Chapitre 9

Convergence of a finite volume - mixed finite element method
for a system of a hyperbolic and an elliptic equations

J. Droniou, R. Eymard?!, D. Hilhorst?, X. D. Zhou?.

Abstract : This paper gives a proof of convergence for the approximate solution of a system of an elliptic equation
and of a hyperbolic equation, describing the conservation of two immiscible incompressible phases flowing in a
porous medium. The approximate solution is obtained by a mixed finite element method on a large class of
meshes for the elliptic equation and a finite volume method for the hyperbolic equation. Since the considered
meshes are not necessarily structured, the proof uses a weak total variation inequality, which cannot yield a
BV-estimate. We thus prove, under an L estimate, the weak convergence of the finite volume approximation.
The strong convergence proof is then sketched under regularity assumptions which ensure that the fluxes are
Lipschitz-continuous.

9.1 Introduction

The purpose of oil reservoir simulation implies to account for several phenomena such as chemical reac-
tions, thermodynamical equilibrium and polyphasic flows. Since the full model is complex too much, a
simplified model, describing the flow of two incompressible immiscible fluids through a porous medium,
has been extensively studied. In this simplified model, two fluid phases, oil and water, low through the
pores of some possibly heterogeneous and anisotropic porous medium; water is injected through injection
wells in order to displace the oil towards production wells. Here we neglect the gravity effects as well
as the capillary pressure, which leads to the study of a first order conservation law for the saturation of
one of the phases coupled with an elliptic equation for the pressure. Assuming the total mobility of the
two phases to be constant and the mobility of water to be linear, the conservation equations of the two
phases in a domain € yield the following system of equations.

ug(z,t) — div(u(z, ) A(z)Vp(z)) = s(z,t) fT(z) — u(z,t) f (z),

(1 —we(w,t) — div((1 — u(@, ) A(2)Vp(z)) = (1 = s(z, ) [ (2) — (1 — u(z, ) [ (),

for (x,t) € QxRT. In the above equations, the saturation of the water phase is denoted by u, the common
pressure of both phases is denoted by p. The absolute permeability A is a symmetric definite positive
matrix (in anisotropic media, the eigenvalues of the matrix A are not all identical) which depends on the
space variable in heterogeneous media (the symmetry hypothesis has no influence on the mathematical
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study of the problem). The function f represents the internal source terms, corresponding to the presence
of wells drilled into the reservoir (f* and f~ denote the positive and negative parts of f). A positive
source term corresponds to an injection well, a negative one corresponds to a production well. The
function s represents the fraction of the water phase in the injected source term, and the saturation u of
the water in place is the fraction of water in the produced source term. This problem, completed with
initial and boundary conditions, is rewritten as follows.

wy(z,t) + div(uq)(z,t) + ulz,t) f~(z) = s(z,t) f (@) for ae. (z,t) € Q x R*, (9.1)
A Y(2)q(z) + Vp(z) =0 for a.e. z € Q, (9.2)

div q(z) = f(z) for a.e. z € Q, (9.3)

a(7) - noa(z) = g(z) for ae. z € OQ, (9.4)

w(z,t) = T@(z, t) for ae. (z,t) € 90~ x R+, (9.5)

u(z,0) = ug(z) for a.e. z € Q, (9.6)

Notice that the boundary condition for the saturation is only given on the part 02~ of the boundary
where the flow enters into the domain, that means q(z) - naq(r) = g(z) < 0.

In Egs (9.1)-(9.6) (refered in the following as Problem (P)) the following hypotheses (refered in the
following as Hypotheses (H)) are used.

Hypotheses (H):

1. Q is an open bounded subset of R (d = 2 or 3 in pratical) such that, locally, Q0 either has a C**
reqular boundary or is convez.

2. A(x) is a measurable application from Q to the set of symmetric real d x d matrices, such that there
exists A\1 > 0 and \a > 0 satisfying \1|z| < |A(z)z| < Xa|z| for almost every x € Q and all z € RZ.

3. feL*9).

4. g =qo-nyq for some qo € (H*(Q))¢ and

[ r@ie= [ g =o.

5. we L0 x RT) where 90~ = {x € 9, g(z) < 0}.
6. uo € L(S).
7. s € L>®(Q x RT).

Here and in the following, when U is an open subset of R? with a sufficient regular boundary (see Definition
9.2), we denote by nsy the unit normal to QU outward to U and by  the (d — 1)-dimensional measure on
OU. |- | is the Euclidean norm in R? and z - y denotes the Euclidean scalar product of (z,y) € R? x R%.
When X is a subset of R%, §(X) denotes the diameter of X, that is to say §(X) = SUD(4,y)e x2 [T — Y-
B(z,r) denotes the Euclidean ball of center z € R? and radius r > 0.
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Remark 9.1 Since we allow Q2 to have a non-reqular boundary, there is no convenient way to characterize
the reqularity condition on g. Indeed, if Q has a CY'-reqular boundary, it is easy to see that g = qo - nag
if and only if g € Hl/Q(OQ), but on the non-reqular parts of 02, this condition is not necessary and it is
not even obvious that it is sufficient. For evample, take Q =]0,1[%, g = 1 on ({0} x]0,1[) U ({1}x]0,1])
and g = 0 on (]0,1[x{0}) U (J0,1[x{1}); then g does not belong to H'/?(0Q), but g can be written as
Qo - npq with qo(z,y) = (—1 + 22,0) € (H*(Q))>.

A weak solution of Problem (P) is defined by the following sense.

Definition 9.1 Under Hypotheses (H), a weak solution of (P) is given by (u,p,q) € L®(Q x RT) x
L*(Q) x Hy(div,Q) such that

/RH /Q“(x’ 2 (%(f’ t) +a(x) - Vo(r,t) — o(z, t)f(x)) de dt =
_/Q wolole ) de + /R+ /agr wa H)ple, (@) dy(z) dt - /R X /Q o(a.)s(x.t)fF (x) dwdt,  (9T)

V¢ € CHR? x R) such that ¢ =0 on 0QT x RT = (9Q\ 907) x R*,

/ y(z) - A (z)q(z) do — / p(x) div y(x)dz =0, Yy € Hp(div, ), (9.8)
Q Q

/ v(z)div q(z)dz = / f(z)v(z)dz, Yo € L*(Q), (9.9)
Q Q

and

/ p(z) dz = 0. (9.10)
Q
where the function spaces H(div,Q), Ho(div,§) and Hy(div,) are defined by

H(div,Q) = {q € (L3(Q))?, div q € L}(Q)}, Ho(div,Q) = {q € H(div,Q), q-nsg =0 on 9Q}
and Hgy(div,Q) = {q € H(div,Q), q-npg = g on 00}.

A number of numerical schemes for this problem in the case A = Id have already been discussed in the
literature. Nevertheless, the numerical schemes used to approximate the solution of this simplified model,
which is a system of an elliptic equation and a scalar hyperbolic equation, have only recently be studied
from a convergence point of view. In particular Eymard and Gallouét [34] have proven the convergence
of a numerical scheme involving a finite volume method for the computation of the saturation v and a
standard finite element for the computation of the pressure p whereas Vignal [73] presents a convergence
proof for a finite volume method for the discretization of both equations. Here we also discretize the
conservation law for the saturation by means of a finite volume method but apply the mixed finite element
method to discretize the elliptic equation. Error estimates have been derived by Jaffré and Roberts [47]
for a semi-discretized problem in the simulation of miscible displacements involving an elliptic equation
for the pressure coupled to a parabolic equation for saturation. For the numerical discretization they
combine the mixed finite element method with an upstream weighting scheme. More recently Olberger
[60] has derived error estimates in the case that the finite volume method is applied for the discretization
of a parabolic equation instead of the first order conservation law (9.1).

Here we deal with a mixed finite element method with an original basis for the elliptic equation. On
a partition of the domain, the hypotheses on which are very large, we define the generalization of the
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Raviart-Thomas space. The proof of the “inf-sup” condition and the proof that the interpolation error
of regular functions tends to zero with the space step make use of Lipschitz-continuous homeomorphisms
with Lipschitz-continuous inverse mappings and of some trace inequalities, for which the constants are
given as functions of the size of the domain (the classical proofs of the trace inequalities with null average,
by the way of contradiction, being unable to yield the relation of such constants with the domain). Then
the hyperbolic equation is discretized by the classical upstream weighting scheme, and the convergence
proof of the scheme is obtained, thanks to some ”"weak BV” inequalities. Such inequalities have only
recently be introduced and proved for the proof of convergence of finite volume schemes on unstructured
meshes for hyperbolic equations, since strong BV estimates have not been actually obtained on the discrete
approximation. Thus this paper completes a lot of previous numerical works in which this scheme has
been used on particular meshes (generally triangular meshes).

The organization of this paper is as follows. In Section 9.2, we present the numerical scheme that we use.
In Section 9.3, we prove a convergence result for the mixed finite element method. In Section 9.4, we deal
with the finite volume scheme, concluding to the weak convergence of a subsequence without additional
regularity hypotheses on the data, and to the strong convergence otherwise.

9.2 The discretization

9.2.1 Admissible discretizations

In order to define the scheme, a notion of admissible discretization is given, which is used below in the
definition of approximate discrete solutions.

Definition 9.2 (Admissible discretization of Q) Let Q be an open bounded subset of R® with weakly
Lipschitz-continuous boundary. An admissible discretization D of §) is given by a finite set M of open
subsets K C §) with weakly Lipschitz-continuous boundaries and a finite set A of disjoint subsets a C 2
such that:

(Z) UKeMF:ﬁ,

(ii) For all K € M, there exists a Lipschitz-continuous homeomorphism Ly from K to B(0,6(K)) such
that the inverse mapping is Lipschitz-continuous as well. One denotes by Ck the maximum value of both
Lipschitz constants and by my the Lebesque measure of K.

(iii) For all (K, L) € M? with K # L, one has KN L =1.

(iv) For all a € A, there exists K € M such that a is a non-empty open subset of 0K. By denoting
Ax ={a € A| a C 0K}, we assume that 0K = Ugeca,a. We denote by mq the (d — 1)-dimensional
measure of a.

(v) The sets A; C A and A. C A are defined by A; = {a € A,3(K,L) e M?, K # L,a CIKNAJL} and
Ac={a€ A, K € M,a C OK NN} (*). One assumes that (A;, Ae) forms a partition of A.

(vi) For all a € A;, one between the two different (K, L) € M? such that a C K NOL is selected. Then
we denote K(a) = K and L(a) = L, and we set ¢, = 1 and e o = —1. The normal vector n,(x) to a
at x € a is defined by ng(x) = npx(x) = —nyr(z)(®). For all a € A, let K be the unique element of M
such that a C OK NOQ. Then one denotes K(a) = K and ex o = 1. The normal vector ng(z) to a at
x € a is defined by ny(zr) = npq(z) = nok (z) (©).

(vii) For all K € M and all a € Ay, one assumes that there exists i, € a and (i, > 0 such that
aDO0KN B(CL‘K@,CK@5(K)).

40ne can then show that, when a € A;, the {K, L} C M such that K # L and a C K N dL are unique; this is the
same, when a € Ae, for the K € M such that a C 0K N oN.

5We can indeed show that, in such a situation, we have ngx = —ngz, on a.

6 As for the preceding case, this equality between ngq and ngg is not supposed, it can be proved.
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By denoting T, the mean value of n, on a, the thinness of the discretization D (controling the size of D
and the behaviour of the edges of D) is defined by

. 1 _
thin(D) = max ((5([(),({161%); (THHG — na|Lz(a))> (9.11)

and a geometrical factor, linked to the reqularity of the discretization, is defined by

D)= o (e s (1)) 012

a€Ax CK,a

Remark 9.2 The definition of an open set with weakly Lipschitz-continuous boundary is given in [31] or
in [42] under the name “d-dimensional Lipschitz-continuous submanifold of R?”. It is far weaker than
the definition of Lipschitz-continuous boundary given in [58].

Remark 9.3 The above definition is easily satisfied for a large variety of meshes. In the case d = 2,
subsets K such that 0K is defined in polar coordinates from an origin Mg € K by a 27- periodic
continuous piecewise C' function satisfy condition (ii). That is the case for convex polyhedra, such as
triangles or parallelograms for example.

Remark 9.4 In the above definition, one cannot define edges by the sets OK N OL or 0K N OS); indeed,
thin(D) is destined to tend to 0 (in order to obtain the convergence results), which can lead to share the
sets OK NOL in different edges. In fact, thin(D) — 0 means that the size of the discretization tends to 0
and that the edges become more and more planar.

Notice that if Q is polyhedral and the edges are planes, then thin(D) = maxgeam 6(K) is simply the size
of the discretization.

Remark 9.5 Hypothesis (vii) is only used for the study of the convergence of the finite volume scheme to
the solution of the hyperbolic equation. It is not used in the proof of convergence of the mized finite element
method. Notice that this hypothesis, along with Hypothesis (i) and Lemma 9.11, implies mq > CS(K)?1,
where C' only depends on d, Cx and (x q.

9.2.2 Discrete function spaces

One now defines the set of basis functions for the mixed finite element method, which is a generalization
of the Raviart-Thomas space RT{ (M) (see [14], [72] or [59]).

Definition 9.3 (Discrete function spaces) Let 2 be an open bounded subset of R with weakly Lip-
schitz-continuous boundary. Let D be an admissible discretization of ) in the sense of definition 9.2.
For all K € M and all a € Ak, one denotes by wi,, € HY(K) the unique variational solution with
Jx Wk,a(x) dz = 0 of the Neumann problem

m,
Awg o(z) = —= for a.e. © € K,
mg

and

Vwg,o(z) nar(z) =1 for a.e. x € a,
Vwg,o(z) - ngg(z) =0  for a.e. z € 0K \ a.

One then defines the function wi q from §Q to R? by Wk o(2) = Vwg,o(z) for a.e. x € K andwg o(z) =0
forallz € Q\ K.

One defines, for all a € A;, Wo = WK (a),a — WL(a),a @nd, for all a € Ac, Wo = Wi (q),a- Then one
gets w, € H(div,Q). The set Qp C H(div, Q) is the space generated by the functions (Wz)aca, the set
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Qp,0 C Ho(div,Q) is the space generated by the functions (Wq)aca,, and for any b € L?(0Q), the set

; 1
Qp,» C Qp is the space {q—i— Z m—/b(i) dy(z) we, g € pro}.

acA.

Vp € L?(Q) is the space of functions f = Y kem @K XK (where, for all K € M, ax € R and xx is the

characteristic function of K) such that [, f(x)dz =3 e pymrag = 0.

9.2.3 The mixed finite element scheme
The mixed finite element approximate of (9.2)-(9.4) is a pair of functions
(p'Daq'D) € VD X Q'D,ga

solution of

/ v(z)div gp(z) dz = / flx)v(x)de,Yv € Vp,
Q Q

and

/ y(z) - A Y (z)ap(x) dr — / pp(x) div y(z)dz =0, Yy € Qp .
Q Q

The unknown functions can be written as
qp = E daWa
ac A
and

Pp = Y PK XK-
KeM

(9.13)

(9.14)

Then equations (9.13) and (9.14) lead to the following system of linear equations, with unknowns (¢4 )ac.4

and (px)Kenm:

a’€A

da = Ya; Va € -Aea

Z MaGa €K,a :fKa VKEMa

a€AK

Z MKPK = OJ

where we denote

fK:‘/Kf(x)dx, VK € M,

and

Ja = — /g(m) dy(z), Ya € A..

Mgq

Z Qa /wa(x) AT )W (x) dr — Ma(PK(a) — PL(a)) = 0, Va € A,
Q

(9.15)

(9.16)

(9.17)

The existence and uniqueness of a solution (pp,qp) to system (9.13)-(9.14) is stated in the following

lemma.
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Lemma 9.1 (Existence and uniqueness of the discrete approximation) Let us assume hypothe-
ses (H). Let D be an admissible discretization of Q in the sense of definition 9.2. Then system (9.13)-
(9.14) defines one and only one approzimate solution (pp,dp) € Vp X Qp 4.

Proof. Since Lemma 9.4 (which is proved below) shows that the only solution of a linear system with
the same matrix as (9.13)-(9.14) and a null right hand side is null, this matrix is invertible. This proves
the lemma.

9.2.4 The finite volume scheme

One denotes, for all K € M and a € Ak, Fx o = MaGuéx,a (then Fr(q).q + Fr(a),a = 0 holds for all
a € Az)

One then discretizes the hyperbolic problem. Let A¢ > 0 be a constant time step. One defines a discrete
source term

1 (n+1)2¢
sk = / / s(z,t)dxdt, VK € M, Vn € N. (9.18)
Amgc nAt K
Prolonging by 0 the function @ on 9Q7 x R, one defines
ur = N /nAt /aﬂ(r) dvy(z)dt, Ya € A, Vn € N. (9.19)
The discretization of the initial value (Eq. (9.6)) is given by
1
ul = —/ ug(z)dz, VK € M. (9.20)
mi Jk

The finite volume scheme discretization of equation (9.1) is written:

un+l —u —
m g LK N K | Z ul'Fr o = sk fi —ukfr, VK € M, ¥n € N, (9.21)
ac Ak

where u]} is defined by :

ul = “711((@) if g >0, else up = u’L‘(a), Ya € A;, Vn € N

Uy = U gy if ga >0, else ug =, Va € Ae, Vn € N. (9.22)
For a given discretization D and a time step A, we can define the approximate solution by:
up,n(z,t) = uk, for ae. (z,t) € K x [n&¥, (n+ 1)), VK € M, Vn e N. (9.23)

9.3 The convergence of the mixed method

One has the following result.

Theorem 9.1 (Convergence of the mixed finite element scheme) Under Hypotheses (H), let & be
a fized positive real value and let D be a discretization of €} in the sense of definition 9.2 such that
regul(D) < &. Let (p,q) € L*(Q) x Hy(div, Q) be the unique weak solution of the problem (9.8) and (9.9)
with the condition (9.10) and (pp,ap) € Vp x Qp.g be given by (9.18)-(9.14).

Then
li - iv = 07
lim  ||p—ppllr2 ) = 0.

thin(D)—0
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In order to prove Theorem 9.1, some lemmata must be previously shown. The next lemma deals with an
interpolation result for regular functions.

Lemma 9.2 (Interpolation of regular functions) Let ) be an open bounded subset of R® with weakly

Lipschitz-continuous boundary, let D be an admissible discretization of £ in the sense of definition 9.2

and let ¢ > regul(D). Let q € (HY (). Lety € H(div,Q) be defined by

y—zma/ ) dy(x) w

Then we have div'y = 3, c v ﬁ S div a(z) dz xx and there exists Cy > 0 which only depends on d
and & such that

la—ylzz@) < Cithin(D)||lall(m1(o))e- (9.25)

One can notice then that, when thin(D) — 0, the function y such defined tends to ¢ in H(div, Q).

Proof. In the following proof, C; denotes different positive real values which only depend on £ and d.
The proof of divy = > .o m—lK S div q(z)dz xr is straightforward, since div wo = 0 on K if
K ¢ {K(a),L(a)} and div wq = €x,a7r% on K if K € {K(a), L(a)}.

Let K € M. Let us define the function w € H'(K) by

w= ¥ (o [ o) ar@) wia

a€AKk @
which is such that Vw(z) = y(z) for a.e. x € K. Similarly, denoting q = —— qu )dx, we define
W € HY(K) by
w = Z (L/q-naK(z)d’y(z)) WEK.q-
Ma Jg ’
a€Ak
We get,

la—ylZz(r) < 3la—allizix) +3la — Villie g + 3IVD = V|22 g

Let us first deal with A = ||q — fl“iz K)- Thanks to the Cauchy-Schwarz inequality, one has

A<—//|q \2d:vdy,

which yields, using (9.63) proved in Lemma 9.13,

la —allZ: sy < C26(K)?|allfg xy)a- (9.26)

We now turn to the study of B = || — VLT)H%Q . One defines the function h € H%(K) by h(z) =

q-x— W fK 4 - y)dy. This function thus satlsﬁes Vh = q and fK x)dx = 0. Since h — @ is the
variational solution of a Neumann problem on K with null average and A(h W) constant, one gets

B _a;:K/ (q ny () — mia/ad-nax(y) dv(y)) dy(z).

Thanks to the Cauchy-Schwarz inequality, we deduce
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where

-y f (q-nam)mia / q-naK(wdv(y))zdv(x).

ac€Ak V@

We use (9.56) proved in Lemma 9.12. It yields Z (w(x) — h(z))? dy(z) < C36(K)B, thus we obtain

acAg @

B < C38(K)B. (9.27)
We have, by definition of thin(D),

IN

SE)B < S(K)a Y / (na(z) — 1) dr(2)

a€Ag V@

%i) /K a@)Pdz Y thin(D)?mq

a€AK

IN

Cy thin(D)z/K|q(w)|2dx i S mo

IN

mg

Using mx > C53(K)? and max < Cgd(K)?! (hypothesis (i) of Definition 9.2 and Lemma 9.11),
relation (9.27) gives

|6 = V@ ||72(x) < O thin(D)?[|al|72(g)- (9.28)
We finaly study the term C' = |V& — Vw||2L2(K). We have

=% [t - v (o [@-aw) o) 1)) e

m
a€Ag @ asa

Thanks to the Cauchy-Schwarz inequality, one has

where

(L /a((l —q(y)) -nax(y) dﬂ/(y))2 dvy(z)

Thanks again to (9.56) given by Lemma 9.12, we get Z (w(x) — w(x))? dy(z) < C36(K)C, which

acAg "’ ®
leads to

C < C38(K)C. (9.29)

Turning to the study of C’, and using the Cauchy-Schwarz inequality, we have
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Cl

IA

> /q ay)® dv(y) = /BK(fl—q(y))Qd“/(y)

a€ Ak

/a o / 2 dz dy(y). (9.30)

Thanks again to Lemma 9.12, we get

C" < Co 8(K)lallE g sy
and therefore, thanks to (9.29) and (9.30), there exists Cs > 0 such that

IV~ Vol < Co 8K allf ey (931)
Summing relations (9.26), (9.28) and (9.31) on K € M gives (9.25).

Lemma 9.3 Under Hypotheses (H), let D be an admissible discretization of ) in the sense of definition
9.2 and & > regul(D). Let v € Vp and let h € H*(Q) be the variational solution of —Ah = v on €,
with a homogeneous Neumann boundary condition and fQ x)dx = 0 (the existence of such a function
resulting from the regularity hypotheses on ), see [42]). Let us deﬁne Y €Qpyo by

y = Z (mia /a Vh(z) - ng d'y(:v)d:r) Wa. (9.32)

acA

Then there exists Cy , only depending on 2, d and & such that ||y||(z2(q))e < Co [|v]|z2(0)

Proof.

Using [|yll(r2()e < Ily =Vl (r2)ye + VAl (£2(q))e, one applies Lemma 9.2 for g = Vh, since h € H?(S)
implies Vi € (H'(Q))?. We thus get [lyl|(r2(q))s < (C1thin(D) + 1)||Al|g2(q). By hypothesis (H), one
has [|h]| 20y < Callv]|z2(q), which concludes the proof since thin(D) < max(5(2),2).

By noticing that the y defined by (9.32) satisfies div y = —wv, this lemma can also be stated in terms of
an “inf-sup” condition.

Corollary 9.1 (Discrete “inf-sup” condition) Under Hypotheses (H), let D be an admissible dis-
cretization of Q0 in the sense of definition 9.2 and let & > regul(D). Then there exists Co > 0, only
depending on ), d and & such that
v(z) div y(z) dz 1
inf sup

veVo yeqn,o I0lz2() I¥lz2c@ye ~ Co

The following lemmata express the classical proof of the convergence of mixed finite element methods
under an “inf-sup” condition and an interpolation result (detailed in [14] or [59] for example). We
prove them for the sake of completeness, thus verifying that our hypotheses are sufficient to apply this
convergence proof.

Lemma 9.4 (Estimate on the discrete approximations) Under Hypotheses (H), let D be an ad-
missible discretization of Q0 in the sense of definition 9.2 and let & > regul(D). Let h € L?*(Q) and
r € (L2(2))? be given.

Then, there exists one and only one (pp,dp) € Vp X Qp o solution of

/ div qp(z) v(z)dr = / h(z) v(z)dx, Yv € Vp, (9.33)
Q Q
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and

/ y(z) - A (x)ap(x) do — / pp(x) div y(z)de = / r(z) -y(z)dz, Yy € Qp,0, (9.34)
Q Q

Q
and there exists Cig, only depending on €, d, £, A\1 and Ay such that

lan[1z2()e + IPpllEz@) < Co (IFlfLz (o) + 1R 1Z2)- (9-35)

Proof. We first remark that proving (9.35) for any solution (pp,qp) € Vp X Qp,o to (9.33)-(9.34) is
sufficient to prove that for a null right hand side, the discrete unknowns are null, and therefore that the
linear system is invertible. For the proof of (9.35), one chooses, in (9.34), y = ap, and in (9.33), v = pp.
It leads to

1 2

)\_ZHqD”(LQ(Q))d < el z2@)ellanllzz@yye + 17l 2@l |l 2 9) - (9-36)
One then applies Lemma 9.3, which gives the existence of yg € Qp,g such that div yo = pp a.e. in Q and

[voll(z2)e < Co llppllL2(0)- (9.37)
Introducing yo in (9.34), one gets

1
HpDH%Q(Q) < Hr”(L?(Q))d||y0H(L2(Q))d + /\_1||qDH(L2(Q))dHyOH(L?(Q))da

which gives, thanks to (9.37),

1
Iplzy < o (Irllasqone + 3o lzzqas ) (9.59

Thanks to (9.36) and (9.38), one gets (9.35).

Lemma 9.5 (Bound on the approximation error by the interpolation error)

Under Hypotheses (H), let £ > 0 and D be a discretization of ) in the sense of definition 9.2 such that
regul(D) < . Let (p,q) € L2(Q) x Hy(div, Q) be the unique weak solution of the problem (9.8) and (9.9)
with the condition (9.10) and (pp,dp) € Vp x Qp,g be given by (9.18) and (9.14). Let ap € Qp 4 be

1
giwen and let pp € Vp be defined by pp = Z —/ p(z)dr xk.
Kem ME JK

Then there exists C11, only depending on Q, d, £, A1 and A2 such that

la — anllfzzaye + 1P — pollZ2(9) < Cui (la — anlliraivoy + 2 — Pol720))- (9.39)

Proof. One gets, using the variational formulations (9.8)-(9.9) and (9.13)-(9.14):

/Q div(ap (z) — & (2))o(z) dz = /Q div(a(z) — dp(2))v(z) dz, Vo € Vo,

and

/ y(x) - A7 ()(ap(z) — Gp(x)) dz — / (pp(7) = pp(x))div y () dr =
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For all y € Qp,o, thanks to the definition of pp, one gets /(p(w) — pp(x))div y(z)dx = 0. Thus

Q
(pp — Pp,ap — Qp) is the solution of (9.33) and (9.34) with r = A~!(q — qp) and h = div(q — qp).
Applying Lemma 9.4 yields

- _ 1 . . -
lap — ap |12y + 1P = pll72(0) < Cio ()\_1”(1 — ap|[{2 () + div g — div QD||%2(Q)> :

Using the Cauchy-Schwarz inequality, this leads to

o ) , -
ST 1) la = @pEezoye +2Ch0 div q — div 4ol 32

+2[lp — Poll72 (o)

la- ol + 1o ool < 2(

which gives (9.39).

Proof of Theorem 9.1. We apply Lemma 9.5. On the one hand, thanks again to (9.64) proved in
Lemma 9.13, the following inequality holds:

Ip = Bpll72() < Co thin(D)?(| V|20

(notice that, when p € L*((2) satisfies (9.8), we have in fact p € H*((?)) and therefore [[p—pp|/ o, tends
to 0 as thin(D) tends to 0. On the other hand, it suffices to prove that one can choose gp € Qp,4 such that
la — apll#(aiv,0) is as small as desired. Notice that, in general, the property q € (HY(Q))? N Hy(div, Q)
is wrong. Therefore, one takes qq € (H'(£2))? such that qp - npg = g; then, q — qo € Ho(div, Q) and
since Hypotheses (H) are sufficient to prove that Q is locally star-shaped, we can approximate q — qq
in Hy(div, Q) by regular functions with compact support in £ (see [71]); thus, q can be approximated
in Hy(div,Q) by @ € (H'(2))¢ N Hy(div,$). Then, applying Lemma 9.2, one can approximate ¢ by
ap € Qp,4 as close as demanded by letting thin(D) tend to zero.

9.4 The convergence of the finite volume method
We now show the following theorem.

Theorem 9.2 (Convergence of the finite volume scheme) Under Hypotheses (H), let & and o €
(0,1) be fized positive real values. Let (p,q) € L*(Q) x H,(div,Q) be the unique weak solution of the
problem (9.8) and (9.9) with the condition (9.10). Let (Dp,)men be a sequence of discretizations of § in
the sense of definition 9.2 such that for all m € N, regul(D,,,) < & and mliIEoo thin(D,,,) = 0. For a given

m € N, let us denote (Dm,dm) the solution (pp,ap) € Vp x Qp,4 given by (9.13) and (9.14) where D
stands for D,,. Let N,, > 0, denoted X, such that the condition

mg

AN < (1—«) inf ,
KeM Z Ma(Gacrca)’ + [
a€ Ak

holds. Let u,, € L>®°(2 x R") denote the function up n defined by (9.18)-(9.23).

(9.40)

Then there exists a subsequence of (um)men, still denoted (um)men, which converges for the weak *
topology of L>°(2 x RT) to a function u € L*>®°(Q2 x R™) solution of (9.7).

If we add some hypotheses giving that q is Lipschitz continuous on Q0 (for example, O is of class C?, A
is of class C2, f is of class C' and g is of class C?) then

- the function u is unique

- the whole sequence (U )men converges to u in LP(Qx]0,T[) for all p € [1,00) and all T > 0.
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The proof of Theorem (9.2) is classical, and has been developped for various choices of the discretization
of the velocity field q (see [16], [34] and [73]). The originality of this proof is the use of the technical
lemma 9.14, which is non standard.

9.4.1 L estimate

The purpose of this section is to prove the following result.

Lemma 9.6 (L> stability of the finite volume scheme) Under hypotheses (H), let & > 0 and let
D an admissible discretization in the sense of definition 9.2 such that & > regul(D). Let (pp,ap) €
Vb X Qp g be given by (9.13) and (9.14) and let N > 0 such that

. Mg
N < inf . (9.41)
KeMm Z Ma(qafr,a)™ + %
ac€ Ak
Then the approzimate solution up a; given by (9.18)-(9.23) is such that
|up,atll e @xr+y < max(||luollLe(q), [Tl Lo @0 xr+): ISl Lo (@xm+))- (9.42)
Proof. According to the scheme (9.21), we have
n n N n n - n
uK+1 =up — — < Z Ug Fre o + U fre — st;Q> ,
K a€AKk
which gives
N _ N _ N
Wl = (1 - < > F, +fK>) +— D Froul+ m—f}s’;(, (9.43)
K ac Ak K ac Ak K

Thanks to the stability condition (9.41), equation (9.43) expresses u-"' as a convex combination of the

values u%, U, s%. An easy proof by induction concludes the proof of the lemma.
Remark 9.6 If the data are regular enough, the term Y, 4 Mal|qa| behaves like size(D)*~! as size(D)
tends to 0, and the condition (9.41) takes the form N < Csize(D) (where size(D) = maxgem 0(K)).

9.4.2 A weak inequality on the spatial variations

Lemma 9.7 (Weak spatial variations inequality) Under hypotheses (H), let £ >0, a € (0,1), T >
0, and let D be an admissible discretization in the sense of definition 9.2 such that & > regul(D). Let
(pp,ap) € Vp x Qp,y be given by (9.13) and (9.14) and let & > 0 such that the condition (9.40)
holds. Let Nt be such that NpA < T < (Np + 1) and let (u%)kem, nen, (Ul )aca, nen be defined by
(9.18)-(9.22).

Then there exists Cha, which only depends on d, Q, T, &, a, f, s, g, W and ug (but not on D or ),
such that

Z At Z Z Ma(Gafx,a)” (g — U?{)2> < Ciz. (9.44)

n=0 KeM (aGAK



170 CHAPITRE 9. A FINITE VOLUME - MIXED FINITE ELEMENT METHOD

Remark 9.7 In references [16], [34] and [73], a weak BV-estimate is obtained from (9.44). We do not
do so here, since in the convergence proof, the use of Lemma 9.1 takes advantage of a local bound of the
diameter of each control volume. Otherwise, we should assume the existence of some 3 > 0 with

0(K) > f size(D), VK € M.

Proof. First, the discrete elliptic scheme (9.15) is used to get

Do FhatIe= ) Fratfi (9.45)

ac Ak acAx

and therefore the scheme (9.21) also writes

mg (Wt —ul) + A < Z Fie (ufe —ug) + (g — s}?)) =0, VK e M, Vn e N. (9.46)
aCAK

For all n € N and K € M, let us multiply the equation (9.46) by u’ and sum the result on K € M and
n=20,...,Np. It gives T} 4+ T> = 0 with

Nt
T, = Z Z mK(u%rl — Uy )ul

n=0 KeM
and
Nt
T,=) N> < > P (ufe — uluf + f(uf — s;g)u?(> )
n=0 KeM \acAx
Writing wftul = =2 (uptt — u)? + L(up)? + (u)?, one gets
Th = Th + Tha,
where
1 &
Ty = ~3 Z Z mp (et — w2
n=0 KeM
and

i = ( S mc((pr? - (u%f)) .

KeM
Using (9.46) and the Cauchy-Schwarz inequality gives
mic (g — i) < ( > Frat f;?) (At > Fr(ul —ui)? + fii(sh = uw) :
a€ Ak a€Ak

VK € M, Vn € N.

Using condition (9.40) and equation (9.45), one gets
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mK(u}z(Jrl_uK) 1—a (At Z FKa 711()2+flj;(5?(_unf()2) ’ (9 47)
a€ Ak .
VK € M, Vn €N.

One computes T. One gets To = To1 + Thy with
197
D=3 &% (Z Ffza<u3—u%>2+f;<s’;(—u%>2>
n=0 KeM \acAgk
and
Tor =3 ZAt > (Z FK,a«uw<us>2>+f;<<u’;(>2(s;w?)).
= KeM \acAx

We get thus, thanks to (9.47),

T11 + 151 > aTb;.

Thanks to (9.45), the term Th; can be rewritten as

m-3Sa s (z Frealul)? + F7(03 ) —f;?(s”K)Z)-

= KeM \acAx

Thus, gathering by edges, one gets

Too = ZN <Z maga >+ Z fK U’K f;(s%)2)> .

a€A. KeM

Since terms T12 and T can easily be bounded, using Lemma 9.6 (since condition (9.41) is weaker than
(9.40)), we thus get (9.44).

9.4.3 The proof of the convergence theorem 9.2

We first notice that Lemma 9.6 gives the existence of a subsequence u,, and of a function u € L>®(Q xR™T)
such that u,, converges to u for the weak * topology of L>=(Q x RT) as m — +oo. Recall that we have
proved above (Theorem 9.1) that q,, tends to q in H(div,§) as m — +oo. This section is devoted to
the proof that u satisfies (9.7) (the uniqueness part of the proof being studied in the next section).

Let ¢ € C}(R? x R) be such that ¢ = 0 on 92\~ x R. Let T' > 0 be such that
$=0 on R x[T, +oof. (9.48)

In this proof, we denote by C; various positive real values which only depend on d, 2, ¢, T, &, v, s, f, g,
u, ug and not on D or Af.

In the following, we use the notations D = D,,, and & = A,,. Let us denote Nt the integer value such
that Np &t < T < (Np + 1), Setting

1 n+1)At
QSK:Ath/ / o(z,t)dxdt, VK € M, ¥n € N,

one multiplies the equality (9.46) by ¢% and sum on K € M and n € N. One obtains E; + E> = 0 with
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Bi=3" 3 mucut - uj)ok,

n=0 KeM

and

Nt
=D &) < 3 Fro(uf — a4 fi (ke — s@w() .

n=0 KeM \acAx

1 (n+1)A¢
=g [ [ denm@a.

Let us study E;. Thanks to (9.48), for all K € M, (bll\(rTH =0 holds and therefore

We also define

Np+1

0 ,0
E E mrug( —¢K E MKUK Q-
n=1 KeM KeM

Using the weak * convergence of (t,)men to u, we deduce the convergence of E; to

_/wa u(m,t)%(l‘,t) dxdt—/UO(.’L')¢("L"O) dz.

Q

Next we consider the term Fs. It can be written, using (9.22) and gathering by edges, as

Nt
Z N Z maQagb%d(a) (’U‘Z(a) - u%(a))

n= 0 acA;

+ Z Nt Z MaGaPK 1 (a) — UK (a)) (9.49)

acA.
+ZN Z fred (ufe — s%),
n=0 KeM

where we define, for all a € A;, Kq4(a) (the “downstream” control volume) by K4(a) = K(a) if g, < 0,
else K4(a) = L(a), and for all a € A., Ky4(a) = K(a). We set

1
folx) = —fk, forae. x€K, VK e M,
K

for a.e.  (z,t) € a x [n&, (n+ 1)), Ya € A., Vn €N,
= gq, fora.e. x€a, Vae A,

Up,at(,

go(z

where fx, gq, s and @} are respectively defined by (9.16), (9.17), (9.18) and (9.19). We define E3 by

m

sp,a(z,t) = sK, for a.e. (z,t) € K x [n&, (n+ 1)AM), VK € M, Vn € N,
t) =
)=

By = — / up, a0 (. )ap () - V(. ) dar it
QxR+

+ / p, (2,8 g0 (2) B, 1) dy () dt
OO X R+

[ up sl (@) = 0 (o O (@) 0ot do
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Since up ¢ converges to u for the weak * topology of L(Q x R") and since gp converges strongly
to q in L*(Q) as m — +o0, in view of the definitions of up s and gp, we deduce the convergence of

Byto— [ uleta) Vo tydede+ [ atetg@oledi@de+ [ (ule0f (@) -

QxR+ 00~ xR+ xR
s(x, t)f T (2))p(z,t) de dt as m — +oo.
Using (9.15) and the definition of wk ,, one can rewrite E3 as

Nt
EB = Z JAY Z maqa¢g(u7£(a) - U}L{(a))

n=0 acA;

Nt
DN maqady (T — ua) (9.50)

n=0 acA,

Nt
+ N (up = sp) bk

n=0 KeM

From (9.49) and (9.50), we can deduce that

|Es — Es| < Ey4 + Es,

with
Nt
Ey= ZAt Z ma‘QquﬁZHEZ - ug
n=0 acA.
and
Ny .
B=Y & z; Maldal |62 — 6%yl W50y = Ukl + > A z; Maldal |97 — Pk y(a)| [Ua — Uk (a)l-
n=0 acA; n=o e

Let us first study E4. Since, for all a € A,, relation (9.22) implies u? = 7w when ¢, < 0, we can write

Nt
By=Y N Y malaallof|fay —ugl.
0

n= aCA., qa>0

For all a € A, such that ¢, = mg' [, g(z)dy(z) > 0, one has 90" Na # 0 (recall that 9O+ = {z €
9 | g(z) > 0}); thus, since ¢ = 0 on 9N x RT, there exists x € a such that ¢(x,t) =0 for all ¢ > 0. By
denoting Ci3 the Lipschitz constant of ¢, one has then |¢(y,t)| < C136(a) for all y € a and t > 0, which
implies |¢?| < C136(a). Using (9.42), one gets then

Nt
Ey < CuthinD) Y A& maldl
n=0 acAe
< Cuthin(D)(T + ) > [ g(x)] dy(x)
acA. v
= C4thin(D)(T + At) / lg(x)| dry(z),
o

which shows that F, tends to 0 as m — +oc.
We turn now to the study of E5. Thanks to the Cauchy-Schwarz inequality, we obtain
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E2 < Ch3? <ZAL‘ Z ma|qa|5(Kd(a))2> (ZAt Z Z Ma(Gatr,a) (Ug — u%)2> .

n=0 acA n=0 KeMaeAk

This gives, using Lemma 9.7 and the Cauchy-Schwarz inequality,

1/2 1/2
E2 < Cy5 thin(D) (Z maqga(Kd(a))) (Z maé(Kd(a))> .

acA acA

One can then apply Lemma 9.14, which yields

S maa2d(Ka(a) < Cis 3 ( /. B e+ 3@ /

acA a€A Ka(a)

(divap (z))? dm) .

Under Hypotheses (H) (and in particular item (vii)), one gets that cardAx < Ci7. Therefore, since qp
converges to q in H(div, ), it is bounded and

Z maq26(Kq(a)) < Cis.
acA

Using item (ii) of Hypotheses (H), one gets

> mad(Ka(a)) < Cio.
acA

Therefore, one can conclude

E5 S 020 \/thin(D),

u(e, 1)) - V(e t) dardi + / (e, 1)g(e) bl 1) dy () dt +

which shows that Fs tends to — /
o0~ xR+

QxR+
/ (u(z,t)f~(z) — s(x,t) fT(2))¢p(x,t) dw dt as m — +oo, and concludes the proof of Theorem 9.2.
QxR+

9.5 Uniqueness of the weak solution under regularity on the
data

We do not handle in details this part, since it does not involve the particular discrete frame we have
developed in this paper. Some details can be found in [35], [15], [37] for example. We first state the
following discrete result.

Lemma 9.8 Under hypotheses (H), let £ > 0 and let D be an admissible discretization in the sense of
definition 9.2 such that & > regul(D). Let (pp,qp) € Vp X Qp 4 be given by (9.13) and (9.14) and let
At > 0 such that the CFL condition (9.41) holds.

Then the approzimate solution up as given by (9.18)-(9.23) is such that

mre(n(uit) = nufk)) + & ( > Fro(ufe) = n(u)) + fn' (uh) (uf — S"K)> <0,
ac Ak
VK € M, Vn €N, Vn € C*(R,R) with n” > 0.
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The proof of this lemma is easy, starting from the discrete relation (9.46) and multiplying it by #'(u’%).
From this lemma, one gets, letting thin(D) — 0, the following result, which proves the convergence of
the scheme to a solution of the hyperbolic problem in a very weak sense ([36], [28]).

Lemma 9.9 (Convergence of the finite volume scheme to an entropy process solution)

Under Hypotheses (H), let £ > 0 and « € (0,1) be fized real values. Let (p,q) € L*(Q) x Hy(div, Q) be
the unique weak solution of the problem (9.8) and (9.9) with the condition (9.10). Let (Dp)men be a
sequence of discretizations of ) in the sense of definition 9.2 such that for all m € N, regul(D,,) < & and
ml_i)n+1Oo thin(Dy,) = 0. For a given m € N, let us denote by (pm,dm) the solution (pp,ap) € Vp X Qp,4

given by (9.18) and (9.14) where D stands for Dy,. Let M, > 0, denoted N, such that the CFL condition
(9.40) holds. Let u,, € L>=(Q x R") denote the function up n defined by (9.18)-(9.23).

Then there exists a subsequence of (um)men, again denoted (um)men, which converges for the nonlinear
weak * topology of L>(2 x RT) to a function u € L=°( x RT x (0,1)), solution of

/ //1 < nw@,t#ﬂ)%(m,t) + n(u(x, t, a))div(p(x, t)a(z))+ )dadajdt
e Jado \ o (ute.t,0)) (0 @) (500, ) — u(a 1,)

+ [ atwnte) o0yt~ [ [ agate) o gta) drto)de > o (9.51)
Vo € CHRY x R,RY) such that ¢ =0 on 90T x RT = (9Q\ 9Q7) x RY,

vn € CHR,R) with " > 0.

The proof of the above lemma is fully similar to the one which is given in section 9.4.3. Using the classical
“doubling variable technique” and Krushkov entropies [49] lead to a result of uniqueness, under sufficient
hypotheses on the data giving that q is Lipschitz-continuous (see [61] or [74] for the particular problem
of handling the boundary conditions).

Lemma 9.10 (Uniqueness of the entropy process solution) Under Hypotheses (H), and the addi-
tional hypotheses OS) is of class C%, A is of class C?, f is of class C* and g is of class C? (for example), let
(p,q) € L?(2) x Hy(div,$) be the unique weak solution of the problem (9.8) and (9.9) with the condition
(9.10).

Then q is Lipschitz-continuous in €, there exists one and only one function u € L>(Q x Rt x (0,1)),
solution of (9.51), and there exists one and only one u € L>=(Q x RT), solution of (9.7), such that, for
a.e. (z,t,a) € QxR x(0,1), u(z,t, ) = a(x,t).

This result of uniqueness yields the convergence in LP(Q2x]0,T), for all p € [1,00) and T > 0, of (um)men
to the unique solution u of the problem.

9.6 Appendix : technical lemmata

Lemma 9.11 Let K be an open subset of R® with weakly Lipschitz-continuous boundary, such that there
exists a Lipschitz-continuous homeomorphism ¢ from Qs iy = | — 6(K),6(K) [4 to K with Lipschitz-
continuous inverse mapping; we denote by & an upper bound of the Lipschitz constants of ¢ and ¢~1.
Then there exists Ca1 > 0 only depending on & and d such that, for all f € L*(0K), f >0,

F@) dy(z) < Cn / f o 6() dv(x). (9.52)

OK 0Qs(k)

O ! / fodlz)dv(z) <
0Qs(k)
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Notice that a Lipschitz-continuous homeomorphism with Lipschitz-continuous inverse mapping between
two open sets has a unique extension as a Lipschitz-continuous homeomorphism with Lipschitz-continuous
inverse mapping between the closures of the open sets, and that this extension defines a Lipschitz-
continuous homeomorphism with Lipschitz-continuous inverse mapping between the boundaries of the
open sets.

Remark 9.8 The most useful inequality (and the easiest to obtain) in the following will be the second
one of (9.52). We have also stated the first one in order that (9.52) allows to see that, when A is a
measurable subset of 0K, v(A) and v(¢~1(A)) (7) are comparable, with constants only depending on an
upper bound on the Lipschitz constants of ¢ and ¢~ *.

Proof.
We denote 6 = §(K).
It is well known (see e.g. [31]) that the application

fELYOK) — fog¢e LY0Qs5) (9.53)

is an isomorphism; we want here to estimate the norm of this application (and of its inverse mapping)
only in terms of ¢ and ¢! (with bounds not depending on §).

Let us first recall the definition of the integral on K when K is an open set with weakly Lipschitz-
continuous boundary: if V is an open set of R and 7 :] — 1,1[*"'— 9K NV is a Lipschitz-continuous
homeomorphism with Lipschitz-continuous inverse mapping, then for f € L'(9K), one has

/ F(@) dry(2) :/ For@)Onr A-ee ABarr|(x) da,
OKNV

1,141

where 9;7 denotes the i-th partial derivative of 7 (which is, by the Rademacher Theorem, a function in
(L>°(] — 1,1[¢71))? and is essentially bounded by lip(7)) and A is the inner product in R<.

With this definition, one can verify that the (d — 1)-dimensional measure on 9Qs is the (d — 1)-Lebesgue
measure on each piece of hyperplane the union of which is 9Qs. One can also notice that Qs =
AUUL (] =6, 8[ 7 x{=86}x] — 8,0/ ] — &, 5[t x {6} x] — §,5][?"%) where v(A) = 0 (A is made of sets
of dimension d — 2).

Since (9.53) is an isomorphism, the sets of null measure on 9@ are transported by ¢ on sets of null
measure on 0K. Thus, by denoting H; + =] — 6,5[" " *x{£5}x] — §,5[¢"%, one has, up to a set of null
measure, 0K = U (¢(H; +) U ¢(H; ). If f € LY(OK), f > 0, the integral of f on 0K can thus be
estimated if we estimate all the integrals of f on ¢(H; ).

Let us do it for H; , the other terms being studied the same way.

Define 7 :] — 1,1[%"1— 0K N ¢(H; 1) by 7(x) = ¢(5,6x). T is a Lipschitz-continuous homeomorphism
with Lipschitz-continuous inverse mapping; thus, by definition of the integral on 0K,

/ F@)dy(z) = / For@)Onr A« ABusr|(x) do (9.54)
OKN$(Hy ) ]—1,1[4-1

_ o a-1|9¢ L9
_ /]_171[“ o 6(6,0m)"~ | 58 (8,02) A+ A 52(5,00)| () do

Thus, by a change of variable,

= ° 99 Lp92
/BKW(HH)f(l‘)dV(I)—/ fod(0.y) |5 0.y A Aayd(&y)'(y)dy.

1-9,8[4—1

"Recall that v denotes the (d — 1)-dimensional measure on the boundary of any open subset of R? with weakly Lipschitz-
continuous boundary.
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Since ¢ is Lipschitz-continuous, we have, for all i € [2,d], ||8B_51HL00(H1’+) < lip(¢) and there exists thus
C2 only depending on ¢ and d such that

/ (@) dr(z) < Cos / fod(6.y)dy
OKN¢(Hy, ) ]—6,8[4—1

But, as we previously noticed, the (d — 1)-dimensional measure on Hq 4 is the (d — 1)-Lebesgue measure
on this piece of hyperplane, and thus

/ fod@y)dy= |  fod@) da),
]—5,6[d—1

Hy 4

which proves the second inequality of (9.52).

The proof of the first inequality of (9.52) relies on a lemma (mainly algebraic) stating that there exists
C53 only depending on d such that

|81T ARERWA 8d71T| Z 023 (lip(Til))i(dil) (955)

(see [31]). Since 771(2) = 57 1((¢71(2))2s- -, (07 1(2))a), one has lip(t—1) < £571; using this in (9.55)
and returning to (9.54) we get, thanks again to a change of variable, the first inequality of (9.52).

Lemma 9.12 Let K be an open subset of R? with weakly Lipschitz-continuous boundary; we denote by
my the measure of K. One assumes that there exists a Lipschitz-continuous homeomorphism L from K
to B(0,6(K)) with Lipschitz-continuous inverse mapping. Let & be a real value greater than the Lipschitz
constants of L and L. Let g € HY(K). The trace of g on OK is still denoted by g.

Then there exists C'5 > 0, only depending on & and d, such that

/ / )2 da dry(y) < Cs 6([()/ (Vy(z))? dz,
mK Jorx K
Thus, if ng(x) dx = 0 holds, one has

[ o) < cusm) [ Vot an (9.56)
oK K

Proof. In the following proof, C; denotes real values which only depend on d and &; § denotes §(K).
The application F' : & — (|2|/sup;cp1 4 |7i])> is a Lipschitz-continuous homeomorphism with Lipschitz
continuous inverse mapping between B(0,6) and Q =] — §, 5[%; moreover, the Lipschitz constants of F
and F~! only depend on d. Thus, there exists a Lipschitz-continuous homeomorphism ¢ from Q to K,
with Lipschitz continuous inverse mapping, such that the Lipschitz constants of ¢ and ¢~! are bounded
by C34 only depending on d and &.

According to Lemma 9.11, there exists Cy5 only depending on d and £ such that

/BK/ Rdzdyly) < Cs /BQ/ (2))? dz dy(y)

— Oy / / (9(6) — g(d(a' )2 g ala’) da’ dr(y),
2Q JQ

IA

where Jy 4(2') is the absolute value of the jacobian in the change of variable ¢. Setting h = g o ¢, one
has h € H'(Q). Then one gets the existence of Cas > 0, only depending on d and &, such that

/6K/ V2 da dy(y) < Cog /BQ/ )2 dx dy(y).
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The change of variable z = ¢~ 1(2’) proves the existence of Ca7 > 0, only depending on d and ¢ such that

/ (Vh(z))? dz < Cr / (Va(a'))? da’. (9.57)
Q K

Therefore, if one proves the existence of Cag > 0, only depending on d and &, such that

/aQ/ )? dady(y) < Cos 6‘”1/Q (Vh(z))? dz, (9.58)

one gets (9.12) from (9.57) and (9.58) and the fact that the existence of £ ensures that there exists
Cs5 > 0 with mg > Cs 5.

In order to prove (9.58), one may assume by a classical argument of density that h € C*(Q). Since Q is
a cube with 2d edges, it suffices to prove the existence of Co9 > 0, only depending on d and &, such that

(h(y )2 da dy(y) < Cag 6%t [ (Vh(2))? da, (9.59)
AL J

Q

where 0 = {—6} x [=8,6]%71, to get (9.58) with Cog = 2dChg. Let H = [—§,6]"! and QT = [0,4] x H.
We can now write, for all z € Q,

// )2 da dry(y <2// V2 dx dvy(y +2// )? dz dy(y).

An integration with respect to z € QT leads to
gd-15d / / 2 4w dy(y) < 2(26)0A + 2(26)1 B, (9.60)

with

//Q 2))? dz dn(y),

/ / 2 dx dz.
Q+
Let us first study A. By definition,

a= || /05<h<<_5,y>>_h(<a,b>>>2 dadbdy,

A—/H/H/06</01Vh((5+9(a+5),y+0(by)))-(a+5,by)d9> dadbdy.

Using the Cauchy-Schwarz inequality, one gets

and

and therefore,

A< (26)2d/H/H/05/01 (VA((=6 4+ 0(a+ 6),y + 0(b—y))))* df dadbdy.

Using the Fubini Theorem and the two changes of variable b — o = b —y € Hy = [~24,25]9!
y—y =y+60b € H, we obtain then
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A< (25)2d/H /05/01/H(Vh((5+0(a+5),y’)))2 dy do da db.

We now change the variable 0 into ¢t = —0 + 6(a + ¢). This yields:

& a
A< (26)2(45)d1d/0 [S/ILI(Vh(<t,y')))2a%édy'dtda.

Since, for all a € [0, 4], %ﬂ; < %, one gets, setting « = (¢,y),

A < 2%§itg /Q (Vh(z))? da. (9.61)

Let us now study B. We have

B< (26)2d/Q+/Q/01 (Vh(z +6(2 — 2)))? df der dz.

Using the Fubini Theorem and the the two changes of variable z — 2/ = z — 2 € Qy = [-26,24]¢,

r— 1 =x+602 €Q, we get
B< (25)2(1/ / (Vh(z'))? da’ d2',
2JQ

B < 22425442 / (Vh(z'))? da. (9.62)
Q

Thus, using (9.60), (9.61) and (9.62), one concludes the proof of (9.59).

which gives

Assuming now [ g(x)dx = 0, the proof of (9.56) is then a direct consequence of

gy = [ (o - —— [ gw)dy) dvi) < 2 dwdy(y).
/BK /8K< MK Jk 0K

Lemma 9.13 Let K be an open subset of R? with weakly Lipschitz-continuous boundary; we denote
the measure of K by myi. One assumes that there exists a Lipschitz-continuous homeomorphism with
Lipschitz-continuous inverse mapping L from B(0,5(K)) to K. Let & be a real value greater than the
Lipschitz constants of £ and L. Let g € HY(K).

Then there exists Co > 0, only depending on & and d, such that

2
o / / Zdxdy < Cy 6(K)? /K (Vyg(z))” dx. (9.63)
Thus, if [; g(x)dx =0 holds, one has

/ G*(x) dx < Oy 5(K)2/ (Vg(z))? da. (9.64)
K K

Proof. We denote § = §(K). Using the change of variables 2’ = £(z) and 3’ = L(y), and writing for
simplicity of notations B = B(0, §), one gets the existence of C3q, only depending on d and &, such that

// dey<C’30// — g(L(a')))? da’ dy.
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Setting h = go £, one has h € H'(B). Then one gets the existence of C3; > 0, only depending on d and
&, such that

/ (Vh(2))? dz < Ca1 / (Vg(a')? da. (9.65)
B K
Thus, if one proves the existence of C'33 > 0, only depending on d and &, such that
/ / 2dx dy < Cay 5d+2/ (Vh(z))? de, (9.66)
B

one gets (9.13) from (9.65), (9.66) and the fact that the existence of £ ensures that there exists C5 with
my > Cs 8% In order to prove (9.66), one may assume by a classical argument of density that h € C1(B).

One sets
A= / / 2 dux dz.

Using the Cauchy-Schwarz inequality, we get

A< (25)2d/B /B /01 (Vh(z +0(z — )))* df dz d=.

Using the Fubini Theorem and the changes of variable z — 2’ = z—x € By := B(0,20), x — 2’ = x4+ 02/,

we get
A< (25)%1/ / (Vh(z))? do’ d2',
By JB

which gives the existence of some C33, only depending on d, such that

A < Cy38972 / (Vh(z))* dz.
B

This concludes the proof of (9.66).

Assuming now [ g(x)dx = 0, the proof of (9.64) follows, remarking that in such a case

/ng(w’)de/K(g(fﬁ)—m%{/Kg(y)d@ d:1:<—// ? drdy.

Lemma 9.14 Let K be an open subset of R® with weakly Lipschitz-continuous boundary, such that there
ezists a Lipschitz-continuous homeomorphism with Lipschitz-continuous inverse mapping L from K to
B(0,6(K)). One denotes by & an upper bound of both Lipschitz constants. Let a C 0K, such that there
exists xg € a and ¢ > 0 with

0K N B(xo,(5(K)) Ca

Let mq denote the d— 1 Lebesque measure of a. Let q € H(div, K) such that q-ngx € L*(OK) and there
exists g, € R with q(x) - ngx (x) = qq for a.e. x € a.
Then there exists Ci6, only depending on d, & and (, such that

maq> < Cie (% /K Q*(z)dx +6 /K (div q(:z:))zd:r) (9.67)
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Proof. Denoting 6 = §(K), let X € 9B(0,0) and n € (0,1]. We have {Z € 9B(0,9) | Z-X >
(1 —n)8%} = 9B(0,86) N B(X V2n6). Indeed, take Z € 9B(0,d) and denote h = Z — X. One has, since
|Z)? = |X|? = 62, |h|* = 26% — 27 - X; thus, |h\2 < 2né? if and only if Z - X > (1 —n)é>.
Define

B, ={y €K | L(y) - L(z0) > (1 —n)d%} = L7HIB(0,8) N B(L(x0), \/215)).
Let F(z) = (|z|/sup;c(r,q [#i])z. L7 o F~" is a Lipschitz continuous homeomorphism with Lipschitz-
continuous inverse mapping between K and Qs =] — 8, [%; moreover, the Lipschitz constants of L1 o F~1
and its inverse mapping are bounded by a real number only depending on d and &. Thus, by Lemma 9.11
applied to f = xz,,

Y(By) > Casy(F o L(By)) = Cas v(F(dB(0,8) N B(L(x0),/216)))

with C34 only depending on d and &. Tt is easy to see that v(F(0B(0,68) N B(L(20),v/210))) > Ca5 8971,
where C35 only depends on d and 7 (the set F(0B(0,8) N B(L(xg),/2nd)) contains a significant part of
a (d — 1)-dimensional ball on Qs with radius of order ¢). Thus, one has

Y(B,) > C36 6471, (9.68)

with Csg only depends on d, ¢ and 7.
Now, let no = inf(1, (¢/£)?/2) € (0,1] (no only depends on ¢ and &); since £~! is Lipschitz-continuous
with constant &, one has

By, C 9K N B(xo,(d) C a. (9.69)

Let us define the function v € H*(K) by

o) = (222

where the function ¢ € C([—1,1],[0,1]) is defined by ¢(s) = 0 for all s € [—1,1 — ng], ¥(s) = 2tm-1)

no
for all s € [1—ng,1—1n0/2], ¢(s) =1 for all s € [1 —1/2,1]. One has therefore v(x) € [0,1] for all z € K,

v=1o0n B, /, and v=0on IK \ By, D 9K \ a and
w/(ﬁz Ezo)
52

Thus, since |L(zo)| < 6§, we have ||[Vv||pex) < Csr where C37 only depends on d, ¢ and ¢. For all

x € 0K \ a, v(z) = 0, and therefore the following relation holds

/ Vo(z) - q(z)de = — /K o(z) div q(z) dz + ga / o(z) dy ().

We have [ wv(z)dy(z) > v(B,,/2) (because v is non-negative and has value 1 on B, /) and thus, by
(9.68), [, v(z )d’y( ) > C35 6471 with Css only depending on d, & and (. Since ||Vv(2)]| () < €= and
mi < Cs9 8%, one therefore gets

qg < Cuo (5d22(d1)/ q(w)2 dr + 5d72(d71)/ (div q(x))z d:L‘>7
K K

which leads to (9.67), since m, < Cyy 6971

Vo(z) = (DL(x))T L(x0).



