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HYPERBOLIC RIGIDITY
OF HIGHER RANK LATTICES

 T HAETTEL
A  V G  C H

A. – We prove that any action of a higher rank lattice on a Gromov-hyperbolic space is
elementary. More precisely, it is either elliptic or parabolic. This is a large generalization of the fact that
any action of a higher rank lattice on a tree has a fixed point. A consequence is that any quasi-action of
a higher rank lattice on a tree is elliptic, i.e., it has Manning’s property (QFA). Moreover, we obtain a
new proof of the theorem of Farb-Kaimanovich-Masur that any morphism from a higher rank lattice
to a mapping class group has finite image, without relying on the Margulis normal subgroup theorem
nor on bounded cohomology. More generally, we prove that any morphism from a higher rank lattice
to a hierarchically hyperbolic group has finite image. In the appendix, Vincent Guirardel and Camille
Horbez deduce rigidity results for morphisms from a higher rank lattice to various outer automorphism
groups.

R. – Nous montrons que toute action d’un réseau de rang supérieur sur un espace Gromov-
hyperbolique est élémentaire. Plus précisément, toute action est elliptique ou parabolique. Ce résultat
est une large généralisation du fait que toute action d’un réseau de rang supérieur sur un arbre a
un point fixe. Une conséquence est que toute quasi-action d’un réseau de rang supérieur sur un
arbre est elliptique, autrement dit il a la propriété (QFA) de Manning. De plus, nous obtenons une
preuve nouvelle du théorème de Farb-Kaimanovich-Masur disant que tout morphisme d’un réseau
de rang supérieur vers le groupe modulaire d’une surface est d’image finie, sans avoir recours au
théorème du sous-groupe normal de Margulis ni à la cohomologie bornée. Enfin, nous montrons
que tout morphisme d’un réseau de rang supérieur vers un groupe hiérarchiquement hyperbolique est
d’image finie. Dans l’appendice, Vincent Guirardel et Camille Horbez déduisent des résultats de rigidité
pour des morphismes de réseaux de rang supérieur à valeurs dans divers groupes d’automorphismes
extérieurs.

Introduction

Higher rank semisimple algebraic groups over local fields, and their lattices, are well-
known to enjoy various rigidity properties. The main idea is that they cannot act on any
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440 T. HAETTEL

other space than the ones naturally associated to the Lie group. This is reflected notably in
the Margulis superrigidity theorem, and is also the motivating idea of Zimmer’s program.

Concerning the rigidity of isometric actions, the most famous example is Kazhdan’s
property (T), which tells us that higher rank lattices cannot act by isometries without fixed
point on Hilbert spaces. In fact, property (T) also implies such a fixed point property for some
Lp spaces (see [2]), for trees (see [48]), and more generally for metric median spaces (such as
CAT(0) cube complexes, see [14]).

Property (T) is also satisfied notably by hyperbolic quaternionic lattices and by some
random hyperbolic groups (see [51]). There have been various strengthenings of property (T),
which are all satisfied by higher rank lattices but not by hyperbolic groups, which imply fixed
point properties for various actions on various Banach spaces (see for instance [34] and [46]).

Since Gromov-hyperbolic spaces play a central role in geometric group theory, under-
standing actions of higher rank lattices on Gromov-hyperbolic spaces is an extremely natural
question. There are several partial answers to that question, for instance any action on a tree
or on a symmetric space of rank 1 has a fixed point. Manning proved that, for SL.n;Z/ with
n > 3 and some other boundedly generated groups, any action on quasi-tree is bounded
(see [42]). Using V. Lafforgue’s strengthened version of property (T) (see [34], [38], [33]), one
deduces that if � is a cocompact lattice in a higher rank semisimple algebraic group, then any
action of � by isometries on a uniformly locally finite Gromov-hyperbolic space is bounded.

The main purpose of this article is to prove the following.

T A. – Let � be a lattice (in a product) of higher rank almost simple connected
algebraic groups with finite centers over a local field. Then any action of � by isometries
on a Gromov-hyperbolic metric space is elementary. More precisely, it is either elliptic or
parabolic.

R. – � This result has also been announced by Bader and Furman, as it
should be a consequence of their deep work on rigidity and boundaries (see notably [1,
Theorem 4.1] for convergence actions of lattices). However, the techniques are essen-
tially different: Bader and Furman use a lot of ergodic theory, while in this article
we use very little of it, and focus mostly on the asymptotic geometry of lattices and
buildings, making a crucial use of medians.

� One should note that the hyperbolic space in the theorem is not assumed to be locally
compact, nor the action is assumed to satisfy any kind of properness.

� Note that most rigidity results conclude to the boundedness of orbits. Since any finitely
generated group has a metrically proper, parabolic action on a hyperbolic space (locally
infinite in general), one needs to include those parabolic actions (see for instance [26]).

� Even though they do not appear in the statement, the theory of coarse median spaces
developed by Bowditch (see [8]) plays a crucial role in the proof.

� In the theorem, we have to assume that each almost simple factor has higher rank. Our
methods use the induction to the ambient group, so we cannot study irreducible lattices
in products of rank 1 groups. However, in this case, Bader and Furman can prove the
following: for any irreducible lattice in a product of at least two groups, any isometric
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HYPERBOLIC RIGIDITY OF HIGHER RANK LATTICES 441

action on a hyperbolic spaceX without bounded orbits inX or finite orbits in @X , there
is a closed subset of the boundary on which the action extends to one factor.

� Whereas most rigidity results concerning higher rank lattices use bounded coho-
mology, Margulis superridigidity or normal subgroup theorems or V. Lafforgue’s
strengthenings of property (T), our proof uses really new ingredients, and in particular
median spaces.

In [42], Manning was motivated by the question of quasi-actions of groups of trees. For
the precise definition of a quasi-action, we refer to Section 5. Manning proved that any quasi-
action of SL.n;Z/, for n > 3, on a tree is elliptic (or more generally SL.n; O/, where O is the
integer ring of a number field, see [42, Corollary 4.5]). Manning used notably that SL.n;Z/ is
boundedly generated by elementary matrices, which is not true for more general lattices.
A straightforward consequence of Theorem A is the following generalization of Manning’s
result.

C B. – Let � be as in Theorem A. Then any quasi-action of � by isometries
on a tree is elliptic. In other words, � has Manning’s property (QFA).

Another major consequence of Theorem A is another proof of the following.

C C (Farb-Kaimanovich-Masur [17], [30]). – Let � be as in Theorem A, and
let Sg;p be a closed surface of genus g with p punctures. Then any morphism � !MCG.Sg;p/

has finite image.

The proof of Farb, Masur and Kaimanovich relies notably on the very deep Margulis
normal subgroup theorem. Our purpose here is to give a proof as simple as possible, and
we will not rely on any such deep theorem in the uniform case, and in the non-uniform one
case we will use Margulis arithmeticity theorem only to ensure that the associated cocycle is
integrable. In particular, in the proof of Corollary C, we will not even use Burger-Monod’s
result that higher rank lattices do not have unbounded quasi-morphisms. We will simply
use the fact that higher rank lattices do not surject onto Z (it is a direct consequence of
property (T)) and use the weaker form of Theorem A stating that every action of a higher
rank lattice on a hyperbolic space is elementary.

In fact, we can also study the more general class of hierarchically hyperbolic groups.
They have been defined and studied in several articles (see [5], [6], [4], [16]), and since the
definition is technical and irrelevant for the rest of the article, we refer to these articles for
the precise definitions and main results. Roughly speaking, hierarchically hyperbolic spaces
are metric spaces with a nice collection of projections to hyperbolic spaces, organized with
some hierarchical structure. Notable examples of hierarchically hyperbolic groups include
hyperbolic groups, mapping class groups, right-angled Artin groups, and they are stable
under relative hyperbolicity. Applying the exact same proof as in Corollary C yields the
following more general result.

C D. – Let � be as in Theorem A, and let G be a hierarchically hyperbolic
group. Then any morphism � ! G has finite image.
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442 T. HAETTEL

Note that when G is hyperbolic, a simple argument using quasi-morphisms also gives
the result, and when G is a right-angled Artin group, it is a straightforward consequence of
Property (T).

Another classical generalization of hyperbolic groups is the class of acylindrical hyper-
bolic groups, developed notably by Osin (see [47]). A group is called acylindrically hyperbolic
if it admits a non-elementary acylindrical action on a hyperbolic space. Classical examples
include (relatively) hyperbolic groups, mapping class groups, outer automorphism groups of
free groups, and many others. Following Mimura (see [45]), we say that a subgroup H of an
acylindrically hyperbolic groupG is absolutely elliptic if, for every acylindrical action ofG on
a hyperbolic space, H acts elliptically. An easy consequence of Theorem A is the following.

C E. – Let � be as in Theorem A, and let G be an acylindrically hyperbolic
group. Then any morphism � ! G has universally elliptic image.

Note that Mimura proved the result for all Chevalley groups (and even up to measure
equivalence), including (as a very particular case) the group SL.n;Z/ with n > 3 (see [45,
Theorem 1.1]).

Another much-studied group is the group Out.FN / of outer automorphisms of the
rank n free group. Bridson and Wade proved that any morphism from a higher rank lattice
to Out.Fn/ has finite image (see [10]). Note that Out.FN / is not hierarchically hyperbolic,
so we cannot give a new proof of this result using Corollary D. Furthermore, if we want
to apply the same strategy as in the mapping class group case by considering the action
of Out.FN / on the hyperbolic free splitting complex, the situation is quite different: there
are subgroups of Out.Fn/ with bounded orbits in the free splitting complex, but with no
finite orbits. Nevertheless, in the appendix, Vincent Guirardel and Camille Horbez use
Theorem A to deduce several rigidity results for morphisms to various outer automorphism
groups. Let us present the following result, and refer the reader to the appendix for the other
ones.

C F. – Let� be as in Theorem A, and letG be a torsion-free hyperbolic group.
Then any morphism � ! Out.G/ has finite image.

It seems that the only previously known such result was for Out.Fn/, due to Bridson and
Wade (see [10]).

We will now give the outline of the proof of Theorem A, and explain the different parts of
the article.

In Section 2, we show how to use L1 induction to obtain, starting from an action of
a higher rank lattice � < G on a hyperbolic space, an action of G on a coarse median
space Y . To that purpose, if � is non-uniform, we use Shalom’s work on integrability of
cocyles (see [49]).

In Section 3, we show that any action of G on a coarse median space Y has sublinear
orbit growth. To prove this, we embed an asymptotic cone of G, which is a non-discrete
affine building, into the asymptotic cone of Y , which is a metric median space. We then use
techniques similar to [22], where we proved that higher rank affine buildings do not admit any
Lipschitz median. Note that we prove a result which can be of independent interest, namely
that affine buildings do not embed into metric median spaces (see Proposition 3.6 for details).
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In Section 4, we use the Brownian motion of the symmetric space of G, or a standard
random walk on the 1-skeleton of the Bruhat-Tits building of G, and use Lyons-Sullivan’s
discretization procedure to show that some random walk on � has zero drift in X . Finally,
we use a result of Maher and Tiozzo (Theorem 4.2) to show that the action of � on X is
elementary. Finally, we rule out the case of lineal actions (i.e., non-trivial actions on a quasi-
line) using Burger and Monod’s result that � has no unbounded quasimorphisms.

In Section 5, we give the proof of the corollaries.
We would like to thank Yves Benoist for suggesting to look at Lyons-Sullivan’s discretiza-

tion procedure of the Brownian motion, and for long and stimulating discussions. We would
like to thank Jean Lécureux, Bruno Duchesne, Nicolas Monod, Mikael de la Salle, Koji Fuji-
wara, Anthony Genevois, Brian Bowditch and Mark Hagen for interesting discussions. We
would also like to thank the anonymous referee for helping improve the presentation.

1. Definitions

We start by recalling the definitions of medians and coarse medians as defined by
Bowditch in [8] and their essential properties.

D 1.1. – A median on a set X is a map � W X3 ! X which satisfies the
following:

(M1) 8a; b; c 2 X;�.a; b; c/ D �.b; a; c/ D �.b; c; a/,

(M2) 8a; b 2 X;�.a; a; b/ D a,

(M3) 8a; b; c; d; e 2 X;�.a; b; �.c; d; e// D �.�.a; b; c/; �.a; b; d/; e/.

The pair .X; �/ is also called a median algebra.

Furthermore, there exist universal objects called free median algebras, for which we will
simply state the following.

P 1.2. – For any p 2 N, there exists a finite free median algebra .X; �X /
such that, for any finite median algebra .Y; �Y / with jY j 6 p, there exists a median surjective
homomorphism .X; �X /! .Y; �Y /.

Medians are interesting from the viewpoint of geometry thanks to the following notion.

D 1.3. – Let .X; d/ be a metric space. The interval between a; b 2 X is Œa; b� D
fc 2 X j d.a; c/C d.c; b/ D d.a; b/g. The metric space .X; d/ is called metric median if for
every a; b; c 2 X , the intersection Œa; b� \ Œb; c� \ Œc; a� is a single point �.a; b; c/.

Note that if .X; d/ is metric median, the fonction � W X3 ! X given in the definition is a
median.

E. – � R, .Rn; `1/ or any L1 space are metric median spaces.

� Products of metric median spaces, endowed with the `1 product distance, are metric
median.

� f0; 1g, and the n-cube f0; 1gn, are metric median, with the combinatorial distance.
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444 T. HAETTEL

� According to [15], any simplicial graph is metric median if and only if it is the 1-skeleton
of a CAT(0) cube complex.

� Any R-tree is a metric median space.

D 1.4. – Let .X; �/ be a median algebra. The rank of .X; �/ is the supremum
of integers n 2 N such that there exists a median embedding of the n-cube f0; 1gn ! X

into X .

D 1.5. – Let .X; �/ be a median algebra. A subset A of X is called convex if
for every a; b 2 A, we have Œa; b� � X .

P 1.6. – Let .X; �/ be a median algebra. For any two distinct points x; y 2 X ,
there exists a wallW D fHC;H�g separating x and y, i.e.,X D HCtH� is a partition ofX
into two convex subsets HC, H�, such that x and y do not belong the same H˙.

In [8], Bowditch defined the notion of a coarse median space, in order to encompass
notably hyperbolic spaces, CAT(0) cube complexes and mapping class groups. This is a
natural generalization of the definition of Gromov-hyperbolic spaces using comparisons
with finite metric trees. Roughly speaking, coarse median spaces have good uniform approx-
imations by finite CAT(0) cube complexes.

D 1.7. – Let .X; d/ be a metric space. A coarse median on X is a map
� W X3 ! X which satisfies .M1/, .M2/ and the following:

(C1) There are constant k,h.0/ such that for all a; b; c; a0; b0; c0 2 X3, we have

d.�.a; b; c/; �.a0; b0; c0// 6 k.d.a; a0/C d.b; b0/C d.c; c0//C h.0/:

(C2) There is a function h W N ! Œ0;1/ with the following property. Suppose that A � X
is finite with jAj 6 p, then there exists a finite median algebra .…;�…/ and maps
� W A! … and � W …! X such that

8x; y; z 2 …;d.��….x; y; z/; �.�x; �y; �z// 6 h.p/

8a 2 A; d.a; ��a/ 6 h.p/:

If furthermore the median algebra… can always be chosen to have a rank bounded by r , we
say that � is a coarse median of rank at most r .

E. – � Any median metric space is coarse median.

� Any metric space quasi-isometric to a coarse median space is coarse median.

� A metric space is Gromov-hyperbolic if and only if it is coarse median of rank 1.

� Any space hyperbolic relative to coarse median spaces is coarse median (see [9]).

� For any closed surface S possibly with punctures, the mapping class group of S and the
Teichmüller space of S with either the Teichmüller or Weil-Peterson metric are coarse
median (see [8]).

� Any hierarchically hyperbolic space is coarse median (see [6]).

� Higher rank lattices are not coarse median (see [22]).

One of the main tools to study coarse median spaces are asymptotic cones.
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T 1.8 (Bowditch, see [8]). – Let .X; d; �/ be a coarse median space. Then on any
asymptotic cone .X1; d1/, there is a canonically defined median �1 W X31 ! X1, which is
d1-Lipschitz with respect to each variable.

2. L1 induction of the action to the semisimple group

For this section, we will use the following notations and assumptions.
LetG denote a locally compact group, compactly generated, and � is a lattice inG. Fix a

geodesic Gromov-hyperbolic space .X; dX /, and consider an action of � by isometries onX .
Fix a basepoint x0 2 X .

In this section, we will see how to produce an action ofG by isometries on a coarse median
space using induction.

Let �X W X3 ! X denote a coarse median on X . It is uniquely defined up to a distance
bounded above by ı, where ı > 0 is a constant in the thin triangle definition of the Gromov-
hyperbolicity of X . As a consequence, the action of � on X quasi-preserves �X .

Since � is a lattice inG, we can consider a measurable closed fundamental domainU � G
that contains a neighborhood of e, such that G D U�. Let � denote the Haar probability
measure on G=� ' U .

We will define an induced action ofG on a new space Y , called the L1 G-induced space of
the action of � on X .

More precisely, let

Y D L1.G=�;X/ D fa W U ! X measurable j
Z
U

dX .a.u/; x0/d�.u/ < C1g:

Endow Y with the L1 distance, for a; b 2 Y :

dY .a; b/ D

Z
U

dX .a.u/; b.u//d�.u/:

Define �Y W Y 3 ! Y by �Y .a; b; c/ W u 2 U 7! �X .a.u/; b.u/; c.u//.

P 2.1. – The space .Y; dY ; �Y / is a coarse median space.

Proof. – Let k > 0 and h W N ! Œ0;C1/ denote the constants in the definition of the
coarse median �X on X . For any a; b; c; a0; b0; c0 2 Y , we have

dY .�Y .a; b; c/; �Y .a
0; b0; c0// D

Z
U

dX .�X .a.u/; b.u/; c.u//; �X .a
0.u/; b0.u/; c0.u///d�.u/

6
Z
U

�
k.dX .a.u/; a

0.u//C dX .b.u/; b
0.u//C dX .c.u/; c

0.u///C h.0/
�
d�.u/

6 k.dY .a; a
0/C dY .b; b

0/C dY .c; c
0//C h.0/;

so �Y satisfies the condition (C1).
Let A � Y be a finite subset with jAj 6 p. For each u 2 U , consider the finite subset

A.u/ � X : there exists a finite median algebra .….u/; �….u// and maps �.u/ W A.u/! ….u/,
�.u/ W ….u/! X , such that for every u 2 U , we have

8x; y; z 2 ….u/; dX .�.u/�….u/.x; y; z/; �X .�.u/x; �.u/y; �.u/z// 6 h.p/

8a 2 A.u/; dX .a; �.u/�.u/a/ 6 h.p/:

ANNALES SCIENTIFIQUES DE L’ÉCOLE NORMALE SUPÉRIEURE
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Without loss of generality, one can assume that, for every u 2 U , the median algebra
.….u/; �….u// is a free median algebra over p generators from Proposition 1.2, which we
denote simply .…;�…/. Furthermore, we can assume that each of the maps �.u/ W A! … is
constant, equal to some �Y W A! ….

Up to a uniformly bounded error K > 0, one may assume that, for each x 2 …, the map
u 2 U 7! �.u/x 2 X is measurable. Let us define the map �Y W … ! Y which to x 2 …
maps �Y .x/ 2 Y defined by �Y .x/.u/ D �.u/.x/.

For every x; y; z 2 …, we then have

dY .�Y�….x; y; z/; �Y .�Y .x/; �Y .y/; �Y .z///

D

Z
U

dX .�.u/�….x; y; z/; �X .�.u/.x/; �.u/.y/; �.u/.z/// d�.u/ 6 h.p/:

Furthermore, for every a 2 A, we have

dY .a; �Y �Y a/ D

Z
U

dX .a.u/; �.u/.�Y .a/// d�.u/ 6 h.p/;

so �Y satisfies the condition (C2).
As �Y also satisfies the conditions (M1) and (M2), this proves that .Y; dY ; �Y / is a coarse

median space (of infinite rank in general).

According to Theorem 1.8, any asymptotic cone of a coarse median space is a so-called
topological median algebra: a metric space with a median which is merely Lipschitz with
respect to the distance. In particular, an asymptotic cone needs not be metric median in
general. However, in our situation, we can prove that it holds.

P 2.2. – Any asymptotic cone of .Y; dY ; �Y / is a metric median space.

Proof. – Fix! a non-principal ultrafilter on N, fix .yn/n2N a sequence of basepoints in Y ,
and fix a sequence .�n/n2N of scaling parameters going toC1. Consider the asymptotic cone
.Y1; dY;1; y1; �Y;1/ D lim

!
.Y; 1

�n
dY ; yn; �Y /. Then according to [8], �Y;1 is a Lipschitz

median on .Y1; dY;1/. We will show that the metric dY;1 is actually a median metric, and
the associated median is �Y;1.

We will first show that �Y;1-intervals are included in dY;1-intervals in Y1. More
precisely, fix a1 D .an/n2N; b1 D .bn/n2N; c1 D .cn/n2N in Y1 such that
�Y;1.a1; b1; c1/ D b1. We will show that dY;1.a1; b1/C dY;1.b1; c1/ D dY;1.a1; c1/.
For each n 2 N, let mn D �Y .an; bn; cn/ 2 Y . By assumption, we have lim

!

dY .mn;bn/
�n

D 0.

Since mn D �Y .an; bn; cn/, we know that for almost every u 2 U , we have mn.u/ D
�X .an.u/; bn.u/; cn.u//. Since X is Gromov-hyperbolic with constant ı > 0, we know that
dX .an.u/; cn.u// > dX .an.u/; bn.u//CdX .bn.u/; cn.u//�ı. By integrating overU , we obtain
dY .an; cn/ > dY .an; bn/CdY .bn; cn/�ı. Passing to the ultralimit, we have dY;1.a1; c1/ >
dY;1.a1; b1/ C dY;1.b1; c1/, since the sequences .mn/n2N and .bn/n2N define the same
point in Y1.

Conversely, we will show that dY;1-intervals are included in �Y;1-intervals in Y1. More
precisely, fix a1 D .an/n2N; b1 D .bn/n2N; c1 D .cn/n2N in Y1 such that dY;1.a1; b1/C
dY;1.b1; c1/ D dY;1.a1; c1/. We will show that �Y;1.a1; b1; c1/ D b1.
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For eachn 2 N, letmn D �Y .an; bn; cn/ 2 Y . So for almost everyu 2 U , we havemn.u/ D
�X .an.u/; bn.u/; cn.u//. Since X is Gromov-hyperbolic, there exists a constant ı0 > 0 such
that dX .mn.u/; bn.u// 6 dX .an.u/; bn.u// C dX .bn.u/; cn.u// � dX .an.u/; cn.u// C ı

0. By
integrating over U , we obtain dY .mn; bn/ 6 dY .an; bn/ C dY .bn; cn/ � dY .an; cn/ C ı0.
Passing to the ultralimit, we have dY;1.m1; b1/ 6 dY;1.a1; b1/ C dY;1.b1; c1/ �

dY;1.a1; c1/ D 0. As a consequence, we obtain that �Y;1.a1; b1; c1/ D m1 D b1.
As a consequence, the asymptotic cone .Y1; dY;1; y1; �Y;1/ is a metric median space.

Let us denote the projection map P W G ! G=� ' U , and � W G ! � the map such that
8g 2 G; g D �.g/�.g/. This enables us to define the following map :

� W G � Y ! Y

.g; a/ 7!
�
g � a W u 2 U 7! �.g�1u/�1 � a.P.g�1u//

�
:

It is simply the natural G-action by left multiplication on the induced representation on
Y D L1.G=�;X/. To see that the map � is well-defined, we need the following integrability
condition, where d� denote the word length of � with respect to some finite generating set S :

(1) 8g 2 G;

Z
U

d�.�.g
�1u/; e/d�.u/ <1:

It should be noted that when � is a uniform lattice in G, the integrability condition (1)
is satisfied. When � is non-uniform and is as in Theorem A, according to the Margulis
arithmeticity theorem, � is an arithmetic lattice. Hence, according to Shalom (see [49]), for
every g 2 G, the cocycle � W u 2 U 7! �.g�1u/ 2 � is in L2.U; �/, so the integrability
condition (1) is satisfied.

P 2.3. – The map � W G � Y ! Y is an action of G on Y , by isometries,
quasi-preserving �Y .

Proof. – We will first show that � is well-defined, using the integrability condition (1).
Let M D max2S dX . � x0; x0/ > 0: we have 8 2 ; dX . � x0; x0/ 6 Md�.; e/. As a
consequence, for every g 2 G and a 2 Y , we have8u 2 U; dX .�.g�1u/�1 �a.P.g�1u//; x0/ 6
dX .a.P.g

�1u//; x0/CMd�.�.g
�1u/; e/ soZ

U

dX .�.g
�1u/�1 � a.P.g�1u//; x0/d�.u/

6
Z
U

dX .a.P.g
�1u//; x0/d�.u/CM

Z
U

d�.�.g
�1u/; e/d�.u/ <1;

since a 2 Y and by the integrability condition (1). As a consequence, � is well-defined.
We will now show that � is an action. Let g; h 2 G, a 2 Y and u 2 U . Then

�.g; �.h; a//.u/ D �.g�1u/�1 � �.h; a/.P.g�1u//

D �.g�1u/�1�.h�1P.g�1u//�1 � a.P.h�1P.g�1u///:

Notice that �.h�1P.g�1u//�.g�1u/ D �.h�1g�1u/ and P.h�1P.g�1u// D P.h�1g�1u/,
so that

�.g; �.h; a//.u/ D �..gh/�1u/�1 � a.P..gh/�1u// D �.gh; a/.u/:

As a consequence, � is an action, and we will simply denote it �.g; a/ D g � a for simplicity.
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We will now show that � is an action by isometries: let g 2 G and a; b 2 Y . Then

dY .g � a; g � b/ D

Z
U

dX .�.g
�1u/�1 � a.P.g�1u//; �.g�1u/�1 � b.P.g�1u///d�.u/

D

Z
U

dX .a.P.g
�1u//; b.P.g�1u///d�.u/

D

Z
U

dX .a.v/; b.v//d�.v/

D dY .a; b/;

since u 7! P.g�1u/ is a measurable bijection from U to U which preserves the Haar
measure �.

We will show that this action quasi-preserves the coarse median �Y . Let C > 0 such that
8 2 �;8x; y; z 2 X; dX .�X . � x;  � y;  � z/;  ��X .x; y; z// 6 C . Then for any g 2 G and
any a; b; c 2 Y , we have

dY .�Y .g � a; g � b; g � c/; g � �Y .a; b; c// DZ
U

dX
�
�X .�.g

�1u/�1 � a.P.g�1u//; �.g�1u/�1 � b.P.g�1u//; �.g�1u/�1 � c.P.g�1u///;

�.g�1u/�1 � �X .a.P.g
�1u//; b.P.g�1u//; c.P.g�1u///

�
d�.u/ 6 C:

Let dG denote any word quasi-metric on G defined by a compact neighborhood of the
identity B in G which spans G, or any metric quasi-isometric to it.

L 2.4. – The orbit map g 2 G 7! g �y0 2 Y is coarsely Lipschitz (with respect to dG
and dY ), i.e., there exist constants K;C > 0 such that

8g; h 2 G; dY .g � y0; h � y0/ 6 KdG.g; h/C C:

Proof. – Since the statement is independent of the quasi-isometry class of dG , we will
consider the word quasi-metric defined by B.

� If � is a uniform lattice, the fundamental domain U can be chosen to be relatively
compact, so B�1U is relatively compact in G. As a consequence, there exists a finite
set S � � such that B�1U � US . Let ˛ D max2S dX . � x0; x0/ > 0.

� If� is a non-uniform lattice, according to [49], sinceB is relatively compact, there exists
ˇ > 0 such that

8g 2 B;

Z
U

d�.�.g
�1u/; e/d�.u/ 6 ˇ:

There exists a constant C > 0 such that 8 2 �; dX . � x0; x0/ 6 Cd�.; e/. As a
consequence, we have

8g 2 B; dY .g � y0; y0/ 6 C

Z
U

d�.�.g
�1u/; e/d�.u/ 6 Cˇ:

Let ˛ D Cˇ.

In either case, we have 8g 2 B; dY .g � y0; y0/ 6 ˛. We can conclude that the map
g 2 G 7! g � y0 2 Y is ˛-Lipschitz.
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3. Actions of higher rank semisimple groups on coarse median spaces:
sublinear orbit growth

For this section, we will use the following notations and assumptions.
LetG denote any finite product of higher rank almost simple connected algebraic groups

with finite centers over local fields.
Let K be a maximal compact subgroup of G, and consider left G-invariant, right

K-invariant distance dG on G.
Fix a coarse median space .Y; dY ; �Y /, and assume thatG acts by isometries on Y , quasi-

preserving �Y . Fix a basepoint y0 2 Y , and assume that the orbit map g 2 G 7! g � y0
is coarsely Lipschitz. Assume furthermore that .Y; dY ; �Y / has metric median asymptotic
cones: according to Proposition 2.2, theL1 G-induced space of the action of � onX satisfies
this property.

The purpose of this section is to prove the following theorem.

T 3.1. – G has sublinear orbit growth, i.e.,

lim
R!C1

sup
g2G;dG.e;g/6R

dY .g � y0; y0/

R
D 0:

Write G D G1 � : : : Gn as a product of n almost simple groups. Note that if each Gi has
sublinear orbit growth, thenG also has sublinear orbit growth. Furthermore, ifGi is compact
then it is has bounded orbits. As a consequence, we will restrict to the case whereG is almost
simple non-compact to prove Theorem 3.1.

In fact, Theorem 3.1 will be a direct consequence of the following result. Recall that an
isometry of a metric spaceY is called loxodromic if there exists (equivalently, for every) y 2 Y
such that lim inf

n!C1

dY .g
n�y;y/
n

> 0. Also recall that an element g of G is called K-semisimple if

it is diagonalizable over K.

T 3.2. – No K-semisimple element of G acts loxodromically on Y .

We will now give the proof that Theorem 3.1 is a direct consequence of Theorem 3.2.

Theorem 3.2 implies Theorem 3.1. – By contraposition, let us assume that G has linear
orbit growth, so there exists an unbounded sequence .gn/n2N in G such that

lim
n!C1

dY .gn�y0;y0/
dG.e;gn/

D L > 0.

Consider a Cartan decomposition G D KAK, where A is a maximal K-split torus of G.
Fix a1; : : : ; ar 2 A that span a cocompact Zr subgroup of A.

Since K is compact and the action is coarsely Lipschitz, we may assume that 8n 2 N,
gn 2 A. There exist integers d1;n; : : : ; dr;n 2 N such that dG.gn; a

d1;n

1 : : : a
dr;n
r / is bounded

with respect to n 2 N.

We know that there exists 1 6 i 6 r such that lim
n!C1

dY .a
di;n
i
�y0;y0/

dG.e;gn/
> 0. Since dG.gn; e/ is

coarsely equivalent to max.dG.a
di;n

i ; e/; 1 6 i 6 r/, we have lim
n!C1

dY .a
di;n
i
�y0;y0/

dG.e;a
di;n
i

/
> 0. This

proves that the K-semisimple element ai acts loxodromically on Y .

The rest of this section will be devoted to the proof of Theorem 3.2.
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3.1. The orbit map in asymptotic cones

We show how to define a natural map from an asymptotic cone of G to an asymptotic
cone of the coarse median space Y .

Fix a non-principal ultrafilter ! on N. Define .Y1; y1; d1; �1/ to be the !-ultralimit
of .Y; y0; 1ndY ; �Y /: according to Theorem 1.8, �1 is a Lipschitz median on .Y1; d1/. By
assumption, .Y1; d1; �1/ is a metric median space.

Define .G1; e1; dG1/ to be the !-ultralimit of .G; e; 1
n
dG/. According to [31],

.G1; e1; dG1/ is a non-discrete affine building.

L 3.3. – The map

� W G1 ! Y1

Œgn� 7! Œgn � y0�

is well-defined and Lipschitz.

Proof. – If Œgn� D Œg0n�, then by definition lim
!

dG.gn;g
0
n/

n
D 0. Let K;C > 0 denote the

constants for the definition of the orbit map g 2 G 7! g � y0 being coarsely Lipschitz. Since
dY .gn � y0; g

0
n � y0/ 6 KdG.gn; g

0
n/C C , we deduce that lim

!

dY .gn�y0;g
0
n�y0/

n
D 0, hence � is

well-defined.

Furthermore, if Œgn�; Œg0n� 2 G1, then since dY .gn � y0; g0n � y0/ 6 KdG.gn; g
0
n/C C , we

deduce that d1.Œgn � y0�; Œg0n � y0�/ 6 KdG1.Œgn�; Œg
0
n�/, so � is K-Lipschitz.

We will now prove that we can restrict to the case where G has K-rank 2.

P 3.4. – Assume that some K-semisimple element of G acts loxodromically
on Y . Consider an almost simple subgroup H of G defined over K of K-rank 2. Then some
K-semisimple element of H acts loxodromically on Y .

Proof. – Let A be a maximal K-split torus of G, which contains a maximal K-split
torus A0 ofH . Up to conjugation, we may assume some element g0 2 A acts loxodromically
on Y . Since G is almost simple, there exists a finite number of elements w1; : : : ; wn in the
(spherical) Weyl group of G such that A D

Qn
iD1wiA

0w�1i . Consider h1; : : : ; hn 2 A0 such
that g0 D

Qn
iD1wihiw

�1
i . Since for every 1 6 i 6 n, the elements wihiw�1i , for 1 6 i 6 n

pairwise commute, we know that for at least one 1 6 i 6 n, the element hi 2 H acts
loxodromically on Y .

We will now prove that the existence of one loxodromic element inG implies the existence
of many geodesics in the image of �. We will restrict to the rank 2 case for simplicity.

L 3.5. – Assume that G has K-rank 2, and that some K-semisimple element g0 2 G
acts loxodromically on Y . Then for any K-semisimple element g 2 G, for any h 2 H and for
any s 2 R, the image of .Œhbsncgbtnc�/t2R under � is a constant speed geodesic in Y1.
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Proof. – Up to conjugation, we may assume that g0 and g belong to the same K-split
torus A. Since G does not have relative type A21, there exist conjugates (by Weyl group
elements) g1, g2 of g0 inside A such that hg0; g1i, hg0; g2i and hg1; g2i are all cocompact
(Z2) subgroups of A.

There exist x; y 2 R such that g D gx0g
y
1 . Up to using possibly g2 instead of g0 or g1, we

may assume that jxj ¤ jyj, for instance jxj > jyj.

Let L0 D lim
n!C1

dY .g
n
0
�y0;y0/

n
> 0 by assumption. Since g1 is a conjugate of g0, we also

have lim
n!C1

dY .g
n
1
�y0;y0/

n
D L0. Then

lim
n!C1

dY .g
n � y0; y0/

n
>
dY .g

xn
0 � y0; y0/

n
�
dY .g

yn
1 � y0; y0/

n

> L0jxj � L0jyj:

Let L D lim
n!C1

dY .g
n�y0;y0/
n

> L0.jxj � jyj/ > 0. Fix t; t 0 2 R. Then

d1.Œg
btnc�; Œgbt

0nc�/ D lim
!

dY .g
btnc � y0; g

bt 0nc � y0/

n

D lim
!

dY .g
b.t�t 0/nc � y0; y0/

n
D Ljt � t 0j:

This computation proves that the image of .Œgbtnc�/t2R under � is a geodesic, with constant
speed L.

Now observe that, for anyn 2 N and t; t 00 2 R, we have dY .hbsncgbtnc�y0; hbsncgbt
0nc�y0/ D

dY .g
btnc � y0; g

bt 0nc � y0/. So the image of .Œhbsncgbtnc�/t2R under � is also a geodesic, with
constant speed L.

3.2. Embeddings of buildings into median spaces

We will now prove a rigidity result for Lipschitz embeddings of affine buildings into metric
median spaces.

P 3.6. – Let .B; dB/ be an affine building and let .M; dM / be a metric median
space. Assume that there exists a exists a map � W B ! M , a basepoint b0 2 B and a set A

of apartments in B containing b0 such that:

� there existsA 2 A such that, for any singular hyperplaneH inA, there existA1; A2 2 A

such that A\A1, A\A2 and A1 \A2 are three distinct half-apartments bounded byH ,
and

� for every A0 2 A and for every geodesic L in A0, its image �.L/ is a geodesic in M .

Then B has spherical type Ar1.

Informally speaking, the assumptions say that � is almost an isometric embedding on a
sufficiently thick set of apartments.
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Proof. – For any rank 2 parabolic subgroup P of the spherical Weyl group of B, there
exists a subbuilding of B containing b0 with spherical Weyl group P . As a consequence, we
will restrict to the case where B has rank 2.

Fix an apartment A in B containing b0. Consider a wall fHC;H�g inM which separates
some points in �.A/. Since A is an apartment in the affine building B, it has a natural affine
structure A ' R2. As �jA is injective, we may consider the image of the affine structure
on �.A/ ' R2. Since geodesic segments in A are affine segments, we deduce by assumption
on � that all affine segments in �.A/ are geodesic.

SinceHC andH� are metrically convex inM , we deduce thatHC\�.A/ andH�\�.A/
are affinely convex in �.A/. The partition of �.A/ ' R2 into two non-empty affinely convex
subsetsH˙\�.A/ determines a unique affine line �.L/ D HC \ �.A/\H� \ �.A/ � �.A/
such that each connected component of �.AnL/ is contained inHC\�.A/ or inH�\�.A/.

We will now prove that, for every singular lineL0 inA, the linesL andL0 are either parallel
or orthogonal. Fix any singular lineL0 inA containing b0, not parallel toL. By assumption,
there exist two apartmentsA1; A2 in A containing b0, such thatA\A1,A\A2 andA1\A2
are three distinct half-apartments bounded by L0. See Figure 1.

L

F \ F1

F1 \ F2

F \ F2
L0

F 1. The three half-flats

Fix i 2 f1; 2g. Since the wall fHC;H�g separates some points in �.Ai /, there exists an
affine line Li � Ai such that �.Li / D HC \ �.Ai / \ H� \ �.Ai / � Ai . By uniqueness
of L and Li , we have Li \A D L\Ai . So Li is the affine line in Ai containing the half-line
L \ Ai .

In particular, L1 \A2 � L2 and L\A2 � L2. We deduce that the two half-lines L\A2
and L1 \ A2 of A2 are parallel. This implies that L and L0 are orthogonal.

In conclusion, we have proved that, for every singular line L0 in A, the lines L and L0 are
either parallel or orthogonal. This implies that B has spherical type A21.

R. – One may notice that affine buildings of typeAr1 have a natural metric median
structure.
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3.3. No loxodromics: proof of Theorem 3.2

We can now complete the proof of Theorem 3.2. According to Proposition
Consider the asymptotic orbit map � W G1 ! Y1. Let A denote the family of

all asymptotic cones of K-tori in G: it is a family of apartments in G1 containing the
basepoint Œx0�, isomorphic to the family of apartments of the spherical building of G.

For any A 2 A and for any singular hyperplane H in A , since the spherical building
ofG is thick, there existA1; A2 2 A such thatA\A1,A\A2 andA1\A2 are three distinct
half-apartments of G1 bounded by H .

Furthermore, consider any K-torus T in G and any geodesic line L in the asymptotic
cone A of T . Then L can be parametrized as .Œhbsncgbtnc�/t2R, for some g; h 2 T and s 2 R.
Since we assumed the existence of a K-semisimple element inG acting loxodromically on Y ,
according to Lemma 3.5, the image �.L/ is geodesic in Y1.

So we can apply Proposition 3.6 and deduce that G has type A21: this contradicts the
assumption that G is almost simple. This concludes the proof of Theorem 3.2 that no
K-semisimple element of G acts loxodromically on Y .

4. Random walks with zero drift

4.1. Random walks on lattices

We will now use the same notations as in Section 2. We will use Theorem 3.1 to deduce
the following.

P 4.1. – Under the assumptions of Theorem A, there exists a probability
measure � on � (with infinite support, generating �), such that the associated random walk
.n � x0/n2N on X has zero drift:

lim
n!C1

E ŒdX .n � x0; x0/�
n

D 0:

R. – Note that if � is a probability measure on � such that the associated random
walk .n/n2N has zero drift in G, it is clear that its image .n � x0/n2N in X has zero drift.
However, if � is a probability measure on � with finite first moment and with support gener-
ating �, then the drift of the associated random walk in G with respect to the distance dG is
positive (see for instance [18] and [29]). As a consequence, the content of Proposition 4.1 is
really concerning the action of � on X .

Proof. – Consider a random variable h on the fundamental domain U � G, following
the Haar probability mesaure �. The first objective is to build a family of random variables
.gt /t>0 in G, independent from h, a sequence of random stopping times .Nk/k>1, and a
symmetric random walk .k/k>1 on �, such that :

� There exists a constant A > 0 such that for each k > 1, we have dG.gNk
; hk/ 6 A

almost surely.

� There exist constants B;B 0 > 0 such that for each T > 0, we have
EŒsupt2Œ0;T � dG.e; gt /� 6 BT C B 0.

� There exist constants C;C 0 > 0 such that for each k > 1, we have EŒNk � 6 Ck C C 0.
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We will now describe this construction according to whether G is Archimedean or not.

1. Consider first the case where G is semisimple real Lie group. Consider the symmetric
space M D G=K of G, where K is a maximal compact subgroup of G, endowed with
a G-invariant Riemannian metric dM . Without loss of generality, we can assume that
the stabilizer of p0 in � is feg. Let .pt /t>0 denote a standard Brownian motion onM ,
starting from p0 D ŒK�, independent from h. Then .qt D h�1 � pt /t>0 is a standard
Brownian motion on M , with initial law ��1 � p0.

We will now apply Lyons-Sullivan’s discretization procedure to the orbit � � p0
(see [39], [3], [28]). For a small constant R > 0, closed balls of radius 2R centered
at � � p0 are disjoint. Furthermore, since M has finite volume, the union F DS
2� B. � p0; R/ is recurrent, meaning that the probability that a random path

.qt /t>0 intersects F is equal to 1.

We will follow the description from [3]. We define an open neighborhood
V D

S
2�
VB. � p0; 2R/ of F . Ballmann and Ledrappier define random stopping

times .Nk/k>1 such that for each k > 1, qNk
2 F almost surely. The first stopping

time N1 is the first entering time to F , and for each k > 1, NkC1 > Nk is some
reentering time to F after having left V , but not necessarily the very next one. More
precisely, NkC1 > Nk is the P th reentering time to F (after having left V ), where
P > 1 follows a geometric law with parameter 0 < D < 1 (see [3, Theorem 2.3] for
details).

For each k > 1, let k 2 � be the random element such that dM .qNk
; k � p0/ 6 R

almost surely. The main point of this whole construction is that k is the kth step of a
random walk on �.

Furthermore, since M has finite volume, the expectation of the nth reentering time
to F is bounded byB0n, whereB0 > 0 is a constant, so that the expectation ofNk is at
most kB0D2 (see [3] for details). In particular, there exist constantsC;C 0 > 0 such that
for each k > 1, we have EŒNk � 6 Ck C C 0. Since M has sectional curvature bounded
below, the expectation of dM .p0; pt / is at mostB1t , whereB1 > 0 is a constant. Hence
for all k > 1 we have EŒdM .p0; pNk

/� 6 kB0B1D
2.

For each k > 1, consider a random element gk 2 G such that gk �p0 D pNk
almost

surely. As a consequence, there exist constants B;B 0 > 0 such that EŒdG.e; gk/� 6
BkCB 0. Furthermore, since dM .qNk

; k �p0/ 6 R almost surely and qNk
D h�1gk �p0

almost surely, there exists a constant A > 0 such that dG.gk ; hk/ 6 A almost surely.

2. We will now turn to the case where G is semisimple algebraic group over a non-
Archimedean local field. LetBG denote the Bruhat-Tits building ofG, and fix a vertex
p0 of BG . Since � is residually finite, we can assume up to replacing � by a finite index
subgroup that the stabilizer of p0 in � is feg.

IfG acts transitively on the vertices of its Bruhat-Tits buildingBG , letM denote the
1-skeleton of BG . Otherwise, consider the graphM with vertex setG �p0, with an edge
in M between two vertices p ¤ p0 if p0 is the closest vertex to p, among G � p0nfpg,
with respect to the combinatorial distance on the 1-skeleton of BG . Let dM denote the
combinatorial distance on the graph M .
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For the (left) action of G on M by simplicial automorphisms, the metric dM is
G-invariant. Let .pt /t2N denote the simple random walk on M , with uniform proba-
bility transitions among all neighbors, starting from p0. Then .qt D h�1 � pt /t2N is a
standard random walk on M , with initial law ��1 � p0.

We will prove that the induced Markov chain on the (countable) quotient �nM is
positively recurrent. First note that if � is a uniform lattice in G, then �nM is a finite
connected graph so the result follows. So we now consider the case where� is a possibly
non-uniform lattice in G.

Consider a finite set S � G, such that s 2 S 7! s � p0 2 M is a bijection onto
the set of neighbors of p0 inM . Let �S denote the uniform probability measure on S .
LetK denote the stabilizer of p0 inG: it is a compact subgroup ofG, let �K denote its
Haar probability measure.

Consider the probability measure � D �K�S�K on G. Then the random walk
.gt /t2N on G starting from e with transition law � is such that .gt � p0/t2N is a simple
random walk onM . Without loss of generality, we can assume that the simple random
walk .pt /t2N is obtained that way, so that 8t 2 N; gt � p0 D pt almost surely.

Note that the Haar probability measure � on �nG is stationary with respect to the
right multiplication by �. As � is invariant under right multiplication by K, it defines
a probability measure � on �nG=K ' �nM , which is stationary with respect to the
simple random walk.

Since �nM is a countable and connected graph, the existence of the stationary
probability measure � ensures that the random walk .pt /t2N is recurrent, i.e., if T D
infft > 1 jpt D p0g, we have T < 1 almost surely. Furthermore the random walk is
positively recurrent, i.e., we have EŒT � D 1

�.fp0g/
<1.

Let N1 D infft > 1 j qt D p0g, and for each k > 1 let NkC1 D infft >
Nk C 1 j qt D p0g. For each k > 1, let k 2 � denote the unique random element
such that qNk

D k �p0 almost surely. Then .k/k>1 is a symmetric random walk on �.

In particular, since h�1gk �p0 D qNk
D k �p0 almost surely, there exists a constant

A > 0 such that 8k > 1; dG.gk ; hk/ 6 A almost surely. Furthermore, EŒN1� D C

and EŒN2 � N1� D C 0 are finite since the random walk .qt /t2N is positively recurrent,
so for each k > 1, we have EŒNk � 6 CkCC 0. And there exist constantsB;B 0 > 0 such
that EŒdG.e; gNk

/� 6 Bk C B 0 for every k > 1.

We will now finish the proof in the general case.

There exists a finite set S � � such that BG.e; A/ � US . Let A0 D maxs2S dX .s � x0; x0/.
Then, for every k > 1, there exists sk 2 S such that �.g�1

k
h/ D sk

�1
k

almost surely. Hence
dX .�.g

�1
k
h/�1 � x0; x0/ D dX .ks

�1
k
� x0; x0/ > dX .k � x0; x0/ � A

0 almost surely.

We will now consider the action of G on the L1 G-induced space Y of the action of �
on X , as in Section 2. Note that the integrability condition (1) is satisfied (using, in case � is
non-uniform, the Margulis arithmeticity theorem (see [43]) and Shalom’s work [49]).

Let us compute, for k > 1, the expectation Ek D E ŒdY .gk � y0; y0/�. Notice that since
EŒdG.e; gk/� 6 BkCB 0, and since the action ofG on Y is coarsely Lipschitz by Lemma 2.4,
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the expectation Ek is finite. Furthermore

Ek D E ŒdY .gk � f0; f0/�

D E
�Z
U

dX .�.g
�1
k u/�1 � x0; x0/d�.u/

�
D E

�
dX .�.g

�1
k h/�1 � x0; x0/

�
> E ŒdX .k � x0; x0/� � A0:

We will now prove that .Ek/k>1 is sublinear in k. Since the map g 2 G 7! g � f0 2 Y is
coarsely Lipschitz by Lemma 2.4, we can apply Theorem 3.1. As a consequence, we know
that there exists a sublinear function � W RC ! RC such that 8g 2 G; dY .g � f0; f0/ 6
�.dG.e; g//. Up to replacing � by its concave hull, we can assume that � is concave and non-
decreasing. Then we deduce that

8k > 1;Ek D EŒdY .gk � f0; f0/� 6 �.EŒdG.e; gk/�/ 6 �.Bk C B 0/:

In particular, .Ek/k>1 is sublinear in k.

In conclusion, since E ŒdX .k � x0; x0/� 6 A0CEk , we deduce that .E ŒdX .k � x0; x0/�/k>1
is sublinear in k. In particular, the random walk (k � x0/k>1 on X has zero drift.

4.2. Random walks on hyperbolic spaces

We can now finish the proof of Theorem A, using the following result of Maher and
Tiozzo:

T 4.2 (Maher-Tiozzo [40]). – Let � be a countable group of isometries of a sepa-
rable Gromov hyperbolic space X , let � be a non-elementary probability distribution on �, and
let x0 2 X a basepoint. Then a random walk .n/n2N on � with step law � has positive drift,
i.e.,

lim
n!C1

E ŒdX .n � x0; x0/�
n

> 0:

With the notations of Theorem A, assume that � acts by isometries of a Gromov-
hyperbolic spaceX . Up to passing to the injective hull of ofX (see [35]), we can assume that
X is geodesic. Up to passing to a convex subset of X containing some orbit of �, we can
assume that X is also separable.

Then according to Proposition 4.1, there exists a probability measure � on � with support
generating �, such that the associated random walk on X has zero drift. According to
Theorem 4.2, this implies that the action of � on X is elementary.

If the action of � on X was lineal, then it would give an unbounded quasimorphism
from � to R. According to Burger and Monod (see [12]), any quasi-morphism from � to R
bounded.

As a consequence, the action of � on X is elliptic or parabolic. This concludes the proof.

4 e SÉRIE – TOME 53 – 2020 – No 2



HYPERBOLIC RIGIDITY OF HIGHER RANK LATTICES 457

5. Proof of corollaries

We start by recalling the definition of a quasi-action, as in [42].

D 5.1 (Quasi action). – Let .X; d/ be a metric space, and let .G; dG/ be a
group endowed with a left invariant distance. A map G �X ! X W .g; x/ 7! g � x is called a
quasi-action if there exist constants .K;C / such that the following hold

1. For each g 2 G, the map X ! X W x 7! g � x is a .K;C /-quasi-isometry.

2. For each x 2 G, the map G ! X W g 7! g � x is coarsely .K;C /-Lipschitz.

3. For each x 2 X and g; h 2 G, we have d.g � .h � x/; .gh/ � x/ 6 C .

We will recall the following.

P 5.2 (Manning [42]). – Assume that a finitely generated group� has a quasi-
action on treeX . There exists a quasi-treeX 0 such that� acts by isometries onX 0. Furthermore,
X 0 is quasi-equivariantly quasi-isometrically embedded into X .

We can now give the proof of Corollary B.

Proof of Corollary B. – Assume that � has a quasi-action on a tree X . According to
Proposition 5.2, � has an action on a quasi-tree X 0. According to Theorem A, this action
is elliptic or parabolic. Since � is finitely generated, it has no parabolic action on a quasi-
tree. As a consequence, the action of � on X 0 is elliptic, so the quasi-action of � on X has
bounded orbits.

We can now give the proof of Corollary C. As explained in the introduction, we will only
use that every action of a higher rank lattice on a hyperbolic space is elementary, and that
higher rank lattices do not surject onto Z (which is a direct consequence of Property (T)).

Proof of Corollary C. – Consider a morphism � W � ! MCG.S/, where S is a closed
surface of genus g, withp punctures. We can assume thatMCG.S/ is infinite. LetH D �.�/.

The curve graph C .S/ is hyperbolic by [44], so by Theorem A, the action ofH on C .S/ is
elementary.

According to [27], any subgroup of MCG.S/ having an elementary action on C .S/ is
either virtually cyclic or reducible. Since no finite index subgroup of � surjects onto Z, H is
not virtually cyclic. As a consequence,H is reducible: some finite index subgroupH0 fixes a
curve c. Observe that the stabilizer of c in MCG.S/ is a (product of) mapping class group
of surfaces of smaller complexities. By induction, one sees that H is in fact finite.

We can now give the proof of Corollary D, which is exactly the same proof as the previous
one, written in the more technical context of hierarchically hyperbolic groups.
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Proof of Corollary D. – Consider a morphism � W � ! G, where G is a hierarchically
hyperbolic group. Let S denote the index set of G, let S 2 S denote the maximally nested
element, and let C .S/ denote its associated hyperbolic space.

LetH D �.G/. The groupH acts by isometries on the hyperbolic space C .S/: according
to Theorem A, the action of H on C .S/ is elementary. According to [5, Corollary 14.4], the
action of G on C .S/ is acylindric. So if H has unbounded orbits, then H is virtually cyclic
by [47, Theorem 1.1].

Since no finite index subgroup of � surjects onto Z, H is not virtually cyclic. As a
consequence, H has bounded orbits in C .S/.

According to the proof of [16, Theorem 9.15], there exists U 2 S, U ( S , such that some
finite index subgroup H0 of H fixes U . By induction on complexity, we conclude that H is
in fact finite.

We finish with the proof of Corollary E.

Proof of Corollary E. – Consider a morphism � W � ! G, where G is an acylindrically
hyperbolic group. Consider an acylindrical action of G on a hyperbolic space X . Then
according to Theorem A, the action of �.�/ on X is elliptic or parabolic. According to [47],
there are no acylindrical parabolic actions on a hyperbolic space. As a consequence, the
action of �.�/ on X is elliptic.

Appendix: Morphisms from higher rank lattices to Out.FN /
by

Vincent Guirardel and Camille Horbez

In this appendix, we use Theorem A to show that homomorphisms from higher rank
lattices � to Out.G/ have finite image when G is a free group, a torsion-free hyperbolic
group, and even a relatively hyperbolic group or a right-angled Artin group under suitable
additional assumptions. This was first proved by Bridson–Wade [11] for Out.FN / and by
Wade [50] for right-angled Artin groups, for a more general class of groups �. Note that their
approach is based on the algebraic structure of the Torelli group, which is not available for
hyperbolic groups. A crucial step in what we do consists in understanding the case whereG is
a free product.

Statement of the main result

Let G be a countable group that splits as a free product of the form

G D G1 � � � � �Gk � FN ;

where FN denotes a free group of rank N . We denote by Out.G; fGig/ the subgroup
of Out.G/made of those automorphisms that preserve (setwise) the conjugacy classes of the
subgroups Gi , and by Out.G; fGig.t// the subgroup made of automorphisms whose restric-
tion to each Gi coincides with the conjugation by an element gi 2 G. Given a group H , we
denote by Z.H/ the center of H .
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T 1. – Let � be a lattice in a product of higher rank almost simple connected
algebraic groups with finite center over local fields. Let G be a countable group that splits as
a free product of the form

G D G1 � � � � �Gk � FN :

Assume that for all i 2 f1; : : : ; kg, and every finite index subgroup �0 � �, every
homomorphism from �0 to Gi=Z.Gi / has finite image.

Then every homomorphism from � to Out.G; fGig.t// has finite image.

Before we prove Theorem 1, we start by mentioning its consequences.

Automorphisms of free groups

First, we notice that in the particular case where there is no peripheral groupGi , we obtain
the following result due to Bridson–Wade.

C 2 (Bridson–Wade [11]). – Let � be a lattice in a product of higher rank
almost simple connected algebraic groups with finite center over local fields.

Then every homomorphism from � to Out.FN / has finite image.

Automorphisms of (relatively) hyperbolic groups

C 3. – Let G be a torsion-free group which is hyperbolic relative to a finite
collection of finitely generated subgroupsP1; : : : ; Pk . Let� be a lattice in a product of higher
rank almost simple connected algebraic groups with finite center over local fields.

Assume that for all i 2 f1; : : : ; kg, and for any finite index subgroup �0 of �,

1. every homomorphism from �0 to Pi=Z.Pi / has finite image,

2. every homomorphism from �0 to Out.Pi / has finite image.

Then every homomorphism from � to Out.G; fPig/ has finite image.

A particular case of Corollary 3 is the following result, stated in the introduction.

C F. – Let G be a torsion-free Gromov hyperbolic group. Let � be a lattice
in a product of higher rank almost simple connected algebraic groups with finite center over
local fields.

Then every homomorphism from � to Out.G/ has finite image.

We will use the following simple result several times.

L 4. – Let P be a group, let � W � ! P be a morphism, and let N G P an abelian
normal subgroup such that the image of � in P=N is finite.

Then �.�/ is finite.

Proof. – The hypothesis implies that � has a finite index subgroup �0 such that
�.�0/ � N . Since �0 has finite abelianization, �.�/ is finite.

Proof of Corollary 3. – Let P D fP1; : : : ; Pkg. Let � W � ! Out.G; P/ be a morphism.
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Case 1. – G is freely indecomposable relative to the parabolic subgroups, i.e., G has no
decomposition into a free product in which each Pi is conjugate into a factor.

Let ƒ be the canonical elementary JSJ decomposition of G relative to P (see [19,
Theorem 4], [7] when G is hyperbolic). In this case Out.G/ has a finite index subgroup
Out1.G/ which is an extension of a finite product of mapping class groups of compact
surfaces and subgroups of the outer automorphism groups Out.Pi / by the group T of
twists of ƒ [20, Theorem 4.3]. Let �0 be the finite index subgroup of � made of all elements
whose �-image lies in Out1.G/. Using Farb–Kaimanovich–Masur’s theorem (Corollary C),
together with our second hypothesis stating that every morphism from �0 to Out.Pi / has
finite image, we get that the image of some finite index subgroup �1 of � is contained in T .
When G is a torsion-free hyperbolic group, T is an abelian group, which concludes the
proof in this case. In general, Lemma 5 below shows that there is a morphism from T to
a product of copies of Pi=Z.Pi /, whose kernel is abelian. By hypothesis, any morphism
from �1 to Pi=Z.Pi / has finite image. Applying Lemma 4, we get that �1 has finite image
in T .

General case

Consider a Grushko decomposition

G D G1 � � � � �Gk � FN

of G relative to the parabolic subgroups: this is a decomposition of G as a free product in
which all subgroups in P are conjugate into one of the factors, where each Gi is nontrivial,
freely indecomposable relative to P jGi

, and not isomorphic to Z, (here P jGi
is defined as a

choice of a conjugate of eachPj contained inGi if it exists). Every subgroupGi is hyperbolic
relative to P jGi

.

Let �0 < � be the finite index subgroup of elements whose �-image lies in the
group Out0.G; P/ made of automorphisms that preserve the conjugacy class of each
subgroup Gi . Since all subgroups Gi are their own normalizers, there is a morphism
Out0.G; P/!

Qk
iD1 Out.Gi ; P jGi

/ whose kernel is Out.G; fGig.t//. By Case 1, the image
of �0 in

Qk
iD1 Out.Gi ; P jGi

/ is finite so there exists a finite index subgroup �1 < � whose
image in Out.G; P/ is contained in Out.G; fGig.t//.

To apply Theorem 1, let us check that for every finite index subgroup �2 � �1, every
homomorphism � W �2 ! Gi=Z.Gi / has finite image. If Gi is elementary, then it is either
cyclic or equal to a conjugate of some Pi , so this holds by assumption. Otherwise, Z.Gi / is
trivial and by Theorem A, the image of �2 is finite or parabolic. In view of Lemma 4, our
assumption implies that�.�2/ is finite. Thus, Theorem 1 applies and concludes the proof.

L 5. – Let G be a torsion-free group which is hyperbolic relative to
P D fP1; : : : ; Pkg, and freely indecomposable relative to P . Let T be the group of
twists of the canonical elementary JSJ decomposition of G relative to P . Then T maps
with abelian kernel to a direct product of copies of Pi=Z.Pi /.

Proof. – We considerƒ the canonical elementary JSJ decomposition of G relative to P

as described in [19, Theorem 4]. We follow [37, §3] for the following description of T . We
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denote by V; EE;E the set of vertices, oriented edges and non-oriented edges ofƒ. Then T is
isomorphic to the quotient fT =N wherefT D Y

e2 EE

ZGt.e/
.Ge/

and N D hNV ; NE i G fT is a central subgroup generated by NV ; NE defined as follows.
The group NV D

Q
v2V Z.Gv/ is embedded in fT by sending Z.Gv/ diagonally inQ

t.e/Dv ZGt.e/
.Ge/ �

fT , and NE D
Q
Ne2E Z.G Ne/ is embedded in fT by sending Z.G Ne/

diagonally in ZG
t.
�!
e /
.G�!

e
/ � ZG

t.
 �
e
/.G �e / �

fT , where �!e ; �e are the two orientations of
the non-oriented edge Ne 2 E.

Now the canonical JSJ decomposition of G is bipartite, where each edge joins a vertex
with nonelementary stabilizer to a vertex which is maximal elementary (i.e., maximal loxo-
dromic, in particular cyclic, or conjugate to some Pi ). Denote by V D Vne

`
Vel the corres-

ponding partition of the vertices. It follows that for each e 2 E such that t .e/ 2 Vne, we have
ZGt.e/

.Ge/ D Z.Ge/ (indeed, hGe; ZGv
.Ge/i is elementary and is therefore contained in the

maximal elementary subgroup Go.e/, so hGe; ZGv
.Ge/i � Ge). Thus,fT =NE '

Y
e2 EEel

ZGt.e/
.Ge/;

where EEel � EE is the set of edges e such that t .e/ 2 Vel .
Since Z.Gv/ is trivial for each v 2 Vne, the group T is isomorphic to the quotient

of
Q
e2 EEel

ZGt.e/
.Ge/ by the diagonal embedding of

Q
v2Vel

Z.Gv/. Moding out by the larger
central subgroup

Q
e2 EEel

Z.Gt.e//, we get that T maps with central kernel toY
e2 EEel

ZGt.e/
.Ge/=Z.Gt.e// �

Y
e2 EEel

Gt.e/=Z.Gt.e// D
Y
v2Vel

.Gv=Z.Gv//
dv ;

where dv is the degree of the vertex v. Now for v 2 Vel , the groupGv is either cyclic (in which
case Gv=Z.Gv/ is trivial), or conjugate to a parabolic group Pi . This proves the lemma.

Automorphisms of right-angled Artin groups

Theorem 1 also enables us to find a new proof of Wade’s theorem about morphisms with
values in the automorphism group of a right-angled Artin group [50]. Given a finite simplicial
graphX , the right-angled Artin groupAX is defined as the group with one generator for each
vertex in X , and a commutation relation between each pair of vertices joined by an edge.

The SL-dimension dSL.AX / is defined as the maximal size of a clique inX made of vertices
that all have the same star inX . Note that Out.AX / contains a group isomorphic toGL.d;Z/
for d D dSL.AX /.

C 6 (Wade [50]). – Let � be a lattice in a product of higher rank almost simple
connected algebraic groups with finite center over local fields.

Let d 2 N be such that every homomorphism from a finite index subgroup �0 < �

to GL.d;Z/ has finite image.
Then for any right-angled Artin group A with dSL.A/ 6 d , any homomorphism from �

to Out.A/ has finite image.
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Proof. – Given a graphX , we say that a partial order� on the vertex set ofX is admissible
if we have lk.v/ � st.w/ whenever v � w. We define Out0.AX ;�/ to be the subgroup
of Out.AX / generated by partial conjugations and transvections of the form v 7! vw with
v � w. In particular, if �max is the order defined by declaring that v �max w whenever
lk.v/ � st.w/, then it follows from [36] that Out0.AX ;�max/ is a normal subgroup of
finite index in Out.AX /. We define dSL.X;�/ as the maximal size of a clique in X made
of vertices that are pairwise �-equivalent (two vertices v;w are �-equivalent if v � w and
w � v). In particular dSL.AX / D dSL.X;�max/. We note that if Y � X is an induced
subgraph (i.e., whenever Y contains two vertices of X joined by an edge in X , then Y also
contains this edge), then the restriction �jY of � to Y is an admissible partial order on Y ,
and dSL.Y;�jY / 6 dSL.X;�/.

Fix d > 0 and � a lattice as in the statement. We will prove by induction on the
number of vertices in X that if .X;�/ is a graph with an admissible partial ordering such
that dSL.X;�/ 6 d , then every morphism � W � ! Out0.AX ;�/ has finite image. Since
Out0.AX ;�max/ has finite index in Out.AX /, the result will follow.

To prove the claim, first assume that X is disconnected. The Grushko decomposition
of AX is of the form

AX D AX1
� � � � � AXk

� FN ;

whereX1; : : : ; Xk are the connected components ofX which are not reduced to a point, and
X has N connected components reduced to a point. Any automorphism in Out0.AX ;�/
preserves the conjugacy class of each AXi

. Since AXi
is its own normalizer, there is a restric-

tion map r W Out0.AX ;�/!
Qk
iD1 Out.AXi

/whose kernel is contained in Out.AX ; fAXi
g.t//.

Looking at the image of the generators, we see that the image of r is contained inQk
iD1 Out0.AXi

;�jXi
/. Since dSL.AXi

;�jXi
/ 6 dSL.X;�/ 6 d , our induction hypo-

thesis shows that r ı �.�/ is finite. Thus, for some finite index subgroup �0 � �, we have
�.�0/ � Out.AX ; fAXi

g.t//. To deduce that � has finite image, it suffices to check that we
can apply Theorem 1. Since a right-angled Artin group is the direct product of its center
by another right-angled Artin group, it is enough to check that any morphism from �0 to a
right-angled Artin group is trivial. This follows from the fact that �0 has property .T /, and
that right-angled Artin groups are cubical.

We now assume that X is connected. First, if the center of AX is nontrivial, then it is
generated by the vertices in a clique C � X . By [13, Proposition 4.4], there is a morphism

‰ W Out0.AX ;�max/! Out.AC / �Out.AXnC /

whose kernel is free abelian. By Lemma 4, it is enough to check that the image of �
in Out.AC / �Out.AXnC / is finite. By looking at the images of the generators, we see that

‰.Out0.AX ;�// � Out0.AC ;�jC / �Out0.AXnC ;�jXnC /:

Notice that Out0.AC ;�jC / is isomorphic to a block-triangular subgroup of SL.#C;Z/, and
the maximal size of a block is d.C;�jC / 6 d . Therefore the image of � in SL.#C;Z/ is
virtually unipotent, hence finite since finite index subgroups of � have finite abelianization.
The fact that any morphism from � to Out0.AXnC ;�jXnC / has finite image follows from our
induction hypothesis and we are done in this case.
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We finally assume that Z.AX / is trivial. By [13, Corollary 3.3], there is a morphism

‰ W Out0.AX /!
Y

Out0.Alk.Œv�//

where the product is taken over all maximal equivalence classes of vertices Œv� for the
order �max. The kernel K of ‰ is a free abelian group [13, Theorem 4.2]. By looking at the
image of the generators, we see that

‰.Out0.AX ;�// �
Y

Out0.Alk.Œv�/;�jlk.Œv�//:

By induction, the image of �.�/ under ‰ is finite. Lemma 4 concludes the proof.

Background on free products and their automorphisms

The rest of this appendix is devoted to the proof of Theorem 1. We start with some back-
ground on free products and their automorphism groups. We denote by F the collection of
all conjugacy classes of the subgroups Gi , and write Out.G; F / and Out.G; F .t/

/ instead
of Out.G; fGig/ and Out.G; fGig.t//. A subgroup ofG is peripheral if it is conjugate into one
of the subgroups Gi .

A theorem of Kurosh [32] states that every subgroup H � G inherits a free product
decomposition H D .�j2JHj / � F , where each Hj is conjugate to a subgroup of one of the
peripheral subgroups Gi , and F is a free subgroup of G. We denote by F jH the collection
of all H -conjugacy classes of the subgroups Hj .

A .G; F /-tree is an R-tree T equipped with a G-action, such that every peripheral
group Gi fixes a point in T . A .G; F /-free splitting is a minimal (i.e., without proper
invariant subtree), simplicial .G; F /-tree with trivial edge stabilizers. A .G; F /-free factor
is a subgroup ofG that coincides with a point stabilizer in some .G; F /-free splitting. More
generally, a free factor system of .G; F / is a collection of subgroups of G that arises as the
collection of all nontrivial point stabilizers in a .G; F /-free splitting. A free factor system F

is smaller than F 0 if any group in F is conjugate into a group in F 0 (equivalently, the free
splitting defining F dominates the one defining F 0). A .G; F /-free factor is proper if it is
nonperipheral (in particular nontrivial) and not equal to G. In the Kurosh decomposition
inherited by a free factor A, the set J is finite, and the free group F is finitely generated.

A relative Z -splitting is a minimal, simplicial .G; F /-tree with edge stabilizers trivial or
cyclic and nonperipheral. The graph of relative Z -splittings, denoted by FZ.G; F /, is the
graph (equipped with the simplicial metric) whose vertices are the homeomorphism classes
of relative Z -splittings, with an edge between two splittings S; S 0 if they have a common
refinement (i.e., there exists a relative Z -splitting OS which admits G-equivariant alignment-
preserving maps onto both S and S 0). Hyperbolicity of the graph of relative Z -splittings was
first proved by Mann in the context of free groups [41], and extended to the general case
in [23]. The group Out.G; F / has a natural action on FZ.G; F /.

Proof of the main theorem

We start by stating two lemmas that will be useful in our proof of Theorem 1.
SinceGdi =Z.Gi /maps to .Gi=Z.Gi //d with central kernel, Lemma 4 yields the following

statement.

L 7. – Under the hypotheses of Theorem 1, for every finite index subgroup�0 � �,
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1. Every morphism from �0 to Gi has finite image.

2. For all d 2 N, every morphism from �0 to Gdi =Z.Gi /, where Z.Gi / sits in Gdi via the
diagonal inclusion map, has finite image.

A .G; F /-tree is very small if pointwise stabilizers of nondegenerate arcs in T are either
trivial, or cyclic and nonperipheral, and tripod stabilizers are trivial. Our second lemma
concerns morphisms from a higher rank lattice to a subgroup of G that stabilizes a point
in a very small .G; F /-tree.

L 8. – Let T be a very small .G; F /-tree, and letGv � G be a point stabilizer in T .
Let d 2 N. Then under the assumptions of Theorem 1, every morphism from� toGdv =Z.Gv/
(where Z.Gv/ sits in Gdv via the diagonal inclusion map) has finite image.

Proof. – As above, it is enough to prove that every morphism � W � ! Gv=Z.Gv/ has
finite image. The subgroupGv � G inherits a free product decompositionGv D .�jHj /�F ,
where each Hj is conjugate into some peripheral group Gi , and F is a free group.

Since Gv is a point stabilizer in a very small .G; F /-tree, each subgroup Hj in this
decomposition is actually equal to a conjugate of some Gi (it cannot be a proper subgroup
of Gi ): this is because in a very small .G; F /-tree, every peripheral subgroup fixes a unique
point.

The conclusion obviously holds ifGv is isomorphic toZ, and it holds by hypothesis ifGv is
a conjugate of one of the subgroupsGi . In all other cases, the centerZ.Gv/ is trivial. It then
follows from Theorem A that the image of � W � ! Gv is contained in one of the factorsHj ,
and the first assertion of Lemma 7 implies that this image is finite.

Proof of Theorem 1. – We assume that all subgroups Gi are nontrivial. We define the
complexity of .G; F / as �.G; F / WD max.k � 1; 0/ C N (this is the number of edges
of any reduced Grushko .G; F /-tree). The proof goes by induction on �.G; F /. Let
� W � ! Out.G; F .t/

/ be a homomorphism.

Initialization. – We first treat the cases where �.G; F / 6 1.

� The statement is obvious if either k D 1 and N D 0 (i.e., G D G1) or k D 0 and N D 1
(i.e., G D Z).

� If k D 2 and N D 0, i.e., G D G1 � G2, then by [37], the group Out.G; fG1; G2g.t// is
isomorphic toG1=Z.G1/�G2=Z.G2/, and the result follows from our hypothesis that every
homomorphism from � to either G1=Z.G1/ or G2=Z.G2/ has finite image.

� If k D 1 and N D 1, i.e., G D G1 � Z, then by [37], the group Out.G; fG1g.t// has
a subgroup of index 2 isomorphic to .G1 � G1/=Z.G1/ (where Z.G1/ sits as a subgroup
ofG1�G1 via the diagonal inclusion map). The result then follows from the second assertion
of Lemma 7.
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Inductive step. – We now assume that �.G; F / � 2. Theorem A ensures that (up to
replacing � by a finite index subgroup) the image �.�/ in Out.G; F .t/

/ acts elementarily
on the Z -splitting graph FZ.G; F /. By [25, Theorem 4.3], either �.�/ virtually fixes the
conjugacy class of a proper .G; F /-free factor, or else it virtually fixes the homothety class
of a very small .G; F /-tree with trivial arc stabilizers.

Up to replacing � by a finite index subgroup, we first assume that �.�/ fixes the conjugacy
class of a proper .G; F /-free factor A. We denote by F 0 the smallest free factor system
of .G; F / such that A 2 F 0. There is a morphism

� W �.�/! Out.A; F
.t/

jA
/

whose kernel is contained in Out.G; F 0.t//. We have �.A; F jA/ < �.G; F / so a first
application of the induction hypothesis shows that � has finite image. Hence �.�/ is virtually
a subgroup of Out.G; F 0.t//. We also have �.G; F 0/ < �.G; F / so a second application of
the induction hypothesis shows that �.�/ is finite.

We now assume that �.�/ fixes the homothety class of very small .G; F /-tree T with
trivial arc stabilizers. There is a morphism � W �.�/ ! R�C, given by the homothety factor
(i.e., �.ˆ/ is the unique real number such that T:ˆ D �.ˆ/:T ). The morphism � has finite
(hence trivial) image because R�C is abelian. Therefore �.�/ is contained in the stabilizer
Stab.T / of the isometry class of T . Since point stabilizers in T are malnormal in G, there is
a morphism  from �.�/ to the direct product of all subgroups Out.Gv; F

.t/

jGv
/, where Gv

varies among a finite set of representatives of the conjugacy classes of all nontrivial point
stabilizers of T . The kernel of  is contained in the subgroup Stab.T; fGvg.t//made of auto-
morphisms that fix the isometry class of T and act by conjugation on each subgroup Gv.
We also know that Gv is finitely generated [24, Corollary 4.5], so the Kurosh decomposition
of Gv is finite, i.e., it has finitely many factors, and the free subgroup arising in the decom-
position is finitely generated. For all branch points v of T , we have �.Gv; F jGv

/ < �.G; F /

(see the proof of [25, Theorem 6.3]), so by induction has finite image. So �.�/ is virtually a
subgroup of Stab.T; fGvg.t//. By [21], Stab.T; fGvg.t// virtually injects into a direct product
of Gdv

v =Z.Gv/, where dv denotes the degree of v in T . It then follows from Lemma 8 that
� has finite image, as required.
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[51] A. Ż, Property (T) and Kazhdan constants for discrete groups, Geom. Funct. Anal.
13 (2003), 643–670.

(Manuscrit reçu le 16 janvier 2017 ;
accepté le 5 juillet 2018.)

Thomas H

IMAG, Univ. Montpellier, CNRS, France
E-mail: thomas.haettel@umontpellier.fr

Vincent G

Univ. Rennes, CNRS, IRMAR-UMR 6625
35000 Rennes, France

E-mail: vincent.guirardel@univ-rennes1.fr

Camille H

CNRS, Univ. Paris Saclay
Labo de maths d’Orsay

91405 Orsay, France
E-mail:

camille.horbez@universite-paris-saclay.fr

4 e SÉRIE – TOME 53 – 2020 – No 2

http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#43
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#44
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#45
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#46
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#47
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#48
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#49
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#50
http://smf.emath.fr/Publications/AnnalesENS/4_53/html/ens_ann-sc_53_2.html#51
vincent.guirardel@univ-rennes1.fr
camille.horbez@universite-paris-saclay.fr

	Introduction
	1. Definitions
	2. L1 induction of the action to the semisimple group
	3. Actions of higher rank semisimple groups on coarse median spaces: sublinear orbit growth
	4. Random walks with zero drift
	5. Proof of corollaries
	Appendix: Morphisms from higher rank lattices to Out(F_N)byVincent Guirardel and Camille Horbez
	Bibliography

