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Abstract:
We present a mesh adaptation method for CFD calculations of compress-

ible flows with hybrid RANS/LES turbulence models. The anisotropic mesh
representation is based on the continuous mesh approach using metrics. Two
adaptation criteria are combined, one for controling the numerical error in
solving the URANS equations, and one for controlling the LES error model.
The second criterion is based the Toosi-Larsson formulation derived from the
Germano analysis. Numerical examples of mesh adaptive LES calculations
of flows around blunt bodies are reported and analysed.

Keywords: Compressible flow, Hyperbolic, Euler flow, Finite volume, Error
estimation, Mesh adaptation.
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1 Introduction
Large Eddy Simulations (LES) and hybrid flow calculations for turbulent flow
are today still very computer consuming CFD activities. More importantly,
the user has difficuties in deciding if the mesh used produces the expected
accuracy. Upgrading mesh adaptation methods to a better treatment of
LES/hybrid flows is then an important issue. Unlike a statistical turbulence
model, which tends to neglect fluctuations by applying a statistical average
which in most cases damps all these fluctuations, LES can be interpreted as
damping only a part of unsteady turbulent structures, typically structures
with a scale smaller than a prescribed filter size. The smallest structures
being the most difficult to resolve, LES consumes much less computational
resources than a Direct Numerical Simulation which computes all turbulence
structures. LES modelling therefore relies on two steps:
(i)- defining the neglected scales as those which are smaller than a filter width
∆f and adding a model of the action of neglected scales on the non-neglected
ones. This defines a continuous model parameterized by the filter width ∆f ,
(ii)- using, in order to approximate the continuous model built in (i), a mesh-
based approximation with local mesh size ∆g, typically:

∆g = (ξηζ)
1
3 (1)

(expressed directly in terms of the local mesh sizes (ξ, η, ζ) measured in three
orthogonal directions). While, by construction, ∆f should be larger than ∆g,
in order to approximate accurately the non-neglected scales, the research of
the lowest computational cost motivates the practitioner to set

∆f = ∆g,

with the consequence that the smallest unfiltered scales are the smallest scales
computed on the grid and are then very poorly approximated, whatever be
the accuracy of the numerical scheme.

When using a second-order accurate approximation, an important disad-
vantage comes from the fact that many LES models of Smagorinsky type
are similar to second-order accurate truncation terms, in such a way that
approximation errors are of same order as the filter model. According to
an analysis of Ghosal [15] and to the outputs of many numerical computa-
tions, see e.g. [18], using a second-order accurate approximation may result
in errors larger than the effect of LES modelling. It remains that second-
order accurate approximations are often used and very useful for computing
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LES flows in engineering. A good practise for increasing the confidence in
second-order accurate LES computations is to compare (a) the LES-based
computations with (b) their no-model counterpart of order two, see e.g. [20].

Let assume that an approximation with a truncation error of order α
is used. An important issue is the fact that the convergence at truncation
order is subject to the condition of using a sufficiently refined mesh: the
mesh should be in any point sufficiently fine for capturing the smallest local
detail of the flow computed, in order to obtain second-order or higher order
convergence. This desserves some comments.
- Already in steady CFD, the convergence at truncation order is difficult to
attain. A very efficient tool for obtaining this convergence is the convergent
mesh adaptive double loop as described in [1, 11]. The inner loop is an
anisotropic metric-based fixed-point adaptation working with a fixed num-
ber of unknowns. The outer loop is an anisotropic metric-based enrichment
increasing progressively the total number of unknowns and controlling the
actual convergence to the continuous solution. Thanks to this double loop,
steady second-order RANS calculations are reaching a higher level of accu-
racy and fiability.
- As concerns unsteady RANS, mesh convergence with a double mesh adap-
tive loop is more difficult to apply, but effective in many cases. See for
examples [4], [24], [22].
- As concerns mesh convergence with LES, it is a much more difficult is-
sue. The brute-force strategy which increases simply the number of nodes
generally may not succeed for the following reason. Refining the mesh di-
minishes the subgrid-scale (SGS) term and introduces the arising of smaller
and smaller new unstable scales in the solution which therefore cannot be
accurately approximated until the process simply solves the corresponding
DNS flow. Therefore, in contrast to laminar and RANS modeling, mesh
adaptation for LES and hybrid models cannot have as goal the faster/fastest
convergence to a continuous field, except the generally not offerdable exact
solution of Navier-Stokes.

The designing of a mesh adaptation criterion for LES is an important
and difficult issue, addressed by many publications, among which we have
selected the following typical ones.

In [5], the approach is a numerical one, related to truncation error. The
error estimator identifies the regions lacking in accuracy, improving their

7



resolution by either decreasing the size of the element or increasing the poly-
nomial degree which approximates locally the solution. A smoothness indi-
cator guides the hp-decision, leading to p-enrichment for smooth regions and
h-refinement for non-smooth regions.

The work in [17] compares three indicators. The first indicator is based
on the unsteady residual. The second indicator is based on a local smooth-
ness indicator. The third indicator is based on an estimate for small scale
turbulent kinetic energy. Comparisons with DNS tend to show that the first
indicator is the best.

Similarly, in [16] several indicators more or less related to discretization
and modeling error are compared with a wall jet as main test case.

In [13], a field-inversion machine-learning (FIML) framework is intro-
duced. It only requires unsteady primal solutions. Two error estimates are
compared in this work, a time-averaged unsteady residual weighted by a
time-averaged adjoint, and an augmented-system residual weighted by the
augmented-system adjoint.

In [21] the approach relies on a Discontinuous Galerkin (DG) high-order
approximation. It does not really propose a mesh adaptation, but defines the
ideal DG-LES solution as the result of the application of two successive fil-
tering operations. A first convolution filter is applied to the DNS data which
filters out frequencies beyond the LES grid cut-off. Next, a L2-projection of
this filtered field is performed on the hp-discretization space.

The physical approach is better addressed in [8]: arguments are based on
the ratio of subgrid to viscous dissipation or viscosity. They are meaningful
only in the buffer layer of wall-bounded turbulence while LES should be ap-
plicable to free shear flows at any Reynolds number.

In contrast to these contributions, we look for a satisfactory measure of
the actual modelling error induced by LES. We discuss now an interesting
analysis of this error. We have observed that, in most models, the local filter
size introduced in practical LES models is generally taken identical to the
local mesh size. Therefore informations concerning the improvement of the
filter size can be useful for the improvement of mesh size. This is why we
discuss now the work of Germano and co-workers [14] which have proposed a
measure of the modelling error and a method for reducing it by adapting the
filter size. We use the notations of [29] where this method is also explained.
If a filter W 7→ W̄ of size ∆̄ is applied to the continuous (incompressible)
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Navier-Stokes equations for the exact field (U , P):

N (U) = ∂Ui

∂t
+ ∂UiUj

∂xj

+ 1
ρ

∂P
∂xj

− ν
∂2Ui

∂xj∂xj

= 0 (2)

then the coarse-grained representation (U , P) of the exact field satisfies:

N exact
∆̄ (U) = ∂U i

∂t
+ ∂U iU j

∂xj

+ 1
ρ

∂P
∂xj

− ν
∂2U i

∂xj∂xj

+
∂τ exact

ij,∆̄

∂xj

= 0

with τ exact
ij,∆̄ = UiUj − U iU j.

(3)

The basic idea of Germano’s analysis is to introduce a second filter, not used
directly in the model, the filter test with a size ∆̂ > ∆̄ slightly larger than the
LES filter. If we apply successively filter .̄ and test filter .̂ to U , denoting
τ exact

ij, ̂̄∆ = ÛiUj − Û iÛ j, we have

N exact̂̄∆ (Û) = ∂Û i

∂t
+ ∂Û iÛ j

∂xj

+ 1
ρ

∂P̂
∂xj

− ν
∂2Û i

∂xj∂xj

+
∂τ exact

ij, ̂̄∆
∂xj

= 0,

while applying .̂ to N exact
∆̄ (U) gives:

̂N exact
∆̄ (U) = ∂Û i

∂t
+ ∂Û iU j

∂xj

+ 1
ρ

∂P̂
∂xj

− ν
∂2Û i

∂xj∂xj

+
∂τ̂ exact

ij,∆̄

∂xj

= 0

then

N exact̂̄∆ (Û) − ̂N exact
∆̄ (U) = ∂

∂xj

(
−̂τ exact

ij,∆̄ + τ exact

ij, ̂̄∆ − Û iU j + Û iÛ j

)
(4)

Statement (4) can be interpreted as an approximate equation for the filtering
error Û − U . In [14] the Germano identity is shown:

−̂τ exact
ij,∆̄ + τ exact

ij, ̂̄∆ − Û iU j + Û iÛ j = 0.

and the RHS of (4) is zero. The Germano identity is true for continuous
solutions of the exact Navier-Stokes system but will not apply if the exact
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Navier-Stokes system is replaced by a continuous formulation of a LES model
with one filter with ū as solution:

N model
∆̄ (u) = ∂ui

∂t
+ ∂uiuj

∂xj

+ 1
ρ

∂p

∂xj

− ν
∂2ui

∂xj∂xj

+
∂τmodel

ij,∆̄ (u)
∂xj

= 0 (5)

To fix the ideas, for the Smagorinsky model (incompressible case), it
writes:

τmodel
ij,∆̄ (u) = −(Cs∆̄)2|S|Pij

Sij = 1
2( ∂ūi

∂xj
+ ∂ūj

∂xi
)

Pij = 2Sij − 2
3Skkδij

(6)

Cs being the Smagorinsky constant (typically, Cs = 0.1).
A second formulation is the formulation with both filters with v̂ as solution:

N model̂̄∆ (v̂) = ∂v̂i

∂t
+ ∂v̂iv̂j

∂xj

+ 1
ρ

∂p̂

∂xj

− ν
∂2v̂i

∂xj∂xj

+
∂τmodel

ij, ̂̄∆ (v̂)

∂xj

= 0. (7)

which implies that:

̂N model
∆̄ (u) − N model̂̄∆ (û) = ∂

∂xj

(
̂τmodel

ij,∆̄ (u) − τmodel

ij, ̂̄∆ (û) + ûiuj − ûiûj

)
(8)

which RHS is in general not zero. Although discarding the divergence ∂
∂xj

,
the Germano identity error

Gij = ̂τmodel
ij,∆̄ (u) − τmodel

ij, ̂̄∆ (û) + ûiuj − ûiûj

is a (tensorial) measure of the error between the (non-discretized) Navier
Stokes flow field and the (non-discretized) LES flow field. Therefore, the Dy-
namic Germano-Piomelli procedure, by minimizing in some sense the Ger-
mano identity error, allows to find either the optimal coefficient Cs, or the
optimal product Cs∆̄ (both used in (6)). In the Dynamic Germano-Piomelli
practice, ū is not known and is replaced by its discrete analog ūh computed
on a given mesh, the filter size ∆̄ is generally chosen as the local mesh size,
the filter test is chosen as κ∆̄∆̄, where κ∆̄ is frozen to the value 2. Then a
new product (Cs∆̄)optimum which reduces the RHS of (8) is computed. This is
usually interpreted as giving a new local value (Cs)optimum = (Cs∆̄)optimum/∆̄.
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Assuming now that we do not want to change Cs, the same computation
proposes a new value for ∆̄:

(∆̄)optimum = (Cs∆̄)optimum/Cs

which seems to give informations concerning the filter, and then concerning
the mesh to use.

The dynamic Germano analysis has inspired Toosi and Larsson [28] in
proposing a method for adapting the mesh to a LES formulation. Toosi
and Larsson identify the source of LES-modelling error as the residual of the
governing LES equation applied to the coarse-grained exact Navier-Stokes
solution. For a filter level ∆̄:

Ri,∆̄ ≡ N model
∆̄ (U) = ∂U i

∂t
+ ∂U iU j

∂xj

+ 1
ρ

∂P
∂xj

− ν
∂2U i

∂xj∂xj

+
∂τmodel

ij,∆̄ (U)
∂xj

and, using (3), we get

Ri,∆̄ = ∂

∂xj

[
τmodel

ij,∆̄ (U) − τ exact
ij,∆̄

]
.

Similarly, for filter test ̂̄∆:

R
i, ̂̄∆ ≡ N model̂̄∆ (Û) = ∂

∂xj

[
τmodel

ij, ̂̄∆ (Û) − τ exact

ij, ̂̄∆
]
. (9)

The residual R
i, ̂̄∆ is chosen as the error source of the LES modelling but

is expressed in terms of the unknown exact solution U . In order to use it
in practice, we need to replace U by an approximate evaluation of it. The
fundamental approximation done by Toosi and Larsson is replacing in N model̂̄∆
the coarse-grained exact Navier-Stokes solution Û by the LES one û:

R
i, ̂̄∆ ≡ N model̂̄∆ (Û) ≈ N model̂̄∆ (û) (10)

thus:

R
i, ̂̄∆ ≈ ∂ûi

∂t
+ ∂ûiûj

∂xj

+ 1
ρ

∂p̂

∂xj

− ν
∂2ûi

∂xj∂xj

+
∂τmodel

ij, ̂̄∆ (û)

∂xj

11



which is transformed applying the test-filtering to (5):

∂ûi

∂t
+ ∂ûiuj

∂xj

+ 1
ρ

∂p̂

∂xj

− ν
∂2ûi

∂xj∂xj

+
∂τ̂model

ij,∆̄ (u)
∂xj

= 0,

and then substracting the result from (10). This gives:

R
i, ̂̄∆ ≈ F

i, ̂̄∆ = ∂

∂x

[
τmodel

ij, ̂̄∆ (û) − τ̂model
ij,∆̄ (u) − ûiuj + ûiûj

]
. (11)

In order to minimize the RHS of (11), the authors consider a directional test
filter .̂nx of size ∆̄nx , in direction nx:

̂̄ϕ(nx)
≈

(
I +

∆̄2
nx

4
nT

x ∇∇T nx

)
ϕ̄. (12)

Applying the directional test filter to equation (5) gives the following evolu-
tion equation for the filtered instantaneous fields at the filter test level:

∂û
(nx)
i

∂t
+ ∂ûiuj

(nx)

∂xj

+ 1
ρ

∂p̂
(nx)

∂xj

− ν
∂2û

(nx)
i

∂xj∂xj

+
∂ ̂τmodel

ij (u)
(nx)

∂xj

= 0. (13)

Following the above calculation in this directional context, the following
source term analog to (11) is obtained:

F̂
(nx)

i (x) = ∂

∂xj

(
τmodel

ij (û(nx)) − ̂τmodel
ij (u)

(nx)
− ûiuj

(nx)
+ ûi

(nx)
ûj

(nx)) (14)

and the Toosi-Larsson method proposes to minimize with respect to ∆̄nx ,∆̄ny ,
and ∆̄nz the error functional

e(∆̄nx , ∆̄ny , ∆̄nz) =
∫

Ω

(
⟨F̂

(nx)

i , F̂
(nx)

i ⟩ + ⟨F̂
(ny)

i , F̂
(ny)

i ⟩ + ⟨F̂
(nz)

i , F̂
(nz)

i ⟩
) 1

2

(15)
in order to improve the mesh size in each direction.

The approach presented in this paper starts from an existing adaptation
method for the numerical approximation errors for steady RANS flows, see
[1] and the monograph [11]. In order to extend it to LES/hybrid, we try
to combine (a) the existing adaptation of mesh for RANS or non-turbulent
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steady flow with (b) a special adaptation for LES error model built according
to the Toosi-Larsson method. Optimal factors are evaluated in the three
principal directions of the RANS adapted metric. These factors are then
applied to the eigenvalues of the inital RANS metric in order to obtain the
corrected RANS-LES metric. Focusing on hybrid modeling, we anticipate (i)
a rather good quasi-convergent capturing in RANS regions, to be combined
with (ii) a suffficiently predictive resolution in LES region.

In this work, we focus on flows which are of a somewhat intermediate
difficulty. These turbulent flows are assumed to be quasi-periodic with a
rather well identified Strouhal number, and possibly quasi-steady in a large
part of the computational domain. For a thin airfoil at small angle of attack
for example, RANS calculation will produce a steady flow. VLES and hy-
brid RANS/LES calculations with medium meshes will produce a flow which
is mainly steady, generally modeled with RANS, for which a deterministic
adaptation criterion will be applied, but which presents also an unsteady re-
gion with vortices, where LES modeling applies, and for which a LES-based
adaptation criterion must be applied.

13



2 Modeling

2.1 Navier-Stokes model
The compressible Navier-Stokes equations for mass, momentum and energy
conservation read:

N S(W ) = 0 + Initial and boundary conditions (16)

where N S(W ) = 0 holds for:

∂ρ

∂t
+ ∇ · (ρu) = 0 ,

∂(ρu)
∂t

+ ∇ · (ρu ⊗ u) + ∇p − ∇ · T = 0 ,

∂(ρE)
∂t

+ ∇ · ((ρE + p)u) − ∇ · (T · u) + ∇ · (λ∇T ) = 0 ,

(17)

where ρ denotes the density (kg/m3), u the velocity (m/s), E the total energy
per mass (m2/s2), p the pressure (N/m2), given by: p = (γ−1)

(
ρE− 1

2ρ|u|2
)

with γ = 1.4, T the temperature (K) such that ρCvT = E − 1
2ρ(u2 +v2 +w2),

λ = µCp/Pr (Cv being the specific heat at constant volume, µ the dynamic
viscosity, Cp the specific heat at constant pressure, Pr the Prandtl number).
T is the laminar stress tensor:

T = µ

[
(∇u + ∇uT) − 2

3
∇. u I

]
,

where (in 3D) u = (u, v, w), µ the laminar dynamic viscosity (kg/(m.s)) and
λ the laminar thermal conductivity.

2.2 LES model
We have now to recall the LES analysis for the compressible model. For this
we recall some notations. The filtered Navier-Stokes equations are consid-
ered. The density Favre filter f̃ = (ρf)/(ρ̄) (where the over-line denotes the
gris filter) is applied and its solution is denoted ρ̄, ũ, ṽ, w̃, ẽ.

The filtering of compressible Navier-Stokes equations gives the motion of
large structures:
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∂ρ̄

∂t
+ ∂(ρ̄ũj)

∂xj

= 0

∂(ρ̄ũi)
∂t

+ ∂(ρ̄ũiũj)
∂xj

= − ∂p̄

∂xi

+ ∂(µP̃ij)
∂xj

−
∂M

(1)
ij

∂∂xj

+
∂M

(2)
ij

∂xj

∂(ρ̄Ẽ)
∂t

+ ∂[(ρ̄Ẽ + p̄)ũj]
∂xj

= ∂(ũjσ̃ij)
∂xi

− ∂q̃j

∂xj

+ ∂

∂xj

(
E

(1)
j + E

(2)
j + E

(3)
j

)
in which:
- q̃ is the resolved heat vector flux, q̃ = −k grad(T̃ ) where k is the heat
conductivity and T̃ is the Favre filtered temperature,
- E

(1)
j , E

(2)
j , E

(3)
j are defined e.g. in [9], E

(2)
j , E

(3)
j are negligible compared to

E
(1)
j and the effect of E

(1)
j will be neglected in the sequel,

- M
(1)
ij is defined from the filtering of the convective term in the moment

equation:

∂(ρuiuj)
∂xj

= ∂(ρ̄ũiũj)
∂xj

+
∂M

(1)
ij

∂xj

⇒ M
(1)
ij = ρuiuj − ρ̄ũiũj. (18)

- M
(2)
ij is defined by:

M
(2)
ij = µPij − µP̃ij with Pij = 2Sij − 2

3
Skkδij (19)

where Sij = 1
2( ∂ui

∂xj
+ ∂uj

∂xi
). As a consequence the resolved strain tensor is

denoted by:
S̃ij = 1

2
( ∂ũi

∂xj

+ ∂ũj

∂xi

)

and the viscous term is written

σ̃ = µP̃ij with P̃ij = 2S̃ij − 2
3

S̃kkδij. (20)

M
(2)
ij is negligible compared to M

(1)
ij . The isotropic part of M

(1)
ij , namely

1
3M

(1)
kk δij, can be neglected, [12], and its deviatoric part is defined by:

Tij = M
(1)
ij − 1

3
M

(1)
kk δij = −µSGSP̃ij = −µSGS

(
2S̃ij − 2

3
S̃kkδij

)
.
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In our theoretical development, the turbulent viscosity is defined according
to Smagorinsky model [25]:

µSGS = ρ̄(Cs∆̄)2|S̃| with |S̃| =
√

2S̃ijS̃ij (21)

and the model stress tensor is analogous to the one introduced in (5) for the
incompressible case:

τmodel
ij = Tij = −ρ̄(Cs∆̄)2|S̃|P̃ij. (22)

In order to define a Large Eddy Simulation (LES) model from the above
one, we restrict to the usual definition of the grid size ∆g (cf. (1)). We replace
in the viscous term of moment equation the viscosity µ by the incremented
viscosity µ + µSGS. We restrict to quasi-isothermal flows and then we do not
introduce a model in the energy equation. Our LES model writes:

N S(W ) =

 0
∇ · µSGS

[
(∇u + ∇uT) − 2

3∇ · u I
]

0

 . (23)

2.3 Spalart-Allmaras model and DDES
Various forms of the Spalart-Allmaras (SA) turbulence model exist. The
original Spalart-Allmaras one equation turbulence model writes [27]:

∂ν̃

∂t
+ u · ∇ν̃ = cb1[1 − ft2]S̃ν̃ −

[
cw1fw − cb1

κ2 ft2

] (
ν̃

d

)2

+ 1
σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2∥∇ν̃∥2] + ft1∆u2 .

where ν̃ is the kinematic eddy turbulent viscosity. In this paper we consider
the simplified formulation considering ft1 = 0 and ft2 = 0:

∂ρν̃

∂t
+ ∂ujρν̃

∂xj

= ρcb1S̃ν̃ − ρcw1fw

(
ν̃

d

)2

+ ρ

σ

[
∂

∂xj

(
(ν + ν̃) ∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
.

The turbulent eddy viscosity is computed from:

µt = ρν̃fv1

16



where
fv1 = χ3

χ3 + c3
v1

and χ = ν̃

ν
with ν = µ

ρ
.

Additional definitions are given by the following equations:

S̃ = Ω + ν̃

κ2d2 fv2 where Ω = ∥∇ × u∥ .

The magnitude of the vorticity is computed from the vorticity tensor where

each component is given by ωij = 1
2

(
∂ui

∂xj

− ∂uj

∂xi

)
and Ω =

√
2

∑
i,j=1..3

ωijωij.

Symbol d holds for the distance from the field point to the nearest wall and

fv2 = 1 − χ

1 + χfv1
.

Notice that we have the following relations:

χfv1 = ν̃fv1

ν
= νt

ν
=⇒ 1 − χ

1 + χfv1
= 1 − ν̃

ν + νt

.

The constants are

σ = 2
3

cb1 = 0.1355 cb2 = 0.622 κ = 0.41

cw1 = cb1

κ
+ 1 + cb2

σ
cw2 = 0.3 cw3 = 2 cv1 = 7.1 .

Finally, the function fw is computed as:

fw = g

(
1 + c6

w3
g6 + c6

w3

)1/6

with g = r+cw2
(
r6 − r

)
and r = min

(
ν̃

S̃κ2d2
, 10

)
.

The standard SA one-equation model reads in pseudo-vector notations:

∂ν̃

∂t
+ uj

∂ν̃

∂xj

= cb1[1 − ft2]S̃ν̃ −
[
cw1fw − cb1

κ2 ft2

] (
ν̃

d

)2

+ 1
σ

[
∂

∂xj

(
(ν + ν̃) ∂ν̃

∂xj

)
+ cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
where ft2 = ct3 exp (−ct4χ

4) with ct3 = 1.2 and ct4 = 0.5 .
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The DDES model [26] replaces the distance d by:

d̃ = d − fd max[0, (d − CDES∆)]

in which CDES = 0.65 and with (κ = 0.41)

fd = 1 − tanh
(

[8rd]3
)

where rd = ν + νt√
∂ui

∂xj

∂ui

∂xj
κ2d2

.

fd = 0 yields RANS while rd ≪ 1 yields the LES region.
The above DDES system is denoted in a compact way as :

ΨDDES(W ) = 0 (24)

where W = (ρ, ρu, ρv, ρw, ρE, ρν̃) and

(ΨDDES(W ), φ) =∫ T

0

∫
Ω

φ
[
Wt + SDDES(W ) + divFDDES(W )

]
dxdt

+
∫ T

0

∫
∂Ω

φFDDES(W )dσdt

(25)

where SDDES(W ), FDDES(W ), FDDES(W ) hold respectively for the source
term, the flux and the boundary flux of the DDES model.

18



3 Mesh-adaptation
In this first study, the focus is on flows which are essentially steady, with a
rather small region of the computational domain in which we have a quasi
periodic vortex shedding.

In the goal oriented option, we observe that the numerical error δW =
W − Wh on state variable W can be approximated by the solution of a
linearized system

AδWspace−time = Sspace−time

where:
- the linear operator A is the derivative of the Navier-Stokes (resp. URANS,
or DDES) residual with respect to the state,
- the right-hand side Sspace−time of the system is the local error resulting from
the space-time discretization (expressed in terms of the metric).

For minimizing the numerical error on the functional j = (g, W ) with
respect to the mesh metric M, it is sufficient to minimize the product of the
adjoint state W ∗ with the right-hand side,

δj = (W ∗, Sspace−time),

in other words:

Find M1 = Arg min
M

δj = Arg min
M

(W ∗, Sspace−time(M)). (26)

Similarly, assume that we have also a linear equation for the (test-filtered)
error resulting from the LES modeling

AδWLES = SLES

where:
- the linear operator A is again the derivative of the Navier-Stokes residual
with respect to the state,
- the right-hand side SLES of the system, the local error of LES, is the diver-
gence of the Germano expression.

As a result, the optimal mesh metric minimizing the total numerical and
LES error on the functional writes:

Mboth = Arg min
M

(W ∗, Sspace−time(M) + SLES(M)). (27)

19



In this formulation, Sspace−time(M) and SLES(M) are not necessarily positive
and therefore compensations of one error by the other one are possible and
can be taken into account in the minimization.

However, up to now, we have not found a satisfying way for expressing
explicitly SLES as a function of M and therefore we cannot apply the strat-
egy producing (27).

In this paper, we shall separate the error analysis into two steps, namely:
(a) research the RANS-optimal metric and,
(b) research of a somewhat LES-optimal metric factor by defining the test
filter directions (nk, k = 1, 3 from the RANS-optimal metric and then follow
the Toosi-Larsson for computing the optimal filter widths in these directions.

3.1 Riemannian metric
In the sequel, any mesh is represented by a Riemannian metric. See [1] and
[11] for more details on this approach. The Riemannian metric (M(x))x∈Ω is
a symmetric positive matrix 3×3 field defined on the computational domain:

M : x ∈ Ω 7→ M(x) = R(x) Λ(x) tR(x), (28)

where diagonal matrix Λ(x) is λ1(x)
λ2(x)

λ3(x)

 =

 h−2
1 (x)

h−2
2 (x)

h−2
3 (x)

 . (29)

R(x) is an orthonormal matrix providing the local orientation of mesh stretch-
ing through the eigenvectors (vi(x))i=1,3, (λi(x))i=1,3 are the local eigenval-
ues. (hi(x))i=1,3 = (λi(x)− 1

2 )i=1,3 are the local mesh sizes along the principal
directions p1,M, p2,M, p3,M of M defined by:

pk,M(x) = R(x) ek
tR(x) (30)

where e1, e2, e3 are the three Cartesian unitary vectors in x, y, z directions.
The density d (number of continuous vertices per unit of volume) of M is
defined from its eigenvalues as

d(x) = det
(
M(x)

) 1
2 = (λ1(x) λ2(x) λ3(x))

1
2 = (h1(x) h2(x) h3(x))−1 .
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We decompose M as follows:

M(x) = d
2
3 (x) R(x)

 r
− 2

3
1 (x)

r
− 2

3
2 (x)

r
− 2

3
3 (x)

 tR(x)

where the ri’s define the stretching strength and where the density d controls
the local level of accuracy of M. The complexity C of M, refering to the
computational cost is defined as the total number of continuous vertices in
the computational domain:

C(M) =
∫

Ω
d(x) dx =

∫
Ω

√
det(M(x)) dx.

A discrete tetrahedrization H is a unit mesh for the metric M if any of
its edges ab has a length in the metric sufficiently close to unity :

1√
2

≤
∫ 1

0

√
tab M(a + t ab) ab dt ≤

√
2

Lastly, we call refinement the process which replaces a unit mesh of a given
metric M with local mesh size (h1(x) h2(x) h3(x)) by a unit mesh of M/β2

with local mesh size (βh1(x) βh2(x) βh3(x)) and complexity C(M/β2) =
β3C(M) where refinement factor β is smaller than one 1 .

3.2 Adaptation sensor for compressible flow
3.2.1 Feature-based adaptation sensor

In the case of a steady RANS calculation of a compressible flow, an efficient
approach is to minimize the L4 norm of interpolation error on the Mach
number [1][11]. The local interpolation error eM (31) is evaluated in terms of
the Hessian HM of Mach number M and of the metric M used for generating
the mesh:

eM(x) = (M − πMM)(x) = 1
10

trace
(
M(x)− 1

2 |HM(x)| M(x)− 1
2
)
, (31)

1For β = 2 this refinement is equivalent to dividing mesh size by a factor 2 and multi-
plying the number of vertices in 3D by a factor 8.
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in which x ∈ Ω, (vi)i=1,3 are the local eigen-directions of M, and (hi)i=1,3 are
the local sizes of M along these directions. This local error 2 is a spatially
second-order error. In order to take into account boundary layers in good
conditions, it has been observed (see again [1] [11]) that the error norm to
be minimized is an L4 norm. The mesh adaptation problem is then written:

Find M1 = Arg min
M

∫
Ω

(
trace

(
M(x)− 1

2 |HM(x)| M(x)− 1
2
))4

dΩ (32)

under the constraint that the complexity, or integral of the metric density is
equal to a specified number N :

C(M) =
∫

Ω
d(M)dΩ = N.

Expressing via (31) the functional (32) in terms of HM and assuming that this
Hessian is sufficiently smooth, the solution of this constrained optimisation
problem can be explicitly computed [1][11]:

M1 = D1 det(|HM |)
−1
11 |HM |, with D1 = N

2
3

(∫
Ω

det(|HM |)
4

11 dΩ
)− 2

3

.(33)

3.2.2 Goal-oriented adaptation sensor

We consider the Goal Oriented unsteady formulation as it is introduced in
[7] and its extension to RANS as presented in [6, 11]. We keep the notations
of these papers. We want to minimize the error (g, W − Wh) committed in
the approximation of the functional (or scalar output):

j = (g, W ),

where W is the exact solution of the state equation (24,25) and Wh the
approximate solution. Let us introduce the adjoint state W ∗, solution of the
adjoint system:(∂ΨDDES

∂W

)∗
W ∗ = g. (34)

2eM is an a priori error when we consider that M is the exact Mach number field. In
practice, it will be an a posteriori error since eM will be computed from a discrete solution
through a recovery technique.
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We reproduce now in short the error estimate developed in [19],[7],[6][2].
The functional error estimates writes:

|(g, Wh − W )| ≈ Ep
space(M) (35)

with
Ep

space(M) ≈∫ T

0

∫
Ω

|W ∗||
(
W − πMW

)
t
+ SDDES(W ) − πMSDDES(W )

)
| dx dt

+
∫ T

0

∫
Ω

|∂FDDES

∂W
· ∇W ∗| |W − πMW |dx dt

+
∫ T

0

∫
Γ

|W ∗| |(F̄DDES(W ) − πMF̄DDES(W )) · n| dΓ dt.

Neglecting the boundary term, we get:

Espace(M) ≈
∫ T

0

∫
Ω

trace
(

M− 1
2 (x, t) H(x, t) M− 1

2 (x, t)
)

dx dt,

(36)

with H(x, t) = |W ∗
t + W ∗ ∂SDDES

∂W
+ ∂FDDES

∂W
· ∇W ∗| |H(W )| ,

(37)

where H(W ) is the Hessian of W .

Lemma 3.1. Unified numerical error criterion. The two numerical er-
ror criteria, namely (31,32,33) for the feature-based option and (35,36,37) for
the Goal-Oriented option, examined previously, and the related optimization
problems can be unified as follows:

Mnum(x) = Rnum(x)

 h1,num(x)
h2,num(x)

h3,num(x)

 tRnum(x)

Mnum = Argmin E(M) = Argmin
∫ T

0
Espace,t(M, t) dt with

Espace,t(M, t) =
∫

Ω

[
trace

(
M− 1

2 (x, t) H(x, t) M− 1
2 (x, t)

) ]p

dx,

(38)
where :
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- in the Feature-Based case, a sensor M is computed from W , setting
H = HM .

- in the Goal-Oriented case, p = 1, and W ∗ is the adjoint state, H is
defined as in (37).
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Since the flow of interest is quasi-steady in a large part of the computa-
tional domain, we keep the metric Mnum resulting from the optimization of
the numerical error functional E(M) as a basis for the proposed extension
to LES/DDES.

3.3 Toosi-Larsson adaptation step
A simplified way to explain the Toosi-Larsson method [28] is to consider:
- an anisotropic Cartesian mesh available with Cartesian directions nx, ny, nz,
- three test filters evaluated on the flow in these three directions,
- then new local mesh sizes in these directions ∆x(x, nx), ∆y(x, nx), ∆z(x, nx),
x ∈ Ω, are defined, defining a new adapted mesh, with variation of mesh size
and stretching, but with the same principal directions.

We propose here an extended approach for the case of a metric-based
anisotropic mesh. Let Mnum be one of the two metrics defined in (38) with
local mesh sizes (h1,num(x), h2,num(x), h3,num(x)) according to (29) and Hnum

a unit mesh of Mnum. We start from a LES or hybrid simulation performed
on mesh Hnum and using a LES a filter size:

∆̄0(x) = (h1,num(x)h2,num(x)h3,num(x))
1
3 .

Then three test filters are built in principal directions (pk(x)), k = 1, 3 of
Mnum (according to the definition in (30)),

nk(x) = ∆̂nk
(x)pk,M0(x) (39)

having the length

||nk(x)|| = ∆̂nk
(x) = 2∆̄(x) k = 1, 3. (40)

The test filter width = ∆̂nk
will vary in the neighbohood of a reference width:

||nk,0(x)|| = ∆̂nk,0(x) = 2∆̄0(x) k = 1, 3. (41)

We consider the effect of the test filter, which we denote .̂(nk). The error
source term (14) becomes in the compressible case:

F̂
(nk)

i (x) = ∂

∂xj

(
τmodel

ij (û(nk)) − ̂τmodel
ij (u)

(nk)
− Mij

)
. (42)
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where

Mij = ρ̂uiuj

(nk)
−

( ρ̂ui

(nk)
ρ̂uj

(nk)

ρ̂
(nk)

)
(43)

It can be shown [14] that the SGS and the sub-test stress tensors are
related by the following identity :

Lij = ̂̄ρũiũj

(nk)
− 1̂̄ρ(nk)

( ̂̄ρũi

(nk) ̂̄ρũj

(nk))
= Mij − M̂

(1)
ij

(nk)
. (44)

Let us denote
Lij = Lij − 1

3
Lkkδij. (45)

Then, to each test filter nk corresponds an error source term

F̂
(nk)

i (x) = ∂

∂xj

(
τmodel

ij (û(nk)) − ̂τmodel
ij (u)

(nk)
− Lij

)
. (46)

From (44),(45) and (46), we deduce :
Lemma 3.2.

F̂
(nk)

i (x) = ∂

∂xj

(
(C∆̄2)¯̂ρ|S̃|P̃ij

(nk)
− (C∆̄2)

(∆̂(nk)

∆̄

)2 ̂̃ρ(nk)
|̂̃S(nk)

| ̂̃Pij

(nk)

−̂̄ρũiũj

(nk)
+ 1̂̄ρ(nk) ( ̂̄ρũi

(nk) ̂̄ρũj

(nk)
) + 1

3

(
̂̄ρũlũl

(nk)
− 1̂̄ρ(nk) ( ̂̄ρũl

(nk) ̂̄ρũl

(nk)
)
)

δij

)
i = 1, ..., 3, k = 1, ..., 3..□.

(47)
In the Piomelli dynamic formulation, C (or C∆̄2) is the unknown scalar

parameter to be choosen at each point of the computational domain in
order to optimize the efficiency of the LES model. In the present analy-
sis, C∆̄2 is known, and the optimization variables are the three filter sizes
∆̂(n1), ∆̂(n2), ∆̂(n3). We observe that, when we freeze all the filtered terms,
∆̂(nk) appears explicitly in (47) under the form of a quadratic term. But for
all “hat” filtered quantity, we remark that they approximatively differ from
the non-filtered quantity by a rest proportional to the product of square of
filter width times a second derivative of unfiltered quantity. However, fol-
lowing [28], and for the sake of simplicity, we work in the neighborhood of a
LES filter width ∆̄0:

F̂
(nk,0)

i = F̂
(nk)

i |∆̄=∆̄0,∆̂(nk)=∆̂(nk,0)=2∆̄0
, i = 1, ..., 3, k = 1, ..., 3. (48)
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In the neighborhood of ∆̄ = ∆̄0, ∆̂(nk) = 2∆̄0, we approximate the variation
of F̂

(nk)

i in the neighborhood of nk,0 with the following quadratic formula:

F̂
(nk)

i ≈
(∆̂(nk)

2 ∆0

)2
F̂

(nk,0)

i i = 1, ..., 3, k = 1, ..., 3, (49)

We observe that this approximation of an error term for LES is coherent with
the fact that the LES model is obtained by perturbating the Navier-Stokes
model by the SGS term which is of second order with respect to the mesh
size ∆̄. We introduce the notations:

∆k = ∆̂(nk)

2
; Gk = ∆̄−2

(
⟨F̂

(nk,0)
, F̂

(nk,0)
⟩
) 1

2
k = 1, ..., 3, (50)

where the scalar product ⟨a, b⟩ =
∑

i=1,3 aibi. We shall now find the following
metric (aligned with numerical metric Mnum defined in (38)):

M(x) = Rnum(x)

 (h1,num

∆ ∆1)−2(x)
(h2,num

∆ ∆2)−2(x)
(h3,num

∆ ∆3)−2(x)

 tRnum(x)

which minimizes the functional:

e(∆1, ∆2, ∆3) =
∫

Ω

(
G2

1∆4
1 + G2

2∆4
2 + G2

3∆4
3

) 1
2 dx (51)

under the constraint:
C(M) = N

where N is prescribed by the user. We observe that the complexity writes:

C(M) =
∫

Ω
∆̄3(h1h2h3∆1∆2∆3)−1dx

which reduces the problem to a minimization with respect to (∆1, ∆2, ∆3)
under the constraint that the integral of their product is specified. Let us
denote by (∆opt

1 , ∆opt
2 , ∆opt

3 ) the solution of the minimization problem and:

ζopt =
(

∆opt
1 ∆opt

2 ∆opt
3

)−1
.
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In any point x, knowing solely ζopt, we can deduce the ∆opt
k ’s since the

(squared) value of the integrand

g(x) = G2
1(x)∆4

1(x) + G2
2(x)∆4

2(x) + G2
3(x)∆4

3(x)

must be minimized with respect to the ((∆opt
1 )4, (∆opt

2 )4, (∆opt
3 )4), with the

constraint that their product (ζopt)−4 is given. This implies that

G2
1(x)(∆opt

1 )4(x) = G2
2(x)(∆opt

2 )4(x) = G2
3(x)(∆opt

3 )4(x) =(
(ζopt)−4G2

1(x)G2
2(x)G2

3(x)
) 1

3 (52)

or, for k = 1, 3:

∆opt
k (x) = (ζopt)− 1

3

(
G1(x)G2(x)G3(x)

) 1
6
(

Gk(x)
)− 1

2
.

It remains to minimize

K(ζ) =
∫

Ω
K(x)ζ− 2

3 (x)dx

with

K(x) =
( k=3∑

k=1

G2
k

(
G1(x)G2(x)G3(x)

) 4
6
(

Gk(x)
)− 4

2
) 1

2

under the constraint
∫

Ω ζ(x)dx = N . The resolution of this minimization
problem gives:

K(x)ζ− 5
3 (x) = const. ⇒ ζ(x) = const.−

3
5 K(x)

3
5

N =
∫

Ω
ζdx = const.−

3
5

∫
Ω

K
3
5 dx ⇒ const.−

3
5 = N

( ∫
Ω

K
3
5 dx

)−1

ζopt(x) =
( ∫

Ω
K

3
5 (x′)dx′

)−1
K(x)

3
5 N (53)

and

∆opt
k (x) =

(
G1(x)G2(x)G3(x)

) 1
6
(

Gk(x)
)− 1

2
( ∫

Ω
K

3
5 (x′)dx′

) 1
3
K(x)− 1

5 N− 1
3 .

(54)
In practice we think it is better that the initial metric M0 defining the

filter should be the metric defining the previous mesh while the test filter
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directions will be chosen from the novel mean flow adaptation metric M1.
then the metric adapting to both Mach field and LES would write:

MH,DDES(x) = R1(x)

 (h1
1∆1
∆̄ )−2(x)

(h1
2∆2
∆̄ )−2(x)

(h1
3∆3
∆̄ )−2(x)

 tR1(x).

This step will probably increase the complexity C(MH,LES) which will be
larger than N . A final step of renormalization is then necessary:

Mnew
H,DDES = N

2
3

(
C(MH,DDES)

)− 2
3 MH,DDES.

4 Space and time approximation
The optimal continuous metric has been obtained as the solution of a contin-
uous non-linear system. In practice, we discretize all continuous ingredients,
expressing the dependancy of a discrete flow field WH to a discrete metric
M, via the construction of a unit mesh H of the metric M and the solution
on the mesh of discrete CFD system to get WH:

M 7→ H 7→ WH. (55)

We use a single mesh for the whole time interval of LES or hybrid computa-
tion.

Then we apply to the discrete nonlinear optimality system a fixed point
iteration in order to obtain the optimal metric and mesh.

4.1 CFD numerics
The CFD software used in this paper is the NiceFlow software of Lemma.
It relies on the vertex-centered MUSCL approximation for tetrahedrizations
described in details in Section 1.2 of [11], see also [6] for the description of
a similar computer code. NiceFlow involves the mesh adaptation function-
alities ([11],[6]) used in this study: computation of metric-based adaptation
criteria, regeneration of adapted anisotropic meshes.
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4.2 Implementation of LES criterion
4.2.1 LES filter

The SGS term is assembled by element and the filter size ∆̄ = (h1h2h3)
1
3 is

evaluated from the volume of the local element jt:

∆̄|jt =
(
vol(jt)

) 1
3 .

4.2.2 Test filter

In [20] an isotropic test filter is built at each vertex is from a mean on the
elements jt which have is as vertex, which we write jt ∋ is:

ŵ(is) =
( ∑

jt∋is

∑
js∈jt

vol(jt)
)−1 ∑

jt∋is

∑
js∈jt

vol(jt) w(js) (56)

where the
∑

js∈jt means the sum over the vertices js of element jt and vol(jt)
holds for the volume of element jt. It results that the integration area of the
test filter is the P1 basis function support, or union of elements around a
vertex. Equivalently, the test filter is a mean on the set of neighboring
elements, of volume V olis =

∑
jt∋is vol(jt). Defining as Nis the number

of elements having vertex is as a vertex, and assuming that the volume of
elements around vertex is is close to vol(jt) for a element containing is, then
V olis ≈ Nisvol(jt). Taking vol(jt) as the integration area of the model filter,
we can set:

∆̂
∆

= N
1
3

is .

As anisotropic test filter directions, we use the principal directions pk,M
(see (30)) of the background RANS/hybrid metric:

nk = 2∆̄ pk,M.

The anisotropic filter according to vector nk, that is, aligned with the unit
vector pk,M, and of filter width 2∆̄ writes:

ŵ(is)
k

=
∑
jt∋is

∑
js∈jt

vol(jt)|⟨ isjs
|isjs|

, nk⟩| w(js)
( ∑

jt∋is

∑
js∈jt

vol(jt)|⟨ isjs
|isjs|

, nk⟩|
)−1

(57)
where isjs is the vector from vertex is to vertex js.
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5 Adaptation algorithm
The adaptation algorithm solves the discretization of the optimality condi-
tions for the optimal metric. The flows under study are unsteady. In order to
apply mesh adaptation, we shall use a version of the Transient Fixed Point
introduced in [3]. A sketch of this algorithm is given by Algorithm 1.

Algorithm 1 Transient Fixed Point
Given a complexity Nprescribed, an initial metric, M0 of complexity c0,
build a unit mesh H0 from M0
For iadapt = 0, nadapt

• Compute over [0, T ] the flow Wiadapt from with mesh Hiadapt

• Compute the kmax new metrics Mk
iadapt+1 of complexity Nprescribed each

taking into account the flow over [tk, tk+1].

• Compute the kmax new meshes Hk
iadapt+1 from Mk

iadapt+1

• iadapt = iadapt + 1

End for iadapt

Let us assume that Algorithm 1 iteratively converges (when iadapt in-
creases to infinity) to a fixed point (W∞, M∞). Then this fixed point is a
numerical flow computed on a succession of meshes Mk

∞, k = 1, kmax, each
mesh Hk

∞ being adapted to the best approximation (in some sense) of the
flow on time interval [tk, tk+1]. Further, the sum of the complexities of the
different meshes for k = 1, kmax is the global complexity kmaxNprescribed.

As in the previous chapter, since we are interested by vortex shedding
flows past blunt bodies, we shall work with the single-mesh option of the
transient fixed point. Indeed, we want to work with only one mesh for the
whole time interval, and we put:

kmax = 1 . (58)
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6 Numerical applications
In this first application of the proposed mesh adaptation method, we concen-
trate on the flow around a circular cylinder, and in particular on two typical
flows, depending of their Reynolds number:
- a typical subcritical flow is the flow a Reynolds number 3900 in which the
boundary layer is said a laminar one, while the detached wake is turbulent,
- a typical supercritical flow if Reynolds 1 Million, in which both boundary
layers and wake present turbulent characteristic.
Here subcritical and supercritical refer to the drag crisis Reynolds numbers
around 300000 at which the drag decreases rapidly.
- a flow past a wing.
- a flow around a tandem cylinder.

6.1 Subcritical flow calculation with adaptation
The subcritical cases are flows around a circular cylinder at Reynolds num-
ber 3900 and 20K. Several computations and measurements are described
in Chapter 6. The boundary layer being of laminar regime (although par-
ticipating to the mechanism of the turbulent global flow), the state-of-art
modelisation for this flow is to apply a LES model of medium sophistication.
We choose the combination of the VMS formulation with the WALE SGS
model, as described in the chapter recalling some turbulence models.

A first mesh-adaptive calculation uses the Hessian of Mach number as
anisotropic adaptation criterion, with the L4 norm, according to the results
of available experiments, see for example [?]. For the same reasons as for the
space-time adaption study of Chapter 8, this unsteady flow is adapted with
a mesh unchanged during the time interval , using the single-mesh transient
fixed point.

6.1.1 Re = 3900

First, let us take a look at Figure 1 to see what our algorithm produces for
∆opt

1 /∆̄. Note that this value varies enormously, from 10−4 to 86. Keeping
in mind that this value multiplies the local mesh size h1 we decide to reduce
the range of possible values for ∆opt

1 /∆̄ (Figure 2).
In the mesh adaptation method of this chapter, the detection of vortices

is translated in a field of multiplicative factors of the local mesh size. This
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field is depicted in Figure 2.
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Figure 1: Instantaneous value of ∆opt
1 /∆̄ for flow around a cylinder at

Re = 3900. These values are those given by the algorithm without clamping.
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Figure 2: Instantaneous value of ∆opt
1 /∆̄ for flow around a cylinder at

Re = 3900. These values are those given by the algorithm with a choosen
clamping.

The resulting mesh is presented in Figure 3 where the region one diameter
after the cylinder received a supplement of vertices.
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Figure 3: Cylindre Re = 3900 VMS-WALE results : Top, mesh obtained with
the new LES criterion (around 400K vertices), and bottom, mesh obtained
with Mach criterion only (around 300K vertices).
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Figure 4: Cylindre Re = 3900 VMS-WALE results : Top, vorticity obtained
with the new LES criterion, and bottom, vorticity obtained with Mach crite-
rion only.

6.1.2 Re = 20 000

For this test case, we compare the results obtained in Chapter 6 with those
obtained for our new method. Looking at the meshes obtained in Figure
6, we do not see any drastic change, even if the back body for the mesh
obtained with our new theory seems more remeshed. Nevertheless, Figure 1
shows that our vorticity field is captured with much greater precision.
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Figure 5: Cylindre Re = 20K VMS-WALE results : Top, vorticity obtained
with the new LES criterion, and bottom, vorticity obtained with Mach crite-
rion only.
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Figure 6: Cylindre Re = 20K VMS-WALE results : Top, mesh obtained with
the new LES criterion (around 1M vertices), and bottom, mesh obtained with
Mach criterion only (around 1.1M vertices).
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Figure 7: Instantaneous value of ∆opt
1 /∆̄ for flow around a cylinder at

Re = 20K. These values are those given by the algorithm with a choosen
clamping.

6.2 Mesh adaptive computation of a supercritical flow
At a Reynolds of 1M, the flow around the circular cylinder is supercriti-
cal, with a completely turbulent boundary layer. Computing with LES this
boumdary layer is very expansive, and therefore such a strategy is not useful
in industrial studies. However, this type of flow is frequently met in industry.

As options in NiceFlow, we start from the anisotropic mesh adaptation
approach which was proven as very efficient for steady RANS flows, see for
example [1],[11], and unsteady RANS, see [4].

For addressing both RANS regions and LES-type regions, we apply the
DDES available in NiceFlow, defined initially in [?] also described in Chapter
3. This model is hybrid in the sense that in some “LES” regions, the model
viscosity is very small, comparable to a SGS viscosity, while not being a
Smagorinsky-like viscosity.

The rest of the algorithm which we apply is identical to the one applied
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to the two previous subcritical flows, with two stages of adaptation criteria:
a Mach-Hessian criterion and its correction with the Toosi-Larsson analysis.

At this Reynolds number and with a limited number of vertices (around
1M), the DDES calculation produces a poorly fluctuating flow, although the
model DDES viscosity is much lower in the wake than the RANS viscosity.
We estimate that a more fluctuating solution would be obtained by running
DDES with something like 3 times mode vertices. Our development was done
on a lap top with 4 processors. A more ambitious calculation is starting but
will take weeks.

However, the results are reasonable without the LES criterion and im-
proved with the LES criterion.
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Figure 8: Cylindre Re = 1M DDES results : Mesh (left) and Mach field
(right) in cross-section for the new LES criterion. The mesh is around 1M
vertices.
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Figure 9: Instantaneous value of ∆opt
1 /∆̄ for flow around a cylinder at

Re = 1M . These values are those given by the algorithm with a choosen
clamping.

7 Concluding remarks
Anisotropic mesh adaptive CFD brings an important progress for applied nu-
merical CFD. No more engineering time is spent for building meshes. Numer-
ical results are mostly free of uncertainty concerning approximation errors.
Our contribution aims at improving hybrid RANS/LES industrial calcula-
tions by proposing an anisotropic mesh adaptation.

To extend anisotropic mesh adaptation to the hybrid modelization, we
propose a hybrid mesh adaptation. Indeed, LES error criteria are not able to
refine many flow details like laminar boundary layers as well as RANS bound-
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ary layers. In contrast, the RANS-based mesh adaptation, in its feature-
based or goal-oriented versions, contributes to a good global capture of the
overall flow. For LES regions, we further adapt by extending the analysis of
Toosi and Larsson which is based on the source term of LES-error equation.
This second criterion is combined with the RANS criterion as a correcting
factor for it. The combination is applied inside a transient fixed point adap-
tation algorithm with the option of using a single adapted mesh for the whole
time interval.

Numerical examples concerning subcritical and supercritical vortex shed-
ding flows past a circular cylinder. The subcritical cases uses a pure LES
CFD model. The supercritical case applies our analysis to a DDES CFD
model. Both experiences demonstrate the improvement brought by the pro-
posed approach.

Of course these rather preliminar results should be completed by various
other calculations before the efficiency of the new method is well delimited.

Several future methodological investigations can be identified.
- Our option of using a single mesh for the whole time interval (i.e. ktmax = 1)
will be reconsidered and multiple mesh investigations will be undertaken in
order to determinate in which conditions this second option is of interest.
- An important sequel of this developement would be to extend the analysis
to the so-called goal-oriented analysis. In [10], the goal oriented analysis per-
mitted to look for the best mesh for propagating an acoustic wave produced
by an artificial acoustic source. With the new criterion, noise production by
turbulence could be addressed.
- The introduction of the space-time adaptation as in [23] will be of interest
in order to compute with optimally chosen time steps.
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