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Abstract. We consider horofunction compactifications of symmetric
spaces with respect to invariant Finsler metrics. We show that any
(generalized) Satake compactification can be realized as a horofunction
compactification with respect to a polyhedral Finsler metric.
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1. Introduction

Symmetric spaces of non-compact type arise in many areas of mathe-
matics. Topologically they are diffeomorphic to a finite-dimensional vector
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space, in particular they are non-compact. The problem of constructing
compactifications of symmetric spaces of non-compact type has been a clas-
sical problem. For an overview of compactifications of symmetric spaces see
[BJ06, GJT98].

Any proper metric space (X, d) can be compactified by embedding X into
the space of continuous functions Cp0(X) on X which vanish at a fixed base
point p0:

X −→ Cp0(X)
z 7−→ d(·, z)− d(p0, z).

(1)

The closure of the image is the horofunction compactification Xhor
d of (X, d).

In this article we investigate horofunction compactifications of symmetric
spaces endowed with invariant Finsler metrics.

It is well known that the visual compactification of a symmetric space
X is realized as horofunction compactification with respect to the invari-
ant Riemannian metric. We show that all Satake compactifications of X,
and more generally all generalized Satake compactifications as defined in
[GKW17] can be realized as horofunction compactifications with respect to
polyhedral Finsler metrics on X.

Any G-invariant Finsler metric onX induces a Weyl group invariant norm
on a maximal flat F ∼= Rk. The Finsler metric is said to be polyhedral, if
the unit ball for its Weyl group invariant norm on F ∼= Rk is a finite sided
polytope.

Before stating the result more precisely we recall that Satake compacti-
fications XS

τ are associated to irreducible faithful representations τ : G →
PSL(n,C), which give rise to embeddings X = G/K → P(Herm(Cn)),
gK 7→ [τ(g)∗τ(g)], see [Sat60]. Generalized Satake compactifications are
defined the same way, but allowing τ to be reducible. There are finitely
many isomorphism classes of Satake compactifications, determined by sub-
sets of the set of simple roots, but infinitely many isomorphism classes of
generalized Satake compactifications.

Theorem 1.1 Let X = G/K be a symmetric space of non-compact type.
Any generalized Satake compactification of X can be realized as the horo-
function compactification of a polyhedral G-invariant Finsler metric on X.
More precisely, if the generalized Satake compactification is given by a rep-
resentation τ : G → PSL(n,C), then XS

τ is isomorphic to Xhor
d , where d is

the Finsler metric on X whose unit ball in a maximal Cartan subspace a is
the polytope dual to −D = − conv(µ1, · · · , µk), where µi are the weights of
the representation τ .

Remark 1.2 The idea to realize Satake compactifications as horofunc-
tion compactifications with respect to polyhedral Finsler metrics has been
sketched in the second authors diploma thesis [S13]. Specific Satake com-
pactifications have been realized as horofunction compactifications of Finsler
metrics before. Friedland and Freitas [FF04I, FF04II] describe the horofunc-
tion compactification for Finsler p-metrics on GL(n,C)/Un for p ∈ [1,∞],
which they show to agree with the visual compactification for p > 1, and
the horofunction compactification of the Siegel upper half plane of rank n
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for the l1-metric, which they show to agrees with the bounded symmet-
ric domain compactification, a minimal Satake compactification. Kapovich
and Leeb realize the maximal Satake compactification of a symmetric space
X = G/K of non-compact type as the horofunction boundary with respect
to a G-invariant Finsler metric on X [KL16]. Parreau [Pa] shows that the
horofunction compactification with respect to the Weyl chamber valued dis-
tance function is isomorphic to the maximal Satake compactification. There
are related constructions for buildings, too, see for example [Brill]. Another
paper by Ciobotaru, Kramer and Schwer [CKS] on horofunction compacti-
fications is in preparation.

In order to describe the horofunction compactificationXhor
d in more detail

and relate it to generalized Satake compactifications, we will make use of
the Cartan decomposition G = KAK. This allows to reduce the problem
to comparing the closure of a maximal flat F = Ap0 ⊆ X in Xhor

d with the
closure of F in a generalized Satake compactification. The closure of a flat
in a generalized Satake compactification is described in [GKW17].

The key result for the proof of Theorem 1.1 is then the following theorem,
which states that for polyhedral Finsler metrics, the closure of a maximal flat
F = Ap0 ⊆ X in X

hor
d is isomorphic to the horofunction compactification

of F ∼= Rk with respect to the induced Weyl group invariant polyhedral
Finsler norm. The horofunction compactification of F ∼= Rk with respect
to a Weyl group invariant polyhedral Finsler norm has been determined in
[Wal07, JS16].

Theorem 1.3 Let X = G/K be a symmetric space of non-compact type.
Consider a polyhedral G-invariant Finsler metric on X. Let Xhor be the
horofunction compactification ofX with respect to this Finsler metric. Then
the closure of a maximal flat F in X

hor is isomorphic to the horofunction
compactification of F with respect to the induced metric.

Remark 1.4 In fact we prove a more general statement than Theorem 1.3.
Instead of requiring that the Finsler metric is polyhedral we only need to
require that the Finsler norm on F satisfies a Convexity Lemma, see Sec-
tion 3.4. We prove the Convexity Lemma for polyhedral Finsler metrics,
but expect it to hold in general.

In Section 2, we review the structure theory of symmetric spaces, and re-
call a characterization of G-invariant Finsler metrics. In Section 3, we review
the horofunction compactification of metric spaces, and focus on the case
of normed vector spaces. Using a characterization of convergent sequences
in the horofunction compactification, we prove a technical statement called
the Convexity Lemma for polyhedral norms. In Section 4, we consider a
G-invariant Finsler metric on the symmetric space X which satisfies the
Convexity Lemma. For each maximal flat F in X, we prove that the closure
of F in the horofunction compactification of X is isomorphic to the intrinsic
horofunction compactification of F . So we reduce the study of horofunction
compactifications of symmetric spaces to the study of horofunction compact-
ifications of maximal flats. In Section 5, we combine the previous results
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to prove that each (generalized) Satake compactification is a horofunction
compactification for a specific polyhedral Finsler norm on the symmetric
space.

2. Invariant Finsler metrics on symmetric spaces

In this section we first review the necessary structure theory of semisimple
Lie groups, see [Hel78] for details, and recall a characterization ofG-invariant
Finsler metrics due to Planche [Pla95].

2.1. Structure Theory. Throughout the article we denote by G a real
semisimple Lie group with finite center, and by g its Lie algebra. K < G
denotes a maximal compact subgroup, and k ⊆ g its Lie algebra. The
(Riemannian) symmetric space associated to G is X = G/K, and p0 = eK
denotes its base point.

2.1.1. Cartan decomposition. The Lie algebra of G decomposes as
g = k⊕ p,

where p is the orthogonal complement of k with respect to the Killing form
κ on g.

We fix a maximal abelian subalgebra a ⊆ p, and denote by A = exp(a) <
G the corresponding connected subgroup of G. Then F = A · p0 ⊆ X is a
maximal flat.

All maximal abelian subalgebras are conjugate to each other, and p =
Ad(K)a =

⋃
k∈K Ad(k)a.

Let Σ = Σ(g, a) ⊆ a∗ denote the system of restricted roots, i.e. α ∈ Σ(g, a)
if and only if

gα := {V ∈ g | ad(H)V = α(H)V ∀H ∈ a}
is non-zero.

For each α ∈ Σ consider the hyperplane ker(α) ⊆ a. Each of them divides
the vector space a into two half-spaces. The connected components of the
set a \

⋃
α∈Σ ker(α) are called Weyl chambers. We fix one of these chambers

to be the positive Weyl chamber a+, and define positive roots by
Σ+ := {α ∈ Σ | α(H) > 0 ∀H ∈ a+}.

We denote by ∆ the set of simple roots :
∆ := {α ∈ Σ+ | α(H) is not the sum of two positive roots}.

The simple roots form a basis of Σ in the sense that we can express every
root as a linear combination of elements in ∆ with integer coefficients which
are either all ≥ 0 or all ≤ 0.

Lemma 2.1 (Cartan decomposition; [Hel78], Thm.V.6.7 and Thm.IX.1.1)
Let a+ be a positive Weyl chamber. Set A+ := exp(a+) ⊆ G and denote by
A+ its closure. Note that A+ = exp(a+). For every element g ∈ G there
exist k1, k2 ∈ K and some a ∈ A+ such that g = k1ak2.

We shortly write
G = KA+K,

and call this a Cartan decomposition of G.
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2.1.2. The Weyl group. Let CK(a) = {k ∈ K | Ad(k)(H) = H ∀H ∈ a}
denote the centralizer of a in K and NK(a) = {k ∈ K | Ad(k)a ⊆ a} its
normalizer. Then CK(a) E NK(a) is a normal subgroup.

Definition 2.2 The quotient

W := NK(a)/
CK(a)

is the Weyl group. It acts simply transitively on the set of Weyl chambers.
The Weyl group is generated by the reflections in the hyperplanes ker(α)
for α ∈ ∆ and can also be expressed as NK(A)/CK(A).

2.2. Finsler Geometry. A Finsler metric on a smooth manifold M gener-
alizes the concept of Riemannian metric. It is a continuous family of (pos-
sibly asymmetric) norms on the tangent spaces, which are not necessarily
induced by an inner product.

Definition 2.3 Let M be a smooth manifold. A Finsler metric on M is a
continuous function

F : TM −→ [0,∞)
such that, for each p ∈ M , the restriction F |TpM : TpM −→ [0,∞) is a
(possibly asymmetric) norm.

The length and (forward) distance on a Finsler manifold can be defined
in the same way as on a Riemannian manifold:

Definition 2.4 The length of a curve γ : [0, 1] ⊆ R −→M is defined as

L(γ) :=
∫
I
F (γ(t), γ̇(t))dt.

The forward distance between two points p, q ∈M is given by
dF (p, q) := inf

γ
L(γ),

where the infimum is taken over all piecewise continuously differentiable
curves γ : [0, 1] −→M with γ(0) = p and γ(1) = q.

Remark 2.5 As the homogeneity in the definition for a Finsler metric only
holds for positive scalars, the norms on the tangent spaces do not have to
be symmetric. Therefore in general dF (p, q) 6= dF (q, p).

The symmetric space X carries a G-invariant Riemannian metric, which
is essentially unique (up to scaling on the irreducible factors). However, X
carries many G-invariant Finsler metrics. Such G-invariant Finsler metrics
on X and their isometry groups have been investigated by Planche, who
proved:

Theorem 2.6 ([Pla95], Thm.6.2.1) There is a bijection between
i) the W -invariant convex closed balls B of a,
ii) the Ad(K)-invariant convex closed balls C of p,
iii) the G-invariant Finsler metrics on X.

In particular, any G-invariant Finsler metric on X gives rise to a (not
necessarily symmetric) norm on the vector space a, whose unit ball is the
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W -invariant convex ball B, and it is in turn completely determined by this
norm.

Definition 2.7 A G-invariant Finsler metric on X is said to be polyhedral
if its W -invariant convex ball B in a is a finite sided polytope.

3. Horofunction compactifications

The horofunction compactifications of normed vector spaces have been
described by Walsh in [Wal10]. We will not give a full description of his
work, but focus on the case when the convex ball B is a finite sided polytope.
In this setting the horofunction compactification has been described in detail
by Ji and Schilling in [JS16], see also [KMN06] for a description of horoballs.

The key results for us are a characterization of converging sequences, a
convexity lemma, and the identification between the horofunction compact-
ification and the dual convex polytope B◦.

3.1. The horofunction compactification of a metric space. Let (X, d)
be a metric space whose metric is possibly non-symmetric and with its topol-
ogy induced by the symmetrized distance

dsym(x, y) := d(x, y) + d(y, x)

for all x, y ∈ X. Let C(X) be endowed with the topology of uniform con-
vergence on bounded sets with respect to dsym. Fix a basepoint p0 ∈ X.
Let Cp0(X) be the set of continuous functions on X which vanish at p0.
This space is homeomorphic to the quotient of C(X) by constant functions,
C̃(X) := C(X) / const. Define the map

ψ : X −→ C̃(X)
z 7−→ ψz(2)

where
ψz(x) = d(x, z)− d(p0, z)

for all x ∈ X. Then ψ is continuous and injective. If X is geodesic, proper
with respect to dsym and if d is symmetric with respect to convergence, that
is, d(xn, x)→ 0 iff d(x, xn)→ 0 for any sequence (xn)n∈N and some x ∈ X,
then the closed set cl{ψz | z ∈ X} is compact and ψ is an embedding of X
into C̃(X). For more details see [Wal10, p.4 and Prop. 2.2].

Definition 3.1 The horofunction boundary ∂hor(X) ofX in C̃(X) is defined
as

∂horX := (cl{ψz | z ∈ X}) \ {ψz | z ∈ X}.
Its elements are called horofunctions. If cl{ψz | z ∈ X} is compact, then
the set Xhor := cl{ψz | z ∈ X} = X ∪ ∂horX is called the horofunction com-
pactification of X.

Remark 3.2 The definition of ψz and therefore also those of ψ and ∂horX
depend on the choice of the basepoint p0. One can show by a short calcula-
tion that, if we choose an alternative basepoint, the corresponding bound-
aries are homeomorphic.
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3.2. Horofunction compactifications of normed vector spaces. Let
in the following (V, ‖·‖) always denote a finite-dimensional normed space
and let 〈·|·〉 denote the dual pairing on it.

Notation For a subset C ⊆ V we denote by V (C) ⊆ V the subspace
generated by C and by V (C)⊥ its orthogonal complement, for some fixed
arbitrary Euclidean structure on V . The orthogonal projection to V (C)
will be denoted by ΠC . For an element v ∈ V we write v = vC + vC with
vC ∈ V (C) and vC ∈ V (C)⊥.

As the norm might be asymmetric, note that we use the convention
d(x, z) = ‖z − x‖.

Definition 3.3 Let B be the unit ball with respect to the norm ‖·‖. The
dual unit ball B◦ of B is defined to be the polar of B:

B◦ := {y ∈ V ∗ | 〈y|x〉 ≥ −1 ∀x ∈ B},
where V ∗ denotes the dual space of V .

Remark 3.4 Some authors define the polar and therefore the dual unit ball
by the condition 〈y∗|x〉 ≤ 1 ∀x ∈ B. As long as B is symmetric, this makes
as a set no difference.

Definition 3.5 The relative interior riS of a set S ⊆ V is the interior of S
when S is seen as a subset of a minimal affine subspace of V containing S.
Similary, the relative boundary ∂relS of S is the boundary of S seen in the
minimal affine subspace containing S.

In the following we will consider norms ‖·‖ which have a polyhedral unit
ball B, that is, B is a polytope. We will always assume our polytope to be
finite, bounded and convex. Such a polytope can be described in two ways:
either as the convex hull of finitely many points or as the intersection of
finitely many halfspaces. The interplay of them is strongly related to the
relation between the unit ball B and its dual B◦:

Remark 3.6 Let the unit ball B ⊆ V be given as the convex hull of a
finite set of points, B = conv{a1, . . . , ak}. In this description we want all
points ai to be extremal, i.e. conv{a1, . . . , ak} 6= conv{a1, . . . ,

∧
aj , . . . , ak}

for all j ∈ {1, . . . , k}. Then each vertex ai ∈ V determines a halfspace
Vi := {y ∈ V ∗ | 〈y|ai〉 ≥ −1} ⊆ V ∗ which contains the origin in its interior.
The boundary Hi of such a halfspace is a hyperplane for which it holds
〈Hi|ai〉 = −1, that is, 〈hi|ai〉 = −1 for all hi ∈ Hi. Then the dual unit ball
B◦ is given by:

B◦ =
k⋂
i=1

Vi

= {y ∈ V ∗ | 〈y|ai〉 ≥ −1 ∀i = 1, . . . , k}.
As the unit ball B is closed convex and contains the origin as an interior
point, we know by the theory of polars and convex sets that

(B◦)◦ = B.



HOROFUNCTION COMPACTIFICATIONS OF SYMMETRIC SPACES 8

Therefore, if B is given as the intersection of halfspaces, with this result
we can easily determine B◦ as the convex hull of a set of points. Starting
from this description, we only want to consider relevant halfspaces in the
intersection, that is, B ∩ ∂Vi is a m − 1 dimensional face1 of B, which we
will also call a facet.

Based on these two descriptions there is a one-to-one correspondence be-
tween the faces of B and those of B◦.

Lemma 3.7 Let B ⊆ V be a polyhedral unit ball and B◦ ⊆ V ∗ its dual.
For a face F ⊆ B define its dual set by

F ◦ := {y ∈ B◦ | 〈y|x〉 = −1 ∀x ∈ F} ⊆ B◦.
Then F ◦ is a face of B◦ and it holds

dimF + dimF ◦ = m− 1.

Proof. To show that F ◦ is a face of B◦ we have to show that it is an extreme
set of B◦. Recall that F ◦ ⊆ B◦ is an extreme set, if some interior point of
a line in B◦ lies in F ◦, then also both endpoints of the line. Therefore let
y1, y2 ∈ B◦ with y = 1

2(y1 + y2) ∈ F ◦. For any x ∈ F we have

−1 = 〈y|x〉 = 1
2(〈y1|x〉+ 〈y2|x〉) ≥ −1,

as both y1, y2 ∈ B◦. Equality holds if and only if 〈y1|x〉 = 〈y2|x〉 = −1 and
therefore y1, y2 ∈ F ◦.

We now show the formula for the dimensions. Let V (F ) ⊆ V be the
subspace generated by F . We show that the dual (V (F )⊥)∗ ⊆ V ∗ of its
orthogonal complement is parallel to the affine subspace generated by F ◦.
As F ⊆ B is part of a hyperplane defining B, we can find z ∈ V ∗ such that
F = {x ∈ V |〈z|x〉 = −1} and 〈z|x〉 >= 1 for all x ∈ B \ F . Then z ∈ F ◦
and we claim that

(V (F )⊥)∗ = V (F ◦ − z).
To see this, let B = conv{a1, . . . , ak}, and let SF ⊆ {1, . . . , k} be those
indices such that F = conv{ai|i ∈ SF }. Let y ∈ (V (F )⊥)∗ and ε > 0. Then
〈z+εy|ai〉 = −1 for all i ∈ SF and 〈z+εy|aj〉 > −1+ε〈y|aj〉 for all aj /∈ SF .
This implies z+εy ∈ F ◦ for ε small enough and y ∈ 1

ε (F ◦−z) ⊆ V (F ◦−z).
The other inclusion follows immediately.
With dim(F ) = dim(V (F )) − 1 (because 0 /∈ F ) and dim(V (F ◦ − z)) =
dim(F ◦) (because 0 ∈ (F ◦ − z)) we obtain

dim(V ) = dim(V (F )) + dim(V (F )⊥) = dim(F ) + 1 + dim(F ◦),
which finishes the proof. �

In the case of a finite-dimensional normed space with polyhedral norm,
Walsh gives a criterion ([Wal07, Thm. 1.1 and Thm 1.2]) to calculate the
horofunctions explicitely by using the Legendre-Fenchel transform of some
special map. We rewrite these functions using some kind of pseudo-norm,
see [Wal07, p.5] or [S13] for more details:

1A k-face of a polytope P = conv{p1, . . . , pr} is the k-dimensional intersection of P
with one or more hyperplanes Hi (i ∈ {1, . . . , r}) defining P .



HOROFUNCTION COMPACTIFICATIONS OF SYMMETRIC SPACES 9

Definition 3.8 Let C ⊆ V ∗ be a convex set. For p ∈ V we set
|p|C := − inf

q∈C
〈q|p〉.

Remark 3.9 |·|C is in general not a norm but
|·|B◦ = ‖·‖.

Now we define the functions that will turn out to be the horofunctions in
the horofunction compactification of V with respect to the norm with unit
ball B. Let E ⊆ B◦ be a face of B◦ and p ∈ V (E◦)⊥ be a point. Then we
define

hE,p : V −→ R
y 7−→ |p− y|E − |p|E .

A short calculation shows that only the orthogonal part of p makes a con-
tribution:

hE,p = hE,pF ,

with F = E◦ and pF ∈ V (F )⊥. If we choose not a proper face E but the
entire dual unit ball, we bet by Remark 3.9 that

ψz = hB◦,z

for all z ∈ V .
Combining the results of Walsh with some calculations that can be found

in [JS16] we obtain

Theorem 3.10 ([Wal10], Thm. 1.1 , [JS16], p.10) Let (V, ‖·‖) be a
finite-dimensional normed space where the unit ball B is a polytope. Then
the set of horofunctions is given as

∂hor(V ) = {hE,p|E ⊆ B is a proper face and p ∈ V (E◦)⊥}.

Example 3.11 As an example let us consider R2 equipped with the L1-
norm. For notations of the faces see Figure 1.

x

y

B

a3

a4

a1

a2

Lb1Lb2

Lb3 Lb4

x

y

B◦

b3b4

b1 b2

Ha1

Ha2

Ha3

Ha4

Figure 1. The unit ball B and its dual B◦

Then its unit ball is given as the convex set
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B = conv
{
(1, 0), (0, 1), (−1, 0), (0,−1)

}
= conv{ai|i = 1, . . . , 4}

=
4⋂
i=1
{x ∈ R2 | 〈bi|x〉 ≥ −1}

with b1 = (−1,−1), b2 = (1,−1), b3 = (1, 1) and b4 = (−1, 1). By Remark
3.6 the dual unit ball is given by

B◦ =
4⋂
i=1
{y ∈ R2 | 〈y|ai〉 ≥ −1}

= conv{b1, b2, b3, b4}.

The faces of B are F = {ai, Lbi
|i = 1, . . . , 4} where the facets are given

by Lbi
:= {x ∈ R2|〈bi|x〉 = −1} ∩ B. Similary, the faces of B◦ are

E = {bj , Haj |j = 1, . . . , 4} with Haj
:= {y ∈ R2|〈y|aj〉 = −1} ∩B◦.

As indicated by the notation, the dual faces are:

{aj}◦ = Haj

(Lbi
)◦ = {bi}.

The horofunctions then are for example given by

h{bj},p(y) = |p− y|{bj} − |p|{bj} = 〈bj |y〉 for all j = 1, . . . , 4
hHa1 ,p

(y) = −y1 + |p2 − y2| − |p2|.

Remark 3.12 It is a general result that if E ⊆ B◦ is a vertex, then hE,p is
independent of the point p.

3.3. Characterization of sequences. To describe the topology of Xhor

we use the description given in the following theorem from [JS16]. For a
convex set C ⊆ V we denote by KC the cone generated by C.

Theorem 3.13 ([JS16] Theorem 3.10) Let B ⊆ V be a convex polyhedral
unit ball and B◦ its dual. Then ψzn(·) = ‖zn − ·‖ − ‖zn‖ converges to a
horofunction hE,p where E ⊆ B◦ is a proper face and p ∈ V (E◦)⊥ if and
only if the following conditions are satisfied with respect to the proper face
F = E◦ ⊆ B:

i) ∃N ∈ N such that for all n ≥ N : zn,F ∈ KF .
ii) d

(
zn,F , ∂relKF

)
−→∞ as n −→∞.

iii) ‖zFn − p‖ −→ 0 as n −→∞.

Example 3.14 As an example let us consider the same situation as in
Example 3.11, that is, R2 equipped with the L1-norm. Let zn,1 be any
unbounded sequence lying in the open first quadrant of R2 such that the
distance to the coordinate axes goes to infinity. Choose F1 = L{b1} as a
proper facet of B. Then KF1 is the closed first quadrant and V (F1) = R2.
Therefore all conditions of the theorem are satisfied and as F1 = {b1}◦, it
follows ψzn,1 −→ h{b1},p. On the other hand, if we take a sequence zn,2
following a straight line l2 parallel to the positive x-axis, we have to choose
F2 = {a1} as extreme set of B and some p ∈ R2 with |p2| the distance of the
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line l2 to the x-axis. Then ψzn,2 −→ hH{a1},p
. Note that if p, p′ ∈ R2 with

p2 = p′2 then hH{a1},p
= hH{a1},p

′ .

3.4. Convexity Lemma. Let (V, ‖·‖) be a normed vector space. Let (xn)n∈N,
(zn)n∈N be two sequences converging to the same boundary point ξ ∈ V hor

in the horofunction compactification of (V, ‖·‖), that is, ψxn , ψzn −→ ξ. Let
yn be a sequence lying between (xn) and (zn) in the sense that for each
n ∈ N there exists a tn ∈ [0, 1] such that

yn = (1− tn)xn + tnzn.

We say that (V, ‖·‖) satisfies the Convexity Lemma if then yn converges to
the same boundary point: ψyn −→ ξ.

Lemma 3.15 (Convexity lemma for polyhedral norms) Let ‖·‖ be a
polyhedral norm on V and ‖·‖◦ its dual. Their unit balls are B ⊆ V and
B◦ ⊆ V ∗, respectively, both convex polytopes. Then (V, ‖·‖) satisfies the
Convexity Lemma.

Proof. hp Let ξ ∈ V hor. Then, by Walsh, there is an extreme set E ⊆ B◦

with dual extreme set F ⊆ B and a point p ∈ V (F )⊥ such that we can
write ξ = hE,p. Let xn, zn be sequences converging to ξ, i.e. ψxn , ψzn −→ ξ.
Let yn be a sequence lying between (xn) and (zn), that is, for each n ∈ N
∃tn ∈ [0, 1] such that

yn = (1− tn)xn + tnzn.

We need to show that ψyn −→ ξ = hE,p.
We show this convergence by checking the criteria for converging se-

quences given by Theorem 3.13. As ξ = hE,p, take F = E◦ and p as
given. To facilitate readability, denote the projection of a point q ∈ V to
V (F ) by qF . By the linearity of the orthogonal projection we have

yn,F = ΠF

(
(1− tn)xn + tnzn

)
= (1− tn)xn,F + tnzn,F .

As the sequences xn and zn satisfy the conditions of the theorem for this
special F and as KF is convex, it is yn,F ∈ KF for n large enough.

Again by linearity of ΠF , an easy calculation shows:

‖yn − yn,F − p‖ = ‖(1− tn)xn + tnzn − (1− tn)xn,F − tnzn,F − (1− tn)p− tnp‖
= ‖(1− tn)

(
xn − xn.F − p

)
+ tn

(
zn − zn,F − p

)
‖ −→ 0.

Next we prove unboundedness of (yn)n. We already know that xn,F , yn,F ,
zn,F ∈ KF for n large enough. Let denote mn := ‖yn,F ‖, then for each
n, the point yn,F lies on the boundary of the scaled unit ball mnB. As
the boundary of mnB is the union of the scaled extreme sets of B and as
yn,F ∈ KF ∩ ∂(mnB), it follows yn,F ∈ mnF . The point yn,F lies on a
straight line between xn,F and zn,F , so we have to distinguish two cases for
each n now. Either both xn,F and zn,F are also lying on the boundary mnF ,
or one of them lies within KF ∩ int(mnB). In any case, at least one of xn,F
or zn,F has norm ≤ ‖yn,F ‖ for each n ∈ N. By Theorem 3.13 we know that
‖xn‖, ‖zn‖ −→ ∞, and as by the last condition of the theorem the orthogonal
parts xn−xn,F and zn−zn,F are bounded, it follows ‖yn,F ‖ −→ ∞. Similary
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we can split up our sequence such that yn = yn,F +pn with pn ∈ V (F )⊥ and
pn −→ p. Then by the triangle inequality

‖yn,F ‖ = ‖yn,F + pn − pn‖ ≤ ‖yn,F + pn‖+ ‖pn‖ = ‖yn‖+ ‖pn‖.
As ‖yn,F ‖ goes to infinity and ‖pn‖ is bounded, we conclude that ‖yn‖ → ∞.

B

mnB

F

Fn

xn

zn

yn

KF

Figure 2. Sketch to the proof (R2 with hexagonal norm)

To show that the distance of yn,F to the relative boundary of KF goes
to infinity, remark that the relative boundary of KF is a union of cones
with vertex {0} which are subsets of linear hyperplanes around KF . As-
sume yn,F remains within bounded distance to one such hyperplane H.
For each n let Hn be an affine hyperplane parallel to H such that yn,F ∈
Hn ∩ KF and with dn := d(Hn, H) < ∞ for all n. Then with similar
arguments as before, we have for each n the two cases that either both
xn,F , zn,F ∈ Hn or one of them lies between Hn and H and has therefore
bounded distance < dn to ∂relKF . But this is a contradiction to the condi-
tion d(xn,F , ∂relKF ), d(zn,F , ∂relKF ) −→∞ of Theorem 3.13. �

4. The compactification of flats in symmetric spaces

In this section we give, for any G-invariant Finsler metric on the symmet-
ric space which satisfies the Convexity Lemma, an explicit homeomorphism
between the intrinsic compactification of a flat and the closure of a flat in
the horofunction compactification of the symmetric space.

Let d be the distance function associated to a G-invariant Finsler metric
on the symmetric space X = G/K, and ψ : X → C̃(X) the embedding
defined in Subsection 3.1 on page 6. Let us state some basic observations.

Lemma 4.1 The function ψp0 is K-invariant. Moreover for every g ∈ G,
the function ψg·p0 is gKg−1-invariant.

Proof. Fix g ∈ G and k ∈ K. Then, for any x ∈ X, we have
ψg·p0((gkg−1) · x) = d((gkg−1) · x, g · p0)− d(p0, g · p0)

= d(x, g · p0)− d(p0, g · p0) = ψg·p0(x).

So ψg·p0 is gKg−1-invariant. �

Lemma 4.2 The map ψ : X → C̃(X) is K-equivariant, that is, ψk·z(x) =
k · ψz(x), where the action on C̃(X) is given by k · f(x) := f(k−1x).
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Proof. Fix x, z ∈ X and k ∈ K. Then
ψk·z(x) = d(x, k · z)− d(p0, k · z) = d(k−1 · x, z)− d(p0, z)

= ψz(k−1 · x) = k · ψz(x).
�

Lemma 4.3 LetG = KA+K be a Cartan decompostion, andX = KA+·p0.
Then

ψ(X)C̃(X) = ψ(KA+ · p0)
C̃(X)

= Kψ(A+ · p0)
C̃(X)

.

In particular, the horofunction compactification ψ(X)C̃(X) is determined by
the horofunction compactification of the flat F = A · p0, or more precisely
of a closed Weyl chamber F+ = A+ · p0.

Proof. Since ψ(A+ · p0)
C̃(X)

is a compact subspace of C̃(X) and K is a
compact subgroup of G, which acts continuously on C̃(X), we deduce that

the space Kψ(A+ · p0)
C̃(X)

is a compact subspace of C̃(X). Since it con-

tains ψ(KA+ · p0), we conclude that ψ(KA+ · p0)
C̃(X)

⊆ Kψ(A+ · p0)
C̃(X)

.

As the converse inclusion is clear, we conclude that ψ(KA+ · p0)
C̃(X)

=

Kψ(A+ · p0)
C̃(X)

. �

In order to understand the horofunction compactification ψ(A+ · p0)
C̃(X)

of a closed Weyl chamber, we will first compare it to its closure in the
intrinsic horofunction compactification in C̃(A ·p0). We will show that these
two compactifications are in fact isomorphic.

4.1. The intrinsic compactification of a flat. The intrinsic compactifi-
cation of the flat A · p0 is the horofunction compactification of A · p0 within
the space of continuous functions on A · p0. Since the exponential map is
a diffeomorphism exp : a → A · p0, the intrinsic compactification is homeo-
morphic to the horofunction compactification of the normed vector space a
with respect to the norm defined by the W -invariant convex ball B. This
has been determined explicitely in [JS16]:

Theorem 4.4 ([JS16] Theorem 1.2.) Let (V, ‖·‖) be a normed vector
space with polyhedral unit ball B. Then the horofunction compactification
V
hor is homeomorphic to the dual convex polyhedron B◦.

4.2. The closure of a flat. The aim of this section is to compare the
intrinsic compactification of A · p0 with the closure of the flat A · p0 in the
horofunction compactification of X. To minimize confusion, we introduce
the following notation:

Let d be the distance function of aG-invariant Finsler metric onX = G/K
and

ψX : X −→ C̃(X)
z 7−→ ψXz := d(·, z)− d(p0, z)(3)
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the embedding of X into the space of continuous functions on X vanishing
at p0.

We denote by d also the restriction of the distance to the flat F = A ·p0 ⊆
X and let

ψF : F −→ C̃(F )
z 7−→ ψFz := d(·, z)− d(p0, z).(4)

denote the embedding of F into the space of continuous functions on F van-
ishing at p0. The closure of ψF (F ) ⊆ C̃(F ) is the intrinsic compactification
of F . We set F+ := A+ · p0.

We assume that d satisfies the Convexity Lemma, see Section 3.4.

4.3. Groups associated with subsets of simple roots. We want to
associate to each horofunction on the flat a horofunction on the whole sym-
metric space X. We will start by setting up notation.

Let ∆ be the set of positive roots. Given a subset I ⊆ ∆ we denote by
• WI < W the subgroup generated by the reflections in the hyperplanes

ker(α) for α ∈ I,
• aI =

⋂
α∈I kerα, and aI its orthogonal complement in a,

• AI , AI the connected subgroups of A with Lie algebras aI and aI

respectively,
• M = CK(A) the centralizer of A in K,
• GI the derived subgroup of the centralizer of AI in G,
• KI = GI ∩K, so that KIM is the centralizer of AI in K,
• W I = NKI (AI)/ZKI (AI) the Weyl group of GI ,
• N the connected subgroup with Lie algebra

⊕
α∈Σ+ gα.

• NI the connected subgroup of N with Lie algebra
⊕
α∈Σ+\ΣI gα,

where ΣI is the root subsystem spanned by I.

Definition 4.5 Two subsets I, J of ∆ are said to be orthogonal if, for every
α ∈ I and β ∈ J , the roots α and β are orthogonal. A subset I ⊆ ∆ is called
irreducible if it is not a disjoint union of two proper orthogonal subsets.

Lemma 4.6 Fix a subset I of ∆, and consider a linear subspace V of aI
which is invariant under the action of W I . Then there exists J ⊆ I such
that V = aJ , and J and I\J are orthogonal.

Proof. Let I = J1tJ2t . . . Jr be the decomposition of I into irreducible sub-
sets. The linear representation of W I on aI decomposes as the direct sum

of the irreducible representations aI =
r⊕
j=1

aJj . Since V is a W I -invariant

subspace, there exists R ⊆ {1, 2, . . . , r} such that V =
⊕
j∈R

aJj . As a conse-

quence, we have V = aJ , where J =
⊔
j∈R

Jj . �

Lemma 4.7 Let C be a non-discrete subset of AI . Let J ′ ⊆ I denote the
smallest subset such that
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i) ∀c ∈ C,C ⊆ cAJ ′ and
ii) the roots in J ′ and in I\J ′ are orthogonal.

Then the smallest closed subgroup of W IA containing all conjugates
{cW Ic−1, c ∈ C} is equal to W IAJ

′ .

Proof. In this proof, we will identify A with its Lie algebra, and thus consider
A as a vector space. Up to conjugating, we can assume that the affine
subspace of A spanned by C contains 0. Let Γ ⊆ W IA denote the smallest
closed subgroup containing all conjugates {cW Ic−1, c ∈ C}. Since C is non-
discrete, Γ is not discrete and the linear part of Γ is equal to W I . So the
identity component Γ0 of Γ is a vector subspace of AI containing C. Since Γ0
is invariant underW I , so according to Lemma 4.6, we deduce that Γ0 = AJ

′ ,
for some J ′ ⊆ I such that J ′ and I\J ′ are orthogonal. �

4.3.1. Generalized horocyclic decompositions. We will make use of the gener-
alized Iwasawa decompositions of G, respectively the generalized horocyclic
decompositions of X.

Lemma 4.8 For every I ⊆ ∆ and aI ∈ AI , we have the following decom-
position:

X = aIKIaI
−1
NIA · p0,

where the A component is unique up to the following condition: for every
a, a′ ∈ A, we have aIKIaI

−1
NIa · p0 = aIKIaI

−1
NIa

′ · p0 if and only if
(aI)−1a and (aI)−1a′ are conjugated by some element in W I . The classical
Iwasawa and horocyclic decompositions G = NAK resp. X = NA · p0
correspond to I = ∅.

Proof. Up to translating by aI−1, we can assume for simplicity that aI = e.
According to [GJT98, Corollary 2.16], we have the following generalized
horocyclic decomposition: X = AINIX

I , where XI is the relative sym-
metric space XI = GI/KI identified as the orbit XI = GI · p0 of p0 in
X. Furthermore, in this decomposition X = AINIX

I = AINIG
I · p0, the

components in AI , NI and XI ' GI · p0 are unique.
The group KI is a maximal compact subgroup of the semisimple group

GI , and AI is a Cartan subgroup of GI , so we can consider the Cartan
decomposition of GI as GI = KIAIKI , where the component in AI is
unique up to conjugation by some element in W I .

Fix some point p ∈ X. According to the two previous decompositions,
we have p = bIuIk

IbI · p0, where bI ∈ AI , uI ∈ NI , kI ∈ KI and bI ∈ AI ,
and furthermore bI and uI are unique and bI is unique up to conjugation
by some element in W I . Since AI commutes with KI , we also have p =
(bIuIb−1

I )kIbIbI · p0. Furthermore, since AI and KIM normalize NI , we
have (bIuIb−1

I )kI ∈ KINI .
As a consequence, p ∈ KINIbIb

I · p0, where bIbI ∈ A is unique up to
conjugation by some element in W I (notice that W I commutes with bI ∈
AI). �
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4.3.2. Types of sequences and horofunctions. We have seen in Lemma 4.1
that each function ψg·p0 is invariant under the conjuagte gKg−1 of the max-
imal compact subgroup K. In order to study the invariance properties of
horofunctions, we will use the study of limits of conjugates ofK (see [GJT98,
Chapter IX]). In order to describe such limits, we need to introduce the no-
tion of type of a diverging sequence of elements in A. Roughly speaking,
the type of a sequence encodes the roots "along which" the sequence goes to
infinity.

Definition 4.9 A sequence (an)n∈N in A+ is said to be of type (I, aI),
where I is a proper subset of ∆ and aI ∈ AI , if

i) for α ∈ I, limn→∞ α(log an) exists and is equal to α(log aI),
ii) for α ∈ ∆\I there holds α(log an)→ +∞.

The main result on limits of conjugates of K is the following.

Proposition 4.10 [GJT98, Proposition 9.14] Let (an)n∈N be a sequence in
A+ of type (I, aI). In the space of closed subgroups of G, endowed with the
Chabauty topology, the sequence (anKan−1)n∈N converges to aIKIM(aI)−1NI .

Remark 4.11 Since the groups aIKIMaI
−1
NI arise as limits of the max-

imal compact subgroups under conjugations by sequences of type I in A,
the (generalized) Iwasawa decompositions can thus be seen as limits of the
Cartan decomposition.

We will now use this result to deduce some invariance for horofunctions.

Lemma 4.12 Let (an)n∈N be a sequence in A+ of type (I, aI) such that
(ψXan·p0)n∈N converges to ξ. Then ξ is aIKIM(aI)−1NI -invariant.

Proof. For each n ∈ N, the function ψXan·p0 is invariant under anKa−1
n . Since

the sequence (anKa−1
n )n∈N converges to aIKIM(aI)−1NI in the Chabauty

topology (see Proposition 4.10), for every g ∈ aIKIM(aI)−1NI there exists
a sequence (kn)n∈N in K such that the sequence (ankna−1

n )n∈N converges to
g. Therefore, for every p ∈ X we have

ξ(g · p)− ξ(p) = lim
n→+∞

d(an · p0, g · p)− d(an · p0, p)

= lim
n→+∞

d(an · p0, ankna
−1
n · p)− d(an · p0, p) = 0.

As a consequence, ξ is invariant under aIKIM(aI)−1NI . �

Definition 4.13 A horofunction η ∈ ∂ψF (F+)C̃(F ) is said to be of type
(I, aI), where I is a proper subset of ∆ and aI ∈ AI , if there exists a
sequence (an)n∈N in A of type (I, aI) such that the sequence (ψFan·p0)n∈N
converges to η in C̃(F ). Note that a horofunction may have several types,
but has at least one type.

Lemma 4.14 Let η ∈ ∂ψF (F+)C̃(F ) be a horofunction which has two types
(I, aI) and (J, bJ), with I, J ⊆ ∆ and aI ∈ AI , bJ ,∈ AJ . Then η also has
type (I ∩ J, cI∩J) for some cI∩J ∈ AI∩J .
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Proof. Let (an)n∈N and (bn)n∈N be two sequences in A of different types
(I, aI) and (J, bJ) respectively, such that the sequences (ψFan·p0)n∈N and
(ψFbn·p0

)n∈N both converge to η. For every n ∈ N, we define
cn = exp(1

2 log(an)+ 1
2 log(bn)). The sequence (cn)n∈N has type (I∩J, cI∩J),

where cI∩J ∈
(
exp(1

2 log(aI) + 1
2 log(bJ))AI∩J

)
∩AI∩J . According to Lemma

3.15, the sequence (ψAcn·p0)n∈N also converges to η. As a consequence, η has
type (I ∩ J, cI∩J). �

Lemma 4.15 Let η ∈ ∂ψF (F+)C̃(F ) be a horofunction of type (I, aI), where
I ( ∆ and aI ∈ AI . If η is invariant under AJ ′ with J ′ ⊆ I, then η has type
(I\J ′, cI\J ′) for some cI\J ′ ∈ AI\J ′ .

Proof. Fix c ∈ AJ ′+. For each k ∈ N, the sequence (ψF
ckan·p0

)n∈N converges
to ck · η = η, since η is invariant under AJ ′ . As a consequence, there
exists nk ∈ N such that, for every n ≥ nk, and for every a ∈ A such that
d(p0, a · p0) ≤ k, we have

|d(a · p0, c
kan · p0)− d(a · p0, an · p0)| ≤ 1

k + 1 .

We can furthermore assume that the sequence (nk)k∈N is increasing. Fix
a ∈ A. For every k ≥ d(p0, a·p0), we have |d(a·p0, c

kank
·p0)−d(a·p0, ank

·p0)|
≤ 1

k+1 and |d(p0, c
kank

· p0)− d(p0, ank
· p0)| ≤ 1

k+1 . Therefore, we have

lim
k→+∞

d(a · p0, c
kank

· p0)− d(p0, c
kank

· p0)

= lim
k→+∞

d(a · p0, ank
· p0)− d(p0, ank

· p0)

= η(a · p0)− η(p0).

As a consequence, the sequence (ψF
ckank

·p0
)k∈N converges to η.

To conclude, observe that the sequence (ckank
)k∈N has type (I\J ′, cI\J ′),

for some cI\J ′ ∈ AI\J ′ . �

4.4. The intrinisc compactification versus the closure of a flat. In
this section we define an explicit map from the intrinsic compactification of
the flat F into the horofunction compactification of X. For this we use the
invariance shown in Lemma 4.12 and the generalized horocyclic decomposi-
tion X = aIKIaI

−1
NIA · p0 in Lemma 4.8.

Theorem 4.16 The following map

φ : ψF (F+)C̃(F ) −→ ψX(X)C̃(X)

ψFz , where z ∈ F+ 7−→ ψXz

η of type (I, aI) 7−→
(
aIkIaI

−1
uIa · p0 ∈ X 7→ η(a · p0)

)
is a well-defined, continuous embedding.

Proof. The fact that φ is well-defined will be proved in Section 4.4.1, and the
fact that φ is continuous will be proved in Section 4.4.2. Since the restiction



HOROFUNCTION COMPACTIFICATIONS OF SYMMETRIC SPACES 18

to F+ is a left inverse to φ, we deduce that φ is injective. Since ψF (F+)C̃(F )

is compact, φ is then an embedding. �

4.4.1. Well-definedness. We want to prove that the map φ in Theorem 4.16
is well-defined.

Consider first a horofunction η ∈ ∂ψF (F+)C̃(F ) which has some type
(I, aI), and consider two decompositions aIkIaI−1

uIa·p0 = aIk′IaI
−1
u′Ia
′·p0

of the same point in X. According to Lemma 4.8, there exists w ∈W I such
that (aI)−1a′ = w(aI)−1aw−1. According to Lemma 4.12, η is invariant
under aIW I(aI)−1, so

η(a′ · p0) = η(aIw(aI)−1aw−1 · p0) = η((aIw(aI)−1)a · p0) = η(a · p0).

This means that the formula defining φ does not depend on the choice of
the A component in the decomposition X = aIKIaI

−1
NIA · p0.

Consider now a horofunction η ∈ ∂ψF (F+)C̃(F ), which has two types
(I, aI) and (J, bJ). We will prove that the two formulas defining φ(η), for
each type, agree. Let the notations be as in Lemma 4.14. Up to passing to a
subsequence, we may assume that the sequences (ψXan·p0)n∈N and (ψXbn·p0

)n∈N
converge to ξ and ξ′ respectively. We precisely need to prove that ξ = ξ′,
which will be done by induction on |I|+ |J |. By Lemma 4.14 assume from
now on that J ⊆ I.

Assume first that |I|+ |J | = 0, so I = J = ∅. According to Lemma 4.12,
ξ and ξ′ are both N -invariant, so for every p = ua · p0 ∈ X = NA · p0, we
have ξ(p) = η(a · p0) = ξ′(p). So ξ = ξ′.

By induction, fix m ∈ N and assume that if |I| + |J | ≤ m, then ξ = ξ′.
Consider now I, J such that |I|+ |J | = m+ 1. We will distinguish the two
cases J = I and J ( I.

The case J = I. Assume that J = I. We will first show that η has extra
invariance and then define a subset J ′ ⊆ I to show that η has also a type
smaller than I. The result will then follow by two inductions.

Lemma 4.17 Assume that J = I. Then there exists J ′ ⊆ I such that :
i) aI ∈ bIAJ ′ ,
ii) the roots in J ′ and I\J ′ are orthogonal, and
iii) η is W IAJ

′-invariant.

Proof. For simplicity, up to translating by (aI)−1, we may assume that aI =
1.

Fix λ ∈ [0, 1]. For each n ∈ N, let cn = exp((1 − λ) log an + λ log bn) ∈
A. According to Lemma 3.15, the sequence (ψFcn·p0)n∈N converges to η.
The sequence (cn)n∈N is of type (I, (bI)λ), where (bI)λ denotes exp(λ log bI).
Since the sequence (ψFcn·p0)n∈N converges to η, by Lemma 4.12 we deduce
that η is (bI)λW I((bI)λ)−1-invariant, for every λ ∈ [0, 1].
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According to Lemma 4.7, we deduce that η is invariant under W IAJ
′ ,

where J ′ ⊆ I is the smallest subset such that bI ∈ AJ ′ and such that the
roots in J ′ and in I\J ′ are orthogonal. �

According to Lemma 4.15, we deduce that η has also type (I\J ′, cI\J ′),
for some cI\J ′ ∈ AI\J ′ . Let (cn)n∈N denote a sequence of type (I\J ′, cI\J ′)
such that the sequence (ψFcn·p0)n∈N converges to η. Up to passing to a sub-
sequence, assume that the sequence (ψXcn·p0)n∈N converges to some ξ′′.

Since aI ∈ bIAJ ′ and aI 6= bI , we know that J ′ 6= ∅. Therefore we have
|I| + |I\J ′| < |I| + |I| so |I| + |I\J ′| ≤ m. By induction applied to the se-
quences (an)n∈N and (cn)n∈N, we deduce that ξ = ξ′′. By induction applied
to the sequences (bn)n∈N and (cn)n∈N, we deduce that ξ′ = ξ′′. In conclusion,
we have ξ = ξ′. This concludes the induction, and finishes the proof that
ξ = ξ′ in the case where J = I.

The case J ( I. Assume that J ( I. Similarly to the case before, we will
first show an extra invariance of η and that it has a smaller type with respect
to a new subset J ′ ⊆ I. To conclude the result by induction, we have to
distinguish again two cases depending on whether I \ J ′ = J or not.

Lemma 4.18 There exists J ′ ⊆ I such that :
i) J ∪ J ′ = I,
ii) the roots in J ′ and I\J ′ are orthogonal, and
iii) η is W IAJ

′-invariant.

Proof. Let an, bn be the sequences of type I and J converging to η. For
simplicity, up to translating by (aI)−1, we may assume that aI = 1. Up to
passing to a subsequence, let us partition I\J into I\J = I1tI2t . . . Ip such
that:
• ∀1 ≤ i ≤ p,∀α, β ∈ Ii, limn→+∞

α(log bn)
β(log bn) ∈ (0,+∞),

• ∀1 ≤ i < j ≤ p,∀α ∈ Ii,∀β ∈ Ij , limn→+∞
α(log bn)
β(log bn) = 0.

Fix 1 ≤ i ≤ p, and for some α ∈ Ii define tn := 1
α(log bn) such that tn −→ 0

as n → +∞. Fix λ > 0. For each n ∈ N, let cn = exp((1 − λtn) log an +
λtn log bn) ∈ A. According to Lemma 3.15, the sequence (ψFcn·p0)n∈N con-
verges to η. Let us define

cIi := lim
n→+∞

(
πIi(bn)

)tn
∈ AIi ,

where πIi(bn) denotes the orthogonal projection of bn onto AIi . Note that
this sequence converges: for any β ∈ Ii, we have

β

(
log

(
πIi(bn)

)tn)
= tnβ(log bn) = β(log bn)

α(log bn) ,

so limn→+∞ β

(
log

(
πIi(bn)

)tn)
∈ (0,+∞). On the other hand, for any

β ∈ ∆\Ii, we have β
(

log
(
πIi(bn)

)tn)
= 0, so the limit cIi ∈ AIi exists.
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Furthermore, we have cIi ∈ (AIi)+. Let
Ji := J t I1 t · · · t Ii.

For every α ∈ ∆\Ji, we have
α(log cn) = (1− λtn)α(log an) + λtnα(log bn) −→ +∞.

For every α ∈ J ∪ I1 ∪ . . . Ii−1, we have

α(log cn) = (1− λtn)α(log an) + λtnα(log bn) −→ α(log aI) = 0.
For every α ∈ Ii, we have

α(log cn) = (1− λtn)α(log an) + λtnα(log bn)
−→ α(log aI) + λα(log cIi) = λα(log cIi).

As a consequence, the sequence (cn)n∈N is of type (Ji, (cIi)λ), where (cIi)λ
denotes exp(λ log cIi). Since the sequence (ψFcn·p0)n∈N converges to η, by
Lemma 4.12 we deduce that η is (cIi)λW Ii((cIi)λ)−1-invariant.

As cIi ∈ (AIi)+, we deduce by Lemma 4.7 that η is invariant under AIi .
Because this is true for every 1 ≤ i ≤ p, we conclude that η is invariant
under AI\J .

Since the sequence (an)n∈N is of type (I, 1), and the sequence (ψFan·p0)n∈N
converges to η, we know by Lemma 4.12 that η is W I -invariant. In conclu-
sion, η is invariant under W I and AI\J . The smallest closed subgroup of
W IAI containing both W I and AI\J is W IAJ

′ , where J ′ ⊆ I is the smallest
subset containing I\J such that the roots in J ′ and in I\J ′ are orthogonal.
Therefore η is invariant under W IAJ

′ . �

Since η is invariant under AJ ′ , we deduce according to Lemma 4.15 that
η has type (I\J ′, cI\J ′), for some cI\J ′ ∈ AI\J ′ .

If I\J ′ ( J , then |I|+ |I\J ′| < |I|+ |J | and |J |+ |I\J ′| < |I|+ |J |, so by
applying the induction twice, we know that ξ = ξ′.

So we are left with the case I\J ′ = J . In this case J and I\J are
orthogonal.

Lemma 4.19 If η is AI\J -invariant and J and I\J are orthogonal, then
ξ = ξ′.

Proof. As J and J ′ = I\J are orthogonal, we have the orthogonal decom-
position AI = AJAJ

′ . Let us decompose aI = aJaJ
′ ∈ AJAJ

′ . Up to
translating by (bJaJ ′)−1, we can assume that bJ = 1 and aI = aJ

′ ∈ AJ ′ .

As ΣJ and ΣJ ′ are orthogonal, we have the decomposition KI = KJKJ ′ ,
with KJ and KJ ′ commuting. Furthermore KJ and AJ are commuting.
Since AJ ′ ⊆ AJ , we deduce that aJ ′ commutes with KJ . In particular,

aJ
′
KI(aJ ′)−1 = KJaJ

′
KJ ′(aJ ′)−1.

Fix any point p ∈ X, we will show that ξ′(p) = ξ(p). Consider the de-
composition X = aJ

′
KI(aJ ′)−1NIA · p0 = KJNIa

J ′KJ ′(aJ ′)−1A · p0, and
write

p = kJuIa
J ′kJ

′(aJ ′)−1c · p0 ∈ X,
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where kJ ∈ KJ , uI ∈ NI , kJ
′ ∈ KJ ′ and c ∈ A. According to Lemma 4.12,

ξ′ is invariant under KJMNJ . Since NI ⊆ NJ , we deduce that

ξ′(p) = ξ′(aJ ′kJ ′(aJ ′)−1c · p0).

In the decomposition A = AJ ′A
J ′ , let us write c = cJ ′c

J ′ . So

aJ
′
kJ
′(aJ ′)−1c = cJ ′a

J ′kJ
′(aJ ′)−1cJ

′ ∈ cJ ′GJ
′
.

According to the Iwasawa decomposition GJ
′ = NJ ′AJ

′
KJ ′ , there exists

uJ
′ ∈ NJ ′ and dJ

′ ∈ AJ
′ such that uJ ′aJ ′kJ ′(aJ ′)−1cJ

′ ∈ dJ
′
KJ ′ . As a

consequence,
uJ
′ · (aJ ′kJ ′(aJ ′)−1c · p0) = cJ ′d

J ′ · p0.

We claim that
ξ′(p) = ξ′(cJ ′dJ

′ · p0).

Showing this is equivalent to showing that ξ′(aJ ′kJ ′(aJ ′)−1c · p0) =
ξ′(uJ ′aJ ′kJ ′(aJ ′)−1c · p0). Since the sequence (bnKb−1

n )n∈N converges to
KJMNJ in the Chabauty topology (see Proposition 4.10), and as uJ ′ ∈
NJ ′ ⊆ NJ , there exists a sequence (kn)n∈N such that the sequence (bnknbn−1)n∈N
converge to uJ ′ . As a consequence,

ξ′(uJ ′aJ ′kJ ′(aJ ′)−1c · p0)− ξ′(aJ ′kJ ′(aJ ′)−1c · p0) =
lim

n→+∞
d(bn · p0, u

J ′aJ
′
kJ
′(aJ ′)−1c · p0)− d(bn · p0, a

J ′kJ
′(aJ ′)−1c · p0) =

lim
n→+∞

d(bn · p0, bnknb
−1
n aJ

′
kJ
′(aJ ′)−1c · p0)− d(bn · p0, a

J ′kJ
′(aJ ′)−1c · p0) = 0.

Hence ξ′(uJ ′aJ ′kJ ′(aJ ′)−1c · p0) = ξ′(aJ ′kJ ′(aJ ′)−1c · p0), so

ξ′(p) = ξ′(cJ ′dJ
′ · p0).

By assumption, η is invariant under AI\J = AJ
′ . As a consequence, we have

ξ′(p) = ξ′(cJ ′dJ
′ · p0) = η(cJ ′dJ

′ · p0) = η(cJ ′ · p0).

On the other hand, according to Lemma 4.12, we have

ξ(p) = ξ(kJuIaJ
′
kJ
′(aJ ′)−1c · p0) = ξ(c · p0) = η(c · p0).

Since c = cJ ′c
J ′ and η is invariant under AJ

′ , we conclude that
ξ(p) = η(cJ ′ · p0). Therefore, ξ′(p) = ξ(p). So ξ = ξ′. �

This conludes the proof by induction that ξ = ξ′. So we have proven that
the map φ in Theorem 4.16 is well-defined.

4.4.2. Continuity. We want to prove that the map φ in Theorem 4.16 is
continuous. It is clear that φ is continuous on the interior ψF (F+). Fix

η ∈ ∂ψF (F+)C̃(F ), we will show that φ is continuous at η.

Lemma 4.20 Let (an)n∈N be a sequence in A+ such that the sequence
(ψFan·p0)n∈N converges to η. Then (ψXan·p0)n∈N converges to φ(η).
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Proof. Up to passing to a subsequence, we may assume that the sequence
(an)n∈N has some type (I, aI) and that the sequence (ψXan·p0)n∈N converges
to some ξ. According to Lemma 4.12, ξ is invariant under aIKIM(aI)−1NI ,
so for every p = aIkI(aI)−1uIa · p0 ∈ X = aIKI(aI)−1NIA · p0, we have
ξ(p) = ξ(a · p0) = η(a · p0).

Furthermore, since φ is well-defined and η has type (I, aI), we can use
this type in the definition of φ(η), and thus φ(η)(p) = η(a · p0) = ξ(p). In
conclusion, ξ = φ(η), so (ψXan·p0)n∈N converges to φ(η) in C(X). �

Lemma 4.21 Let (ηn)n∈N be a sequence in ∂ψF (F+)C̃(F ) converging to η
in C̃(F ). Then (φ(ηn))n∈N converges to φ(η) in C̃(X).

Proof. Up to passing to a subsequence, we may assume that the sequence
(φ(ηn))n∈N converges to some horofunction ξ in C̃(X). Up to passing again
to a subsequence, we may assume that there exists I ( ∆ such that for each
n ∈ N, ηn is of type (I, aIn) for some aIn ∈ AI . For each n ∈ N, consider
a sequence (an,m)m∈N of type (I, aIn) converging to ηn. Up to passing to a
subsequence, we may assume that the sequence (aIn)n∈N is of type (J, aJ) for
some J ⊆ I and some aJ ∈ AJ . For each n ∈ N, one can find some mn ∈ N
such that the sequence (an,mn)n∈N is of type (J, aJ) and converges to η.

Fix
p = aJkJaJ

−1
uJc · p0 ∈ X = aJKJaJ

−1
NJA · p0.

Since the sequence (aInKIMaIn
−1
NI)n∈N converges to aJKJMaJ

−1
NJ in the

Chabauty topology (see Proposition 4.10), there exist sequences (kIn)n∈N
in KIM and (un,I)n∈N in NI such that the sequence (aInkInaIn

−1
un,I)n∈N

converges to aJkJaJ−1
uJ . Hence

ξ(p) = lim
n→+∞

φ(ηn)(aInkInaIn
−1
un,Ic · p0)

= lim
n→+∞

ηn(c · p0)

= η(c · p0)

= φ(η)(aJkJaJ−1
uJc · p0) = φ(η)(p).

As a consequence, we have ξ = φ(η), so the sequence (φ(ηn))n∈N converges
to φ(η). �

So we have proved that the map φ in Theorem 4.16 is continuous. This
concludes the proof of Theorem 4.16.

5. Realizing classical compactifications of symmetric spaces

In this section we prove that all Satake and generalized Satake compact-
ifications can be realized as horofunction compactifications of polyhedral
G-invariant Finsler metrics on X.

5.1. Generalized Satake compactifications. We first recall the con-
struction of generalized Satake compactifications. Let X = G/K be a sym-
metric space of non-compact type.
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Consider the space

Pn := PSL(n,C)/
PSU(n)

and identify it via the map mPSU(n) 7−→ mm∗ with the space of positive
definite Hermitian matrices. Here m∗ denotes the conjugate transpose of
m ∈ PSL(n,C). Let Hn be the real vector space of Hermitian matrices and
P(Hn) the corresponding compact projective space. For A ∈ Hn we denote
the corresponding equivalence class in P(Hn) by [A]. As Pn ⊆ Hn the map
A 7−→ [A] is a PSL(n,C)-equivariant embedding and we define

Pn
S := i(Pn) ⊆ P(Hn)

to be the Standard-Satake compactification.
Now let τ : G −→ PSL(n,C) be a faithful projective representation of G.

Via the map

(5)
iτ : X = G/K −→ Pn

gK 7−→ τ(g)τ(g)∗

we can embed X into Pn as totally geodesic submanifold. There is a 1-to-1-
correspondence between such embeddings and faithful projective representa-
tions of G into PSL(n,C) with the additional condition τ(ϑ(g)) = (τ(g)∗)−1

for all g ∈ G, where ϑ denotes the Cartan involution on G. With this we
define

X
S
τ := iτ (X) ⊆ Pn

S

as the generalized Satake compactification of X with respect to the repre-
sentation τ . By the action of G on Pn, g · A = τ(g)Aτ(g)∗ for g ∈ G

and A ∈ Pn, the first embedding iτ is G-equivariant and therefore XS
τ is

a G-compactification, that is, the G-action on X extends to a continuous
action on XS

τ . When τ is an irreducible representation, the compactification
X
S
τ is a classical Satake compactification, which has been introduced and

described by Satake in [Sat60]. In general, when τ is reducible, the com-
pactification XS

τ is a generalized Satake compactification as introduced and
described in [GKW17].

Note that there are finitely many isomorphism classes of Satake compact-
ifications, one associated to any proper subset I ⊆ ∆, but infinitely many
isomorphism classes of generalized Satake compactifications.

5.2. The compactification of a flat in a generalized Satake com-
pactification. We now compare the generalized Satake compactification
with the horofunction compactification of X with respect to an appropriate
polyhedral G-invariant Finsler metric.

With the Cartan decomposition (see Lemma 2.1 on page 4) we can write
X = Kea

+
.p0, and since K is compact X = Kea+ .p0 = K.ea+p0. Thus

it is sufficient to show that the we have an W-equivariant homeomorphism
between the closures of ea.p0 in the horofunction compactification and the
generalized Satake compactification respectively.

For the closure of the flat ea.p0 in the generalized Satake compactification
we have the following:
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Theorem 5.1 ([Ji97] Prop.4.1, [GKW17]) Let τ : G → PSL(n,C) be a
faithful projective representation. Let µ1, . . . , µk be the weights of τ . Then
the closure of the flat ea.p0 in the generalized Satake compactification XS

τ

is W -equivariantly isomorphic to conv(2µ1, . . . , 2µk) ⊆ a∗.

Remark 5.2 Because of the symmetry of the weights with respect to the
Weyl chambers, the convex hull of all weights is the same as the convex hull
of the Weyl-group orbit of χ1, · · · , χl, where χi are the highest weights of
the irreducible components τi of τ :

conv(2µ1, . . . , 2µk) = conv
(
W (2χ1), · · · ,W (2χl)

)
.

Example 5.3 Let us look at an example. Take X = SL(3,C)/SU(3) with
the adjoint representation ad of g which induces a representation on G. The
weights of the adjoint representation are exactly the roots αij ∈ a∗ with
1 ≤ i 6= j ≤ 3, where

αij(H) = hi − hj
for any diagonal matrix H = diag(h1, h2, h3) ∈ a. The highest weight with
respect to the positive Weyl chamber

a+ = {diag(h1, . . . , h3) ∈ sl(3,C) |
3∑
i=1

hi = 0}

is α13.
We identify a with a∗ using the Killing form κ. Then the convex hull of

the weights is shown in Figure 3.

ker(α12)

ker(α23)

ker(α13)

a+ : t1 > t2 > t3α13

α12

α32

α31

α21

α23

Figure 3. conv(µ1, . . . , µ6) for the representation τ = ad in a∗.

By 5.1 we know that the closure of the flat in X
S
τ is homeomorphic to

conv(2µ1, . . . , 2µk) ⊆ a∗. If the highest weight is regular, like for τ = ad in
the example above, we obtain the maximal Satake compactification.
To get the two minimal Satake compactifications, the highest weight has to
lie on a singular direction, see Figure 4 for a picture. The representations
here are the standard and the dual standard representation.

If we now take the convex hull of these two triangles, we again obtain
a hexagon but now with its vertices on the singular directions, see Figure
5. This compactification of the flat corresponds to a generalized Satake
compactification associated to the direct sum of the standard and the dual
standard representation. It is the same as the polyhedral compactification
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ker(α12)

ker(α23)

ker(α13)

ker(α12)

ker(α23)

ker(α13)

Figure 4. These two convex hulls correspond to the stan-
dard and the dual standard representations.

of the flat with respect to the polyhedral decomposition of a with respect to
the Weyl chambers.

ker(α12)

ker(α23)

ker(α13)

Figure 5. The convex hull of the two balls above give a
hexagon with vertices on the singular directions.

Proposition 5.4 Let X = G/K be a symmetric space of non-compact
type. Let τ be a faithful projective representation of G, and µ1, . . . , µn
its weights. Let D := conv(2µ1, . . . , 2µn) ⊆ a∗. Let B = −D◦ the dual
closed convex set in the maximal abelian subalgebra a ⊆ p ⊆ g. Then the
closure of the flat ea.p0 in the generalized Satake compactification is W -
equivariantly isomorphic to the closure of the flat ea.p0 in the horofunction
compactification of X with respect to the Finsler metric defined by B.

Proof. By Theorem 4.16, it suffices to compare the closure of ea+
.p0 in the

generalized Satake compactifications with the closure of ea.p0 in the flat
compactification of ea.p0 with respect to the norm defined by B. By The-
orem 5.1 and Theorem 4.4, both are W-equivariantly homeomorphic to the
closed convex conv(2µ1, . . . , 2µn) = D = −B◦.

Note that in Theorem 5.1 and Theorem 4.4, the identification of the
closure of ea.p0 with D relies on a moment map, and a direct comparison
shows that a sequence Hn ∈ a converges in the Satake compactification XS

τ

if and only if it converges in the horofunction compactification X
hor with

respect to the G-invariant Finsler metric defined by B. �

Theorem 5.5 Let X = G/K be a symmetric space of non-compact type.
Let τ be a faithful projective representation of G and µ1, . . . , µn its weights.
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Let D := conv(µ1, . . . , µn). Let B = −D◦ define a unit ball in the maximal
abelian subalgebra a ⊆ p ⊆ g. Then the generalized Satake compactification
X
S
τ is G-equivariantly isomorphic to the horofunction compactification of X

with respect to the Finsler metric defined by B.

Proof. We show that a sequence converges in the generalized Satake com-
pactification X

S
τ if and only if it converges in the horofunction compacti-

fication X
hor with respect to the G-invariant Finsler metric defined by B.

Let xn ∈ X be a sequence. Then we can write xn = kn ·anp0, where kn ∈ K
and an ∈ A+ is uniquely determined. Up to passing to a subsequence we
can assume that xn converges in XS

τ and that kn converges to an element
k ∈ K. Therefore Theorem 5.5 is a consequence of the Proposition 5.4. �

Remark 5.6 Note that Theorem 5.5 describes explicitly the convex unit
ball of the Finsler metric which induces the horofunction compactification
realizing the (generalized) Satake compactifications. For classical Satake
compactifications the convexD (and hence also the unit ball B) has a partic-
ularly simple description as it is just the convex hull of the Weyl group orbit
of the highest weight vector of τ . In order to obtain the Satake compactifi-
cation determined by a subset I ⊆ ∆ one has to choose a representation τ ,
whose highest weight vector has support equal to I.

Example 5.7 We consider X = SL(4,C)/ SU(4) with the same notations
as in Example 5.3 above. Let again τ = ad be the considered representation.
Then the highest weight with respect to the positive Weyl chamber a+ =
{diag(t1, . . . , t4) ∈ sl(4,C) |

∑4
i=1 ti = 0} is µτ = α14. Let Mτ ∈ a be the

element corresponding to µτ by identifying a and a∗ with the Killing form.
Note that as α23(Mτ ) = 0, Mτ lies on a Weyl chamber wall. The Weyl
chamber system is shown in Figure 6. The picture on the left illustrates the
structure of the Weyl chamber walls while the one on the right shows the
positive Weyl chamber we chose.

ker(α23) ker(α14)

ker(α12)

ker(α34)

ker(α24) ker(α13)

Figure 6. The Weyl chamber system of SL(4,R) with pos-
itive Weyl chamber and the Weyl chamber walls

The convex hull D of the weights is a regular polyhedral ball with 12 ver-
tices and 14 maximal dimensional faces. Accordingly, the unit ball
B = −D◦ has 14 vertices and 12 maximal dimensional faces, a picture
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µτ

D B = −D◦

Figure 7. D = conv(W (µτ )) and B = −D◦ for τ = ad.

of both is given in Figure 7. The dashed lines in the right picture are to
indicate that always two triangles together form a rhomb. If we chose the
Finsler metric corresponding to B as unit ball, we obtain a horofunction
compactification of the flat which is isomorphic to the Satake compactifica-
tion with respect to τ = ad.

Let us now consider other representations. If the representativeMτ of the
highest weight lies completely inside of a+ we getD andB as shown in Figure
8. The polyhedron D = conv(W (µτ )) is then called the permutohedron of
dimension 3. More generally, if τ is a faithful representation of SL(n− 1,R)
with regular Mτ , then the polyhedron D = conv(W (µτ )) is the (n − 1)-
dimensional permutohedron.

µτ

D B = −D◦

Figure 8. D and B = −D◦ for a representation with highest
weight in a regular direction.

On the other hand if Mτ lies in more than one Weyl chamber wall, the
convex hull D of the weights and the unit ball B of the Finsler norm are
like shown in Figure 9 or a rotated version of it, depending on which pair of
Weyl chamber walls Mτ lies.

5.3. Dual generalized Satake compactifications. The realization of
generalized Satake compactifications as horofunction compactifications for
polyhedral G-invariant Finsler metrics allows us to define the dual general-
ized Satake compactification XS

τ

∗
.

Definition 5.8 Let τ : G→ PSL(n,C) be a faithful projective representa-
tions and XS

τ the associated generalized Satake compactification. The dual
generalized Satake compactification X

S
τ

∗
is defined to be the horofunction
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µτ

D B = −D◦

Figure 9. D and B = −D◦ for a representation with highest
weight in a singular direction.

compactification of X with respect to the polyhedral G-invariant Finsler
metric defined by the unit ball B = D = conv(µ1, . . . , µk).

Question 5.9 Is there a geometric way to interpret the duality between
X
S
τ and XS

τ

∗
?

There are many polyhedral G-invariant Finsler metrics which are not re-
lated to generalized Satake compactifications, and even more G-invariant
Finsler metrics which are not polyhedral. Since any Weyl group invariant
convex set containing 0 defines a G-invariant Finsler metric, it is very nat-
ural to ask whether natural operations on convex sets extend to natural
operations on the corresponding horofunction compactifications.
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