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Abstract
In this article, we show that the Goldman–Iwahori
metric on the space of all norms on a fixed vector
space satisfies the Helly property for balls. On the
non-Archimedean side, we deduce that most classical
Bruhat–Tits buildings may be endowed with a natu-
ral piecewise 𝓁∞ metric which is injective. We also
prove that most classical semisimple groups over non-
Archimedean local fields act properly and cocompactly
on Helly graphs. This gives another proof of biauto-
maticity for their uniform lattices. On the Archimedean
side, we deduce that most classical symmetric spaces
of non-compact type may be endowed with a natural
invariant Finsler metric, restricting to an 𝓁∞ metric on
each flat, which is coarsely injective. We also prove that
most classical semisimple groups over Archimedean
local fields act properly and cocompactly on injective
metric spaces. We identify the injective hull of the sym-
metric space ofGL(𝑛, ℝ) as the space of all norms onℝ𝑛.
The only exception is the special linear group: if 𝑛 = 3

or 𝑛 ⩾ 5 and 𝕂 is a local field, we show that SL(𝑛, 𝕂)

does not act properly and coboundedly on an injective
metric space.
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2298 HAETTEL

INTRODUCTION

In this article, we are interested in the relationship between symmetric spaces of non-compact
type and Euclidean buildings, on one side, and injective metric spaces and Helly graphs, on the
other side.
A geodesic metric space is called injective if the family of closed balls satisfies the Helly prop-

erty, that is, any family of pairwise intersecting balls has a non-empty global intersection. An
injective metric space satisfies some properties of nonpositive curvature: it is contractible, any
finite group action has a fixed point, and it has a conical geodesic bicombing. One key feature
of injective metric spaces is that any metric space embeds isometrically in an essentially unique
smallest injectivemetric space, called the injective hull. Injectivemetric spaces in geometric group
theory have been notably popularized by Lang, who proved that any Gromov-hyperbolic group
acts properly and cocompactly on an injective metric space, the injective hull of a Cayley graph
(see [19, Theorem 1.4]).
A geodesic metric space is called coarsely injective if any family of pairwise intersecting balls

has a non-empty global intersection, up to increasing the radii by a uniform amount. If a finitely
generated group acts properly and cocompactly on a coarsely injective metric space, we can
deduce that it is semi-hyperbolic in the sense of Alonso–Bridson. This strategy has been used
by Hoda, Petyt, and the author to prove that any hierarchically hyperbolic group, including any
mapping class group of a surface, is coarsely injective and semi-hyperbolic.
The discrete analog of injective metric spaces is the notion of Helly graphs: a connected graph

is called Helly if the family of combinatorial balls satisfies the Helly property. The reader is
referred to [5] for the study of group actions on Helly graphs. One notable result is that a dis-
crete group acting properly and cocompactly on a locally finite Helly graph is biautomatic (see [5,
Theorem 1.5]).
Symmetric spaces of non-compact type and Euclidean buildings already have a CAT(0) met-

ric. Nevertheless, looking for injective metrics on those spaces may provide extra structure. For
instance, deciding which CAT(0) groups are biautomatic is very subtle, as Leary and Minasyan
recently provided the first counter-examples (see [20]). On the other hand, any Helly group
is biautomatic.
Our work is based on a very simple remark that, given any set of norms on a vector space

satisfying simple conditions, the Goldman–Iwahori metric satisfies the Helly property for closed
balls (see [9]). The fact that the metric is geodesic will be verified in concrete examples.

Proposition A (Proposition 2.1). Let 𝕂 denote a valued field, let 𝑉 denote a 𝕂-vector space, and let
𝑋 denote a set of norms on𝑉 satisfying simple conditions (see Proposition 2.1). For any two elements
𝜂, 𝜂′ in 𝑋, let us define the Goldman–Iwahori metric

𝑑(𝜂, 𝜂′) = sup
𝑣∈𝑉⧵{0}

||||log
𝜂(𝑣)

𝜂′(𝑣)

||||.
The family of closed balls in the metric space (𝑋, 𝑑) satisfies the Helly property.

Bruhat–Tits buildings

The first example to which Proposition A applies is the Goldman–Iwahori space of all ultramet-
rics norms (see [9]). It identifies with the Bruhat–Tits extended building ofGL(𝑛, 𝕂), where 𝕂 is a
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INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2299

non-Archimedean valued field which is locally compact, or more generally spherically complete.
Recall that the Bruhat–Tits building 𝑋 of SL(𝑛, 𝕂) can be described as the set of all homothety
classes of ultrametric norms on 𝕂𝑛 (see [23], for instance), and the Bruhat–Tits extended build-
ing 𝑋 of GL(𝑛, 𝕂) can be described as the set of all ultrametric norms on 𝕂𝑛, also called the
Goldman–Iwahori space. Each apartment in 𝑋 naturally identifies with ℝ𝑛, and the Goldman–
Iwahori metric from Proposition A is the length metric associated to the standard piecewise 𝓁∞

metric on each apartment. We therefore have the following.

Theorem B (Theorem 3.2). Let 𝕂 denote any non-Archimedean-valued field 𝕂 which is spheri-
cally complete, and consider the extended Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂). Endow 𝑋 with the
Goldman–Iwahori metric, that is, the length metric associated to the standard piecewise 𝓁∞ metric
on each apartment. Then (𝑋, 𝑑) is injective.

Note that a particular case of this result, when the valuation is discrete and the building is
simplicial, was already known, combining works of Hirai and Chalopin et al.

Theorem [6, 12]. Let 𝑋 denote any extended Euclidean building of type 𝐴𝑛−1. Endow 𝑋 with
the length metric associated to the standard piecewise 𝓁∞ metric on each apartment. Then (𝑋, 𝑑)

is injective.

Our work has the advantage of being valid for a possibly non-discrete valuation if the field 𝕂 is
spherically complete, and furthermore our proof is extremely simple.
We can also wonder whether we can apply it to find a Helly graph related to Euclidean

buildings. This is indeed the case.

Theorem C (Theorem 3.3). Let 𝕂 denote any non-Archimedean discretely valued field 𝕂, and con-
sider the extended Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂). Then the thickening of the vertex set 𝑋(0) of
𝑋 is a Helly graph. In particular, GL(𝑛, 𝕂) acts properly and cocompactly by automorphisms on a
Helly graph.

The thickening of 𝑋(0) is the graph with vertex set 𝑋(0), and with an edge between two vertices
if they are at 𝓁∞ distance 1 in some apartment.
For other classical groups,we can in fact deduce similar results using an embedding inGL(𝑛, 𝕂).

CorollaryD (Theorems 3.4 and 3.5). Let𝕂 denote a local field of characteristic different from 2, and
let 𝐺 denote a classical connected semisimple group over 𝕂, realized as the identity component of the
fixed point set of an involution in the general linear groupGL(𝑛, 𝕂). Then the Bruhat–Tits building of
𝐺, endowed with the lengthmetric induced from the 𝓁∞ metric on the extended Bruhat–Tits building
ofGL(𝑛, 𝕂), is injective. Furthermore, the group𝐺 acts properly and cocompactly by automorphisms
on a locally finite Helly graph.

Note that Chalopin et al. proved that any cocompact lattice in a Euclidean building of type 𝐶𝑛

acts properly and cocompactly on a Helly graph (see [5, Corollary 6.2]).
We also easily deduce a result for all classical semisimple Lie groups and their cocompact

lattices.
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2300 HAETTEL

Corollary E (Corollary 3.6). Let 𝐺 denote a classical reductive Lie group over a non-Archimedean
local field of characteristic different from 2, and let 𝑎 ⩾ 0 denote the number of semisimple factors of
type𝐴. Then𝐺 × ℤ𝑎 acts properly and cocompactly by automorphisms ona locally finiteHelly graph.
For any cocompact lattice Γ in 𝐺, the group Γ × ℤ𝑎 acts properly and cocompactly by

automorphisms on a locally finite Helly graph, and the group Γ is biautomatic.

Note that Swiatkowski proved that any group acting properly and cocompactly on any
Euclidean building is biautomatic (see [26, Theorem 6.1]). Nevertheless, this provides another
perspective on this result.

Symmetric spaces

The second example to which Proposition A applies is the symmetric space 𝑋 = GL(𝑛, ℝ)∕𝕆(𝑛)

of GL(𝑛, ℝ), which may be described as the space of all Euclidean norms on ℝ𝑛. However, it does
not apply directly, since the supremum of two Euclidean norms is no longer Euclidean. So we
rather consider the space �̂� of all norms on ℝ𝑛, and use the John–Löwner ellipsoid to show that
𝑋 is cobounded in �̂�.

Theorem F (Theorem 4.3). Let 𝑋 = GL(𝑛, ℝ)∕𝕆(𝑛) denote the symmetric space of GL(𝑛, ℝ), and
endow𝑋 with the Finsler lengthmetric associated to the standard 𝓁∞metric on each apartment. The
injective hull of 𝑋 is the space �̂� of all norms on ℝ𝑛. Moreover, 𝑋 is cobounded in �̂�, which is proper.
As a consequence, GL(𝑛, 𝕂) acts properly and cocompactly on the injective space �̂�.

For other classical groups, we can in fact deduce similar results using an embedding in
GL(𝑛, ℝ).

Theorem G (Theorem 4.5). Let 𝐺 denote a classical semisimple non-compact real Lie group which
is not of type SL, and let 𝑋 denote its symmetric space. Then 𝑋 has a natural Finsler length metric
𝑑 such that (𝑋, 𝑑) is coarsely injective, and its injective hull is proper. In particular, 𝐺 acts properly
and cocompactly by isometries on an injective metric space.

We also easily deduce a result for all classical semisimple Lie groups and their cocompact
lattices.

Corollary H (Corollary 4.7). Let 𝐺 denote any reductive real Lie group, with classical non-compact
semisimple factors. Let 𝑎 ⩾ 0 denote the number of semisimple factors of type SL. Then 𝐺 × ℝ𝑎 acts
properly and cocompactly on an injective metric space. In particular, for any cocompact lattice Γ in
𝐺, the group Γ × ℤ𝑎 acts properly and cocompactly on an injective metric space.

Recall that Chalopin et al. proved that any Helly group is biautomatic. This motivates the
question whether the non-discrete analogue of this result holds.

Question. Assume that a finitely generated groupΓ acts properly and cocompactly on an injective
metric space. Is Γ biautomatic?
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INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2301

The special linear group

We now turn to the special linear group. According to Theorems B and F, if 𝕂 is a local field, we
have seen that GL(𝑛, 𝕂) acts properly and cocompactly on an injective metric space. It is natural
to ask what happens for SL(𝑛, 𝕂). Inspired by the work of Hoda on crystallographic Helly groups
(see [14]), we prove the following.

Theorem I (Theorem 5.1). Let 𝕂 be a local field (with characteristic different from 2 if 𝕂 is non-
Archimedean), and let 𝑛 = 3 or 𝑛 ⩾ 5. Then SL(𝑛, 𝕂) is not coarsely injective: SL(𝑛, 𝕂) does not act
properly and coboundedly on an injective metric space.

This is also evidence that cocompact lattices in SL(𝑛, 𝕂) are not expected to be coarsely injective.

Structure of the article

In Section 1, we review the notions of injective metric spaces, Helly graphs and group actions. In
Section 2, we present Proposition 2.1 stating that the Goldman-Iwahori metric on the space of all
norms satisfies a Helly property for balls. In Section 3, we apply this construction to Bruhat-Tits
buildings, and in Section 4, we apply it to symmetric spaces of non-compact type. In Section 5, we
prove that the special linear group is not coarsely injective.

1 INJECTIVEMETRIC SPACES ANDHELLY GRAPHS

In this section, we recall some basic definitions about injective metric spaces and Helly graphs.
We refer the reader to [19] and [5] for more details.
A metric space (𝑋, 𝑑) is called injective if, for any family (𝑥𝑖)𝑖∈𝐼 of points in 𝑋 and (𝑟𝑖)𝑖∈ℕ of

nonnegative real numbers satisfying

∀𝑖, 𝑗 ∈ 𝐼, 𝑟𝑖 + 𝑟𝑗 ⩾ 𝑑(𝑥𝑖, 𝑥𝑗),

the family of balls (𝐵(𝑥𝑖, 𝑟𝑖))𝑖∈ℕ has a non-empty global intersection.
In case the metric space (𝑋, 𝑑) is geodesic, it is injective of and only if the family of balls

satisfy the Helly property: any family of pairwise intersecting closed balls has a non-empty
global intersection.
Examples of geodesic injective metric spaces are normed vector spaces with the 𝓁∞ norm, and

also finite-dimensional CAT(0) cube complexes with the piecewise 𝓁∞ metric (see [2]).
One key feature of the theory is that any metric space 𝑋 embeds isometrically in a unique

minimal injective metric space, called the injective hull of 𝑋 and denoted as 𝐸𝑋 (see [16]).
A metric space (𝑋, 𝑑) is called coarsely injective if there exists a constant 𝐶 ⩾ 0 such that, for

any family (𝑥𝑖)𝑖∈𝐼 of points in 𝑋 and (𝑟𝑖)𝑖∈ℕ of nonnegative real numbers satisfying

∀𝑖, 𝑗 ∈ 𝐼, 𝑟𝑖 + 𝑟𝑗 ⩾ 𝑑(𝑥𝑖, 𝑥𝑗),

the family of balls (𝐵(𝑥𝑖, 𝑟𝑖 + 𝐶))𝑖∈ℕ has a non-empty global intersection.
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2302 HAETTEL

There is also a discrete version of injective metric spaces concerning graphs: a connected graph
is called a Helly graph if the family of combinatorial balls satisfies the Helly property: any family
of pairwise intersecting balls has a non-empty global intersection.
Concerning actions of groups on injective metric spaces, we will distinguish three families.

∙ A group 𝐺 is called coarsely injective if it acts properly and coboundedly by isometries on an
injective metric space, or equivalently it acts properly and cocompactly by isometries on a
coarsely injective metric space (see [5, Proposition 3.12]).

∙ A group 𝐺 is called metrically injective if it acts properly and cocompactly by isometries on an
injective metric space.

∙ A group 𝐺 is called Helly if it acts properly and cocompactly by automorphisms on a Helly
graph.

Any Helly group is metrically injective, by considering the injective hull of a Helly graph. And
obviously, any metrically injective group is coarsely injective.
We now list examples of such groups.
According to [4] (see also [15, Corollary 3.6]), the thickening of any CAT(0) cube complex is

a Helly graph: in particular, any group acting properly and cocompactly on a CAT(0) cube com-
plex is Helly. More generally, any group acting properly and cocompactly on a finite rank metric
median space is metrically injective (see [2]). Urs Lang motivated the interest in group actions on
injective metric spaces in [19], notably proving that any Gromov-hyperbolic group is Helly (see
also [7]), and acts properly and cocompactly on the injective hull of any Cayley graph. Chalopin
et al. proved (see [5, Corollary 6.2]) that any type-preserving uniform lattice in a Euclidean build-
ing of type 𝐶𝑛 is Helly. Huang and Osajda proved that any Artin group of type FC is Helly
(see [13]).
The authors Hoda and Petyt proved in [11] that any hierarchically hyperbolic group, including

any mapping class group of a surface, is coarsely injective.
The existence of such actions on injective metric spaces enables us to deduce many properties

reminiscent of non-positive curvature, let us list some of them.

Theorem 1.1. Assume that a finitely generated group 𝐺 is coarsely injective. Then:

∙ 𝐺 is semi-hyperbolic in the sense of Alonso–Bridson, which has many consequences [1].
∙ 𝐺 has finitely many conjugacy classes of finite subgroups [19, Proposition 1.2].
∙ 𝐺 satisfies the coarse Baum–Connes conjecture [5, Theorem 1.5].
∙ Asymptotic cones of 𝐺 are contractible [5, Theorem 1.5].

Assume furthermore that 𝐺 is metrically injective. Then:

∙ 𝐺 admits an EZ-boundary [5, Theorem 1.5].
∙ 𝐺 satisfies the Farrell–Jones conjecture (see [18]).

Assume in addition that 𝐺 is a Helly group. Then:

∙ 𝐺 is biautomatic [5, Theorem 1.5].

Note that all consequences are already known for CAT(0) groups, except the biautomaticity
(which does not hold for all CAT(0) groups, see [20]).
However, not all non-positively curved groups are coarsely injective: for instance, Hoda proved

that the (3,3,3) triangle Coxeter group, which is virtually ℤ2, is not Helly (see [14]).
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INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2303

2 AN INJECTIVE DISTANCE ON THE SPACE OF ALL NORMS

Let 𝕂 denote a field (or a division algebra) with an absolute value | ⋅ | ∶ 𝕂 → 𝑒𝐻 ∪ {0}, where 𝐻

is a non-zero additive subgroup of ℝ. Let 𝑉 denote a 𝕂-vector space. Recall that a norm on 𝑉 is a
map 𝜂 ∶ 𝑉 → 𝑒𝐻 that satisfies the following.

∙ ∀𝑣 ∈ 𝑉, 𝜂(𝑣) = 0 ⟺ 𝑣 = 0.
∙ ∀𝑣 ∈ 𝑉, ∀𝛼 ∈ 𝕂, 𝜂(𝛼𝑣) = |𝛼|𝜂(𝑣).
∙ ∀𝑢, 𝑣 ∈ 𝑉, 𝜂(𝑢 + 𝑣) ⩽ 𝜂(𝑢) + 𝜂(𝑣).

Note that there is a natural partial order on the set of all norms on 𝑉: we say that 𝜂 ⩽ 𝜂′ if
∀𝑣 ∈ 𝑉, 𝜂(𝑣) ⩽ 𝜂′(𝑣). If 𝜂 ⩽ 𝜂′, let us denote the interval 𝐼(𝜂, 𝜂′) as the set of all norms 𝜃 such that
𝜂 ⩽ 𝜃 ⩽ 𝜂′.

Proposition 2.1. Let 𝑋 denote a non-empty set of norms on 𝑉 satisfying the following properties:

∙ for every 𝜂 ∈ 𝑋 and every 𝑎 ∈ 𝐻, we have 𝑒𝑎𝜂 ∈ 𝑋;
∙ for every 𝜂, 𝜂′ ∈ 𝑋, there exist 𝑎 ∈ 𝐻 such that 𝑒−𝑎𝜂′ ⩽ 𝜂 ⩽ 𝑒𝑎𝜂′;
∙ the set 𝑋 is a join-semilattice: for every non-empty subset 𝐹 ⊂ 𝑋 such that there exists 𝜂 ∈ 𝑋 with

𝐹 ⩽ 𝜂, the set {𝜂′ ∈ 𝑋 |𝐹 ⩽ 𝜂′} has a unique minimum ∨𝐹 ∈ 𝑋.

For any two elements 𝜂, 𝜂′ in 𝑋, let us define the Goldman–Iwahori distance

𝑑(𝜂, 𝜂′) = sup
𝑣∈𝑉⧵{0}

||||log
𝜂(𝑣)

𝜂′(𝑣)

||||.

Then the family of closed balls in the metric space (𝑋, 𝑑) satisfies the Helly property.

Proof. We will first describe balls in (𝑋, 𝑑). Fix 𝜂 ∈ 𝑋 and 𝑎 ∈ ℝ+. Then 𝜂′ ∈ 𝐵(𝜂, 𝑎) if and
only if, for every 𝑣 ∈ 𝑉 ⧵ {0}, we have −𝑎 ⩽ log

𝜂′(𝑣)

𝜂(𝑣)
⩽ 𝑎, hence 𝑒−𝑎𝜂(𝑣) ⩽ 𝜂′(𝑣) ⩽ 𝑒𝑎𝜂(𝑣). As a

consequence, the ball 𝐵(𝜂, 𝑎) coincides with the interval 𝐼(𝑒−𝑎𝜂, 𝑒𝑎𝜂).
We will now prove that the intervals in 𝑋 satisfy the Helly property. Consider a family (𝐼𝑠 =

𝐼(𝜂𝑠, 𝑒
2𝑎𝑠𝜂𝑠))𝑠∈𝑆 of pairwise intersecting intervals in 𝑋, where 𝑎𝑠 ∈ 𝐻 for each 𝑠 ∈ 𝑆. Let 𝐹 =

{𝜂𝑠}𝑠∈𝑆 ⊂ 𝑋: for any 𝑠, 𝑡 ∈ 𝑆, since 𝐼𝑠 and 𝐼𝑡 are intersecting, we have 𝜂𝑡 ⩽ 𝑒2𝑎𝑠𝜂𝑠. According to
the assumption on 𝑋, we can consider the join 𝜂 = ∨𝐹 ∈ 𝑋. For each 𝑠, 𝑡 ∈ 𝑆, since 𝜂𝑡 ⩽ 𝑒2𝑎𝑠𝜂𝑠,
we deduce that 𝜂 ⩽ 𝑒2𝑎𝑠𝜂𝑠. In particular, for each 𝑠 ∈ 𝑆, we have 𝜂𝑠 ⩽ 𝜂 ⩽ 𝑒2𝑎𝑠𝜂𝑠, so 𝜂 ∈ 𝐼𝑠. We
have proved that the global intersection

⋂
𝑠∈𝑆 𝐼𝑠 is non-empty. □

3 BRUHAT–TITS (EXTENDED) BUILDINGS ARE INJECTIVE

Wewill now apply Proposition 2.1 to define an injective metric on classical Bruhat–Tits buildings.

3.1 The standard and extended Bruhat–Tits buildings of 𝐆𝐋(𝒏, 𝕂)

Let 𝕂 be a field, with a non-Archimedean absolute value | ⋅ | ∶ 𝕂 → ℝ+. Assume that 𝕂 is a local
field, or more generally that 𝕂 is spherically complete: any decreasing intersection of balls in 𝕂

has non-empty intersection. Let 𝑉 denote a 𝑛-dimensional vector space over 𝕂.
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2304 HAETTEL

Let us say that a map 𝜂 ∶ 𝑉 → ℝ+ is an ultrametric norm on 𝑉 if it satisfies the following.

∙ ∀𝑣 ∈ 𝑉, 𝜂(𝑣) = 0 ⟺ 𝑣 = 0.
∙ ∀𝑣 ∈ 𝑉, ∀𝛼 ∈ 𝕂, 𝜂(𝛼𝑣) = |𝛼|𝜂(𝑣).
∙ ∀𝑢, 𝑣 ∈ 𝑉, 𝜂(𝑢 + 𝑣) ⩽ max(𝜂(𝑢), 𝜂(𝑣)).

An ultrametric norm 𝜂 on 𝑉 is called diagonalizable if there exists a basis (𝑣1, … , 𝑣𝑛) of 𝑉 such
that

∀𝑣 =

𝑛∑
𝑖=1

𝑥𝑖𝑣𝑖 ∈ 𝑉, 𝜂(𝑣) = max1⩽𝑖⩽𝑛 |𝑥𝑖|.

According to [25, Proposition 1.20], if 𝕂 is a local field, any ultrametric norm on 𝑉 is
diagonalizable. This holds more generally if 𝕂 is spherically complete, see [25, Remark 1.24].
Say that two ultrametric norms 𝜂, 𝜂′ ∶ 𝑉 → ℝ+ are homothetic if there exists 𝑎 ∈ ℝ such that

𝜂′ = 𝑒𝑎𝜂. The set 𝑋 of homothety classes of ultrametric norms on 𝑉 is called the Bruhat–Tits
building of SL(𝑛, 𝕂) (see [23], for instance).
Let 𝑋 denote the space of all (diagonalizable) ultrametric norms on 𝑉, it has been studied by

Goldman and Iwahori (see [9]) and can be identified with the extended Bruhat–Tits building of
GL(𝑛, 𝕂). It is homeomorphic to the product 𝑋 × ℝ.
For any two elements 𝜂, 𝜂′ in 𝑋, let us define the Goldman–Iwahori distance

𝑑(𝜂, 𝜂′) = sup
𝑣∈𝑉⧵{0}

||||log
𝜂(𝑣)

𝜂′(𝑣)

||||.

We have an explicit description of the distance 𝑑 in terms of apartments of 𝑋. This descrip-
tion can also be found in [9] without the building point of view, but we will give here a simple
description using the building.
Let us recall the description of apartments in the Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂). For each

basis 𝑣1, … , 𝑣𝑛 of 𝑉 (up to homotheties and permutations), there is an associated apartment in 𝑋.
For each𝑚 ∈ ℝ𝑛, let us consider the following ultrametric norm on 𝑉:

∀𝑣 =

𝑛∑
𝑖=1

𝑥𝑖𝑣𝑖 ∈ 𝑉, 𝜂𝑚(𝑣) = max1⩽𝑖⩽𝑛 𝑒𝑚𝑖 |𝑥𝑖|.

Then the set of such homothety classes identifies with {𝑥 ∈ ℝ𝑛 |𝑥1 + 𝑥2 +⋯ + 𝑥𝑛 = 0} ≃ ℝ𝑛−1.
It is a model of the standard Euclidean apartment of type 𝐴𝑛−1.
Let us now describe the apartments of the extended Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂). For

each basis 𝑣1, … , 𝑣𝑛 of 𝑉 (up to homotheties and permutations), there is an associated apartment
in 𝑋: the set of all norms {𝜂𝑚 |𝑚 ∈ ℝ𝑛} identifies with ℝ𝑛, which is a model of the extended
Euclidean apartment of type 𝐴𝑛−1.

Proposition 3.1. The metric 𝑑 on 𝑋 coincides with the 𝓁∞ metric on each extended apartment.

Proof. Let us denote by 𝑑∞ ∶ 𝑋 × 𝑋 → ℝ+ the map which to any couple (𝑥, 𝑦) in some apartment
𝐴 associates their 𝓁∞ distance in 𝐴. Note that 𝑑∞ is well defined, but it is not obvious that it is
a metric.

 14692120, 2022, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s.12694 by B

iu M
ontpellier, W

iley O
nline L

ibrary on [15/12/2022]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense



INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2305

Fix a basis 𝑣1, … , 𝑣𝑛 of𝑉, and the associated apartment𝐴 = {𝜂𝑚,𝑚 ∈ ℝ𝑛} in𝑋. Fix any𝑚 ∈ ℝ𝑛.
Let 1 ⩽ 𝑖 ⩽ 𝑛 such that |𝑚𝑖| = ‖𝑚‖∞, then we have

|||||log
𝜂𝑚(𝑣𝑖)

𝜂0(𝑣𝑖)

||||| =
||log 𝑒𝑚𝑖 || = |𝑚𝑖| = ‖𝑚‖∞,

hence 𝑑∞(𝜂0, 𝜂𝑚) = ‖𝑚‖∞ ⩽ 𝑑(𝜂0, 𝜂𝑚).
On the other hand, for any 𝑣 =

∑𝑛
𝑖=1 𝑥𝑖𝑣𝑖 ∈ 𝑉, we have

|||||log
𝜂𝑚(𝑣)

𝜂0(𝑣)

||||| =
|||||log

max1⩽𝑖⩽𝑛 𝑒𝑚𝑖 |𝑥𝑖|
max1⩽𝑖⩽𝑛 |𝑥𝑖|

|||||
⩽
|||||log

max1⩽𝑖⩽𝑛 𝑒‖𝑚‖∞ |𝑥𝑖|
𝑚𝑎𝑥1⩽𝑖⩽𝑛|𝑥𝑖|

||||| = ‖𝑚‖∞,

so we deduce that 𝑑(𝜂0, 𝜂𝑚) ⩽ 𝑑∞(𝜂0, 𝜂𝑚).
So we have proved that 𝑑(𝜂0, 𝜂𝑚) = 𝑑∞(𝜂0, 𝜂𝑚), for any 𝑚 ∈ ℝ𝑛. Hence we deduce that 𝑑 =

𝑑∞. □

We can now apply Proposition 2.1 to prove that the metric 𝑑 is injective.

Theorem 3.2. The extended Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂), endowed with the metric 𝑑,
is injective.

Proof. We first have to check that 𝑋 satisfies the three assumptions of Proposition 2.1.

∙ For every 𝜂 ∈ 𝑋 and every𝑎 ∈ ℝ, we know that 𝑒𝑎𝜂 is an ultrametric normon𝑉, hence 𝑒𝑎𝜂 ∈ 𝑋.
∙ For every 𝜂, 𝜂′ ∈ 𝑋, let 𝑎 = 𝑑(𝜂, 𝜂′) = sup𝑣∈𝑉⧵{0} | log 𝜂(𝑣)

𝜂′(𝑣)
| ∈ ℝ+. For each 𝑣 ∈ 𝑉, we have

𝜂(𝑣) ⩽ 𝑒𝑎𝜂′(𝑣) and 𝜂′(𝑣) ⩽ 𝑒𝑎𝜂(𝑣), hence 𝑒−𝑎𝜂′ ⩽ 𝜂 ⩽ 𝑒𝑎𝜂′.
∙ For every non-empty subset 𝐹 ⊂ 𝑋 such that there exists 𝜂 ∈ 𝑋 with 𝐹 ⩽ 𝜂, let 𝜃 = sup𝐹. It is
clear that 𝜃 is a well-defined norm on 𝑉, we will check that it is ultrametric: fix 𝑢, 𝑣 ∈ 𝑉. For
every 𝜀 > 0, there exists 𝜂′ ∈ 𝐹 such that 𝜃(𝑢 + 𝑣) ⩽ 𝜂′(𝑢 + 𝑣) + 𝜀. Then

𝜃(𝑢 + 𝑣) ⩽ 𝜂′(𝑢 + 𝑣) + 𝜀 ⩽ max(𝜂′(𝑢), 𝜂′(𝑣)) + 𝜀 ⩽ max(𝜃(𝑢), 𝜃(𝑣)) + 𝜀.

This holds for any 𝜀 > 0, hence 𝜃(𝑢 + 𝑣) ⩽ max(𝜃(𝑢), 𝜃(𝑣)). So 𝜃 is an ultrametric norm on 𝑉:
𝜃 ∈ 𝑋, and it is the unique minimum of the set {𝜂′ ∈ 𝑋 |𝐹 ⩽ 𝜂′}. Also recall that since 𝕂 is
spherically complete, any ultrametric norm on 𝑉 is diagonalizable.

According to Proposition 2.1, the balls in (𝑋, 𝑑) satisfy the Helly property.
We also know by Proposition 3.1 that the metric space (𝑋, 𝑑) is geodesic. So we deduce that the

metric space (𝑋, 𝑑) is injective. □

3.2 Case of a discrete valuation

Wewill show that, if we further assume that the valuation is discrete, we can improve Theorem 3.2
by finding a Helly graph.
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2306 HAETTEL

Assume now that the absolute value is discrete: | ⋅ |(𝕂) = 𝑞ℤ ⊂ ℝ+, where 𝑞 is the cardinality of
the residue field. Then the Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂) has a natural simplicial structure,
where the vertex set 𝑋

(0)
is given by the homothety classes of ultrametric norms with values in

𝑞ℤ.
Similarly, the extended Bruhat–Tits building 𝑋 of GL(𝑛, 𝕂) has a natural simplicial structure,

where the vertex set𝑋(0) is given by the ultrametric norms with values in 𝑞ℤ. To be consistent, we
will in this case define the metric 𝑑 on 𝑋(0) as

𝑑(𝜂, 𝜂′) = sup
𝑣∈𝑉⧵{0}

||||log𝑞
𝜂(𝑣)

𝜂′(𝑣)

|||| ∈ ℕ.

Let us define the thickening𝑋′ of𝑋 as the graphwith vertex set𝑋(0), and with an edge between
two vertices 𝜂, 𝜂′ if they satisfy 𝑑(𝜂, 𝜂′) = 1.

Theorem 3.3. The thickening𝑋′ of the extended Bruhat–Tits building ofGL(𝑛, 𝕂) is a Helly graph.

Proof. Following the same proof as Theorem 3.2, with 𝐻 = log(𝑞)ℤ, we prove that the integer-
valued metric space (𝑋(0), 𝑑) has the Helly property for balls.
It now suffices to prove that the distance 𝑑 is a graph distance. According to Proposition 3.1, on

each extended apartment, the metric 𝑑 coincides with the standard 𝓁∞ metric on ℝ𝑛. Since the
restriction of the 𝓁∞ metric on ℝ𝑛 to the vertex set ℤ𝑛 is a graph distance, we deduce that 𝑑 is a
graph distance on 𝑋(0). This proves that the thickening 𝑋′ is a Helly graph. □

3.3 Classical Euclidean buildings

We now show how to apply the previous results concerning the general linear group to the other
classical groups.
Fix a local non-Archimedean field 𝕂with residual characteristic different from 2, and consider

a classical connected semisimple group 𝐺 over 𝕂, realized as the identity component of the fixed
point set of an involution Φ in a general linear group GL(𝑛, 𝕂). According to Bruhat and Tits
(see [3] and [24]), the Bruhat–Tits building 𝑋 of 𝐺 identifies with the set of Φ-fixed points in the
Bruhat–Tits-extended building 𝑌 of GL(𝑛, 𝕂).
More generally, we may consider a finite group 𝐹 of automorphisms of GL(𝑛, 𝕂) such that the

residual characteristic of 𝕂 does not divide the order of 𝐹. Then, according to [24], the Bruhat–
Tits building𝑋 of𝐺 = (GL(𝑛, 𝕂)𝐹)𝑜 identifies with the𝐹-fixed points in the Bruhat–Tits-extended
building 𝑌 of GL(𝑛, 𝕂).
Endow 𝑋 with the induced piecewise 𝓁∞ metric 𝑑 from 𝑌.

Theorem 3.4. The Bruhat–Tits building 𝑋 of 𝐺, with the metric 𝑑, is injective.

Proof. According to [19, Proposition 1.2], the fixed point set 𝑋 = 𝑌𝐹 of any finite group action on
an injective metric space is non-empty and injective. So the metric space (𝑋, 𝑑) is injective. □

We can also strengthen this result by looking for an action of 𝐺 on a Helly graph.
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INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2307

Theorem 3.5. The group 𝐺 acts properly and cocompactly by automorphisms on a Helly graph.

Proof. Let 𝑌′ denote the thickening of the 0-skeleton of 𝑌, which is a Helly graph according to
Theorem 3.3. Let 𝐹(𝑌′) denote the face complex of 𝑌′: it is the simplicial complex with vertex
set the set of cliques of 𝑌′, and with simplices the set of cliques contained in a given clique of
𝑌′. According to [5, Lemma 5.30], the face complex 𝐹(𝑌′) is clique-Helly (that is, the family of
maximal cliques satisfies the Helly property).
The group GL(𝑛, 𝕂) acts properly and cocompactly on 𝑌′. Let 𝑋′ denote the fixed point set of

𝐹 inside 𝐹(𝑌′): according to [5, Theorem 7.1, Corollary 7.4], it is a non-empty clique-Helly graph.
According to [6], the underlying graph of 𝑋′ is Helly, and 𝐺 acts properly and cocompactly on
𝑋′. □

The following is immediate.

Corollary 3.6. Let 𝐺 denote a classical reductive Lie group over a non-Archimedean local field of
characteristic different from 2, and let 𝑎 ⩾ 0 denote the number of semisimple factors of type𝐴. Then
𝐺 × ℤ𝑎 acts properly and cocompactly by automorphisms on a Helly graph.
For any cocompact lattice Γ in 𝐺, the group Γ × ℤ𝑎 acts properly and cocompactly by

automorphisms on a Helly graph, and the group Γ is biautomatic.

Proof. This is a direct consequence of Theorem 3.5. According to [5, Theorem 1.5], anyHelly group
is biautomatic. And according to [21, Theorem B], every direct factor of a biautomatic group is
biautomatic. □

Swiatkowski proved that any group acting properly and cocompactly on any Euclidean build-
ing is biautomatic (see [26, Theorem 6.1]). So we obtain another point of view on this result, for
uniform lattices in classical groups.

4 SYMMETRIC SPACES ARE COARSELY INJECTIVE

We will use Proposition 2.1 to find the injective hull of the symmetric space of GL(𝑛, ℝ), and to
study the injective hulls of classical symmetric spaces of non-compact type.

4.1 The symmetric space of 𝐆𝐋(𝒏,ℝ)

Fix𝕂 = ℝ,ℂ orℍ (the division algebra of quaternions), fix𝑛 ⩾ 2, and let𝑉 denote a𝑛-dimensional
vector space over 𝕂.
Say that two Euclidean norms 𝜂, 𝜂′ ∶ 𝑉 → ℝ+ are homothetic if there exists 𝑎 ∈ ℝ such that

𝜂′ = 𝑒𝑎𝜂. The set 𝑋 of homothety classes of hermitian norms on 𝑉 is called the symmetric space
of SL(𝑛, 𝕂), and it identifies naturally with the homogeneous space SL(𝑛, 𝕂)∕ SU(𝑛, 𝕂).
Let𝑋 denote the space of all hermitian norms on𝑉, it is called the symmetric space ofGL(𝑛, 𝕂)

and it identifies naturally with the homogeneous spaceGL(𝑛, 𝕂)∕U(𝑛, 𝕂). It is homeomorphic to
the product 𝑋 × ℝ.
Let �̂� denote the space of all norms on 𝑉 which are invariant under the unit group 𝕌 of 𝕂, it

contains 𝑋 as the subset of hermitian norms. The space �̂� can also be described as the space of
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2308 HAETTEL

all compact convex subsets of 𝑉 with non-empty interior, which are invariant under the linear
diagonal action of the unit group 𝕌 of 𝕂. Such convex subsets will be called symmetric. We will
call it the augmented symmetric space of GL(𝑛, 𝕂). The group GL(𝑛, 𝕂) acts naturally on �̂�, by
precomposing the norms, or by the linear action on convex subsets of 𝑉.
For any two elements 𝜂, 𝜂′ in �̂�, let us define the distance

𝑑(𝜂, 𝜂′) = sup
𝑣∈𝑉⧵{0}

||||log
𝜂(𝑣)

𝜂′(𝑣)

||||.

It is a lift of the Banach–Mazur distance, which is defined on the set of isometry classes of
such norms.
Let us also define the distance 𝑑 on 𝑋 as the restriction of the distance 𝑑.
We have an explicit description of the distance 𝑑 in terms of maximal flats of 𝑋.
Let us recall the description of maximal flats in the symmetric space 𝑋 of SL(𝑛, 𝕂). For each

basis 𝑣1, … , 𝑣𝑛 of 𝑉 (up to homotheties and permutations), there is an associated maximal flat in
𝑋. For each𝑚 ∈ ℝ𝑛, let us consider the following hermitian norm on 𝑉:

∀𝑥 =

𝑛∑
𝑖=1

𝑥𝑖𝑣𝑖 ∈ 𝑉, 𝜂𝑚(𝑥) =

√√√√ 𝑛∑
𝑖=1

𝑒2𝑚𝑖 |𝑥𝑖|2.

Then the set of suchhomothety classes identifieswith {𝑚 ∈ ℝ𝑛 |𝑚1 + 𝑚2 +⋯ + 𝑚𝑛 = 0} ≃ ℝ𝑛−1.
It is a model of the standard Euclidean flat of type 𝐴𝑛−1.
Let us now describe the maximal flats of the symmetric space 𝑋 of GL(𝑛, 𝕂). For each basis

𝑣1, … , 𝑣𝑛 of 𝑉 (up to homotheties and permutations), there is an associated maximal flat in 𝑋,
and the set {𝜂𝑚 |𝑚 ∈ ℝ𝑛} is a model of the extended Euclidean flat of type 𝐴𝑛−1.

Proposition 4.1. The metric 𝑑 on 𝑋 coincides with the 𝓁∞ metric on each maximal flat.

Proof. Let us denote by 𝑑∞ ∶ 𝑋 × 𝑋 → ℝ+ the map which to any couple (𝑥, 𝑦) in some maximal
flat 𝐴 associates their 𝓁∞ distance in 𝐴. As in Proposition 3.1, we prove that 𝑑 = 𝑑∞. □

Proposition 4.2. The symmetric space 𝑋 of GL(𝑛, 𝕂) is cobounded in �̂�.

Proof. Let𝐾 ∈ �̂�. Let 𝐵 ⊂ 𝐾 denote the unique John–Löwner ellipsoid of maximal volume. Since
𝐾 is invariant under the linear diagonal action of the unit group 𝕌, by uniqueness of 𝐵, we deduce
that 𝐵 is also invariant under the linear diagonal action of the unit group 𝕌. So the convex 𝐵 is the
unit ball of a hermitian norm on𝕂𝑛: 𝐵 ∈ 𝑋. According to [17], we know that 𝑑(𝐵, 𝐾) ⩽ log(

√
𝑎𝑛),

where 𝑎 = dimℝ(𝕂). Therefore any point of �̂� is at distance at most log(
√

𝑎𝑛) from 𝑋. □

We could then apply directly Proposition 2.1 to deduce that balls in �̂� satisfy the Helly property.
However, it is not clear yet that �̂� is a geodesic metric space. Moreover, it is interesting to describe
explicitly the injective hull of 𝑋. So instead of using Proposition 2.1, we will prove directly that �̂�
is the injective hull of 𝑋.

Theorem 4.3. Let 𝑋 denote the symmetric space ofGL(𝑛, 𝕂), endowed with the 𝓁∞ distance 𝑑. The
injective hull of 𝑋 is the space �̂� of all symmetric compact convex subspaces of 𝕂𝑛 with non-empty
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INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2309

interior. Moreover, 𝑋 is cobounded in �̂�, which is proper. As a consequence, GL(𝑛, 𝕂) acts properly
and cocompactly on the injective space �̂�.

Proof. We will use Lang’s description of the injective hull of (𝑋, 𝑑) (see [19]). Let us denote

Δ𝑋 = {𝑓 ∶ 𝑋 → ℝ+ 1-Lipschitz |∀𝑥, 𝑦 ∈ 𝑋, 𝑓(𝑥) + 𝑓(𝑦) ⩾ 𝑑(𝑥, 𝑦)},

equipped with the supremummetric:

∀𝑓, 𝑓′ ∈ Δ𝑋, 𝑑Δ𝑋(𝑓, 𝑓
′) = sup

𝑥∈𝑋
|𝑓(𝑥) − 𝑓′(𝑥)|.

Let us denote by 𝐸𝑋 the set of minimal elements of (Δ𝑋, ⩽). More explicitly, we have

𝐸𝑋 = {𝑓 ∈ Δ𝑋 |∀𝑥 ∈ 𝑋, 𝑓(𝑥) = sup
𝑦∈𝑋

𝑑(𝑥, 𝑦) − 𝑓(𝑦)}.

There is a canonical isometric embedding 𝑒 ∶ 𝑋 → 𝐸𝑋 defined by 𝑥 ↦ 𝑑(𝑥, ⋅), and 𝐸𝑋 is the
injective hull of 𝑋.
We will now define an isometric embedding 𝜙 from �̂� into 𝐸𝑋 extending 𝑒. For each convex

subset 𝐶 ∈ �̂�, let us consider 𝜙(𝐶) ∶ 𝐵 ∈ 𝑋 ↦ 𝑑(𝐶, 𝐵): it is clear that 𝜙(𝐶) ∈ Δ𝑋.
We will prove that, for any 𝐶, 𝐶′ ∈ �̂� and any 𝜀 > 0, there exists 𝐵 ∈ 𝑋 such that 𝑑(𝐵, 𝐶′) +

𝑑(𝐶′, 𝐶) ⩽ 𝑑(𝐵, 𝐶) + 𝜀. Fix 𝐶, 𝐶′ ∈ �̂� distinct, and let 𝑡 = 𝑑(𝐶, 𝐶′) > 0. Without loss of generality,
we may assume that for every 𝑠 < 𝑡, we have 𝐶 ⊄ 𝑒𝑠𝐶′. Let 𝑣 ∈ 𝜕𝑒−𝑡𝐶 ∩ 𝜕𝐶′.
Fix 𝜀 > 0. There exists an ellipsoid 𝐵′ ∈ 𝑋 such that 𝐶′ ⊂ 𝐵′ and 𝑣 ∈ 𝜕𝑒−𝜀𝐵′. Fix 𝑎 > 0 large

enough such that 𝐵 = 𝑒−𝑎𝐵′ ⊂ 𝐶 ∩ 𝐶′. Then 𝑑(𝐵, 𝐶′) ⩽ 𝑎, and since 𝑣 ∈ 𝜕𝑒𝑎−𝜀𝐵 ∩ 𝜕𝑒−𝑡𝐶, we
deduce that 𝑑(𝐵, 𝐶) ⩾ 𝑎 + 𝑡 − 𝜀. Hence we have 𝑑(𝐵, 𝐶′) + 𝑑(𝐶′, 𝐶) ⩽ 𝑎 + 𝑡 ⩽ 𝑑(𝐵, 𝐶) + 𝜀.
In particular, this result implies that the map 𝐶 ∈ �̂� ↦ 𝜙(𝐶) ∈ Δ𝑋 is an isometric embedding.

Furthermore, for any 𝐶 ∈ �̂� and 𝐶′ ∈ 𝑋, according to the same result, we deduce that 𝜙(𝐶)(𝐶′) =

sup𝐵∈𝑋 𝑑(𝐵, 𝐶′) − 𝜙(𝐶)(𝐵), hence 𝜙(𝐶) ∈ 𝐸𝑋.
We will now prove that 𝜙 extends 𝑒: for any 𝐵, 𝐶 ∈ 𝑋, we have 𝜙(𝐶)(𝐵) = 𝑑(𝐶, 𝐵) = 𝑑(𝐶, 𝐵) =

𝑒(𝐶)(𝐵). So we have proved that 𝜙 is an isometric embedding of �̂� into 𝐸𝑋, extending 𝑒.
To conclude, we will prove that 𝜙 is surjective: let 𝑓 ∈ 𝐸𝑋, and consider 𝐶 =

⋂
𝐵∈𝑋 𝑒𝑓(𝐵)𝐵.

Fix 𝐵0 ∈ 𝑋, then 𝐶 ⊂ 𝑒𝑓(𝐵0). On the other hand, for any 𝐵 ∈ 𝑋, we have 𝑒−𝑓(𝐵0)𝐵0 ⊂ 𝑒𝑓(𝐵)𝐵,
hence 𝑒−𝑓(𝐵0)𝐵0 ⊂ 𝐶. We deduce that 𝑑(𝐶, 𝐵0) ⩽ 𝑓(𝐵0), for any 𝐵0 ∈ 𝑋. Hence 𝜙(𝐶) ⩽ 𝑓, and by
minimality of 𝑓 ∈ 𝐸𝑋 we conclude that 𝜙(𝐶) = 𝑓. So 𝜙 is surjective.
We have proved that (�̂�, 𝑑) is isometric to 𝐸𝑋; hence, it is the injective hull of 𝑋.
According to Proposition 4.2we know that𝑋 is cobounded in �̂�, which is locally compact. Since

�̂� is also complete and geodesic, we deduce that �̂� is proper. □

4.2 Classical symmetric spaces of non-compact type

We now show how to apply the previous results concerning the general linear group to the other
classical groups.
Say that a semisimple non-compact real Lie group 𝐺 over ℝ is classical not of type SL if it

is commensurable to one of Sp(𝑛, ℝ), Sp(𝑛, ℂ), Sp(𝑛, ℍ) = SU∗(2𝑛), 𝕆(𝑛, ℂ), 𝕆(𝑛, ℍ) = SO∗(2𝑛),
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2310 HAETTEL

𝕆(𝑝, 𝑞), U(𝑝, 𝑞), Sp(𝑝, 𝑞) (see [10]). Note that, due to some exceptional isomorphisms (such as
SL(4, ℝ) being commensurable to SO(3, 3)), such a group𝐺may also be commensurable to a group
SL(𝑛, 𝕂).
There exists 𝑛 ⩾ 1, 𝕂 = ℝ,ℂ or ℍ, and a finite group 𝐹 of automorphisms ofGL(𝑛, 𝕂) such that

𝐺 embeds in GL(𝑛, 𝕂) and identifies with the fixed point subgroup GL(𝑛, 𝕂)𝐹 . More explicitely,
𝐹 is generated by the involution 𝐴 ↦ 𝐽−1(𝐴∗)−1𝐽, where 𝐽 is the matrix associated with the form
defining 𝐺.
Furthermore, if we denote by 𝐾 a maximal compact subgroup of 𝐺, we can assume that 𝐾 =

U(𝑛)𝐹 , and that the corresponding embedding of the symmetric space 𝑋 = 𝐺∕𝐾 of 𝐺 into the
symmetric space 𝑌 = GL(𝑛, 𝕂)∕U(𝑛) has image the fixed point set 𝑋 = 𝑌𝐹 of 𝐹. We endow 𝑋

with the restriction of the 𝓁∞ length metric on 𝑌. Let us denote �̂� the space of all symmetric
compact convex subspaces of 𝕂𝑛 with non-empty interior. According to Theorem 4.3, �̂� is also
the injective hull of 𝑌. Let us denote �̂� = �̂�𝐹 .

Proposition 4.4. Any classical irreducible symmetric space of non-compact type 𝑋, which is not of
type SL, is cobounded in �̂�.

Proof. Let 𝐾 ∈ �̂�𝐹 . Let 𝐵 ⊂ 𝐾 denote the unique John–Löwner ellipsoid of maximal volume. By
uniqueness, we deduce that 𝐵 is invariant under 𝐹, and also under the unit group U of 𝕂, that is,
𝐵 ∈ 𝑋 = 𝑌𝐹 . According to [17], we know that 𝑑(𝐵, 𝐾) ⩽ log(

√
𝑎𝑛), where 𝑎 = dimℝ(𝕂). Therefore

any point of �̂� = �̂�𝐹 is at distance at most log(
√

𝑎𝑛) from 𝑋 = 𝑌𝐹 . □

Theorem 4.5. Let 𝑋 denote a classical irreducible symmetric space of non-compact type which is
not of type SL. Then the Finslermetric space (𝑋, 𝑑) is coarsely injective, and its injective hull is proper.

Proof. According to Theorem 4.3, the symmetric space 𝑌 = GL(𝑛, 𝕂)∕U(𝑛), endowed with the
piecewise 𝓁∞ distance, is coarsely injective, and its injective hull �̂� is proper. The isometric action
of the finite group 𝐹 on 𝑌 extends to an isometric action on �̂�.
According to [19, Proposition 1.2], the fixed point set �̂�𝐹 of 𝐹 on �̂� is an injective metric space.

Therefore, the injective hull 𝐸𝑋 of 𝑋 may be realized as an isometric closed subspace of �̂� = �̂�𝐹 ,
so 𝐸𝑋 is proper.
On the other hand, since 𝑋 = 𝑌𝐹 is cobounded in �̂� = �̂�𝐹 , we deduce that 𝑋 is cobounded in

𝐸𝑋. □

Note that if 𝑋 has rank 1, we have a similar result.

Proposition 4.6. Let 𝑋 denote a rank 1 symmetric space of non-compact type, and let 𝑑 denote the
standard Riemannianmetric on𝑋. Then themetric space (𝑋, 𝑑) is coarsely injective, and its injective
hull is proper.

Proof. The metric 𝑑 is Gromov-hyperbolic, so according to [19, Proposition 1.3] we know that
(𝑋, 𝑑) is coarsely injective. We also know that 𝑋 may be realized as a totally geodesic subspace
of the symmetric space 𝑌 of GL(𝑛, ℝ) (for the Riemannian metric on 𝑌) for some 𝑛 ⩾ 2 (see [8,
Theorem 1.6.5]). Let us denote by 𝑑𝑌 the 𝓁∞ metric on 𝑌. Since each Riemannian geodesic is a
𝑑𝑌 geodesic, we deduce that 𝑑 coincides with the restriction on 𝑋 of 𝑑𝑌 (up to a constant factor,
which may be chosen to be 1). Hence (𝑋, 𝑑) is isometrically embedded in the proper injective
metric space 𝐸(𝑌, 𝑑𝑌), so the injective hull of 𝑋 is proper. □
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INJECTIVE METRICS ON BUILDINGS AND SYMMETRIC SPACES 2311

The following consequence of Theorem 4.5 is immediate.

Corollary 4.7. Let𝐺 denote any reductive Lie group overℝ, with classical non-compact semisimple
factors. Let 𝑎 ⩾ 0 denote the number of semisimple factors of type SL. Then𝐺 × ℝ𝑎 acts properly and
cocompactly on an injective metric space. In particular, for any cocompact lattice Γ in 𝐺, the group
Γ × ℤ𝑎 acts properly and cocompactly on an injective metric space.

As we will see below, the factors ℝ𝑎 and ℤ𝑎 are necessary.

5 THE SPECIAL LINEAR GROUP IS NOT COARSELY INJECTIVE

We now turn to the case of the special linear group. We will prove that it is not coarsely injective,
inspired by the result of Hoda that the (3,3,3) triangle Coxeter group𝑊, which is virtually ℤ2, is
notHelly (see [14]). However, the group𝑊 is a subgroup ofℤ3 ⋊𝔖3, which isHelly. This situation
is analogous to the inclusion of SL(𝑛, 𝕂) in GL(𝑛, 𝕂):

Theorem 5.1. Let 𝕂 be a local field (with characteric different from 2 if 𝕂 in non-Archimedean),
and let 𝑛 = 3 or 𝑛 ⩾ 5. Then SL(𝑛, 𝕂) is not coarsely injective: SL(𝑛, 𝕂) does not act properly and
coboundedly on an injective metric space.

Note that SL(4, ℝ) is commensurable to SO(3, 3), so according to Theorem 4.5, it is coarsely
injective. We do not know about SL(4, 𝕂), when 𝐾 ≠ ℝ.

Proof. By contradiction, assume that 𝐺 = SL(𝑛, 𝕂) acts properly and coboundedly on an injective
metric space 𝑋.
Let 𝐴 ⊂ SL(𝑛, 𝕂) denote the diagonal subgroup, and let 𝑀 ⊂ SL(𝑛, 𝕂) denote the monomial

subgroup of SL(𝑛, 𝕂): 𝑀 ≃ 𝐴⋊𝔄𝑛 is the subgroup of matrices with exactly one non-zero entry
on each row and each column (and𝔄𝑛 denotes the alternating group). Let𝐹 ⊂ 𝐴 denote the finite
diagonal subgroupwith entries in {−1, 1}. Since𝕂has characteristic different from2,we know that
the subgroup of 𝐺 fixed by the conjugation by 𝐹 is 𝐺𝐹 = 𝐴. According to [19, Proposition 1.2], the
fixed point set 𝑋𝐹 of 𝐹 in 𝑋 is non-empty and injective. We will prove that 𝑀 acts properly and
coboundedly on the injective metric space 𝑋𝐹 . First, since 𝐹 is normalized by𝑀, we deduce that
𝑀 stabilizes 𝑋𝐹 , and acts properly on 𝑋𝐹 . We will prove that 𝐴 acts coboundedly on 𝑋𝐹 , which
will imply that𝑀 also acts coboundedly on 𝑋𝐹 .
Fix 𝑥0 ∈ 𝑋𝐹 , and let𝐶𝑋 ⩾ 0 such that any 𝑥 ∈ 𝑋 is at distance at most𝐶𝑋 from a point in𝐺 ⋅ 𝑥0.
Fix 𝑥 ∈ 𝑋𝐹 , there exists g ∈ 𝐺 such that 𝑑(𝑥, g ⋅ 𝑥0) ⩽ 𝐶𝑋 . So we deduce that, for any 𝑓 ∈ 𝐹,

we have 𝑑(g ⋅ 𝑥0, 𝑓g ⋅ 𝑥0) ⩽ 2𝐶𝑋 . Let 𝑑𝐺 denote a proper left-invariant metric on 𝐺. Since the
action of 𝐺 on 𝑋 is proper, we deduce that there exists 𝐶𝐺 ⩾ 0 such that, for any 𝑓 ∈ 𝐹, we have
𝑑𝐺(g , 𝑓g𝑓−1) ⩽ 𝐶𝐺 . Let 𝑌 denote the symmetric space or Bruhat–Tits building of 𝐺, endowed
with the CAT(0) metric, choose a basepoint 𝑦0 ∈ 𝑌 fixed by 𝐹, and let 𝑦 = g ⋅ 𝑦0. Then there
exists 𝐶𝑌 ⩾ 0 such that, for any 𝑓 ∈ 𝐹, we have 𝑑(𝑦, 𝑓 ⋅ 𝑦) ⩽ 𝐶𝑌 . Let 𝑦 ∈ 𝑌 denote the CAT(0)
barycenter of the finite orbit 𝐹 ⋅ 𝑦: it is fixed by 𝐹, and also 𝑑(𝑦, 𝑦) ⩽ 𝐶𝑌 . Since 𝐺 acts cobound-
edly on 𝑌, there exists a constant 𝐶′

𝐺
⩾ 0 and g ∈ 𝐺𝐹 = 𝐴 such that 𝑑𝐺(g , g) ⩽ 𝐶′

𝐺
. Let us denote

𝑥 = g ⋅ 𝑥0 ∈ 𝑋𝐹 : there exists a constant 𝐶′
𝑋
such that 𝑑(𝑥, 𝑥) ⩽ 𝐶′

𝑋
. This proves that the action of

𝐴 on 𝑋𝐹 is cobounded.
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2312 HAETTEL

So we have proved that the group𝑀 ≃ 𝐴⋊𝔄𝑛 acts properly and coboundedly on the injective
metric space 𝑋𝐹 . We deduce the existence of a proper, left-invariant metric 𝑑𝑀 on 𝑀 which is
coarsely injective.
Let us consider a non-principal ultrafilter 𝜔 on ℕ, and a sequence (𝜆𝑘)𝑘∈ℕ in (0,∞) which

𝜔-converges to 0. Note that 𝐴 is isomorphic to (𝕂∗)𝑛−1 ≃ {𝑥 ∈ (𝕂∗)𝑛 |𝑥1 ×⋯ × 𝑥𝑛 = 1}, where
𝕂∗ denotes the multiplicative group of 𝕂. Also note that any asymptotic cone of 𝕂∗ is isomor-
phic to (ℝ∗

+, ×), which we will realize as (ℝ,+). Consider the asymptotic cone (𝐴∞, 𝑒∞, 𝑑∞) =

lim
𝑘∈𝜔

(𝐴, 1, 𝜆𝑘𝑑𝑀), it is isomorphic to the group ℝ𝑛−1 ≃ {𝑥 ∈ ℝ𝑛 |𝑥1 +⋯ + 𝑥𝑛 = 0}. Since 𝐴 is

abelian, we deduce that 𝐴∞ acts on itself by left translations: if [𝑎𝑘]𝑘∈ℕ = [𝑎′
𝑘
]𝑘∈ℕ ∈ 𝐴∞ and

[𝑏𝑘]𝑘∈ℕ = [𝑏′
𝑘
]𝑘∈ℕ ∈ 𝐴∞, then

lim
𝑘∈𝜔

𝜆𝑘𝑑𝑀(𝑎𝑘𝑏𝑘, 𝑎
′
𝑘
𝑏′
𝑘
) ⩽ lim

𝑘∈𝜔
𝜆𝑘𝑑𝑀(𝑎𝑘, 𝑎

′
𝑘
) + 𝜆𝑘𝑑𝑀(𝑏𝑘, 𝑏

′
𝑘
) = 0.

This action of𝐴∞ on itself preserves the metric 𝑑∞. Hence we deduce that 𝑑∞ is a norm on𝐴∞ ≃

ℝ𝑛−1. Also note that the natural action of 𝔄𝑛 on 𝐴 induces the natural action of 𝔄𝑛 on 𝐴∞ ≃

ℝ𝑛−1 ≃ {𝑥 ∈ ℝ𝑛 |𝑥1 +⋯ + 𝑥𝑛 = 0}, and it is isometric with respect to 𝑑∞.
According to [22], the only (𝑛 − 1)-dimensional injective normed vector spaces are linearly

isometric to 𝓁𝑛−1
∞ . The linear isometry group of 𝓁𝑛−1

∞ is the isometry group of the (𝑛 − 1)-
cube, 𝔖𝑛−1 ⋉ {±1}𝑛−1. So we deduce that there exists an injective group morphism from 𝔄𝑛 to
𝔖𝑛−1 ⋉ {±1}𝑛−1. If 𝑛 = 3, then 𝔄3 has an order 3 element and 𝔖2 ⋉ {±1}2 does not, which is a
contradiction. If 𝑛 ⩾ 5, then 𝔄𝑛 is simple, and there is no injective morphism from 𝔄𝑛 to either
𝔖𝑛−1 or {±1}𝑛−1, which is a contradiction.
This concludes the proof that SL(𝑛, 𝕂) is not coarsely injective. □

However, this leaves the following question open: are uniform lattices in SL(𝑛, 𝕂) coarsely injec-
tive ?
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