orthogonal to V/(F]") (by definition of P[*);
thus, P/*(Pf(z)) is in A(F}") and satisfies (z— P} (P{(x))) LV (F]*), which implies P"(P{(z)) = P]* (x).

2We could also have taken A(F%) = Ny yaHi.
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Step 1: we define a sequence of functions (v, )n>1.

Let 6 > 0 such that, for all m € [d, q] and all i € [1,7,,], u = uo P™ on F™ 4+ By (9).

When i € [1,74-1], we define L; = {(m,k) e N? | d < m<gq, 1 <k<ry,, F'C Fid_l}. Gf_l =
Fi= 1\( (mkyeL; (F{* + Bn(d/2))) is a compact set which does not intersect the compact set Uj;,giF]fi_l;
indeed, suppose that the intersection of these compact sets contains a point: this point is then in Fid_1 N
F;i_l for a j # 14, thus, by (8.3), in some F}” for a m € [d, ¢] and a k € [1, ry,] such that F* C Fid_l; this
point can then not belong to G?_l.

Thus, § = inf(J, inf{dist(Gf_l,Uj;,giF]d_l), i € [1,74-1]}) is positive. Take then, for all i € [1,rq_1],
0; € C° (F{~' + Bn(d0/2)) such that 0; =1 on Ff~' + By(do/4).

Let v € C°(] — 2,2[) such that vy = 1 on | — 1,1[; we denote v,(¢) = y(nt) (notice that v, (| -|) is
C*-continuous, since 7, is constant on a neighborhood of 0); by denoting Id the identity mapping of
RN, we let

bl
Td—1

va = Y Oiyn (|[Id = PA7Y) (u—uo PA7Y) € C°(RY).
i=1
Step 2: we prove that v, — 0 in W1P(Q) as n — co.

We have, as n — oo, for all i € [1,74_1], ya(|z — P71 (2)]) = 0 when z # Pf~!(z), that is to say when
z ¢ A(Fd ). The sets (A(F-d_l))ze[lmd_l] being of null measure (they are 1ncluded in some hyperplanes),

(2
this means that v, — 0 a.e. on Q. By the dominated convergence theorem, since € is bounded and

Td—1

vnllLeo(@) < 2> 10l oo m 7] Low )| [l Lo n),
i=1

vn, tends thus to 0in LP(Q) as n — oo.
Let us now study the gradient of v,. It is the sum of

Td—1
Z'yn (|Id—Pid_1|)V(0i (u—uoPZ»d_l)) (8.6)

and e
> 0 (u—uo P A, ([1d = PAY) G (8.7)

i=1

~ d—1 ~
where ¢; = V(|Id — P7Y) = (Id - Pid_l)% (because I — P*~! is symmetric).

By the same argument than before, the term (éG) tends to 0 in LP(Q) as n — oo.
Pl-d_1 being an orthogonal projection, we have, for a.e. z € RY (for all = ¢ A(Fid_l)),
x — P (x)
|z — Pid_l(l‘”
Thus, the norm in L? () of (8.7) is bounded by

Td—1

2 sllmtan [l = e P (70 = P logay

|Gi(2)| <

<1

But, 7/, (|x — P~ *(x)|) = 0 when |z — P{~'(z)| > 2/n, that is to say when z ¢ A(F/~') + By (2/n)
(recall that | — P#~'(z)| is the distance between z and A(F{=1)); thus, using the Lipschitz continuity
of u and the estimate ||, [|L>@) < n||7'||L (&), We can bound the norm in LP(Q) of (8.7) by

Td—1

2/[7']] oo () lip(u leﬂllm o |90 (A(FEY) + By (/)77 (8.8)
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Since € is of finite measure and ﬂnzl(A(Fid_l) + By (2/n)) = A(Fid_l) is a non-increasing intersection
of null measure, (8.8) tends to 0 as n — .
Both terms (8.6) and (8.7) going to 0 in LP(2) as n — oo, we deduce that v, — 0 in WP(Q) as n — oo.

Step 3: study of v, on the neighborhood of a Fid_l.
Let i € [1,74-1] and U; ,, be the open set Fid_1 + By (inf(do/4,1/n)). If © € U; ,,, then |z — Pid_l(:b)| =
diSt(:L‘,A(FZ»d_l)) < dist(:b,FZ»d_l) < 1/n, so that v, (Jx — Pid_l(:v)|) = 1. Thus, on U; »,

vn =u—uo P+ "0 (|1d — P{TY)(u—uo PITY).
i

Let j # i and z € U; ,, such that 6;(z) # 0. We have then z € (Fl-d_1 + By (do/4)) N (Fjd_1 + By (d0/2));
by writing z = z + h with z € iji_l and |h| < d0/2, we have z € Ff_l N (F~! + By(3d0/4)), thus
2 € Upm kyer,; (F{"+Bn(8/2)) by definition of dg (2 cannot belong to G;l_l since the distance between G;l_l
and F~1 is greater than or equal to dy); since |z —z| < do/2 < §/2, we deduce that z € FJ" + By (9) for a
m € [d,q] and a k € [1, 7] such that F]” C Fjd_l. By (8.4), we get then (m,Pij_l(;r)) € (F/" + Bn(9))?,
which gives, by definition of § and by (8.5), u(z) = u(P{*(z)) and u(P]fi_l(m)) = u(P,g”(de_l(x))) =
u(P;*(z)), which implies u(z) — 'u(Pij_l(a:)) =0.

We have thus, on U; , v, =u—uo Pid_l.

Step 4: conclusion.

Let © € C° (int(K)) and € > 0 such that © = 1 on supp(u) + By (e).

Define u,, = u—0uv, € C(RY); u, — win WHP(Q) as n — oo, the support of u,, is included in the interior
of K and, for all i € [1,74_1], we have, on U; ,,, uy = u— Qu+0O(uo P = (1 - O)u+O(uo Pi™1) =
Ouo Pid_l) (because 1 — © = 0 on the neighborhood of supp(u)).

Let U;,, = Fid_1 + By (inf(do/4,1/n,e/2)) C Uin. If ¢ € Ui n N (supp(u) + By (€)), then u,(z) =
@(m)u(PZ»d_l(x)) = u(PZ-d_l(r)) because © = 1 on supp(u) + By (¢). If z € U; ,\(supp(u) + By (¢)), then
r=z+h with z € Fid_1 and |h| < £/2, so that (z € A(Fid_l) is equal to its projection on this space)
PI=Y(z) = z+ P37Y(h), thus [P~ (x) — 2| < |h|+ |P*Y(h)| < /24 ¢/2 (because P*~! is an orthogonal
projection on a vector space and satisfies thus |15id_1(h)| < |h]); we get then Pid_l(;l‘) ¢ supp(u) (because
dist(z, supp(u)) > €), which gives u,(z) = @(m)u(PZ»d_l(m)) =0= 'u(PZ»d_l(;l‘)).

Thus, for all i € [1,r4—1],

up, =uo PP on U, = FF7 4 By(inf(50/4,1/n,/2)). (8.9)
If z € U; , then by (8.4), Pid_l(a:) € U; n, so that, by (8.9) and (8.5),
un (P71 () = u(PI7H(PH (@) = u(PH (2) = un(2);

thus, u, = u, o P41 on the neighborhood of Fid_l, for all i € [1,7r4-1].

K3

It remains to prove that u, satisfies Bq. Let m € [d,q] and i € [1, 7). There exists j € [1,7r4-1] such
that F/* C F'™" (3); let W = F/" + By (inf(d0 /4, 1/n,2/2)) C U 5.

When z € W, by (8.9), u,(z) = u(Pin_l(;r)). But, by (8.4), Pf—l(m) € W C F/™ + Bn(9); the definition
of 6 and (8.5) give thus

un(2) = w(P{ ™! (2)) = u(PP (P (2))) = u(P](2)). (8.10)
Moreover, by (8.4), P/*(z) € W C U; n, which gives, thanks to (8.9) and (8.5),

un (P (2)) = u(PH (P (2))) = u(P[" (x)). (8.11)

3Indeed, one just need to take J C JI™ of cardinal d — 1 and to notice that ﬂlejFll B) ﬂleijll = F™ # 0, so that J is
a J]Gl_1 fora j € [1,rq_1] and F;l_1 = ﬂlejFll D F.
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(8.10) and (8.11) give up = u, o P/™ on W, neighborhood of F/™.

2
u,, satisfies thus B;_1, and this concludes the proof of the lemma. m

Proof of Theorem 8.2
Denote, for d € [1, ¢ + 1], £ the space of the restrictions to Q of functions in C°(RY) satisfying By.

Q having a Lipschitz continuous boundary, £,4+1 (the space of the restrictions to  of functions in C2° (RY))
is dense in W1P(Q). Lemma 8.3 allows us to see that &, is then dense in W17 (Q) and, by induction, that
& is dense in W1P(Q). We will prove that & C E*(Q), which will conclude the proof of this theorem.

Let u € C°(RYN) satisfying By, d € [1,9] and i € [1,74]. On the neighborhood of FZ, we have u = uo PZ,
so that Vu = (P9)TVuo P = P2Vuo P? (an orthogonal projection is always symmetric); thus, by
denoting, for [ € [1, 1], H; the vector hyperspace parallel to H;, we have

Vue V(FY) C m Hy on the neighborhood of Fe. (8.12)
leJg

Let z € 9Q and J, = {l € [1,71] | = € H,}; since Nies, F}! is not empty (it contains z), J, is a JZ for a
de[l,qland a i€ [1,rg.

On the neighborhood of z, the only hyperplanes (H;); that intersect 9Q are (Hl)lEJ:i (because, when
I ¢ J& = J, the compact sets {z} and F}! = 9Q N H; are disjoint); thus, for o-a.e. y € 9Q on the
neighborhood of z, there exists { € J# such that n(y) is orthogonal to ﬁl. Since x € F¢, we deduce from
(8.12) that Vu-n = 0 o-a.e. on 9Q on the neighborhood of .

We have thus proven that Vu -n = 0 o-a.e. on 0Q, that is to say ujq € £°(Q). m

Remark 8.5 One can of course prove a similar result for open sets with singularities on the boundary
that are of the same kind than the singularities on the boundary of polygonal open sets. For erample,
if we can transform locally, by a C"'-diffeomorphism (r > 1) that preserves the outer normal (*), the
singularities of an open set Q into the singularities of a polygonal open set, we obtain the density of E™(2)
in WHP(Q). This gives in fact another proof (the one in [55]) of Theorem 8.1, but only for k > 2.

A crucial example of this is Q = Ox]0,T[ where O is an open set of RV~ with a C"t%!-continuous
boundary. Though £ has a boundary which is only Lipschitz continuous, the singularities of this boundary
are, up to a C"'-diffeomorphism, equivalent to the singularities of a polygonal open set.

8.4 Applications, Counter-example and Generalization

8.4.1 A new formulation for the Neumann problem

The classical variational formulation of the Neumann problem

{ —Au=1 in Q, (8.13)

Vu-n=70 on 0%,
is the following:
u € H(Q),

8.14
/QV‘LL -V = (L, ()0>(H1(Q))17H1(Q) , Vo € Hl(Q) ( )

With Theorem 8.1 or 8.2 and an integrate by parts, we see that (8.14) is equivalent, when Q has a
Ck+11_continuous boundary (with k& € N\{0} or k¥ = co) or is polygonal (in which case we take k = oo

4Such diffeomorphisms can be constructed thanks to the flow of a vector field which is, on 9%, equal to the unit normal.
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below),

u € HY(Q),

_/ ulp = (L, ) (1 (a)y i), Ve € C*1(Q) such that Vi - n =0 on 99. (8.15)
Q

This means that, exactly as for the Dirichlet problem, we have found a formulation of (8.13) — equivalent
to the variational formulation, thus implying existence and uniqueness of a solution — that allows to put
all the derivatives on the test functions.

This formulation can be useful, for example, to simplify the proof of the convergence of the finite volume
discretization of the Neumann problem on polygonal open sets (see [37]): (8.15) allows to prove that the
finite volume approximation converges to the variational solution without the need of a discrete trace
theorem, with the same methods as in the Dirichlet case.

With Theorem 8.4 below, we can do the same for some mixed Dirichlet-Neumann problems.

8.4.2 Application to the convergence of a finite volume scheme

In [45], the authors prove the convergence of a finite volume scheme for a diffusion problem with mixed
Dirichlet-Neumann-Signorini boundary conditions. It is classical, when studying finite volume schemes,
to consider polygonal open sets of RY (see [37]); in [45], the authors must however make an additional
assumption on the open set: they must suppose that the open set is convex.

This restriction comes from the same restriction as in Remark 8.2: the authors need that an element of
a Hodge decomposition be in H?, which is ensured by the convexity of the open set (since this element
comes from the resolution of a Neumann problem).

Theorem 8.2 allows us to see that the results of [45] are still true without the convexity hypothesis on
the open set; moreover, it also simplifies quite a lot the proof of the result in [45] in which the Hodge
decomposition was involved (with Theorem 8.2, the functions appearing in this proof are not only in H?,
but also C*°-continuous, which makes the error estimates easier to obtain).

We will talk about another application of our results to finite volume scheme in item ii) of Remark 8.6.

8.4.3 Counter-example

Though polygonal open sets are not very regular, the singularities of their boundaries are of a kind that
allows the density in WP of C*°-continuous functions satisfying a Neumann boundary condition.

There is no similar result for general open sets with only Lipschiz continuous boundary; the loss of regu-
larity noticed in Theorem 8.1 gives us the intuition of this (for open sets with C*'!-continuous boundary,
we only get the density of C¥~11-contiuous functions), and the following example gives us the proof of
this intuition.

Let (s,)n>1 be an enumeration of the rationals in | — 1,1[ and n(s) = >, ;27 "sup(0,s — s,) —
(where ¢ is chosen so that 5(0) = 0); n is Lipschitz continuous on | — 1, 1[ and its derivative is 5'(s)
2on>1 27"y, 11(8) = X0 55, 27" (13s, s s the characteristic function of the set ]s,,s[). Let Q be
an open set of R? with a Lipschitz continuous boundary and such that QN] — 1,1[x] — 1,1[= {(s,¢) €
1= 1L 1[x]=1,1[| t > n(s)}; we will denote A = {(s,n(s)), s €] —1,1[} C 9Q.

Let ¢ € C*(RY) such that Vi -n = 0 on Q. We have then, for a.e. s €] — 1,1],

C

0= (VIF TR Ve, n(s) - mls () = 16 5 (50(6) = pE(ons). (516
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Let n > 1; there exists two sequences (SZ’+)k21 and (s;'~ )g>1 converging to s, and such that SZ’+ > S,
sp'” < sp and (8.16) is satisfied for all s € {SZ’+, sp'”, k > 1}. We have then 77’(52’+) — Zm|5n>sm 2-m
and 7/(s),"”) — Emlsn>sm 27" as k — oo.

By substracting (8.16) applied to s;’~ to (8.16) applied to SZ’+, and then passing to the limit & — oo, we
get 2_”3—2(5,“7](5”)) =0 for all n > 1; (s,)n>1 being dense in | — 1, 1[, we deduce that the continuous
function 5)7991(" n(-)) is null on ]—1, 1] and, thanks to (8.16), that g—;’;(~, n(-)) is also null on ] —1, 1[. Thus,
(-, m()) is constant on | — 1, 1[: ¢ is constant on A.

Any limit in W1?(Q) of functions ¢ € C*(RY) satisfying Vi -n = 0 on 9 is thus constant o-a.e. on A;
since there exists functions in W1?(Q) that are not constant s-a.e. on A (for example, u(z) = z1), we
deduce that {¢|q, ¢ € C'(RY), Ve -n =0 sur 9Q} cannot be dense in WP ().

8.4.4 Mixed Dirichlet-Neumann boundary conditions

Let T be a measurable subset of 9Q; we denote by E%(Q) the set of functions in E*(Q) the supports of
which do not intersect T' (such functions are, in particular, null on T).

Wll’p(Q) is the space of functions in W17 (Q) the trace of which is null s-a.e. on I' (if u € WP(Q) is a
limit in W1P(Q) of a sequence in E£(Q), then we have u € Wll’p(Q)). It is endowed with the same norm
as WLP(Q).

By denoting By = {(y',yn) € Bn(1) | yv > 0}, D = {(¥',0) € Bn(1)}, Byy = {(y",yn-1,9n) €
Bt |yn-1> 0}, Dy ={(v",yn-1,0) € D | yny—1 > 0}, we make the additional assumption:

I is closed and, for all @ € I, there exists an open U of R containing a
and a Lipschitz continuous homeomorphism ¢ : U — By (1) with a
Lipschitz continuous inverse mapping such that one of the following cases occurs:
HUNT=UNnoQ, ¢(UNKQ) =By and ¢(UNIQ) = D,
) { U= B 40000 =Dy U (W 0.) € () L >0
and ¢(UNT) = Dy

(8.17)

An important example of a I' satisfying this property is, when € = 0x]0,T[ with O open set of RV~1
with a Lipschitz continuous boundary, I' = O x {T'}.

Theorem 8.4 Let p € [1,4+oo[. If k € N\{0} or k = co, Q is an open set of RY with a C*'-continuous
boundary and T C 9Q satisfies (8.17), then E{i_l(Q) is dense in Wll’p(Q). If Q is a polygonal open set
of RN and T' C 0Q satisfies (8.17), then E(Q) is dense in Wll’p(ﬂ).

Remark 8.6 i) Of course, we have the same kind of results when we can locally transform the open
set with a diffeomorphism that preserves the outer normal (see Remark 8.5); for example, if Q =
0x]0,T[ with O open set of RN=1 with a C**11-continuous boundary (k > 1) and T = O x {T},
we can prove the density of E%(Q) in Wll’p(Q).

it) In [55], the author uses a similar result to prove the convergence of a finite volume scheme for a
diffusion and non-instantaneous dissolution problem in porous medium, when the medium is rep-
resented by an open set with regular boundary (at least C3-continuous, see item i) of Remark 8.1).
Theorem 8.4 allows to extend the results of [55] to polygonal open sets, which are quite natural when
dealing with finite volume schemes (see [37]).

Proof of Theorem 8.4
Step 1: we prove that any function u € Wll’p(Q) can be approximated in W'?(Q) by functions in
€% (RY) the supports of which do not intersect I'.
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Cover first the compact set I' by a finite number of mappings (U;, ¢;)iep1,) given by (8.17). We take, for
€ [1,1], 8; € C°(U;) such that Zi’:l 6; = 1 on the neighborhood of I'.

Define, for i € [1,1], u; = 6;u. The function v; = u; o qbl_l is in W;;]E’Umr)(qSi(Ui N Q)) and its support is

relatively compact in By (1) (it is included in the support of 6; o ¢Z—1) We will now handle separately

the cases when (U;, ¢;) satisfies i) or ii) in (8.17).

e Case i): we have v; € Wll)’p(B.I_); the extension w; of v; to By (1) by 0 outside B; is then in
WLP(By(1)) and its support is a compact subset of By (1) included in By ; the extension w; of w;
to RN by 0 outside By (1) is thus in WIP(RY). Let fi »(y) = wi(y', yn — 1/n); fin is in WHP(RYN)
and the sequence (f;,)n>1 converges to w; in WHP(By (1)) (thus to v; in WP (¢;(U; N Q)));
moreover, for n large enough, supp(fin) C supp(w;) + (0,...,0,1/n) is a compact subset of By
and does not intersect ¢;(U; NT) = D.

e Case ii): we have v; € Wé’f(3++). The function v; : B4 — R defined a.e. by v; = v; on B4y
and 0;(y) = vi (v, —yn-1,yn) if yv—1 < O isin Wll)’p(B+) and its support is relatively compact in
By (1). By the reasoning made in Case i), there exists thus (fi n)n>1 € WLP(RYN) which converges
to o; in WHP(By) (thus to v; in WP (¢;(U; N Q))) and such that, for n large enough, supp(f; ») is
a compact subset of By (1) that does not intersect D D ¢;(U; NT) = Dy.

In both cases, taking n large enough, the support of g; , = fin 0 ¢; € WHP(U;) is compact in U;, does
not intersect U; NI and the sequence (g; »)n>1 converges to u; in Wir(U; N Q).

For n large enough, the extension G, of g; » by 0 outside U; is thus in W1? (R¥), has a compact support
which does not intersect I' and, since supp(u;) is relatively compact in U;, we have G; ,, — u; in WHP(Q)
as n — 0o.

Let, for n large enough, U,, = Zi’:l G; n; this function of W17 (RY) has a compact support which does

not intersect I" and U,, — (22:1 0;)u in WLP(Q).
Since supp(Uy,) is a compact set that does not intersect T, there exists V,, € C°(RY) the support of which
does not intersect I' and such that [[Un — Vi ||wrp@~yy < 1/n (take (pm)m>1 a sequence of mollifiers such
that supp(pm) C By (1/m); since supp(Up, * pm) C supp(Uy,)+ By (1/m) and supp(U,) and T are disjoint
compact sets, for m large enough, one has supp(U, * p) N T = 0; since Uy, * pr, — Uy, in WHP(RY) as
m — 0o, one sees that, for a m large enough, V, = U, * py, is convenient).

Let W,, € C°(RY) such that W, — u in W1?(Q).

The sequence of functions V, + (1 — 22:1 0: )Wy € C°(RY) converges to (Zi':l Oi)u+(1— 2221 Oi)u=u
in WH?(Q) and supp(V, + (1 — Zi’:l 0;)Wp) C supp(Vy) Usupp(l — Zi’:l 0;), that is to say a compact
set that does not intersect I'. This concludes Step 1.

Step 2: To prove the theorem, it is thus sufficient to approximate, in W1?(Q), any function u € C° (R™)
the support of which does not intersect I' by functions in E*~1(Q) the supports of which do not intersect
r.

Let K be a compact subset of RY containing supp(u) in its interior and such that K N T = 0.

In the case when Q has a C*'!-continuous boundary (for a k£ > 1), Theorem 8.3 applied to these u and K
concludes the proof.

In the case when Q is a polygonal open set, Lemma 8.3 allows to see, by induction, that there exists
a sequence of functions u, € C°(int(K)) satisfying B; and converging to u in W1P(Q). Since the
restrictions to Q of functions satisfying By are in E*(Q2) (as seen in the proof of Theorem 8.2), this
concludes the proof. m
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