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Abstract

The purpose of our study is to propose the com-
bination of a space-time anisotropic mesh adaptation
with a novel hybrid RANS/LES modelization. We first
discuss the design of an hybrid model able to address
a sufficiently large class of flows around obstacles.
A RANS model is enriched with an intermittency
equation and associated with a LES model in some
regions of the flow. Second, a strategy is proposed
to adapt the mesh for a better capture of unsteady
behaviors. The adaptation is metric based, space and
time. The new methods are applied to flows around
cylinders and airfoils.
Keywords: turbulence, RANS, DDES, hybrid
RANS/LES, Variational Multi-scale

1 Introduction

We propose to address the increasing complexity
of industrial flows by extending the predictivity of hy-
brid models by the introduction of intermittency to-
gether with making easier the research of efficient and
converged space and time approximations by introduc-
ing adaptation algorithms.

2 Modelization:

The base ingredients of our hybrid turbulence
strategies are:
• Baseline RANS components: two low Reynolds
RANS models are used in our hybrid models, more
specifically they are the k−εmodel proposed in Gold-
berg et al. (1998) and the k −R model recently intro-
duced by Zhang et al. (2020). They have been chosen
for their abilities to properly predict separated flows
with adverse pressure gradients.
• Transition model for boundary layer: Let Pk =
τ : ∇u and Dk = ρε be the turbulent kinetic en-
ergy production and destruction terms. Let us define
the laminar and turbulent flow regions in the boundary

layer:

L = {x ∈ Ωf | Reθ(x) < Reθ,S(x)},
Tu = complement(L),

where Reθ denotes the Reynolds number based on the
boundary layer thickness which is defined by Reθ =
0.664

√
Re|x|.
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with

Fλ =

{
6.91 + 2.48λ− 12.27λ2, λ > 0,

6.91 + 2.48λ+ 63.64λ2, λ < 0.

and
λ = 0.6642 1

Re

∂ux
∂x

(x− x0)

where x0 denotes the abscissa of the front body point.
Following the work of Menter et al. (2015) and the
works of Akhter et al. (2007, 2009, 2015), the present
transition model is defined as follows :

∂ρk

∂t
+∇ · (ρuk) =

P̃k − D̃k +∇ · [(µ+ µtσk)∇k]

∂ρε

∂t
+∇ · (ρuε) =

(cε1Pk − cε2Dk + E)T−1
t +∇ · [(µ+ µtσε)∇ε]

∂ργ

∂t
+∇ · (ρuγ) =

cg1γ(1− γ)Pk

k + ρcg2
k2

ε ∇γ · ∇γ+
∇ · [σγ(µ+ µt)∇γ] .

The intermittency model interacts with the turbulence
model by modifying the turbulent kinetic energy equa-
tion. The new production and destruction terms are
defined by :

P̃k =

{
0 if x ∈ L,

max (γ, γ1)Pk otherwise.

D̃k =

{
0 if x ∈ L,

max (γ, γ2)Dk otherwise.



Figure 1: Time splitting of the Transient Fixed Point mesh
adaptation algorithm. Sub-intervals (in green)
used for the transient process and timesteps (in
red).

where the model constants are defined by γ1 = 0 and
γ2 = 0.1. From the above equations, one can notice
that the baseline RANS model is recovered for an
intermittency value γ = 1 (fully turbulent mode). A
zero normal flux is also imposed on γ at the wall.
• DDES component: in this work, the classical
DDES approach , Spalart et al. (2006), is based either
on the Spalart-Allmaras model or the k − ε model of
Goldberg et al. (1998).
• LES-like component: the DVMS approach pro-
posed in Moussaed et al. (2014) is used as the
LES part of our hybrid models. In this approach,
the variational multiscale (VMS) model, aiming to
limit the effects of the subgrid-scale (SGS) model
to the smallest resolved scales, is combined with
the dynamic procedure which provides a tuning of
the SGS dissipation in space and time, so that the
resulting DVMS model enjoys synergistic effects.
• Hybrid models Our hybrid strategies blend either a
RANS or DDES model with the DVMS approach.

3 Mesh adaptative discretization :
The baseline discretization is an upwind, ver-

tex centered, finite-volume approximation on tetrahe-
dra. Diffusion terms are accounted for with the P1-
Galerkin approximation. The numerical diffusion in-
volved in upwinding is made of sixth-order derivatives
of primitive variables.

The capture of high Reynolds number flows with a
mesh adaptation algorithm demands an algorithm able
to find the boundary layer when starting from a uni-
form flow. This is obtained by using (1) an adequate
adaptation criterion and (2) a stable and convergent
fixed point for the coupling of flow and mesh. Main
principles for a successful adaptation can be found in
Dervieux et al. (2022). The transient fixed point (TFP)
was introduced and discussed in Alauzet et al. (2002)
and Alauzet et al. (2007). The simulation time frame
[0, T ] is split into several subintervals (Figure 1):

[0, T ] = [0 = t0, t1]∪...∪[ti, ti+1]∪...∪[tn−1, tn = T ].

The TFP is extended as in Sauvage et al. (2023) by
defining a space-time continuous mesh
(M, τ, nstep) as the knowledge of the following in-
gredients:

- a number nstep of time intervals.
- a timestep function: t ∈]0, T [ 7→ τ(t) ∈]0, T [ valid in
the sense that

∫ T
0

(τ(t))−1dt = nstep.
- for every t ∈]0, T [ a spatial metric M(t),
constant on each subinterval, of spatial complex-
ity n(t) = Csp(M(t)).The space-time complex-
ity C(M, τ, nstep) of a space-time continuous mesh
(M, τ, nstep) is:

C(M, τ, nstep) =

∫ T

0

Csp(M(t))(τ(t))−1dt. (1)

To any space-time continuous mesh (M, τ, nstep)
corresponds an estimate of the resulting error of a cal-
culation working on the space-time mesh build with it.
With a BDF2 time advancing scheme and a second-
order spatial approximation, this estimate can be (in
practice we choose p = 4):

E0(Mh, τ) =

∫ T

0

∫
Ω

[
(τ2|∂

3u

∂t3
|+∆xHu ∆x

]p
dtdx.

(2)
The sensor u is in our examples taken as the lo-
cal Mach number of the computed flow. Minimiz-
ing the error E0(Mh, τ) with respect to (Mh, τ) un-
der the constraint of a fixed space-time complexity
C(M, τ, nstep) = Nprescribed can be done analyti-
cally, allowing the building of a new space-time mesh.
The process is repeated in the TFP loop.

In the approach chosen here, we restrict to LES
flows for which a global shedding period Ts can be
estimated, and we use Ts as the size of the subinter-
vals. Due to quasi-periodicity, the different subinter-
val meshes are very similar, and we reduce them to
an unique mesh in which quasi-steady features like
boundary layers are accurately followed by the mesh,
while unsteady vortices travel in a rather uniformly re-
fined region.

4 Impact of the intermittency model:
The new intermittency model has been tested on

the flow past a cylinder at Reynolds number around
the drag crisis. At Reynolds 3900, the physical bound-
ary layer is laminar, the intermittency model inhibits
the statistical model and numerically predicts the lam-
inar boundary layer (Figure 2). The quality of the pre-
diction is of same level as with a pure LES calcula-
tion, e.g. by Moussaed et al. (2014). At Reynolds
380K, the physical boundary layer presents a dissym-
metry between top and bottom, one layer being lami-
nar while the other one is turbulent. This is well pre-
dicted with the help of the intermittency model, Figure
3. At Reynolds 1M the physical boundary layers are
both turbulent and are again well predicted by the pro-
posed model, Figure 4. The improvement carried in
drag prediction by the intermittency equation is put in
evidence in Figure 5.

The new intermittency model is now applied to the
flow around a 3D wing based on the NACA0018 air-



Figure 2: Flow around a cylinder: impact of the intermit-
tency model on the drag crisis prediction, vorticity
at Rey=3900

Figure 3: Flow around a cylinder: impact of the intermit-
tency model on the drag crisis prediction, vorticity
at Rey=380K

Figure 4: Flow around a cylinder: impact of the intermit-
tency model on the drag crisis prediction, vorticity
at Rey=1M

Figure 5: Flow around a cylinder: impact of the intermit-
tency model (in red) on the drag crisis prediction,
in contrast with the same base model, without in-
termittency (blue).

Figure 6: Flow around NACA0018 wing, α = 0 degree.

foil. At zero angle of attack, the slight vortex shed-
ding is captured, Figure 6. For the intermediate α =
6 degrees case, the unstable extrados boundary layer
is also predicted (Figure 7). The α = 15 degrees case
is depicted in Figure 8 and global behavior of the pre-
diction is in accordance with experiments of Nakano et
al. (2007), of Du (2016), and of Boutilier et al. (2012).

5 Mesh adaptative computations
We essentially present experiments performed with

2D test cases.

• Flow around a cylinder
We present 2D computations of a flow around a

cylinder at Reynolds number 3900 with the Spalart-
Allmaras turbulence model. Mesh adaptation options
are :
- only one time interval, therefore only one adapted
spatial mesh.
- the Space-Time complexityNst is prescribed succes-



Figure 7: Flow around NACA0018 wing, α = 6 degrees.

Figure 8: Flow around NACA0018 wing, α = 15 degrees.

Figure 9: Cylinder at Reynolds number 3900. Example of
adapted mesh.

sively to 10M, 20M, 100M, 200M.
An example of adapted mesh is given in Figure 9.
Space-time statistics are presented in Table 1. We ob-

Nst k Csp # ∆t Esp Etime
10M 1 27K 361 5.2 10−3 3.1 10−5

10M 5 60K 166 2.9 10−3 3.1 10−3

20M 1 44K 456 3.3 10−3 3.1 10−5

20M 5 84K 237 2. 10−3 8.2 10−4

100M 1 128K 780 1. 10−3 3.1 10−5

100M 5 173K 575 9.4 10−4 8.8 10−5

200M 1 203K 982 7.1 10−4 3.1 10−5

200M 5 225K 887 7.1 10−4 4. 10−5

Table 1: Space-time statistics for circular cylinder case
at Reynolds number 3900. k is the number of
fixed points, Csp holds for the spatial complexity
(≈ number of space nodes), # ∆t for the number
of time steps, Esp and Etime for the resulting space
and time error integrals.

serve that space error and time error tend to equili-
brate, but yet imperfectly.

• Flow around an airfoil

The second case is the flow around a NACA0021
at Reynolds number 270K and an angle of attack 60
degrees, again with the Spalart-Allmaras turbulence
model. Mesh adaptation options are :
- only one adapted spatial mesh,
- Space-time complexity is prescribed to 10M, 20M,
100M, 200M.
An example of adapted mesh is presented in Figure 10.
Space-time statistics are presented in Table 2.

In Figure 11, the adaptive time step (function of
physical time) produced by the space-time optimiza-
tion is depicted, showing the increase of time-step, re-
ducing computational cost while preserving the global
accuracy.



Figure 10: Naca0021 at high angle of attack. Example of the
adapted mesh.

Nst k Csp # ∆t Esp Etime
2M 1 1766 1132 1.7 10−1 2.4 10−6

2M 10 16K 123 2.6 10−2 1.3 10−2

4M 1 2804 1426 1. 10−1 2.4 10−6

4M 10 23K 172 1.9 10−2 4.6 10−2

8M 1 4451 1797 6.8 10−2 2.4 10−6

8M 10 31K 261 1.4 10−2 6. 10−3

16M 1 7066 2264 4.3 10−2 2.4 10−6

16M 10 42K 384 1.1 10−2 2.3 10−3

32M 1 11K 2852 2.7 10−2 2.4 10−6

32M 20 57K 558 7.5 10−3 1.8 10−3

Table 2: Space-time statistics for NACA0021 at Reynolds
number 270K.

Figure 11: Bottom: Timestep lengths of initial flow at
CFL=50, 1132 timesteps on 1766 vertices, and
top: first timestep lengths proposed by the adap-
tation algorithm, 123 timesteps on 16K vertices.

In Figure 12 we present the evolution (with Tran-
sient Fixed point Iterations) of the two components of
the error, converging to each other.

Figure 13: Flow around NACA0018 at 15 degrees angle of
attack. LES-adapted mesh with an instantaneous
flow obtained with it (velocity magnitude).

Figure 14: Flow around NACA0018 at 15 degrees angle of
attack. LES-adapted mesh with an instantaneous
flow obtained with it (velocity magnitude).

Figure 12: Evolution of theorical space error Esp (top) and
time error Etime (bottom) with TFP iterations.

The novel mesh adaptation approach has been
tested on the 3D unsteady flow around a NACA0018
at an angle of attack of 8 degrees. The VMS model is
applied and produces a rather unsteady flow for which
the adaptation is able to both concentrate anisotrop-
icly on boundary layers and manage a rather uni-
form for large structures propagation, Figures 13,14.

The method is also being applied to a MRF flow
(Chargy and Sauvage, 2022) around a Caradonna-
Tung wing rotating above a Robin helicopter shape,
Figures 15,16.
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Figure 15: Flow around a Caradonna-Tung wing rotating
above a Robin helicopter. LES-adapted mesh.

Figure 16: Flow around a Caradonna-Tung wing rotating
above a Robin helicopter. An instantaneous flow
obtained with the adapted mesh (velocity magni-
tude).

project, grant ANR- 19-CE40-0020-01 of the French
National Research Agency. The authors gratefully
acknowledge GENCI for granted access to HPC re-
sources through IDRIS (grant 2022-A0132A05067)
and CINES (grants 2021-A0102A06386 and 2020-
A0092A05067).

References
Akhter, M.N. and Funazaki, K.I., 2007, Development of Pre-
diction Method of Boundary Layer Bypass Transition using
Intermittency Transport Equation, International Journal of
Gas Turbine, Propulsion and Power Systems 1, 30–37.

Akhter, M.N., Yamada, K. and Funazaki, K.I., 2009, Numer-
ical Simula- tion of Bypass Transition by the Approach of
Intermittency Transport Equation, Journal of Fluid Science
and Technology 4, 524-535.

Akhter, M.N., M. Ali, M.K. and Funazaki, K.I., 2015, Nu-
merical simulation of heat transfer coefficient on turbine
blade using intermittency factor equation. Procedia Engi-
neering 105, 495-503, The 6th BSME Interna- tional Con-
ference on Thermal Engineering.

Alauzet, F., Frey, P.J. and Mohammadi, B., 2002, Adapta-
tion de maillages non structurés pour des problèmes insta-
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