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Abstract. We motivate the study of metric spaces with a unique con-
vex geodesic bicombing, which we call CUB spaces. These encompass
many classical notions of nonpositive curvature, such as CAT(0) spaces
and Busemann-convex spaces. Groups having a geometric action on a
CUB space enjoy numerous properties.
We want to know when a simplicial complex, endowed with a natural
polyhedral metric, is CUB. We establish a link condition, stating essen-
tially that the complex is locally a lattice. This generalizes Gromov’s
link condition for cube complexes, for the `∞ metric.
The link condition applies to numerous examples, including Euclidean
buildings, simplices of groups, Artin complexes of Euclidean Artin
groups, (weak) Garside groups, some arcs and curve complexes, and
minimal spanning surfaces of knots.

Introduction

Nonpositive curvature has proven to be a very rich way to study large families of groups.
Classical Riemannian sectional nonpositive curvature has been well-studied, and we are
interested in developing analogous tools in the setting of cell complexes. More precseily,
assume that X is a cell complex, where each cell is identified with a convex polytope in
Rn, endowed with some norm. If X is piecewise Euclidean, one may ask whether X is
locally CAT(0), which serves as a perfect analogue of nonpositive curvature, and has many
examples and applications ([BH99], [BGS85], [Bal95], [Bal95], [BB08], [AB98], [CM09b],
[CM09a], [CM13], [CL10], [Ham09], [Ham12], [BB08], [BB95], [BB00], [BL12], [BM10],
[Duc18], [McC09] among many others). However, even if there is a metric link criterion
ensuring that a space is locally CAT(0), it is not a combinatorial criterion. The only
general situation where such a criterion becomes combinatorial is the setting of CAT(0)
cube complexes, i.e. cell complexes made out of unit Euclidean cubes.

Theorem (Gromov’s link condition). [Gro87],[Lea13, Theorem B.8]
A cube complex X is locally CAT(0) if and only if the link of every vertex of X is a

flag simplicial complex.

The theory of CAT(0) cube complexes, notably due to this extremely simple criterion,
knows a huge success, popularized by Agol’s and Wise’s works (notably) leading to the so-
lution to the virtual Haken conjecture for 3-manifolds ([HW12], [HW08], [Wis21],[Ago13]).
There are also recent numerous works on CAT(0) cube complexes ([Sag95], [CS11], [CN05],
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[NR98], [Rol98], [NR03], [NR98], [Hag07], [CDH10], [CFI16], [Gen21], [Hua17b], [Wri12],
[Gen20], [BHS17], [HJP16], [Hae21c], [Hae21a], [Cha07], [CMW19], [CM16], [Hua17a],
[Hua16], [Mar15], [LU21], [Osa18] among many others).

However, outside of the world of cube complexes, it becomes excessively hard to de-
cide whether a given cell complex is CAT(0). For instance, braid groups act properly and
ccompactly by isometries on a nice simplicial complex, the dual Garside complex, which
is conjectured to be CAT(0). However, this question appears to be quite hard to an-
swer ([BM10], [HKS16], [Jeo20]). And one cannot replace this space with a CAT(0) cube
complex for braid groups ([Hae21c]).

One problem is that the class of CAT(0) cube complexes, though very rich, remains
smaller than the class of spaces and groups that we want to call nonpositively curved.
For instance, any group with Kazhdan’s property (T) may only act with a fixed point
on any such CAT(0) cube complex, whereas many of them, such as cocompact lattices in
higher rank simple Lie groups, deserved to be called nonpositively curved (for instance,
they admit a geometric action on a CAT(0) space).

We are therefore interested in describing criteria ensuring that a simplicial complex,
with a norm on each simplex, has nonpositive curvature in some sense. We suggest the fol-
lowing notion of nonpositive curvature: we call a metric space CUB, or Convexly Uniquely
Bicombable, if it admits a unique convex geodesic bicombing. It encompasses some other
notions of nonpositive curvature, such as CAT(0) and Busemann-convex, and it retains
many important properties of classical nonpositive curvature, see Section 1 for preci-
sions. The study of geodesic bicombings is quite interesting, and has recently developed
(see [Wen05],[KR17],[Lan13], [DL16], [DL15], [Des16], [KL20], [Mie17], [Bas20] notably).

Note that one would like to allow such a theory to encompass the case of a simplicial
tiling of Rn, for all n > 1, which is the "zero curvature" case.

One simple combinatorial notion of nonpositive curvature is that of systolic complexes
([JS06], [Prz08], [OP09]); however, one cannot one tile Rn by a systolic complex, for n > 3.
There is not even a proper action of Z3 on a systolic complex.

A naive approach would be to consider the Euclidean metric of a regular simplex for
each simplex, and wonder whether the resulting metric is CAT(0). However, it only works
well in dimensions 1 and 2: indeed, according to [KPP12], any regular CAT(0) simplicial
complex is systolic. And if Rn is tiled by Euclidean simplices with acute angles, then n 6 3.

These negative results suggest that we need to consider simplicial complexes where
simplices have a particular symmetry. We will consider two such symmetries:

• The case where simplices have a cyclic order symmetry, which we call type A, which
corresponds for instance to the case of the Ãn simplex tiling of Rn, see Figure 1.

• The case where simplices have a total order symmetry, which we call type C, which
corresponds for instance to the case of the C̃n simplex tiling of Rn, see Figure 2.

In type A, we define a specific polyhedral metric in Section 3, which turns out to behave
exceptionally well for applications. In type C, we define the `∞ orthoscheme metric, which
is recalled in Section 3 and has already been studied in [BM10] (for the `2 version) and
in [Hae22a] and [Hae21b]. This set-up allows us to state our main results in a loose way,
just in order to get the general philosophy. We refer the reader to Section 4 for the precise
(yet simple) statements of Theorem A, Theorem B and Theorem C.

Theorem (Link condition for simplicial complexes). Let X denote a simplicial complex
with (cyclically) ordered simplices. Then X is locally CUB if and only if X is locally a
lattice.
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Amazingly enough, it turns out that a large number of simplicial complexes appear
to satisfy this local lattice property. In particular, this applies to classical Euclidean
buildings, to Artin complexes of some Euclidean Artin groups, to some arc complexes of
punctured spheres, to Garside and weak Garside groups, to general simplices of groups, to
the complex of homologous multicurves on a surface, to the Kakimizu complex of minimal
Seifert surfaces of a link. See Section 9 for all these applications. Also note that the lattice
property is actually simple to verify: one has to check that the poset does not contain any
bowtie, see Section 4.

Note that this theory applies to the Garside complex of the braid group for either the
standard or the dual Garside structure; whereas with the Euclidean metric, the standard
Garside complex is not CAT(0), and the dual Garside complex is only conjectured to be
CAT(0).

The idea of considering spaces which are locally lattices appears in [BM10], [CCHO21],
[HKS16], and [Hir19] and [Hir20]. It is also one the key components of [Hae22a], [Hae21b]
and [HH22].

One key ingredient for the main theorem comes from the theory of injective metric
spaces, applied to various spaces constructed from lattices, see [Hae22a] and [Hae21b]
which essentially provide the existence of a convex bicombing. The uniqueness part is
new, and constitutes the main technical part of this article. It relies notably on work of
Descombes and Lang on the combinatorial dimension ([DL15]). Interestingly, one of the
arguments involves the horofunction boundary of a vector space with a polyhedral norm.

In addition to the new ideas involved in the proofs of the main theorems, there are
several motivations for this article. One is to advertise the study of convex geodesic bi-
combings on spaces, which looks rich and promising. Another one is to illustrate how results
from [Hae21b], [DL15] and [Mie17] can be rendered accessible through simple combinato-
rial criteria for simplicial complexes. A third motivation is to illustrate the simplicity of
these criteria through numerous examples. We believe these combinatorial link conditions
will be useful in future works.

Here is the organization of the article. In Section 1 and 2, we define CUB spaces and
review examples and properties of CUB spaces and groups acting them. In Section 3, we
make precise which polyhedral norms on simplicial complexes we will consider. In Section 4,
we state precisely the various link conditions for locally CUB simplicial complexes. In
Section 5, we recall definitions of orthoschemes complexes of lattices and their relationship
with injective metric spaces. In Section 6, we focus on the uniqueness of the convex
bicombing in the diagonal quotient of the orthoscheme complex of a graded lattice. In
Section 7, we show that this result extends to a possibly non-graded lattice. Finally in
Section 8, we complete the proofs of the link conditions. In Section 9, we list numerous
applications of these link conditions.

Acknowledgments: The author would like to thank Pierre-Emmanuel Caprace, Vic-
tor Chepoi, Anthony Genevois, Jingyin Huang, Dan Margalit, Jon McCammond, Piotr
Przytycki, Andrew Putman and Constantin Vernicos for very interesting discussions.
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1 Bicombings and CUB spaces

Let X denote a geodesic metric space. Typically X will not be uniquely geodesic, hence the
need to select, for each pair of points, a geodesic between them. This is called a geodesic
bicombing.

In this article, a convex bicombing on X will be a convex, consistent, reversible geodesic
bicombing, i.e. a map σ : X ×X × [0, 1]→ X such that:

• (Bicombing) For each x, y ∈ X, the map t ∈ [0, 1] 7→ σ(x, y, t) is a constant speed
reparametrized geodesic from σ(x, y, 0) = x to σ(x, y, 1) = y.

• (Reversible) For each x, y ∈ X, for each t ∈ [0, 1], we have σ(x, y, t) = σ(y, x, 1− t).

• (Consistent) For each x, y ∈ X, for each s, t ∈ [0, 1], we have σ(x, y, st) = σ(x, σ(x, y, t), s).

• (Convex) For each x, y, x′, y′ ∈ X, the map t ∈ [0, 1] 7→ d(σ(x, y, t), σ(x′, y′, t) is
convex.

A weaker but useful notion is that of a conical bicombing, i.e. satisfying

∀x, x′, y, y′ ∈ X,∀t ∈ [0, 1], d(σ(x, y, t), σ(x′, y′, t)) 6 (1− t)d(x, x′) + td(y, y′).

Note that any conical, consistent bicombing is convex.

A local convex bicombing on X is, for every x ∈ X, the choice of a neighbourhood U
of X such that U , with the induced metric, has a convex bicombing. It is called unique if
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U can be chosen to have a unique convex bicombing. Note that U can be chosen to be a
small ball centered at x.

Definition 1.1 (CUB).
We say that X is convexly uniquely bicombable (CUB) if X admits a unique convex

bicombing.
We say that X is locally convexly uniquely bicombable (locally CUB) if X admits a

unique local convex bicombing.

The fact that CUB serves as notion of nonpositive curvature is first justified by the
following Cartan-Hadamard type theorem.

Theorem 1.2. [Mie17] Let X denote a complete, simply connected locally CUB metric
space. Then X is CUB.

Note that Miesch’s result is not stated for CUB spaces, but for spaces with a consistent
local convex bicombing. The local CUB property is one way to ensure the consistency of
a local convex bicombing.

This notion also encompasses numerous spaces of nonpositive curvature.

Examples.

• Any CAT(0) space is CUB.

• A uniquely geodesic metric space is CUB if and only if it is Busemann convex.

• A Riemannian manifold is locally CUB if and only if it has nonpositive sectional
curvature.

• A finite-dimensional piecewise Euclidean cell complex, endowed with the length met-
ric, is CUB if and only if it is CAT(0).

• A finite-dimensional piecewise hyperbolic cell complex, endowed with the length met-
ric, is CUB if and only if it is CAT(-1).

• Any proper, finite-dimensional injective metric space is CUB ([DL15]).

• Any Banach space is CUB, where the unique convex bicombing is the affine bicombing
([Bas20, Corollary 1.3]).

Let us comment on two examples. If X is a Riemannian manifold, then it is locally
uniquely geodesic. Therefore it is locally CUB if and only if it is Busemann convex.
According to the second variation formula, this is equivalent to having nonpositive sectional
curvature (see [Bus48], and also [Bal95], [BGS85] or [BH99] for instance).

If X is a piecewise Euclidean of piecewise hyperbolic cell complex, assume the local
CUB property, we want to see that X is CAT(0) or CAT(-1). In particular, X has a
continuous geodesic bicombing. Then, by induction on dimension, we can use Bowditch’s
criterion ([Bow95], or [BH99] in the case X has finitely many shapes) to reduce to proving
that the link of every vertex has no locally geodesic loop of length smaller than 2π. The
existence of such a loop would give rise to a discontinuity of geodesics, so vertex links are
CAT(1), and X is CAT(0) or CAT(-1).

Let us state very general properties of CUB metric spaces, which are typical of non-
positive curvature.

Theorem 1.3. Let X denote any CUB metric space. We have the following.

1. X is contractible.
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2. X admits Euclidean isoperimetric inequalities.

3. X admits a Z-boundary and a Tits boundary. Moreover, any action on X by isome-
tries extends continuously to the boundaries.

Proof. Let us give a reference for each statement.

1. Since X admits a convex bicombing, it retracts continuously to any point, and so X
is contractible.

2. According to [Wen05], any metric space with a convex geodesic bicombing admits
Euclidean isoperimetric inequalities.

3. According to [DL15, Theorem 1.4], any metric space X with a convex geodesic bi-
combing admits a Z-boundary ∂X, defined as equivalence classes of rays with the
cone topology. See [Bes96] for the definition of a Z-boundary. If we endow this
boundary with the finer Tits topology, we can use results from [KL20].

As we will see in the sequel, CUB spaces behave almost as good as general CAT(0)
spaces, notably regarding all arguments using uniqueness and convexity of geodesics. They
also happen to be much more frequent than CAT(0) spaces, as the list of examples above
suggests.

2 Groups acting on CUB spaces

We now turn to properties of isometric group actions on CUB spaces. First we have a
simple fixed point result.

Proposition 2.1. Let X denote any complete CUB metric space. If G is a finite group of
isometries of X, then G has a fixed point.

Moreover, let G is a group of isometries of X. If the fixed point set of G is not empty,
it is contractible.

Proof. According to [Des16, Theorem 2.1], there is a well-defined notion of barycenter on
X, which is equivariant under isometries. In particular, if G is a finite group of isometries,
the barycenter of any orbit is a fixed point.

If G acts on X with a fixed point, let x, y ∈ XG. Then by uniqueness of the convex
bicombing σ on X, we know that g · σ(x, y) = σ(x, y). In particular σ(x, y) is entirely
contained in XG, so σ restricts to a convex bicombing on XG. In particular, XG is
contractible.

In particular, we deduce the following.

Corollary 2.2. If a group G acts properly by isometries on a complete CUB space X, then
X is a classifying space for proper actions of G.

Moreover, in case we have a proper and cocompact action, we can deduce numerous
properties for the group.

Theorem 2.3. Let G denote a group acting properly and cocompactly by isometries on a
CUB space.

1. G is semihyperbolic in the sense of Alonso-Bridson, and in particular:

• Any polycylic subgroup subgroup of G is virtually abelian.
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• Any finitely generated abelian subgroup of G is quasi-isometrically embedded.

• The word and conjugacy problems are soluble for G.

• The centralizer of any element of G is finitely generated, quasi-isometrically
embedded and semihyperbolic.

2. G has finitely many conjugacy classes of finite subgroups.

3. G satisfies the Farrell-Jones conjecture.

4. G has type F∞. If G is torsion-free, it has type F .

5. G has at most Euclidean Dehn functions.

6. G satisfies the coarse Baum-Connes conjecture.

7. G has an EZ-boundary.

8. G has contractible asymptotic cones.

Proof. Let X denote the CUB space of which G acts properly and cocompactly by isome-
tries. We will give references for all statements.

1. Since X admits a convex bicombing and G acts properly coboundedly on X, we de-
duce by [BH99, Theorem III.Γ.4.7] that G is semihyperbolic. For the consequences,
see [BH99, Theorem III.Γ.4.9, Theorem III.Γ.4.10, Proposition III.Γ.4.15, Proposi-
tion III.Γ.4.17], .

2. According to Proposition 2.1, any finite subgroup has a fixed point. Since the action
of G is proper and cocompact, there exist finitely many conjugacy classes of finite
subgroups.

3. According to [KR17], any group acting geometrically on a space with a convex bi-
combing satisfies the Farrell-Jones conjecture.

4. The proofs of [BH99, Proposition II.5.13, Lemma I.7A.15] adapt from CAT(0) spaces
to CUB spaces immediately. Hence the quotient X/G has the homotopy type of a
finite CW -complex.

5. According to Theorem 1.3, X has Euclidean isoperimetric inequalities. These trans-
late to Dehn functions of G being at most Euclidean.

6. According to [FO20, Theorem 1.3], groups acting geometrically on spaces with convex
bicombings satisfy the coarse Baum-Connes conjecture.

7. According to Theorem 1.3, X admits a Z-boundary ∂X, that is G-equivariant. This
defines an EZ-boundary as in [FL05].

8. The group G is quasi-isometric to the CUB space X. And any asymptotic cone of
X admits a bicombing, and is then contractible.

Examples. Here is a list of groups acting properly and cocompactly by isometries on a
CUB space.

• CAT(0) groups, which include fundamental groups of compact nonpositively curved
Riemannian manifolds, and uniform lattices in semisimple Lie groups over local fields.
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• Gromov-hyperbolic groups ([Lan13]), and groups hyperbolic relative to Helly groups
([OV20]).

• Helly groups ([CCHO21]), which include FC type Artin groups and weak Garside
groups ([HO21]), and more generally injective groups ([Hae22a],[Hae21b]).

• If we replace the assumption of cocompactness by that of coboundedness, then map-
ping class groups of surfaces and more generally hierarchically hyperbolic groups are
examples ([HHP21]).

It turns out that many arguments about CAT(0) spaces rely only on the fact that there
are uniquely geodesic with associated convex bicombing. These arguments often carry on
to the CUB setting, as the following nonpositive criterion for complexes of groups.

Theorem 2.4. [BH99, Theorem III.C.4.17]
Let G(Y) denote a complex of groups over a scwol Y such that the geometric realization

|Y| has a metric such that, for each σ ∈ Y, the local development at σ is locally CUB. Then
G(Y) is developable, and the simply connected development of Y is CUB.

3 Norms on simplicial complexes

We are interested in finding norms on simplices that allow to tile Rn, for any n > 1. We
noted in the introduction that the regular Euclidean n-simplex does not tile Rn if n > 3
([KPP12]). This suggest considering simplices with a particular symmetry.

Note that there are 4 infinite families of Euclidean tilings of Rn, for all n > 1, with
fundamental domain a simplex. They correspond to the Coxeter complexes of the affine
Coxeter groups of types Ãn, B̃n, C̃n and D̃n. Note that both B̃n and D̃n tilings may be
refined into the C̃n tiling. See Figures 1 and 2 for pictures of the Ã2 tiling and the C̃2

tiling.

Figure 1: The Ã2 tiling of the plane, with the Ã2 simplex in blue.
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Figure 2: The C̃2 tiling of the plane, with the C̃2 simplex in blue.

We will therefore focus on one hand on the simplices coming from the Ãn tiling, whose
vertices have a total cyclic order, which we will call type A. On the other hand, we will
focus on the simplices coming from the C̃n tiling, whose vertices have a total order, which
we will call type C. We give details below, starting with the type C case which is a bit
simpler.

We will see in the applications (see Section 9) that the assumption that simplices have
an order on their vertices is often quite natural and geometric. Oftentimes, these orders
will come from a naturally defined rank or type of vertices.

3.1 Type C

Consider an n-dimensional simplex σ, with a total order on its vertices, which we could then
label v0 < v1 < · · · < vn. Then one can naturally identify σ with the standard n-simplex
of type C̃n, which is also called the standard orthosimplex. It may be defined as the convex
hull in Rn of the set of points v0 = (0, 0, . . . , 0), v1 = (1, 0, . . . , 0), . . . , vn = (1, 1, . . . , 1),
see Figure 3. It also coincides with a simplex of the barycentric subdivision of the n-cube
[0, 2]n, see Figure 4.

v0 = (0, 0, 0) v1 = (1, 0, 0)

v2 = (1, 1, 0)

v3 = (1, 1, 1)

Figure 3: The standard 3-orthosimplex, with the total order on vertices.
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Figure 4: The partition of a cube in R3 into standard orthosimplices.

As a subset of Rn, the standard orthosimplex may naturally be endowed with one of
the following two norms:

• The standard `2 Euclidean norm.

• The standard `∞ norm, given by ‖x‖∞ = max(|x1|, |x2|, . . . , |xn|).

While many works have focused on the `2 Euclidean norm on ortoscheme complexes
(see [BM10], [HKS16], [Jeo20], [DMW20]), in this article we will only consider the standard
`∞ norm. Let us be precise about the metric simplicial complexes we will be considering.

Definition 3.1. A simplicial complex X is said to have ordered simplices if each simplex
of X has a total order on its vertex set, which is consistent with respect to inclusions of
simplices.

For such complexes, we are able to define the standard `∞ metric.

Definition 3.2. Let X denote a simplicial complex with ordered simplices, with finite
simplices. Endow each d-simplex of X with the standard `∞ norm of the standard or-
thosimplex in Rd, and endow X with the associated length metric: this is called the
standard `∞ metric.

A very important remark is that this metric is well-defined: indeed if τ is a face of a
simplex σ with totally ordered vertices, then the standard `∞ metric on τ (with the induced
order) is an isometric subspace of the standard `∞ metric on σ. Note that this would not
be the case with the Euclidean metric: if σ is a triangle with vertices v0 < v1 < v2, then
the edge between v0 and v2 has length

√
2 for the standard Euclidean metric of σ. For the

`∞ metric, all edges have length 1.

Also note that if X is a simplicial complex with ordered simplices, and if G is a group
of simplicial automorphisms which either preserve or reverse the orders on vertices of
simplices, then G acts by isometries on X with the standard `∞ metric.

3.2 Type A

Consider an n-dimensional simplex σ, with a total cyclic order on its vertices, which we
could then label (vi)i∈Z/nZ. Then one can naturally identify σ with the standard n-simplex
of type Ãn. It may be defined as the convex hull in Rn = {x ∈ Rn+1 |x1+x2+· · ·+xn+1 = 0}
of the set of points

v0 = (0, 0, . . . , 0), v1 = (
n

n+ 1
,
−1

n+ 1
, . . . ,

−1

n+ 1
), . . . , vn = (

1

n+ 1
, . . . ,

1

n+ 1
,
−n
n+ 1

).
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More precisely, for 0 6 i 6 n, let j = n+ 1− i, then the first i coordinates of vi are equal
to j

n+1 and the last j coordinates of vi are equal to −i
n+1 , see Figure 5.

v0 = (0, 0, 0, 0)

v1 = (34 ,
−1
4 ,
−1
4 ,
−1
4 )

v2 = (12 ,
1
2 ,
−1
2 ,
−1
2 )

v3 = (14 ,
1
4 ,

1
4 ,
−3
4 )

Figure 5: The standard 3-simplex of type Ã3, with the cyclic order on vertices. The two
red edges have dihedral angle π

2 , the other four edges have dihedral angle π
3 .

In this description, the cyclic symmetry is not transparent: the standard simplex of
type Ãn may equivalently be defined as

σ = {x ∈ Rn+1 |x1 + x2 + · · ·+ xn+1 = 0, x1 > x1 > . . . xn > x0 − 1}.

Therefore, we can also describe the standard simplex of type Ãn as the image, in the
quotient under the diagonal translation action of R, of the standard column C in Rn−1:

C = {x ∈ Rn+1 |x1 + x2 + · · ·+ xn+1 = 0, x1 > x1 > . . . xn > x0 − 1}.

Note that the column C has a natural description as a simplicial complex, with linearly
ordered (n+1)-dimensional simplices with totally ordered vertices. Roughly speaking, these
simplices appear when looking at chambers obtained by cutting C using the hyperplanes
{xi ∈ Z} in Rn+1.

More precisely, we have C =
⋃
q∈Z,06r6n τq,r, where

τq,r = {x ∈ Rn+1 | q > xr > xx+1 > xr+2 > · · · > xn+1 > x1−1 > x2−1 > · · · > xr−1 > q−1},

see Figure 6. The study and use of columns is fundamental in [BM10], [DMW20] and
[Hae21b].
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Figure 6: The standard column C in R3, tiled by standard 3-orthosimplices.

It turns out that there are two natural norms on the standard Ãn simplex:

• The standard `2 Euclidean norm.

• The norm ‖x‖ = sup16i 6=j6n+1 |xi−xj |, which we will call standard polyhedral norm.

Note that the standard polyhedral norm can also be described more naturally as the
quotient of the standard column C ⊂ Rn+1, endowed with the standard `∞ metric, under
the diagonal translation action by R. The standard Euclidean metric is also the quotient
of the standard Euclidean metric of C ⊂ Rn+1 by the diagonal translation action by R.

Also note that both metrics are invariant under a (possibly order-reversing) cyclic
permutation of the vertices of the standard Ãn simplex. This is easier to see in the column
picture, since for instance (x1, x2, . . . , xn+1) ∈ C 7→ (x2, x3, . . . , xn+1, x1 − 1) ∈ C is an
isometry for both the standard Euclidean and the standard polyhedral norm. However,
an order-reversing permutation of the vertices of the standard Ãn simplex does not lift to
an isometry of the standard column C, but it still induces an isometry of the standard Ãn
simplex for either norm.

The unit ball of the standard polyehdral norm in Rn is the projection of the standard
(n + 1)-cube (with edge lengths 2) in Rn+1 by the diagonal translation action of R. In
dimension n = 2, it is a regular hexagon, and in dimension n = 3 it is called the rhombic
dodecahedron, see Figure 7.
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Figure 7: The unit ball of the standard polyhedral norm in R3: the rhombic dodecahedron.

One should also note that the n-simplex, endowed with the Hilbert metric ([Nus88],
[LW11]), is isometric to the normed space(

Rn = {x ∈ Rn+1 |x1 + x2 + · · ·+ xn+1 = 0}, ‖x‖ = sup
16i 6=j6n+1

|xi − xj |

)
.

So the norm is the same as the standard polyhedral norm we defined. However, the
embedding of an n-simplex in this model is not immediate: in particular, it depends on
the particularly chosen cyclic order on the vertices on the n-simplex.

We now make precise how to define a metric if there is a cyclic order on the vertices of
each simplex of a simplicial complex.

Definition 3.3. A simplicial complex X is said to have cyclically ordered simplices if
each simplex of X has a total order on its vertex set, which is consistent with respect to
inclusions of simplices.

For such complexes, we are able to define the standard polyehdral metric.

Definition 3.4. Let X denote a simplicial complex with cyclically ordered simplices, with
finite simplices. Endow each d-simplex of X with the standard polyhedral norm of the
standard d-simplex, and endow X with the associated length metric: this is called the
standard polyhedral metric.

Note that, as in the type C case, this metric is well-defined: if τ is a face of a simplex
σ with cyclically ordered vertices, then the standard polyhedral metric on τ (with the
induced cyclic order) is an isometric subspace of the standard polyhedral metric on σ.

Also note that if X is a simplicial complex with cyclically ordered simplices, and if G is
a group of simplicial automorphisms which either preserve or reverse the cyclic orders on
vertices of simplices, then G acts by isometries on X with the standard polyhedral metric.

4 Statements of the link conditions

We will present the link conditions for nonpositive curvature. These are local criteria
ensuring the CUB property in the case of simplicial complexes with (cyclically) ordered
simplices. In order to state the criteria precisely, we will recall basic definitions on lattices
and bowties.

4.1 Lattices and bowties

We start by recalling necessary definitions of posets, lattices and bowties.

13



Definition 4.1.
A lattice is a poset L such that any two x, y ∈ L have a minimal upper bound denoted

x ∨ y, called the join of x and y, and a maximal lower denoted x ∧ y, called the meet of x
and y.

A (meet)-semilattice is a poset where one only requires the existence of meets.
A poset L is bounded if it has a minimum (usually denoted 0), and a maximum (usually

denoted 1).
A poset L is graded if, given any x < y in L, every maximal chain from x to y has the

same length (depending on x, y).
A poset L is homogeneous if, given any x < y in L, there is a bound on the length of

chains from x to y (depending on x, y).
A graded lattice L has rank n if every maximal chain in L has n+ 1 elements.
A bowtie in a poset L consists in 4 elements a, b, c, d ∈ L such that a, b < c, d, and such

that there exists no x ∈ L such that a, b 6 x 6 c, d. If L is graded, we say that a bowtie
a, b < c, d is balanced if rk(a) = rk(b) and rk(c) = rk(d).

Example. Here are simple examples of such posets.

• The boolean poset P({1, . . . , n}), ordered by inclusion, is a bounded graded lattice
of rank n.

• The poset of vector subspaces of an n-dimension vector space, ordered by inclusion,
is a bounded graded lattice of rank n.

• The poset of finite-dimensional vector subspaces of an arbitrary vector space, ordered
by inclusion, is a graded semilattice.

• The poset of partitions of {1, . . . , n}, ordered by refinement, is a bounded graded
lattice of rank n− 1.

• Fix n > 2, and consider the set vertex set Un ⊂ R2 of a regular n-gon in the plane.
Say that a partition P of Un is noncrossing if, for any distinct A,B ∈ P , the convex
hulls of A and B do not intersect. Then the poset of noncrossing partitions of Un,
ordered by refinement, is a bounded graded lattice of rank n − 1. Note that his
example generalizes to any finite Coxeter group ([BW02], [Bes03]).

It turns out that bowties are quite efficient to decide whether a poset is a lattice.

Proposition 4.2. Let L denote a graded poset. Then L ∪ {0, 1} is a lattice if and only if
L has no balanced bowtie.

Proof. Assume that L∪ {0, 1} is a lattice, and consider a, b < c, d in L. Then the meet x
of c, d is such that a, b 6 x 6 c, d. So L has no bowties.

Conversely, assume that L has no bowtie a, b < c, d with rk(a) = rk(b) and rk(c) =
rk(d).

Fix c, d ∈ L with rk(c) = rk(d), we will prove that c, d have a meet in L ∪ {0}. It is
sufficient to prove that no bowtie in L contain c, d as upper elements. By contradiction,
assume that there exists a bowtie a, b < c, d. By assumption, we know that rk(a) 6= rk(b),
say rk(a) < rk(b). Pick b′ ∈ L such that b′ < b and rk(b′) = rk(a). By assumption, there
exists x ∈ L such that a, b′ 6 x 6 c, d. Since a, b < c, d is a bowtie, we deduce that a = x.
So a 6 b, which contradicts that a, b < c, d is a bowtie.

By symmetry, we also know that any a, b ∈ L with rk(a) = rk(b), have a join in L∪{1}.

Now fix any c, d ∈ L, we will prove that c, d have a meet in L ∪ {0}. As before, it is
sufficient to prove that no bowtie in L contain c, d as upper elements. By contradiction,
assume that there exists a bowtie a, b < c, d.
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If rk(a) = rk(b), then since a, b have a join this contradicts that a, b < c, d is a bowtie.
So we know that rk(a) 6= rk(b), say rk(a) < rk(b). Pick b′ ∈ L such that b′ < b and

rk(b′) = rk(a). Now let x denote the join of a, b′: it is such that a, b′ 6 x 6 c, d. Since
a, b < c, d is a bowtie, we deduce that a = x. So a 6 b, which contradicts that a, b < c, d
is a bowtie.

Hence any c, d ∈ L have a meet in L ∪ {0}.

By symmetry, we also know that any a, b ∈ L have a join in L ∪ {1}. Hence L ∪ {0, 1}
is a lattice.

4.2 Type A

Given a flag simplicial complex X with cyclically ordered simplices, for each vertex x ∈ X,
there is a natural antisymmetric relation 6x on St(x), with minimal element x, obtained
by declaring that y 6x z iff x, y, z form a triangle, and x, y, z are cyclically ordered.

Definition 4.3. We say that a simplicial complex with cyclically ordered simplices is a
local poset if, for any vertex x ∈ X, the (St(x),6x) is a poset. In other words:

∀x, y, z, t ∈ X, (x 6 y 6 z 6 x) ∧ (x 6 z 6 t 6 x)⇒ (x 6 y 6 t 6 x).

We are now able to state precisely the link condition for simplicial complexes with
cyclically ordered simplices.

Theorem A. Let X denote a locally finite-dimensional flag simplicial complex with cycli-
cally ordered simplices, which is a local poset. Then X, endowed with the standard polyhe-
dral norm, is locally CUB if and only if, for every vertex x ∈ X, the poset (St(x),6x) is a
semilattice.

Note that, in the case (St(x),6x) is not a semilattice, we prove that X does not even
have one local conical bicombing.

Remark. The lattice condition has several equivalent formulations:

1. (St(x),6x) is a semilattice.

2. (St(x) ∪ {1},6x) is a lattice.

3. (St(x),6x) has no bowtie.

In the case where all maximal simplices containing x have the same dimension, the poset
(St(x),6x) is graded, and these conditions are also equivalent to:

4. (St(x),6x) has no balanced bowtie.

4.3 Type C

Given a flag simplicial complex X with ordered simplices, for each vertex x ∈ X, there is
a natural induced antisymmetric relation 6x on St(x).

Definition 4.4. We say that a simplicial complex with ordered simplices is a local poset
if, for any vertex x ∈ X, the set (St(x),6x) is a poset. In other words:

∀x ∈ X,∀y, z, t ∈ St(x), (y 6 z) ∧ (z 6 t)⇒ (y 6 t).
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A simplicial complex X is said to have ordered simplices if each simplex of X has a
total order on its vertex set, which is consistent with respect to inclusions of simplices.

Given a simplicial complex X with ordered simplices, for each vertex x ∈ X, there is
a natural antisymmetric relation 6x on St(x), with distinguished element x, obtained by
declaring that y 6x z iff x, y, z form a triangle, and the edge between y and z is oriented
from y to z. We will also consider the subposet St+(x) = {y ∈ St(x) | y > x}, with
minimum x, and the subposet St−(x) = {y ∈ St(x) | y 6 x}, with maximum x

We are now able to state precisely the link condition for simplicial complexes with
cyclically ordered simplices.

Theorem B. Let X denote a locally finite-dimensional flag simplicial complex with ordered
simplices, which is a local poset. Then X, endowed with the standard `∞ norm, is locally
CUB and is locally injective if and only if, for any vertex x ∈ X, we have:

• (Lattice condition) The poset (St(x),6x) has no bowtie.

• (Flag condition) Any a, b, c ∈ St(x) which are pairwise upperly bounded (resp. lowerly
bounded) have a common upper bound (resp. lower bound).

Remark that, in the case (St(x),6x) does not satisfy any of the two conditions, we
prove that X is not locally injective and does not even have one local convex bicombing.
Note that this flag condition is called "lattice-theoretic flag condition" in [Hir19].

Remark. The lattice condition has several equivalent formulations:

1. (St(x),6x) has no bowtie.

2. (St+(x),6x) is a meet-semilattice and (St−(x),6x) is a join-semilattice.

3. (St(x) ∪ {0, 1},6x) is a lattice.

In the case where all maximal simplices containing x have the same dimension, the poset
(St(x),6x) is graded, and these conditions are also equivalent to:

4. (St(x),6x) has no balanced bowtie.

5. (St+(x),6x) and (St−(x),6x) have no balanced bowtie.

Similarly, the flag condition is equivalent to asking that the following two conditions hold:

• Any a, b, c ∈ St+(x) which are pairwise upperly bounded have a common upper
bound.

• Any a, b, c ∈ St−(x) which are pairwise lowerly bounded have a common lower bound.

Also note that Theorem B applies to all cube complexes. Indeed if X is a locally finite-
dimensional cube complex, consider the barycentric subdivision X ′ of X. It is a simplicial
complex with ordered simplices, and the standard `p metric on orthosimplices coincides
with the standard `p metric on cubes (up to a factor 2). If x is a vertex of X, the lattice
condition for StX′(x) is equivalent to requiring that the link of x in X is simplicial, and
the flag condition for StX′(x) is equivalent to requiring that the link of x in X is a flag
simplicial complex. Hence we recover Gromov’s link condition for the `∞ norm. Note
that, for a finite-dimensional cube complex, requiring that the piecewise Euclidean metric
is CAT(0) is equivalent to requiring that the piecewise `∞ metric is CUB (see [Mie14]).

The analogous statement for the piecewise Euclidean metric is false, see [Hae21b, The-
orem 3.10]. However, according to [Hir19] (see also [HKS16]), it is true under the extra
(very restrictive) assumption that (St(e),6e) is a semimodular lattice.
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4.4 Garside flag complexes

A particular class of examples encompassing both types of shapes of simplices are Garside
flag complexes (see [HH22]), which we now define.

Definition 4.5. A Garside flag complex is a pair (X,ϕ), where X is a simply connected
flag simplicial complex with finite simplices, with ordered simplices, and ϕ is an order-
preserving automorphism of X, such that the following holds:

• For any simplex σ of X, we have that σ ∪ ϕ(minσ) is a simplex of X.

• For any vertex x ∈ X, we have ϕ(x) > x, and the interval [x, ϕ(x)] is a homogeneous
lattice.

If (X,ϕ) is a Garside flag complex, the quotient X/ϕ is defined as the flag simplicial
complex with vertex set X(0)/〈ϕ〉, whose k-simplices correspond to images of chains x0 <
x1 < · · · < xk < ϕ(x0). Note that the quotient X/ϕ has cyclically ordered simplices.

For this class of simplicial complexes, we are now able to state precisely the link con-
dition.

Theorem C. Let (X,ϕ) denote a Garside flag complex. Then X, endowed with the stan-
dard `∞ metric, is CUB and injective. Moreover the quotient X/ϕ, endowed with the
standard polyhedral metric, is CUB.

Note that the lattice property is also necessary, as in the proof of Theorem B.

5 Lattices, orthoscheme complexes and injective metric spaces

We will review here the relationship between lattices, orthoscheme complexes and injective
metric spaces developed in [Hae22a] and [Hae21b].

5.1 Injective metric spaces and combinatorial dimension

A geodesic metric space is called injective if any family of pairwise intersecting balls has
a non-empty global intersection. See for example [Lan13] for an introduction to injective
metric spaces. It turns out that injective metric spaces are ubiquitous:

Theorem 5.1 ([Isb64]). Any metric space X embeds isometrically in a unique minimal
injective metric space EX, its injective hull.

Injective metric spaces are relevant for CUB spaces because Lang proved that any
injective metric space admits a canonical conical geodesic bicombing. Under properness
assumption, Descombes and Lang improved the result to an actual convex geodesic biomb-
ing.

Theorem 5.2. [DL15, Theorem 1.1] Let X denote a proper injective metric space. Then
X admits a convex geodesic bicombing.

Concerning uniquness, Descombes and Lang provided a criterion relying on the notion
of combinatorial dimension.

Definition 5.3. The combinatorial dimension of a metric space X is the topological di-
mension of its injective hull EX.

Example. For instance, if X is a CAT(0) cube complex with the piecewise `∞ metric, the
combinatorial dimension of X coincides with its dimension as a cube complex.
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Note that, if X is an isometric subspace of Y , the combinatorial dimension of X is
bounded above by the combinatorial dimension of Y .

The combinatorial dimension of a metric space is usually hard to compute. However,
we have the following criterion due to Dress.

Theorem 5.4. [DL15, Theorem 4.1] Let X denote a metric space, and let n > 1 be an
integer. The space X has combinatorial dimension at most n if and only if, for every finite
subset Z ⊂ X with |Z| = 2(n+ 1) and for every fixed point free involution i : Z → Z, there
exists a fixed point free bijection j : Z → Z distinct from i such that∑

z∈Z
d(z, i(z)) 6

∑
z∈Z

d(z, j(z)).

Descombes and Lang proved that, for metric spaces with finite combinatorial dimension,
there could be at most one convex geodesic bicombing.

Theorem 5.5. [DL15, Theorem 1.2] Let X denote a metric space with finite combinatorial
dimension. Then X admits at most one convex geodesic bicombing.

Combining both results, we immediately get the following.

Corollary 5.6 (Descombes-Lang). Let X denote a proper, finite-dimensional, injective
metric space. Then X is CUB.

We also record, for later use, the following elementary decomposition result.

Proposition 5.7. Let L denote a poset, such that x is comparable to every element of L.
Let L+ = {y ∈ L | y > x} and L− = {y ∈ L | y 6 x}. Then the geometric realization |L| of
L, with the standard `∞ metric, is locally isometric at x to the `∞ product |L+| × |L−| of
the geometric realizations of L+ and L− with the standard `∞ metrics.

Proof. It suffices to notice that this statement is true for orthosimplices, with the `∞

metric. Consider the standard n-orthosimplex σ ⊂ Rn, with vertices v0 = (0, 0, . . . , 0) <
v1 = (1, 0, . . . , 0) < · · · < vn = (1, . . . , 1). More precisely, σ is defined by the following
inequalities:

σ = {x ∈ Rn | 1 > x1 > x2 > · · · > xn > 0}.

Given any 0 < k < n, note that vk does not lie on the hyperplane {xk = xk+1} supporting
a face of σ. So a neighbourhood of vk in σ is isometric to a neighourhood of vk in

E = {x ∈ Rn | 1 > x1 > x2 > · · · > xk > 0, 1 > xk+1 > xk+2 > · · · > xn > 0}.

The space E, with the `∞ norm, is isometric to the `∞ product of two standard orthosim-
plices of dimensions k and n− k.

5.2 Orthoscheme complexes of lattices

We now explain that many examples of injective metric spaces come from geometric real-
izations of posets.

Let L denote a poset. Then the geometric realization X of L is the simplicial complex
whose simplices are chains in L. Note that each simplex of X has thus an induced total
order on its set of vertices, so it can be endowed with the standard `∞ norm. We will then
endow X with the induced length metric.

One of the main interest of lattices lies in the following result.

Theorem 5.8. [Hae21b, Theorem 3.9] Let L denote a bounded graded lattice. Then the
geometric realization of L, with the standard `∞ norm, is injective and CUB.
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In the sequel, we will need more details about the result in Theorem 5.8. If L is a
bounded, graded lattice of rank n, we start by describing what we call the affine version
of L.

We will define a new poset M , which will be called the affine version of L. Let C(L)
denote the set of maximal chains c0,1 = 0 <L c1,2 <L . . . cn−1,n <L cn,n+1 = 1 in L. We
will use the convention that the element denoted ci,i+1 has rank i.

Let us consider the subspace of Rn:

Σ = {u ∈ Rn |u1 6 u2 6 · · · 6 un}.

For each maximal chain c ∈ C(L), let Σc denote a copy of Σ.
Let us consider the space

M =
⋃

c∈C(L)

Σc/ ∼,

where for each c, c′ ∈ C(L), if we denote I = {1 6 i 6 n − 1 | ci,i+1 6= c′i,i+1}, we identify
Σc and Σc′ along the subspaces

{u ∈ Σc | ∀i ∈ I, ui = ui+1} ' {u ∈ Σ′c | ∀i ∈ I, ui = ui+1}.

We can describe M as a quotient of the space M0 = C(L)×Σ. If c ∈ C(L) and u ∈ Σ, let
us denote by [c, u] the equivalence class of (c, u) ∈M0 in M

Example. One illustrating example is the following: consider the boolean lattice L of rank
n, i.e. the lattice of subsets of the finite set {1, . . . , n}, with the inclusion order. Maximal
chains in L correspond to permutations of {1, . . . , n}. The spaceM may be identified with
Rn, where for each permutation w of {1, . . . , n}, the subspace Σw is

Σw = {x ∈ Rn |xw(1) 6 xw(2) 6 · · · 6 xw(n)}.

We will endow M with the length metric induced by the standard `∞ metric on each
subspace Σc ⊂ Rn, for c ∈ C(L). Note that the geometric realization X of L is naturally
a subspace of M :

X = {[c, u] ∈M | c ∈ C(L), u ∈ Σ, 0 6 u1 6 u2 6 . . . un 6 1}.

This metric space M satisfies the following. Recall that a subset X of a metric space
M with a bicombing σ is called σ-convex it, given x, y ∈ X, we have σ(x, y) ⊂ X.

Theorem 5.9. [Hae21b, Theorem 3.8] The metric space M is injective, and has a unique
convex bicombing σ. Moreover, the subspace X ⊂M is isometric and σ-convex.

There is also a diagonal isometric action of R on M , given by s · [c, u] = [c, u1 + s, u2 +
s, . . . , un + s].

Proposition 5.10. The convex bicombing σ on M satisfies the following:

∀x, x′ ∈M, ∀t ∈ [0, 1], ∀s, s′ ∈ R, σ(s · x, s′ · x′, t) = ((1− t)s+ ts′) · σ(x, x′, t).

Proof. This is a consequence of the proof of [Hae21b, Theorem 3.8], since the midpoint-
nonincreasing conical geodesic bicombing defined there satisfies this equality.

We also show that stars of simplices are convex in X.

Lemma 5.11. Let c denote a chain in L containing 0 and 1, and let A ⊂ X denote the
corresponding simplex of X. Then the star of A in X is σ-convex.
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Proof. For each a ∈ c\{0, 1}, let Aa ⊂ A ⊂ X denote the corresponding 2-simplex of X.
Note that the star of A in X equals the intersection of the stars of Aa, for all a ∈ c\{0, 1}.
Therefore it is sufficient to consider the case c = (0 < a < 1).

Fix x, x′ ∈ St(A). By considering St(A) ⊂ X ⊂ M , we may find s > 0 such that
s · x ∈ St(A) and s · x > a. Similarly, we may find s′ > 0 such that s′ · x′ ∈ St(A) and
s′ · x′ > a. Note that the interval {x ∈ X |x > a} is σ-convex in X. So we deduce that,
for any t ∈ [0, 1], we have σ(s · x, s′ · x′, t) > a, so in particular σ(s · x, s′ · x′, t) ∈ St(A).
According to Proposition 5.10, we deduce that σ(x, x′, t) ∈ R · St(A) ∩X = St(A). Hence
St(A) is σ-convex.

5.3 Unique bicombings in orthoscheme complexes of semilattices

We now turn to the case of orthoscheme complexes of semilattices. Here, in order to obtain
the injectivity and the CUB property, we need to ask for the flag condition.

Theorem 5.12. Let L denote a graded semilattice with minimum 0. Assume that any
a, b, c ∈ L pairwise upperly bounded have a common upper bound. Then the orthoscheme
complex of L, with the standard `∞ metric, is injective and CUB.

Proof. According to [Hae21b, Theorem 6.1], we know that the orthoscheme complex |L|
of L, with the standard `∞ metric, is injective. Since it is finite-dimensional, according to
Theorem 5.5 we know that it admits at most one convex bicombing. It remains to prove
that it admits a convex bicombing.

Let L′ = L ∪ {1} denote the bounded poset obtained by adding a maximal element 1.
Let π : |L′| → |L| denote the simplicial map obtained by sending each x ∈ L to itself, and
sending 1 to 0. It is a 1-Lipschitz retraction.

Note that L′ is a bounded graded lattice, so according to Theorem 5.8 we know that its
geometric realization |L′|, endowed with the standard `∞ metric, is injective and admits a
unique convex bicombing σ′.

Let us define σ : L×L× [0, 1]→ L by σ(x, y, t) = π(σ′(x, y, t)): since π is a 1-Lipschitz
retraction, we deduce that σ is geodesic, and that σ is conical. Furthermore, according to
Proposition 5.10, we know that σ is consistent, hence σ is convex. In conclusion, σ is a
convex bicombing on |L|. So |L| is CUB.

6 Bicombings on quotients of orthoscheme complexes

We will now explain how unique convex bicombings on orthoscheme complexes give rise to
unique convex bicombings on their diagonal quotient.

Let L denote a bounded graded lattice of rank n, and let X denote the geometric
realization of L with the standard `∞ metric.

Let Y denote the geometric realization of the semilattice L\{1}, with the standard
polyhedral norm.

Consider the affine version M of L, with the diagonal isometric action of R. Then in
the quotient metric spaceM = M/R, a neighbourhood of 0 is isometric to a neighbourhood
of 0 in Y .

We know the following. It is stated in [Hae21b] for Euclidean buildings or Deligne
complexes of Artin groups, but it relies in fact only on Theorem 5.8 stating that the
orthoscheme complex of a bounded graded lattice is injective.

Theorem 6.1. [Hae21b, Theorem 4.6] The geometric realization Y of L\{1}, with the
standard polyhedral norm, admits a convex bicombing.
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We will improve that result to say that this convex bicombing is in fact unique.

We start by proving that combing lines are contained in finitely many chambers, before
proving a similar uniform statement.

Lemma 6.2. Let L denote a bounded graded lattice of rank n, let X denote the orthoscheme
complex of L, and let σ denote the unique convex bicombing on X. For any x, y ∈ L, σ(x, y)
is contained in finitely many chambers of X.

Proof. Fix x, y ∈ X. For each z ∈ σ(x, y), there exists ε > 0 such that the ball B(z, ε)
is a simplicial cone. Therefore we know that σ(x, y) ∩B(z, ε) is contained in a union of 2
chambers of X. The statement follows from compactness of σ(x, y).

We will now prove that there is a uniform bound on the possible number of chambers
for a combing line.

Proposition 6.3. Let L denote a bounded graded lattice of rank n, let X denote the
orthoscheme complex of L, and let σ denote the unique convex geodesic bicombing on X.
For any x, y ∈ X, σ(x, y) is contained in a union of at most 2n chambers.

Proof. We will prove the following stronger statement. Consider any simplex C of X
containing {0, 1}, and let k > 0 denote the codimension of C in X. Then for any x, y ∈
St(C), σ(x, y) is contained in a union of at most 2k chambers.

We will prove this statement for all n > 0, by induction on k. For k = 0, we have
St(C) = C, and x, y are contained in 20 = 1 chamber, C.

Let us now fix k > 1, and assume that the statement is true for all bounded graded
lattices, and for all simplices of codimension at most k − 1.

Let L0 denote a bounded graded lattice, and let c0 denote the chain corresponding to a
simplex C of codimension k. For each maximal chain c of L0 containing c0, let Bc denote
a copy of the Boolean lattice P({1, . . . , n}), and consider the following poset L1 = θ(L0):

L1 = L0 ∪
⋃

c maximal chain in L0 containing c0

Bc/ ∼,

where, for each maximal chain c containing c0, the chain c ⊂ L0 is identified with the chain
(∅, {1}, {1, 2}, . . . , {1, . . . , n}).

Endow L1 with the order relation generated by L0 and each Bc, for c a maximal chain
containing c0. Then L0 is a sublattice of L1, such that any chain in L0 is contained in a
Boolean sublattice of L1.

Let us consider the lattice L =
⋃
j∈N θ

j(L0). Since the orthoscheme complex X0 of L0

is an isometric subcomplex of L, it is sufficient to prove that, for any x, y ∈ St(C), we have
that σ(x, y) is contained in a union of at most 2k chambers of X.

Let M denote the affine version of L, and consider X realized isometrically as a σ-
convex subset of Y according to Theorem 5.9.

Fix any x, y ∈ St(C) ⊂ X, we will extend the σ-line σ(x, y) to a biinfinite σ-line in
M . Indeed if a σ-line hits the boundary of a sector in θj(L), then one can extend it in a
sector in θj+1(L). The finiteness statement of Lemma 6.2 ensures that this process can be
repeated until we obtain a biinfinite σ-line ` in M through x and y.

Let c, c′ denote maximal chains in L0 such that x, y belong to the sectors corresponding
to c, c′ respectively. Let A,A′ ⊂ X denote the cells corresponding to the chains c\{0, 1}
and c′\{0, 1} respectively. Up to the diagonal action of R, we may assume that ` intersects
A and A′. Let C0 denote the simplex corresponding to the chain c0\{0, 1}: by assumption,
we have C0 ⊂ A ∩A′.
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So we can assume that x, y belong to the cells A,A′ respectively. Assume that σ(x, y)∩
[0, 1] = ∅, otherwise two chambers are sufficient to cover σ(x, y).

There exists a sequence A0 = A,A1, . . . , Ap = A′ of faces in L such that σ(x, y) is
contained in the union, according to Lemma 6.2. Moreover by Lemma 5.11, we know that,
for each 0 6 i 6 p, we have C0 ⊂ Ai.

We claim that, if Ai is such that A ∩ Ai = C0, we have d(x,A) > 1
2 . Indeed let us

assume that A,B are chambers of X, let C = A∩B, and consider a point x in the face A′

of A which is the complement of C, and let z ∈ B. The complex A ∪ B has a 1-Lipschitz
map to the orthoscheme complex associated to the rank 2 lattice 0 < C < A,B < 1, where
x maps to the vertex A and z maps to a point in 2-cell [0, B, 1]. Since the distance between
A and the 2-cell [0, C, 1] equals 1

2 , we deduce that d(x, z) > 1
2 .

Let 0 6 i 6 p denote the maximal number such that A ∩ Ai 6= ∅, and let 0 6 j 6 p
denote the minimal number such that A′ ∩Aj 6= ∅. If j > i+ 1, then d(x, y) > d(x,Ai) +
d(Aj , y) > 1, which is a contradiction. Hence j 6 i+ 1.

Note that, as A∩Ai 6= ∅, since the star of A∩Ai is σ-convex according to Lemma 5.11,
we deduce that for all 0 6 i′ 6 i, we have A ∩ Ai′ 6= ∅. Therefore A ∩ Ai 6= ∅ and
A′ ∩Ai+1 6= ∅: let z ∈ σ(x, y) ∩Ai ∩Ai+1.

Since d(x,Ai) < d(x, z) 6 1
2 , we know that C0 ( A∩Ai. As a consequence, A∩Ai has

codimension at most k − 1 in X, so by induction we deduce that σ(x, z) is contained in a
union of at most 2k−1 chambers. Similarly, we know that σ(y, z) is contained in a union
of at most 2k−1 chambers. We conclude that σ(x, y) is contained in a union of at most
2× 2k−1 = 2k chambers of X.

We now prove a local inductive criterion ensuring uniqueness of a convex bicombing.

Proposition 6.4. Let X denote a finite-dimensional piecewise normed simplicial complex,
which is the star of a face F0, with a convex bicombing σ. Assume that:

• There exists C ∈ N such that, for each x, y ∈ X, the combing line σ(x, y) is contained
in a union of at most C cells.

• For any two faces F, F ′ of X such that F ∪ F ′ is σ-convex, we ask that the interior
of F ∪ F ′, with the induced length metric, has a unique convex bicombing.

• For any face F of X such that F0 ( F , the star of F is σ-convex, and σ is the only
convex bicombing in the star of F .

Then σ is the only convex bicombing on X.

Proof. By contradiction, let us assume the existence of another convex geodesic bicombing
σ′ on X. Let us consider a pair of points x, y ∈ X such that σ(x, y) 6= σ′(x, y). By
continuity of the bicombings, up to moving y, we may assume that the minimal sequence
of closed cells C1, . . . , Cn in X such that σ(x, y) ⊂ C1∪· · ·∪Cn is also the minimal sequence
for σ′(x, y). Moreover, we may assume that, for each x′ close to x and each y′ close to y,
we have σ(x′, y′) and σ′(x′, y′) both contained in C1 ∪ · · · ∪ Cn.

If σ(x, y)∩F0 6= ∅, then n 6 2. So x and y are both contained in C1 or in C1 ∪C2. By
assumption, the interior of C1 or C1 ∪C2 is σ-convex and has a unique convex bicombing,
so σ(x, y) = σ′(x, y), which is a contradiction.

Assume now that σ(x, y) ∩ F0 = ∅. Up to moving y towards x along σ(x, y), we may
further assume that, for each t ∈ (0, 1), there exists 1 6 i 6 n− 1 such that σ(x, y, t) and
σ′(x, y, t) are contained in the interior of Ci ∪ Ci+1. Fix t ∈ (0, 1), and let 1 6 i 6 n − 1
such that σ(x, y, t) and σ′(x, y, t) are contained in the interior of Ci ∪Ci+1. Let s < t < s′
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such that, for any t′ ∈ [s, s′], we have that σ(x, y, t′) and σ′(x, y, t′) are contained in
Ci ∪ Ci+1. Note that Ci ∪ Ci+1 is contained in the star of Di = Ci ∩ Ci+1 in X. By
assumption, σ and σ′ coincide in the star of Di, with F0 ( Di. In particular, the function
t′ 7→ d(σ(x, y, t′), σ′(x, y, t′)) is convex at t.

We deduce that the function t 7→ d(σ(x, y, t), σ′(x, y, t)) is convex on (0, 1), hence it is
constant equal to 0. This contradicts that σ(x, y) 6= σ(x′, y′).

Before stating the next result, we need to remind the definition of horoboundary and
Busemann points. The idea of representing points of a metric space as distance functions
is due to Gromov, and has then been quite studied from various perspectives (see [BJ07],
[GJT98], [Bri06], [JS17], [HSWW17], [Wal07], [Wal08], [CKS20]).

Recall that if X is a metric space, its horoboundary ∂X is defined as the boundary of
the image of the embedding

X 7→ RX/R

x 7→ d(x, ·) + R,

where R acts on RX by postcomposition by the standard addition. Note that, if ξ ∈ ∂X,
then for any x, y ∈ X, the quantity ξ(x)− ξ(y) is well-defined.

A horofunction ξ ∈ ∂X is called a Busemann point ([Wal07]) if there exists a geodesic
ray c : [0,∞)→ X such that

∀x, y ∈ X, lim
t→∞

d(x, c(t))− d(y, c(t)) = ξ(x)− ξ(y).

When we restrict to a finite-dimensional real vector space with a polyhedral norm, we
have the following.

Theorem 6.5. [Bri06, Wal07, JS17] Let X denote a finite-dimensional real vector space,
with a polyhedral norm. Then its horofunction compactification X ∪∂X is naturally home-
omorphic to the dual unit ball.

We immediately deduce the following.

Proposition 6.6. Let X denote a finite-dimensional real vector space, with a polyhedral
norm, and fix x0 ∈ X. The affine half-lines issued from x0 ∈ X correspond to finitely
many Busemann points in ∂X.

Proof. According to Theorem 6.5, there are only finitely many horofunctions in ∂X, up
to translation. And each of these translation classes has a unique representative given by
an affine half-line issued from a fixed x0 ∈ X.

We now show that a particular space with finitely many Busemann points has finite
combinatorial dimension.

Theorem 6.7. Assume that X is a proper metric space with a geodesically complete conical
geodesic bicombing σ. Assume that there exists x0 ∈ X such that there are at most N ∈ N
Busemann points corresponding to σ-rays from x0. Then X has combinatorial dimension
at most N .

Proof. Let B denote the finite set of Busemann points corresponding to σ-rays from x0.
Fix x, y ∈ X distinct, we will prove that there exists β ∈ B such that d(x, y) = D =
|β(x)− β(y)|. We will then explain why this bounds the combinatorial dimension of X by
|B|.

Consider an infinite σ-geodesic ray c : [0,+∞) → X starting from c(0) = x, with
c(D) = y. Since X is proper, there exists a sequence (tn)n∈N going to +∞ such that
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σ(x0, c(tn)) converges to an infinite σ-geodesic ray c0 : [0,+∞)→ X starting from c0(0) =
x0 to some β ∈ B.

We know that the two rays c, c0 are at Hausdorff distance at most C > 0. For each
n ∈ N large enough, let zn ∈ c0 such that d(x, zn) = tn: we have d(zn, x)− d(zn, y) −→

n→+∞
β(x)−β(y). For each n ∈ N, let yn = σ(x, zn, D). Since d(c(tn), zn) 6 2C, we deduce that
d(y, yn) −→

n→+∞
0 by conicality. As a consequence, we know that

lim
n→+∞

d(zn, x)− d(zn, y) = lim
n→+∞

d(zn, x)− d(zn, yn) = D = β(x)− β(y).

We now explain how this helps to bound the combinatorial dimension of X. Fix
representatives B0 of B. Consider the map

ϕ : X → RB0

x 7→ (β ∈ B0 7→ β(x)).

If we endow RB0 with the standard `∞ distance, we just proved that the map ϕ is an
isometric embedding. Indeed every horofunction is 1-Lipschitz. Since RB0 is an injective
metric space with dimension |B|, we deduce that X has combinatorial dimension at most
|B|.

We are now able to gather all ingredients and prove that diagonal quotients of or-
thoscheme complexes have a unique convex bicombing.

Theorem 6.8. Let L denote a bounded graded lattice of rank n, let X denote the or-
thoscheme complex of L, and let Y denote the diagonal quotient of X endowed with the
standard polyhedral metric. Then Y is CUB.

Proof. We will prove it by induction on the cardinalitym of the intersection of all maximal
chains in L, where the rank n is fixed.

If m = n + 1, then L consists in a unique maximal chain, hence Y a simplex. In
particular, Y admits a unique convex bicombing according to [Bas20, Corollary 1.3].

Assume now thatm < n+1. According to Theorem 6.1, there exists a convex bicombing
σ on Y . According to Proposition 6.3, for any x, y ∈ Y , the combing line σ(x, y) is
contained in a union of at most 2n chambers.

Let F0 denote the face of Y of dimension m − 2 consisting of the intersections of all
chambers of Y .

Consider two faces F, F ′ of Y containing F0, such that F ∪ F ′ is σ-convex. We will
apply Theorem 6.7 to the interior of the union Z = F ∪F ′, with the induced length metric.
It is sufficient to consider the tangent space Z0 to Z at some point interior point x0 in
F ∩ F ′. The bicombing σ on Z0 is complete, and since F and F ′ have polyhedral norms,
according to Proposition 6.6 there are finitely many Busemann points corresponding to
σ-rays issued from x0. According to Theorem 6.7, we deduce that the interior of Z has a
unique convex bicombing.

Let F denote a face of Y strictly containing F0. According to Lemma 5.11, we know
that the star of F is σ-convex. Moreover the star of F is isometric to the diagonal quotient
of the orthoscheme complex of a sublattice L′ of L, such that the intersection of all maximal
chains in L has cardinality at least dimF + 2 > dimF0 + 2 = m. By induction, we know
that the star of F has a unique convex geodesic bicombing.

According to Proposition 6.4, we deduce that Y has a unique convex geodesic bicomb-
ing.
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7 Completion of posets

We now show that we can relax the assumption that the (semi)lattice is graded, and replace
it with the assumption that lengths of chains are uniformly bounded.

Theorem 7.1. Let L denote a poset with minimum 0, which is a meet-semilattice, with a
bound on the length of chains. Assume that any a, b, c ∈ L pairwise upperly bounded have
a common upper bound. Then the orthoscheme complex of L, with the standard `∞ metric,
is injective and CUB.

Proof. Let n ∈ N such that each chain of L has length at most n. For each x ∈ L, let
us define r(x) ∈ {0, 1, . . . , n} to be the length of a maximal chain from 0 to x. For each
pair of elements x < y in L such that x is covered by y and r(y) − r(x) = k > 2, add a
chain x0 = x, x1, . . . , xk = y with r(xi) = r(x) + i for all 1 6 i 6 k − 1. Let L1 denote the
corresponding poset obtained from L.

Let L2 denote a copy of L′, and let L′ = L1 ∪L L2 denote the union of L1 and L2,
where the copies of the subposet L are identified. Note that there is a natural involution
θ on L′ exchanging L1 and L2 whose fixed point set is L.

The poset L′ has a minimum 0, it is still a meet-semilattice, and is still such that any
a, b, c ∈ L′ upperly bounded have a common upper bound in L′. Now L′ is also graded
of rank at most n. According to Theorem 5.12, the geometric realization of L′, with the
orthoscheme `∞ metric, is injective and CUB.

Let σ denote the unique convex bicombing on |L′|. By uniqueness, σ is equivariant
with respect to the involution θ. In particular, the subspace |L|, which is the fixed-point
set of θ, is σ-convex. We deduce that |L| admits a convex bicombing. Since |L| is injective
and finite-dimensional, according to Theorem 5.5 we deduce that it is CUB.

Theorem 7.2. Let L denote a bounded lattice, with a bound on the length of chains. Let X
denote the orthoscheme complex of L, and let Y denote the diagonal quotient of X endowed
with the standard metric. Then Y is CUB.

Proof. The proof is quite similar to the proof of Theorem 7.1: let us write L′ = L1 ∪L
L2, where L1, L2 are isomorphic bounded graded lattices containing L, and there is an
involution θ on L′ exchanging L1 and L2 whose fixed point set is L.

The poset L′ is bounded and graded, so according to Theorem 6.8, the diagonal quotient
Y ′ of |L′|, endowed with the standard polyhedral metric, is CUB. Note that the involution
θ induces an involution θ of Y ′ = Y1 ∪Y Y2 whose fixed-point set is Y .

Let σ′ denote the unique convex bicombing on Y ′. By uniqueness, σ′ is equivariant
with respect to the involution θ. In particular, the subspace Y , which is the fixed-point
set of θ, is σ′-convex. In particular, Y admits a convex bicombing σ. As in the proof
of Theorem 6.8, we can apply inductively Proposition 6.4 and deduce that σ is the only
convex bicombing on Y . As a consequence, Y is CUB.

8 Proof of the link conditions

We are now able to give a proof of the link conditions.

We start with the proof of Theorem A, for type A simplices.

Proof. Let X denote a locally finite-dimensional flag simplicial complex with cyclically
ordered simplices. Assume that, for every vertex x ∈ X, the set (St(x),6x) is a semilattice.

Fix a vertex x ∈ X, and consider the poset L = (St(x),6x) ∪ {1}, where 1 is the
maximal element and x is the minimal element. By assumption L is a lattice. Furthermore,
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the length of chains of L is bounded above by the maximal dimension of simplices of X
containing x. So we can apply Theorem 7.2 and deduce that the diagonal quotient Y of
|L|, with the standard polyhedral metric, is CUB. Since X and Y are locally isometric at
x, we deduce that X is locally CUB.

We know turn to the proof of the converse statement: if there exists a vertex x ∈ X
such that (St(x),6x) is not a semilattice, then X is not locally CUB. Let us call rank of an
element y ∈ St(x) the length of a maximal chain from x to y. By assumption, there exists
a bowtie a, a′ <x b, b′ in St(x). Assume furthermore that the ranks of such b and b′ are
minimal. Among such bowties, assume furthermore that the meet m = a∧a′ has maximal
rank. And among such bowties, assume finally that the ranks of a and a′ are maximal.

By contradiction, assume that X has a conical bicombing σ. Note that the star of b
coincides with the 1-ball centered at b, so the star of b is σ-convex. Similarly, the stars of
b′ and m are σ-convex.

Since a, a′ < b, b′ is a bowtie, a and a′ are not comparable, so a, a′ do not lie in a
common chamber. Let us consider the two minimal simplices C,C ′ of St(x) containing
the beginning of σ(a, a′) starting from a, a′ respectively. We know that C and C ′ are each
adjacent to b, b′,m. Let c ∈ C ∩ C ′ denote the maximal element of C ∩ C ′, and let a′′

denote the maximal element of C ′.
If c > m, then a, a′′ < b, b′ is a bowtie in St(x) such that the meet of a, a′′ has greater

rank than m: this is a contradiction. So c = m. As a consequence, C = {a,m}, and
m ∈ σ(a, a′). We deduce that σ(a, a′) = [a,m] ∪ [m, a′]. Now let p ∈ [a, b] denote the
midpoint of the edge [a, b]. We have d(p, a) = 1

2 , d(p,m) = 1 and d(p, a′) 6 1, which
contradicts the conicality property.

We now turn to the proof of Theorem B, for type C simplices.

Proof. Let X denote a locally finite-dimensional flag simplicial complex with ordered
simplices, and assume that for every vertex x ∈ X, the poset (St(x),6x) has no bowtie
and, for any a, b, c ∈ St(x) which are pairwise upperly bounded (resp. lowerly bounded),
they have a commun upper bound (resp. lower bound).

Endow X with the standard `∞ metric, and fix a vertex x ∈ X. According to Proposi-
tion 5.7, a neighbourhood of x in X is isometric to a neighbourhood of x in the `∞ product
| St+(x)| × |St−(x)|, where St+(x) = {y ∈ St(x) |x 6x y} and St−(x) = {y ∈ St(x) |x >x

y}.

The poset (St+(x),6x) is a meet-semilattice with minimum x, whose length of chains is
bounded above by the dimension of simplices of X containing x. Moreover, any three pair-
wise upperly bounded elements have a common upper bound. According to Theorem 7.1,
the geometric realization | St+(x)| is injective and CUB.

Similarly the geometric realization |St−(x)| is injective and CUB.

We deduce that the `∞ product |St+(x)| × |St−(x)| is injective and CUB, so in par-
ticular a neighbourhood of x in X is injective and CUB. Finally X is locally injective and
locally CUB.

We know turn to the proof of the converse statement: assume first that there exists a
vertex x ∈ X such that (St+(x),6x) has a bowtie, we will prove that X has no bicombing.
We argue as in the proof of Theorem B, with only slight modifications. Let us call rank of
an element y ∈ St+(x) the length of a maximal chain from x to y.

By assumption, there exists a bowtie a, a′ <x b, b′ in St(x). Assume furthermore that
the ranks of such b and b′ are minimal. Among such bowties, assume furthermore that
the meet m = a ∧ a′ has maximal rank. And among such bowties, assume finally that the
ranks of a and a′ are maximal.
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By contradiction, assume thatX has a convex bicombing σ. Note that the map y 7→ y∧b
induces a 1-Lipschitz retraction from St(x) to the interval I(x, b). Now the map y 7→ y∨m
induces a 1-Lipschitz retraction from the interval I(x, b) to the interval I(m, b). We can
define similarly a projection from I(m, b) to I(m, b) ∩ I(m, b′). As a consequence, the
projection of the geodesic σ(a, a′) to I(m, b)∩ I(m, b′) is a geodesic denoted σ′(a, a′), with
the property that the distance to every point in Y is convex.

Since a, a′ < b, b′ is a bowtie, a and a′ are not comparable, so a, a′ do not lie in a
common chamber. Let us consider the two minimal simplices C,C ′ of St(x) containing the
beginning of σ′(a, a′) starting from a, a′ respectively. We know that C and C ′ are each
adjacent to b, b′,m. Let c ∈ C ∩ C ′ denote the maximal element of C ∩ C ′, and let a′′

denote the maximal element of C ′.
If c > m, then a, a′′ < b, b′ is a bowtie in St(x) such that the meet of a, a′′ has greater

rank than m: this is a contradiction. So c = m. As a consequence, C = {a,m}, and
m ∈ σ′(a, a′). We deduce that σ′(a, a′) = [a,m] ∪ [m, a′]. Now let p ∈ [a, b] ⊂ Y denote
the midpoint of the edge [a, b]. We have d(p, a) = 1

2 , d(p,m) = 1 and d(p, a′) 6 1, which
contradicts the convexity of the distance to p.

Assume now that there exists a vertex x ∈ X such that (St(x),6x) has no bowtie,
but there exist a, b, c ∈ St+(x) which are pairwise upperly bounded, but have no common
upper bound. We will prove that X has no convex bicombing.

By contradiction, assume that X has a convex bicombing σ. Note that σ(a, b) =
[a,m] ∪ [m, b], where m denotes the midpoint of the edge [a ∧ b, a ∨ b]. We also have
σ(a, c) = [a,m′] ∪ [m′, c], where m′ denotes the midpoint of the edge [a ∧ c, a ∨ c]. Since
d(b, c) = 1 and σ is convex, we deduce that d(m,m′) 6 1

2 . Since m,m′ are midpoints
of edges, this implies that m,m′ are in a chamber of St(x). The maximal element d of
such a chamber is such that a ∨ b, a ∨ c 6 d, so d is an upper bound to a, b, c: this is a
contradiction.

Finally, we turn to the proof of Theorem C for Garside flag complexes.

Proof. Let (X,ϕ) denote a Garside flag complex, and endow X with the standard `∞

metric. Note that k-simplices of X come in columns, whose vertices come in chains of the
form · · · < ϕ−1(xk) < x1 < x2 < . . . xk < ϕ(x1) < ϕ(x2) < . . . .

In this sequence, any k+ 1 consecutive vertices form the vertices of a k-simplex of this
column. In particular, one sees that there is an isometric action (ft)t∈R of R on X, such
that f1 = ϕ.

As a consequence, given any point p of X, up to translating p using the action of R to
a generic point, there exists a vertex x ∈ X such that p is contained in the interior of the
geometric realization of the interval [x, ϕ(x)]. Since this interval is a homogeneous lattice,
according to Theorem 7.1, we deduce that its geometric realization is injective and CUB.
So X is locally injective and locally CUB.

Now consider the quotient Y = X/ϕ, endowed with the standard polyhedral metric. Fix
any vertex y ∈ Y , corresponding to the image of a vertex x ∈ X. Then a neighbourhood of
y in Y is isometric to a neighbourhood of y in the diagonal quotient of the lattice [x, ϕ(x)].
According to Theorem 7.2, we deduce that a neighbourhood of y in Y is CUB. So Y is
locally CUB.

9 Applications

We now show that the link conditions can be applied to numerous situations.
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9.1 Buildings

We refer the reader to [AB08] and [Ron89] for references on buildings.

Consider a Euclidean building X of type Ãn: it is an n-dimensional simplicial complex,
such that each vertex has a well-defined type in Z/(n+ 1)Z, and such that the vertices of
each simplex have different types. Hence X has cyclically ordered simplices. Moreover, for
each vertex x ∈ X, the link L of x in X is a spherical building of type An.

For instance, in caseX is the Euclidean building of SL(n+1,Qp), then L is the spherical
building of SL(n,Fp). In other words, L is the poset of non-trivial vector subspaces of Fnp ,
which is a lattice (up to adding {{0},Fnp}).

More generally, L is the poset of non-trivial subspaces of a projective geometry, and it
is always a lattice (up to adding {0, 1}). According to Theorem A we deduce the following.

Theorem 9.1. Any Euclidean building X of type Ãn, with the standard polyhedral metric,
is CUB.

We can also consider a Euclidean building X of type extended type Ãn: it is an
(n+1)-dimensional simplicial complex, such that simplices have a well-defined total order.
Similarly, we have the following.

Theorem 9.2. Any extended Euclidean building X of type Ãn, with the standard `∞

metric, is CUB and injective.

Proof. Given an extended Euclidean building X of type Ãn, there is a well-defined canon-
ical automorphism ϕ of X, see [Hir20]. For instance, if X is the Bruhat-Tits building of
GL(n,Qp), then ϕ is the homothety of p. For each vertex x ∈ X, the interval [x, ϕ(x)] is
the lattice of subspaces of a projective geometry of dimension n.

Then (X,ϕ) is a Garside flag complex (see Definition 4.5): according to Theorem C,
we deduce that X, with the standard `∞ metric, is CUB and injective.

Consider a Euclidean building X of type B̃n, C̃n or D̃n: note that we may always
consider X as a (possibly non-thick) Euclidean building of type C̃n. It is an n-dimensional
simplicial complex, such that each vertex has a well-defined type in {0, 1, . . . , n}, and
such that the vertices of each simplex have different types. So X has ordered simplices.
Moreover, for each vertex x ∈ X of type k, the link L of x in X is the join of two spherical
buildings of types Bk and Bn−k.

Then L is the poset of non-trivial subspaces of a polar geometry: so L∪{0} is a meet-
semilattice, and if three elements have a pairwise upper bound, they have a global upper
bound. According to Theorem B, we deduce the following.

Theorem 9.3. Any Euclidean building X of type B̃n, C̃n or D̃n, with the standard `∞

metric, is CUB.

9.2 Simplices of groups

We refer the reader to [BH99] for the theory of complexes of groups. The link condition
from Theorem A can be used to prove that certain simplices of groups are developable,
and that their development cover is CUB, as noticed in Theorem 2.4.

Consider a simple (n−1)-dimensional simplex of groups S, with cyclically ordered ver-
tices (si)i∈Z/nZ. For each non-empty subset I ⊂ Z/nZ, let GI denote the group associated
to the face I. When I ⊂ J , we will consider GJ as a subgroup of GI .

Theorem 9.4. Assume that the simplex of groups satisfies the following.

• Given any i ∈ Z/nZ and I, J ⊂ Z/nZ containing i, we have GI ∩GJ = GI∪J .
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• Given any i < j < k < ` in Z/nZ, we have Gik ⊂ GijGi`.

• Given any i < j < k in Z/nZ, if a, a′ ∈ Gij and b, b′ ∈ Gik are such that aba′b′ = e,
we have a, a′ ∈ Gik or b, b′ ∈ Gij or there exists i < j < ` < k such that a, a′, b, b′ ∈
Gi`(Gij ∩Gik).

Then the simplex of groups is developable. Moreover its development, endowed with the
standard polyhedral norm, is CUB.

Proof. Since S is a simple complex of groups, we know that S is locally developable at each
vertex. Fix a vertex Gi, and we will consider the local development Li at Gi: according
to the first condition, it is the flag simplicial complex with vertex set {Gi} ∪

⋃
j 6=iGi\Gij ,

where aGij is adjacent to bGik if and only if there exists c ∈ Gi such that cGij = aGij and
cGik = bGik. Note that edges of Li have a well-defined orientation, where aGij < bGik if
i < j < k (and Gi is the minimal element of Li).

We will first check that Li is the geometric realization of the corresponding poset.
Assume that in Li we have two consecutive ordered edges between aGij , bGik and cGi`,
where a, b, c ∈ Gi and i < j < k < `. Without loss of generality, we may assume up to
translation that a = e. Since Gi, Gij , bGik form a simplex, we have b ∈ Gij , so we may
assume up to translation that b = e. Since Gi, Gik, cGi` form a simplex, we have c ∈ Gik.

By assumption, we have c = xy, where x ∈ Gij and y ∈ Gi`. Hence (Gi, Gij , cGi`) =
x · (Gi, Gij , Gi`), so it is a simplex. Hence there is an ordered edge between aGij and cGi`
in the star of Gi. So Li is the geometric realization of the corresponding poset.

We will now check that the vertex set of Li is a semilattice. According to Proposi-
tion 4.2, we only need to check that the vertex set of Li has no balanced bowtie. Assume
that there are i < j < k and vertices such that gGij , gabGij < gaGik, gaba

′Gik, where
g ∈ Gi, a, a′ ∈ Gij and b ∈ Gik. Up to translation, there exists b′ ∈ Gik such that
aba′b′ = e and the vertices are Gij = aba′b′Gij , abGij < aGik, aba

′Gik.

By assumption, there are three possibilities. If a, a′ ∈ Gik, then aGik = aba′Gik, so it
is not a bowtie. If b, b′ ∈ Gij , then Gij = abGij , so it is not a bowtie. Assume then that
there exists i < j < ` < k such that a, a′, b, b′ ∈ Gi`(Gij ∩Gik). So the element Gi` is such
that Gij = aba′b′Gij , abGij 6 Gi` 6 aGik, aba

′Gik. This shows that there is no balanced
bowtie in Li.

According to Proposition 4.2, we deduce that the vertex set of Li is a semilattice.
So according to Theorem A, we see that the local development at each vertex is CUB.
According to Theorem 2.4, we deduce that the simplex of groups S is developable. More-
over its development, endowed with the standard polyhedral norm, is CUB according to
Theorem 1.2.

Note that in the case of a triangle of groups, the criterion is the same as the one to
ensure nonpositive curvature (with the equilateral triangle Euclidean norm), namely that
the links of local developments have girth at least 6.

However, already in the case of a 3-simplex of groups, this is to our knowledge the first
general combinatorial criterion ensuring developability. Here are very simple examples of
such 3-simplices of groups where the assumptions hold.

Example. For each i ∈ Z/4Z, let Gi be the symmetric group S4. For each j ∈ {1, 2, 3},
define the image of Gi,i+j in Gi to be the stabilizer of {1, . . . , j}. For each I ⊂ {1, . . . , 4}
containing i, define the image of GI in Gi to be the intersection of all Gi,j , for j ∈ I. Then
the conditions of Theorem 9.4 are easily seen to hold, and in fact the development of S is
the standard Ã3 tiling of R3.
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Example. One can describe the Bruhat-Tits building of SL(n,K((X))), for n > 2 and for
any field K, as follows. Consider the (n − 1)-simplex of groups T with vertices indexed
by Z/nZ. For each i ∈ Z/nZ, let ti ∈ GL(n,K(X)) denote the diagonal matrix with the
first i entries equal to X, and the last n − i entries equal to 1 (note that since we will
make ti act by conjugation, this will be well-defined for i ∈ Z/nZ). For each i ∈ Z/nZ,
let Gi = ti SL(n,K[X])t−1i ⊂ SL(n,K(X)). For each non-empty I ⊂ Z/nZ, let GI =
∩i∈IGi. Note that, for each i ∈ Z/nZ\{0}, one can also describe the image of G0,i in
G0 as the stabilizer of the canonical i-plane Ke1 + · · · + Kei under the quotient action
of G0 = SL(n,K[X]) → SL(n,K) on Kn. Then the conditions of Theorem 9.4 are easily
seen to hold, and in fact the development of T is precisely the Bruhat-Tits building of
SL(n,K((X))).

Example. Let A denote the Artin group of affine type Ãn−1, with standard generators
(si)i∈Z/nZ. For each non-empty I ⊂ Z/nZ, let GI denote the standard parabolic subgroup
generated by {si | i 6∈ I}. Then the corresponding (n− 1)-simplex of groups T satisfies the
assumptions of Theorem 9.4, and its development is the Artin complex of A studied in
Theorem 9.9.

9.3 Weak Garside groups

We refer the reader to [Deh15], [Bes03], [Bes06b] and [HH22] for references concerning
Garside and weak Garside groups.

The classical definition of a Garside group starts with the definition of Garside monoid,
as follows.

Definition 9.5. A Garside monoid (sometimes called quasi-Garside) is a pair (M,∆),
where M is a monoid and

• M is left and right cancellative,

• there exists r : M\{1} → N\{0} such that r(fg) > r(f) + r(g),

• any two elements of M have left and right least common multiples and greatest
common divisors,

• ∆ is a Garside element ofM , i.e. the family S of left and right divisors of ∆ coincide
and generate M .

If one further require that the set S of simple elements is finite, (M,∆) is called of finite
type.

Now we can define a Garside group.

Definition 9.6. A group G is called a Garside group if there exists a Garside monoid
(M,∆) such that G is the group of left fractions of M .

Examples of Garside groups of finite type include finite rank free abelian groups, braid
groups, and more generally spherical type Artin groups. Tree products of cyclic groups also
form a nice family of examples, see [Pic22]. The standard Garside structure for a spherical
type Artin group is associated to the standard Artin monoid. Note that, according to
Bessis ([Bes03]), spherical type Artin groups actually admit another Garside structure,
called the dual Garside structure. See notably [Pao21],[PS21], [Hae22b] and [DPS22] for
the importance of the dual approach for the study of Artin groups.

Examples of Garside groups (with an infinite set of simple elements) include finite rank
free groups (see [Bes06a]) and Euclidean Artin groups of type Ãn, C̃n and G̃2 (see [BM15],
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[MS17] and [McC15]). Note that the dual structure of Euclidean type Artin groups is not
Garside; nevertheless, McCammond and Sulway have defined a way to "complete" these
groups to obtain crystallographic braid groups ([MS17]), which are fundamental in the
proof of the K(π, 1) conjecture for Euclidean type Artin groups by Paolini and Salvetti
([PS21]).

Another closely related notion is that of weak Garside group. Rather than giving the
definition, we prefer stating the following geometric characterization of Garside and weak
Garside groups.

Theorem 9.7. [HH22, Theorem 4.7] A group G is a Garside group (resp. weak Garside
group) if and only if there exists a Garside flag complex (X,ϕ) such that G can be realized
as a group of automorphisms of X commuting with ϕ, acting freely and transitively (resp.
freely) on vertices of X.

Moreover, the group G is a (weak) Garside group of finite type if and only if X can be
chosen such that the action of G is cocompact.

For instance, finite index subgroups of Garside groups are weak Garside groups. Other
examples include the fundamental groups of complements of real simplicial arrangements
of hyperplanes ([Del72]), all braid groups of complex reflection groups ([BC06],[Bes15],
[CP11]) except possibly the exceptional complex braid group of type G31, and some ex-
tensions of Artin-Tits groups of type Bn ([CP05]).

As a consequence of Theorem C, we have the following.

Corollary 9.8. Let (G,∆) denote a weak Garside group of finite type, and let k > 1 such
that ∆k ∈ Z(G). Then G and G/〈∆k〉 both act properly and cocompactly by isometries on
a CUB space.

Proof. If we denote by (X,ϕ) the Garside flag complex associated to G, we know that G
acts geometrically on X, and G/〈∆k〉 acts geometrically on X/ϕ.

Let A be a spherical type Artin group and ∆ is a Garside element of A. If we de-
note by (X,ϕ) the associated Garside flag complex, then X/ϕ has also been described by
Bestvina ([Bes99]) as the normal form complex of A, which exhibits some form of com-
binatorial nonpositive curvature. We strengthen this claim by remarking that, when we
endow Bestvina’s complex with the standard polyhedral metric, it is CUB.

9.4 Artin complexes for some Euclidean type Artin groups

We refer the reader to [Par14], [Par14], [GP12], [CD95a], [CD95b], [Cha], [McC17] for
references on Artin groups.

Let A denote any Artin group. The Artin complex is the flag simplicial complex X
whose vertex set consists in left cosets of maximal proper standard parabolic subgroups
of A, with an edge between gP and g′P ′ if and only if gP ∩ g′P ′ 6= ∅, see [CMV20] and
[CD95b, Remark (i), p. 606]. Note that, from the presentation of A, the complex X is
simply connected.

We will be interested in the case where A is of Euclidean type Ãn or C̃n.

In type Ãn, vertices of X have a well-defined type in Z/(n + 1)Z, so simplices of X
have a well-defined cyclic order, and the link L of any vertex is isomorphic to the Artin
complex of the Artin group of type An. Bessis ([Bes06a]), and independently Crisp and
McCammond (unpublished), proved that L∪{0, 1} is isomorphic to the lattice of cut-curves
(see [Hae21b] for a proof, following Crisp and McCammond). According to Theorem A,
we deduce the following.
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Theorem 9.9. The Artin complex of type Ãn, with the standard polyhedral metric, is CUB.

In type C̃n, vertices of X have a well-defined type in {0, . . . , n}, so simplices of X have
a well-defined total order. Moreover, the link Lk of any vertex of type k is the join of the
Artin complexes of types Bk and Bn−k. According to [Hae21b, Proposition 6.3], the Artin
complex of type Bk, with 0, is a semilattice such that any a, b, c which are pairwise upperly
bounded have an upper bound. According to Theorem B, we deduce the following.

Theorem 9.10. The Artin complex of type C̃n, with the standard `∞ metric, is CUB.

9.5 Some arc complexes

The question of finding nonpositive curvature metrics on some curve complexes or arc
complexes on surfaces is quite intriguing and difficult, raised notably by Masur and Minsky
([MM99]). For instance, Webb proved that many such complexes do not admit CAT(0)
metrics ([Web20]).

The following is nothing more than a topological description of the Artin complex of
the Artin-Tits group of type Ãn−1 (see [HH22, Proposition 5.8]). Let Σ denote a 2-sphere
with n+2 punctures {N,S, p1, . . . , pn} with two distinguished punctures N,S which could
thought of as the North pole and the South pole of Σ. The punctures p1, . . . , pn may be
thought as cyclically ordered on the equator of the 2-sphere.

Let A(Σ) denote the following simplicial complex. Its vertex set consists of isotopy
classes of arcs in Σ from N to S. Two vertices are adjacent if they can be realized disjointly.
Then A(Σ) is the associated flag simplicial complex, see Figure 8. According to [Wah13,
Lemma 2.5], this arc complex A(Σ) is contractible.

Figure 8: Arcs on the punctured sphere Σ: a is adjacent to b and c

There is a canonical total cyclic order on vertices of simplices of A(Σ), when one fixes
an orientation on Σ: let σ denote a simplex of A(Σ). Then any two distinct a, b ∈ σ are
such that Σ\{a, b} has two connected components, associated to a fixed orientation of Σ.
So given any three a, b, c ∈ σ, we say that a < b < c if a is on the left of b, and c is on the
right of b.

Theorem 9.11. The complex A(Σ), with the standard polyhedral norm, is CUB.

Proof. Fix an arc a ∈ A(Σ), and let us consider the surface D = Σ\a: it is homeomorphic
to a disk with n punctures, and with two marked points N,S on the boundary ∂D. The
link L of a in A(Σ) is isomorphic to the complex of arcs in D from N to S. Let us call
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aW , aE the two connected components of ∂D\{N,S}, where E stands for East and W for
West.

The induced order on L is the following: if b, c are disjoints arcs in D from N to S, then
b 6a c if b is on the west of c. The poset L can be completed with a minimum element aW ,
and a maximum element aE . Now L ∪ {aW , aE} is isomorphic to the poset of cut-curves.
According to [Bes06a] (and [Hae21b] for an account of the unpublished proof due to Crisp
and McCammond), this poset is a lattice. See also [HH22], or Figure 9 to see how the
lattice property works.

Figure 9: The lattice property: the meet b ∧ c and the join b ∨ c of the two arcs b, c in the
interval [aW , aE ].

We can therefore apply Theorem A and deduce that the complex A(Σ), with the
standard polyhedral norm, is CUB.

9.6 A complex of homologous multicurves

Apart from the complex of arcs on a punctured sphere, there is another natural complex
for which for lattice property is straightforward. Note that the complex, as well the tools
used for its study, are very similar to he Kakimizu complex studied in [PS12], see also
Section 9.7.

Fix a closed surface S of genus g > 1 with p > 0 punctures. Fix the homology class
[a] ∈ H1(S,Z) of a simple closed oriented non-separating curve. Let S̃ denote the associated
infinite cyclic cover. If b is an oriented simple closed multicurves on S homologous to a,
the lifts of the complement S\b to S̃ are separated by lifts of b denoted (̃bn)n∈Z. Also note
that each b̃n bounds an unbounded subsurface B(̃bn) of S̃ which is "below" b̃n, i.e. which
contains all lifts b̃m with m < n. If b, b′ are two such oriented simple closed multicurves on
S homologous to a, we say that a lift b̃n of b is below of a lift b̃′m of b′ if B(̃bn) is contained
in B(̃b′m), up to homotopy. We denote b̃n ≺ b̃′m.

Let Ca(S) denote the flag simplicial complex defined as follows:

• Vertices of Ca(S) are homotopy classes of oriented simple closed multicurves on S
homologous to a.

• There is an edge between b, b′ ∈ Ca(S) if there are lifts b̃n, b̃′m of b, b′ respectively,
such that b̃n ≺ b̃′m ≺ b̃n+1.

Here is an example of a closed surface S of genus 3, with a simple closed non-separating
curve a. There are also three represented simple disjoint multicurves b, c, d which are
homologous to a, see Figure 10.
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Figure 10: Four pairwise disjoint multicurves a, b, c, d.

When we consider the cyclic cover S̃ of S associated to [a], we obtain a family of lifts of
each of the multicurves a, b, c, d. In this example, the lifts satisfy ã0 ≺ d̃0 ≺ c̃0 ≺ b̃0 ≺ ã1,
so the four multicurves a, b, c, d form a simplex of Ca(S), see Figure 11.

Figure 11: The lifts of the multicurves a, b, c, d in the cyclic cover.

Hatcher and Margalit defined a very similar complex, and proved that it is contractible
([HM12, Proposition 7]). We will prove that the complex Ca(S) is contractible, following
ideas from [PS12].

Proposition 9.12. The complex Ca(S) is contractible.

Proof. Let us introduce the following distance on vertices of Ca(S). If b, b′ ∈ Ca(S), the
distance D(b, b′) is the minimal number R ∈ N such that there exist lifts b̃n, b̃′m of b, b′

respectively, such that b̃n ≺ b̃′m ≺ b̃n+R.

Note that D is bounded above by the graph distance. In particular, if D(a, b) = 1, then
b is adjacent to a. We will prove that there is a retraction from BD(a,R+ 1) to BD(a,R)
for R ∈ N.
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Fix b ∈ BD(a,R+1). Consider the lifts (ãn)n∈Z, and consider the unique lift b̃ of b such
that ã0 ≺ b̃ ≺ aR+1. Let us consider the subsurface T = B(̃b)∩B(ãR) of S̃ up to homotopy:
to be more precise, we may fix a hyperbolic structure on S, its lift to S̃, and only consider
geodesic representatives of multicurves. The boundary c̃0 = ∂T is a multicurve in S̃, whose
projection c to S a simple closed multicurve homologous to a. Moreover, we know that
c̃0 ≺ b̃ ≺ aR+1 ≺ c̃1, so c is adjacent to b. Moreover, since ã0 ≺ c̃0 ≺ aR, we know that
D(a, c) 6 R.

So we have defined a simplicial retraction from BD(a,R + 1) to BD(a,R) for R ∈ N.
As a consequence, the complex Ca(S) is contractible.

Note that if σ is a simplex of Ca(S), we know that we can find lifts b̃1n1
, . . . , b̃pnp of

σ to S̃ satisfying b̃1n1
≺ · · · ≺ b̃pnp ≺ b̃1n1+1. Furthermore, the corresponding cyclic order

b1 < b2 < · · · < bp < b1 on vertices of σ is well-defined. In the example of Figure 10, the
corresponding cyclic order is a < b < c < d < a. For this complex, we are able to prove
the following.

Theorem 9.13. The complex Ca(S), endowed with the standard polyehdral metric, is CUB.
In particular, it is contractible.

Proof. Fix a multicurve b ∈ Ca(S), with a lift b̃0 in S̃. Let us consider the set E of lifts c̃
of elements c ∈ Ca(S) such that b̃0 ≺ c̃ ≺ b̃1. The set E may be endowed with the partial
order ≺. We want to prove that the star of b, with the induced order, is a semilattice. This
poset is isomorphic to (E\{b̃1},≺). So it is equivalent to prove that (E,≺) is a semilattice.

Consider c̃, c̃′ ∈ E. Let us consider the subsurface T = B(c̃)∩B(c̃′) of S̃ up to homotopy.
Its boundary d̃ = ∂T is the lift of a muticurve d ∈ Ca(S), such that b̃0 ≺ d̃ ≺ c̃, c̃′ ≺ b̃1.
In particular, d̃ ∈ E. Moreover, by construction, d̃ is the maximal such element of E: this
means that d̃ is the meet of c̃ and c̃′. So E is a semilattice.

The meet of two multicurves in the star of a is depicted in Figure 12. For simplicity,
we represented the multicurves in the surface S and not in its cyclic cover.

Figure 12: The meet c of the multicurves b and b′.

According to Theorem A, we deduce that the complex Ca(S), endowed with the stan-
dard polyehdral metric, is locally CUB. Since the complex Ca(S) is simply connected, we
deduce by Theorem 1.2 that it is CUB.

Note that the stabilizer of the homology class of a in the mapping class group of S acts
on Ca(S) by isometries. In particular, the Torelli group of S acts on Ca(S) by isometries,
for each simple closed nonseparating curve a on S.

9.7 The Kakimizu complex

Let L denote a knot in S3, and let E = E(L) denote the exterior of a tubular neighbourhood
of L. A spanning surface is a surface properly embedded in E, which is contained in some
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Seifert surface for L. Let MS(L) denote the flag simplicial complex whose vertices are
isotopy classes of minimal genus spanning surfaces, with an edge between two surfaces if
they have disjoint representatives.

This complex can also be defined for the complement of a link in S3, or more generally
for a compact, connected, orientable irreducible 3-manifold with boundary, see [PS12].

This complex is called the Kakimizu complex, and it has been defined in [Kak92].
Scharlemann and Thompson proved that this complex is connected ([ST88]), and Kakimizu
gave another proof when L is a link ([Kak92]). Schultens proved that MS(L) is simply
connected ([Sch10]), and Przytycki and Schultens proved that it is in fact contractible
([PS12]).

Note that if we fix an orientation of L, there is a well-defined total cyclic ordering on
vertices of simplices of MS(L), given informally by the "angle" at which surfaces intersect
the tubular neighbourhood E of L. More precisely, consider the infinite cyclic covering Ẽ
of E corresponding to the meridian of L. If S,R,R′ are pairwise disjoint spanning surfaces,
then R,R′ have disjoint lifts R̃, R̃′ in Ẽ contained between two consecutives lifts S̃0, S̃1 of
S. One then say that S < R < R′ if R̃ separates S̃0 and R̃′.

Using this order, one may endow the Kakimizu with the standard polyhedral metric.

Theorem 9.14. The Kakimizu complex MS(L), endowed with the standard polyhedral
metric, is CUB.

As a consequence, one obtain another proof that the Kakimizu is contractible (assuming
that it is simply connected). Applying Proposition 2.1, one also deduces another proof
of [PS12, Corollary 1.3] that for any finite subgroup G of the mapping class group of
E, there exists a union of pairwise disjoint minimal genus spanning surfaces which is G-
invariant up to isotopy.

Proof. We will apply Theorem A. Since MS(L) is simply connected according to [Sch10],
it is sufficient to check that the star of a vertex is a semilattice.

Fix three spanning surfaces S,R,R′ ∈MS(L), with R,R′ disjoint from S, and consider
the infinite cyclic covering Ẽ of E corresponding to the meridian of L. Let τ denote the
covering automorphism of Ẽ. Fix lifts S̃, R̃, R̃′ of S,R,R′ to Ẽ such that R̃, R̃′ are disjoint
from S̃, but not from τ−1(S̃). Let P̃ denote the surface "below R̃∪ R̃′", i.e. obtained from
R̃ and R̃′ by a cut-and-paste operation as in [PS12, Section 4]. Let P denote the image of
P̃ in E. Then it is clear that we have S 6 P 6 R,R′. Furthermore, by construction P is
maximal, hence P is the meet of R and R′. So the star of S is a semilattice.
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