A. I. BADULESCU AND D. RENARD

Abstract. In this short note, we remark that the algorithm of Moeglin and Waldspurger for computing the dual (as defined by Zelevinsky) of an irreducible representation of GL_n still works for the inner forms of GL_n, the proof being basically the same.

1. Segments, multisegments and the involution

A multiset is a finite set with finite repetitions $(a, a, b, c, d, d, d, e, a, ...)$.

A segment Δ is the void set or a set of consecutive integers $\{b, b+1, ..., e\}$, $b, e \in \mathbb{Z}$, $b \leq e$. We call e the ending of Δ and the integer $e - b + 1$ the length of Δ. By convention, the length of the void segment is 0. Let $\Delta = \{b, b+1, ..., e\}$ and $\Delta' = \{b', b'+1, ..., e'\}$ be two segments. We say Δ precede Δ' if $b < b'$, $e < e'$ and $b' \leq e + 1$. We also write $\Delta \geq \Delta'$ if $b > b'$ or $b = b'$ and $e \geq e'$. This is a total order on the set of segments.

A multisegment is a multiset of segments. We identify multisegments obtained from each other by dropping or adding void segments. The full extended length of a multisegment is the sum of the lengths of all its elements and is 0 if the multisegment is void. The support of a multisegment m is the multiset of integers obtained by taking the union (with repetitions) of the segments in m. A multisegment $(\Delta_1, \Delta_2, ..., \Delta_k)$ is said to be ordered if $(\Delta_1 \geq \Delta_2 \geq ... \geq \Delta_k)$. The lexicographic order induces a total order on ordered multisegments: if $m = (\Delta_1, \Delta_2, ..., \Delta_t)$ and $m' = (\Delta'_1, \Delta'_2, ..., \Delta'_{t'})$ are multisegments, then $m \geq m'$ if $\Delta_1 > \Delta'_1$, or $\Delta_1 = \Delta'_1$ and $\Delta_2 > \Delta'_2$, and so on, or $t \geq t'$ and $\Delta_i = \Delta'_i$ for all $i \in \{1, 2, ..., t\}$.

If $\Delta = \{b, b+1, ..., e\}$ is a segment, we set $\Delta^- = \{b, b+1, ..., e-1\}$ with the convention that Δ^- is void if $b = e$.

Let m be a multisegment. We associate to m a multisegment $m^\#$ in the following way: let d be the biggest ending of a segment in m. Then chose a segment Δ_{i_0} in m containing d and maximal for this property. Then we define the integers $i_1, i_2, ..., i_r$ inductively: Δ_{i_s} is a segment of m preceding $\Delta_{i_{s-1}}$ with ending $d - s$, maximal with these properties, and r is such that there’s no possibility to find such a i_{r+1}. Set $m^- = (\Delta'_1, \Delta'_2, ..., \Delta'_r)$, where

We would like to thank the organizers of the conference “Functional Analysis IX” in Dubrovnik, Croatia, June 15-23, 2005, particularly G. Muić and M. Tadić, for their invitation to give lectures there.
$\Delta'_i = \Delta_i$ if $i \notin \{i_0, i_1, \ldots, i_r\}$, and $\Delta'_i = \Delta_i^{-}$ if $i \notin \{i_0, i_1, \ldots, i_r\}$. Then $\{d - r, d - r + 1, \ldots, d\}$ is the first segment of $m^\#$. Starting from the beginning with m^- what we have done with m, we find the second segment of $m^\#$, and so on (so at the end we have that $m^\#$ is the multiset union of $\{d - s, d - s + 1, \ldots, d\}$ and $(m^-)^\#$). This multiset $m^\#$ is independent of the choices made for the construction. The map $m \mapsto m^\#$ is an involution of the set of non void multisegments. It preserves the support.

2. Representations of G_n

2.1. Generalities. Let F be an non-Archimedean local field of any characteristic with norm $| |_F$. For all $n \in \mathbb{N}^*$ let G_n be the group $GL_n(F)$, A_n be the set of equivalence classes of smooth finite length representations of G_n and \mathcal{R}_n be the Grothendieck group of smooth finite length representations of G_n. As usual, we will slightly abuse notation by identifying representations and their equivalence classes, and sometimes, representations with their image in the Grothendieck group \mathcal{R}_n.

The set B_n of classes of smooth irreducible representations of G_n is a basis of \mathcal{R}_n. If $\pi_1 \in B_{n_1}$ and $\pi_2 \in B_{n_2}$, then $\pi_1 \otimes \pi_2$ is a representation of $G_{n_1} \times G_{n_2}$. This group may be seen as the subgroup L of matrices diagonal by two blocks of size n_1 and n_2 of $G_{n_1+n_2}$. We set

$$\pi_1 \times \pi_2 = \text{ind}_{P}^{G_{n_1+n_2}}(\pi_1 \otimes \pi_2)$$

where “ind” is the normalized parabolic induction functor and P is the parabolic subgroup of $G_{n_1+n_2}$ containing L and the group of upper triangular matrices. We generalize this notation in an obvious way to any finite number of elements $\pi_i \in B_{n_i}$, $i \in \{1, 2, \ldots, k\}$.

Let C_n be the set of cuspidal representations of G_n and D_n the set of essentially square integrable representations of G_n (we assume irreducibility in the definition of cuspidal and essentially square integrable representations).

If χ is a smooth character of G_n and $\pi \in A_n$, then $\chi \pi$ will denote the tensor product representation $\chi \otimes \pi$. Let ν_n be the character $g \mapsto |\det(g)|_F$ of G_n. We will drop the index n when no confusion may occur.

2.2. Irreducible representations. Let $k \in \mathbb{N}^*$ and n_i, $i \in \{1, 2, \ldots, k\}$ be positive integers. For each i let $\sigma_i \in D_{n_i}$. The representations σ_i being essential square integrable, for all $i \in \{1, 2, \ldots, k\}$ there exists a unique real number a_i such that $\nu^{a_i} \sigma_i$ is unitary. If the σ_i are ordered such that the sequence a_i is increasing, then $S = \sigma_1 \times \sigma_2 \times \ldots \times \sigma_k$ is called a standard representation and has a unique irreducible quotient $\theta(S)$. The representation S doesn’t depend on the order of the σ_i as long as the condition that the sequence a_i is increasing is fulfilled. So S and $\theta(S)$ depend only on the multiset $(\sigma_1, \sigma_2, \ldots, \sigma_k)$. We call this multiset the esi-support of S or of $\theta(S)$ ("esi": essentially square integrable).

2.3. Standard elements. The image in \mathcal{R}_n of a standard representation is called a standard element of \mathcal{R}_n. The set H_n of standard elements of
\(R_n \) is a basis of \(R_n \). The map \(W_n : S \mapsto \theta(S) \) is a bijection from \(H_n \) to \(B_n \) (see [DKV]).

2.4. The involution. On \(R_n \), we consider the involution \(I_n \) from [Au], which transforms irreducible representations to irreducible representations up to a sign. The involution commutes with induction ([Au]), i.e. if \(\pi_1 \in B_{n_1} \) and \(\pi_2 \in B_{n_2} \), then \(I_{n_1+n_2}(\pi_1 \times \pi_2) = I_{n_1}(\pi_1) \times I_{n_2}(\pi_2) \). Forgetting signs, the involution in [Au] gives rise to a permutation \(|I_n| \) of \(B_n \) (which is the involution defined in [Ze]). We will call \(|I_n|(\pi) \) the dual of \(\pi \). See [Au] and [Ze].

The algorithm of Moeglin and Waldspurger ([MW]) computes the esi-support of the dual of a smooth irreducible representation \(\pi \) from the esi-support of \(\pi \).

2.5. Essentially square integrable representations. Following [Ze], if \(k \) is a positive integer such that \(k|n \), if we set \(p = n/k \) and chose \(\rho \in C_p \), then \(\rho \times \nu \rho \times \nu^2 \rho \times \ldots \times \nu^{k-1} \rho \) has a unique irreducible quotient \(Z(k, \rho) \) which is an essentially square integrable representation of \(G_n \). Any element \(\sigma \) of \(D_n \) is obtained in this way and \(\sigma \) determines \(k \) and \(\rho \) such that \(\sigma = Z(k, \rho) \). If \(\rho \in C_p \) for some \(p \), given a segment \(\Delta = \{ b, b + 1, \ldots, e \} \), we set

\[
< \Delta >_\rho = Z(v^b \rho, e - b + 1) \in D_{p(e-b+1)}.
\]

2.6. Rigid representations. If \(\rho \in C_p \) for some \(p \) we call the set \(\{ v^k \rho \}_{k \in \mathbb{Z}} \) the \(\rho \)-line. If \(\pi \in B_n \) we say \(\pi \) is \(\rho \)-rigid if the cuspidal support of \(\pi \) is included in the \(\rho \)-line (of course, it is the \(\nu \rho \)-line too). An irreducible representation is called rigid if it is \(\rho \)-rigid for some \(\rho \). If \(\pi_1 \in B_{n_1} \) and \(\pi_2 \in B_{n_2} \) are such that the cuspidal supports of \(\pi_1 \) and \(\pi_2 \) are disjoint, then \(\pi_1 \times \pi_2 \) is irreducible. So any \(\pi \in B_n \) is a product of rigid representations \(\pi_i \). Then we know ([Ze]) that the esi-support of \(\pi \) is the union with multiplicities of the esi-supports of the \(\pi_i \). As \(I_n \) commutes with induction, to compute the esi-support of duals of irreducible representations, we need only to compute the esi-support of duals of rigid representations.

2.7. Multisegments and representations. If \(m = (\Delta_1, \Delta_2, \ldots, \Delta_k) \) is an ordered multisegment of full length \(q \) and \(\rho \in C_p \), then \(m \) and \(\rho \) define a standard element \(\pi_\rho(m) \) of \(R_{pq} \), precisely

\[
\pi_\rho(m) = < \Delta_1 >_\rho \times < \Delta_2 >_\rho \times \ldots \times < \Delta_k >_\rho \in H_{pq},
\]

and an irreducible representation

\[
< m >_\rho = W_n(\pi_\rho(m)) \in B_{pq}.
\]

The map \(m \mapsto < m >_\rho \) realizes a bijection between the set of multisegments of full length \(q \) and the set \(B_{n,\rho} \) of \(\rho \)-rigid irreducible representations of \(G_{pq} \).

2.8. The algorithm for \(G_n \). The result of Moeglin and Waldspurger in [MW] is: the dual of \(< m >_\rho \) is \(< m^\# >_\rho \).
2.9. The proof. We recall here their argument:

Let \((p, \rho)\) be a couple such that \(p\) is a positive integer and \(\rho \in C_p\). Fix a multiset \(s\) with integer entries, and let \(S\) be the (finite) set of all the multisegments \(m\) having support \(s\). They all have the same full length, let’s call it \(k\). Set \(n = pk\). Let \(B_\rho = \{< m >_\rho, m \in S\}\) and \(H_\rho = \{\pi_\rho(m), m \in S\}\). Let \(R_\rho\) be the (finite dimensional) submodule of \(R_n\) generated by \(B_\rho\). Then \(B_\rho\) and \(H_\rho\) are basis of the space \(R_\rho\). On \(B_\rho\) and \(H_\rho\) consider the decreasing order induced by the order on multisegments in \(S\). Then we know that for this order the matrix \(M \in H_\rho\) in the basis \(B_\rho\) is upper triangular and unipotent ([Ze] or [DKV]). The space \(R_\rho\) is stable under \(I_n\).

It is important to notice here that the involution \((-1)^{n-k}I_n\) of \(R_\rho\) transforms every irreducible representation in an irreducible one, since all the elements here have the same cuspidal support, of full length \(k\) (see [Au]). In other words, the restriction of \(I_n\) to \(B_\rho\) is \((-1)^{n-k}I_n\).

Let \(T_1\) (resp. \(T_2\)) be the matrix of the involution \((-1)^{n-k}I_n\) of \(R_\rho\) in the basis \(B_\rho\) (resp. \(H_\rho\)). Then the matrix \(T_1\) doesn’t depend on the couple \((p, \rho)\).

The argument, attributed in [MW] to Oesterlé, is the following:

We have already seen that \(T_1\) is a permutation matrix ([Au]). Then as \(M\) is an upper triangular unipotent matrix, the relation \(T_2 = M^{-1}T_1M\) is a Bruhat decomposition for \(T_2\) and this implies that \(T_1\) is determined by \(T_2\).

Now, \(T_2\) itself doesn’t depend on the couple \((p, \rho)\) because:

(c1) if \(m = (\Delta_1, \Delta_2, \ldots, \Delta_t)\) with \(\Delta_i\) of length \(n_i/p\), then

\[
I_n(\pi_\rho(m)) = I_{n_1}(< \Delta_1 >_\rho) \times I_{n_2}(< \Delta_2 >_\rho) \times \cdots \times I_{n_t}(< \Delta_t >_\rho),
\]

(c2) if \(\Delta = \{b, b + 1, \ldots, e\}\), then \(I_{(e+1-b)p}(< \Delta >_\rho) = (-1)^{(e+1-b)(p-1)} < m_{\Delta} >_\rho\), where \(m_{\Delta} = (\{b\}, \{b + 1\}, \ldots, \{e\})\).

(c3) one has \(< m_{\Delta} >_\rho = \sum_{m' \leq m_{\Delta}} (-1)^{d(m') + e-b} \pi_\rho(m')\), where \(d(m')\) is the cardinality of \(m'\) (as a multiset of segments) ([Ze]).

So it is enough to show that the dual of \(< m >_\rho\) is \(< m^# >_\rho\) for a particular \(\rho\). The authors conclude their proof by showing this relation holds for a clever choice of the cuspidal representation \(\rho\).

3. Representations of \(G_n'\)

Let \(D\) be a central division algebra of dimension \(d^2\) over \(F\) (with \(d \in \mathbb{N}^*\)) and let \(G_n'\) be the group \(GL_n(D)\). We use the notation for objects relative to \(G_n\), but with a prime, for objects relative to \(G_n'\): \(A'_n, C'_n, D'_n, R'_n, B'_n\). The involution \(I_{n}'\) ([Au]) on \(R'_n\), has the same properties as \(I_n\): it transforms irreducible representations into irreducible representations, up to a sign, and commutes with induction.

If \(g' \in G_n'\), one can define the characteristic polynomial \(P_{g'} \in F[X]\) of \(g'\), and \(P_{g'}\) is monic of degree \(nd\) ([Pi]). If \(g' \in G_n'\), the determinant \(det(g')\) of \(g'\) is the constant term of its characteristic polynomial. We write \(\nu'_n\) for the character \(g' \mapsto [det(g')]_F\) of \(G_n\), and we drop the index \(n\) when no confusion may occur.
For a given n, if $g \in G_{nd}$ and $g' \in G_{n}'$ we write $g \leftrightarrow g'$ if the characteristic polynomial of g is separable (i.e. has distinct roots in an algebraic closure of F) and is equal to the characteristic polynomial of g'. If $\pi \in \mathcal{R}_{nd}$ or $\pi \in \mathcal{R}'_{n}$, we denote by χ_{π} the character of π. It is well defined on the set of elements with separable characteristic polynomial even if the characteristic of F is not zero. The Jacquet-Langlands correspondence is the following result:

Theorem 3.1. There exists a unique bijection $C : \mathcal{D}_{nd} \rightarrow \mathcal{D}'_{n}$ such that for all $\pi \in \mathcal{D}_{nd}$ one has

$$\chi_{\pi}(g) = (-1)^{nd-n} \chi_{C(\pi)}(g')$$

for all $g \leftrightarrow g'$.

This well known result of [DKV] is also true in non-zero characteristic ([Ba1]).

One can extend the Jacquet-Langlands correspondence to a linear map between Grothendieck groups ([Ba2]):

Proposition 3.2. a) There exists a unique group morphism $LJ : \mathcal{R}_{nd} \rightarrow \mathcal{R}'_{n}$ such that for all $\pi \in \mathcal{R}_{nd}$ one has

$$\chi_{\pi}(g) = (-1)^{nd-n} \chi_{LJ(\pi)}(g')$$

for all $g \leftrightarrow g'$.

The morphism LJ is defined on the basis $H_{nd} :$ if $S = \sigma_1 \times \sigma_2 \times \ldots \times \sigma_k$, with $\sigma_i \in \mathcal{D}_{ni}$, then

- if for all $i \in \{1, 2, \ldots, k\}$, $d|n_i$, $LJ(S) = C(\sigma_1) \times C(\sigma_2) \times \ldots \times C(\sigma_k)$,
- if not, $LJ(S) = 0$.

b) For all $\pi \in \mathcal{R}_{nd}$, $LJ(I_{nd}(\pi)) = (-1)^{nd-n} I'_{n}(LJ(\pi))$.

The classification of irreducible representations is similar to the one for G_n, and we can define the esi-support of an irreducible representation, the standard elements H_{n}', and the bijection $W_n' : H_{n}' \rightarrow B_n'$. Knowing the esi-support of $\pi' \in B_n'$, one would like to compute the esi-support of $I'_{n}(\pi')$.

The classification of essentially square integrable representations on G_n' differs slightly from that on G_n (it is more general, since $G_n' = G_n$ when $D = F$). If $\rho' \in \mathcal{D}'_{n}$, then $C^{-1}(-\rho') \in \mathcal{D}_{nd}$. Following [Ta], if $C^{-1}(\rho') = Z(\kappa, \rho)$, we set $s(\rho') = k$, and $\nu_{\rho'} = (\nu_{\rho})^{s(\rho')}$. Given a positive integer k such that $|k|_n$ and a $\rho' \in \mathcal{C}'_p$, where $p = n/k$, the representation $\rho' \times \nu_{\rho'} \rho_{p} \times \nu_{\rho'} \rho_{p} \times \ldots \times \nu_{\rho'}^{k-1} \rho'$ has a unique irreducible quotient σ' which is an essentially square integrable representation of G_n'. We set then $\sigma' = T(k, \rho')$. Any $\sigma' \in \mathcal{D}'_{n}$ is obtained in this way and σ' determines k and ρ' such that $\sigma' = T(k, \rho')$. See [Ta] for details.

If $\rho' \in \mathcal{C}_{p}$ for some p, given a segment $\Delta = \{b, b+1, \ldots, e\}$, we set

$$\langle \Delta \rangle_{p'} = T(\nu_{\rho'}^{b} \rho', e - b + 1) \in \mathcal{D}'_{p(e-b+1)}.$$

A line in this setting is a set of the form $\{\nu_{\rho'}^{k} \rho'\}_{k \in \mathbb{Z}}$ where ρ' is a cuspidal representation. The definition of ρ'-rigid and rigid representations and their
properties are similar to the ones for G_n, and as for G_n, one needs only to compute of the esi-support of the duals for rigid representations.

If $m = (\Delta_1, \Delta_2, \ldots, \Delta_k)$ is an ordered multisegment and $\rho' \in C'_p$, then m and ρ' define a standard element of some R'_n, more precisely

\[\pi'_\rho(m) = < \Delta_1 >_{\rho'} \times < \Delta_2 >_{\rho'} \times \cdots \times < \Delta_k >_{\rho'}, \]

and an irreducible representation

\[< m >_{\rho'} = W'_n(\pi'_\rho(m)). \]

The map π'_ρ realizes a bijection between the set of multisegments of full length k and the set of ρ'-rigid representations of G'_n. Now, we claim that the algorithm for G'_n is the same as for G_n, namely:

Theorem 3.3. The dual of the representation $< m >_{\rho'}$ is $< m# >_{\rho'}$.

For the proof, we follow the argument in [MW]:

Let (p, ρ') be a couple such that p is a positive integer and $\rho \in C'_p$, let k be a positive integer and set $n = pk$. Let $B'_\rho = \{ < m >_{\rho'}, m \in S \}$ and $H'_\rho = \{ \pi'_\rho(m), m \in S \}$ (S has already been defined in the section 2.9). Let R'_ρ be the finite dimensional submodule of R'_n generated by B'_ρ. Then B'_ρ and H'_ρ are bases of R'_ρ. On B'_ρ and H'_ρ, consider the decreasing order induced by the order on multisegments in S. Then the matrix M' of H'_ρ in the basis B'_ρ is upper triangular and unipotent ([DKV] and [Ta]). The involution $(-1)^{n-k} I'_n$ induces an involution of R'_ρ which carries irreducible representations to irreducible representations. Let T'_1 (resp. T'_2) be the matrix of this involution in the basis B'_ρ (resp. H'_ρ).

As for G_n, the matrix T'_1 doesn’t depend on (p, ρ'), because Oesterlé’s argument works again. First of all (see [Au]), T'_1 is a permutation matrix so the relation $T'_2 = M'^{-1} T'_1 M'$ is a Bruhat decomposition for T'_2 and this implies that T'_1 is determined by T'_2.

As for G_n, T'_2 itself doesn’t depend on (p, ρ') because, as we will explain shortly afterwards, we have:

(c’1) If $m = (\Delta_1, \Delta_2, \ldots, \Delta_l)$ with Δ_i of length n_i/p, then

\[I'_n(\pi'_\rho(m)) = I'_{n_1}(< \Delta_1 >_{\rho'}) \times I'_{n_2}(< \Delta_2 >_{\rho'}) \times \cdots \times I'_{n_l}(< \Delta_l >_{\rho'}). \]

(c’2) If $\Delta = \{b, b+1, \ldots, c\}$, then $I'_{(c+1-b)p}(< \Delta >_{\rho'}) = (-1)^{(c+1-b)(p-1)} < m_\Delta >_{\rho'}$, where $m_\Delta = \{\{b\}, \{b+1\}, \ldots, \{c\}\}$.

(c’3) One has $< m >_{\rho'} = \sum_{m' \leq m_\Delta} (-1)^{d(m')} + e - b + 1 \pi'_\rho(m')$, where $d(m')$ is the cardinality of m' (as a multiset of segments).

The relation (c’1) is clear since the involution commutes with induction ([Au]).

(c’2) is true too: from the formula for I'_n to be found in [Au], and the computation in [DKV] of all normalized parabolic restrictions of essentially square integrable representations of G'_n, one may see $I'_{(c+1-b)p}(< \Delta >_{\rho'})$ is an alternate sum of representations $\pi'_\rho(m_i)$, where m_i runs over the set of multisegments with same support as Δ. It is obvious that the maximal one
is $\pi'_\rho(m_\Delta)$. It appears in the sum with coefficient $(-1)^{(e+1-b)(p-1)}$, and so $W'_n(\pi'_\rho(m_\Delta)) = <m_\Delta >_\rho'$, has to appear with coefficient $(-1)^{(e+1-b)(p-1)}$ in the final result. As we know a priori that this result is plus or minus an irreducible representation, (c’2) follows.

(c’3) is the combinatorial inversion formula ([Ze]), which is still true here since for all $m' \leq m_\Delta$ one has $\pi'_\rho(m') = \sum_{m'' \leq m'} <m'' >_\rho'$. So it is enough to show that the dual of $<m >_\rho'$ is $<m^# >_\rho'$ for a particular ρ'. Or, equivalently, to show that for some ρ' we have $T'_2 = T_2$. Let $\rho \in C_q$ and set $\rho' = C(\rho)$. Then $\rho' \in C'_1$ and $s(\rho') = 1$. The map LJ induces a bijection from H_ρ to H'_ρ' commuting with the bijections from S onto these sets. The point b) of the proposition 3.2 implies then $T'_2 = T_2$.

4. Bibliography

DÉPARTEMENT DE MATHEMATIQUES, UNIVERSITÉ DE POITIERS, TÉLÉPORT 2, BOULEVARD MARIE ET PIERRE CURIE, BP 30179, 86962 FUTUROSCOPE CEDEX, FRANCE

E-mail address: badulesc@math.univ-poitiers.fr

CENTRE DE MATHÉMATIQUES LAURENT SCHWARTZ, ÉCOLE POLYTECHNIQUE, 91128 PALAISSEAU CEDEX, FRANCE

E-mail address: renard@math.polytechnique.fr