
Chapter 1
Moving deforming mesh generation based on
quasi-isometric functional ?

Vladimir Garanzha1,2 and Liudmila Kudryavtseva1,2,3

Abstract We suggest algorithm which allows to generate moving adaptive mesh
with fixed topology using time-dependent control metric in computational domain.
Each cell of ideal mesh at a given time after local transformation into uniform coordi-
nates related to metric should be congruent to the same cell at initial time level. The
quasi-isometric functional [9] is used to measure and control the matching between
real and ideal mesh. We have found that when global large deformations of initial
mesh are necessary in order to satisfy mesh compression criteria inside thin moving
layers, simple explicit methods of mesh optimization fail to follow metric precisely.
Unfortunately, preconditioned gradient search algorithm for quasi-isometric func-
tional is quite expensive, so coupling it directly to flow solver is highly inefficient.
Another problem is that due to nonlinearity of the Euler-Lagrange equations we
cannot assume that norm of residual of the functional is reduced to zero at each
time step. Thus time continuity of the moving mesh is not guaranteed since iterative
minimization of functional with changed metric may result in considerable displace-
ments even for infinitely small time steps and space-time trajectories of mesh cells
may become extremely inclined. In this work we suggest very simple and efficient
algorithm which is based on direct mesh interpolation. The idea of gradient search
algorithm [8] is based on the predictor, which constructs minimization direction
(displacement field) for each mesh vertex for large time increment. Every interme-
diate mesh computed via this displacement is guaranteed to be correct. We have
found that the length of the computed displacement field is very large compared to
displacements allowed by flow solver, hence number of costly implicit minimizations
can be sharply reduced. Assuming that time dependence of metric is smooth function,
we obtain mesh deformation/adaptation algorithm which requires one linear solve
per, say, 5-10 time steps, making it quite efficient component of the moving mesh

Dorodnicyn Computing Center FRC CSC RAS, Moscow 119333, Russia e-mail: garan@ccas.ru
http://www.ccas.ru/gridgen/lab ·Moscow Institute of Physics and Technology, Moscow, Russia
· Keldysh Institute of Applied Mathematics RAS, Moscow, Russia
e-mail: liukudr@yandex.ru

? ***

1

2 V. Garanzha and L. Kudryavtseva

flow solver. We have found IC2-based linear solver [Kaporin] to be very efficient tool,
especially for parallel version of algorithm. Experience with simpler algorithms, such
as Conjugate Gradients algorithm IC(k) preconditioner, was quite dissapointing. We
describe methods for constructing control metric allowing to implement immersed
boundary conditions for a system of moving bodies defined by distance-like implicit
function. Wrong specification of metric field leads to appearance of zones with sharp
cell size jumps and highly skewed cells which resemble the ruptures of deformed
hyperelastic material. Implicit function defines normal and tangent directions with
respect to boundary, hence we specify not only normal stretching law (distribution of
first eigenvalue λ1 of metric tensor), but also distribution of “tangential” stretching
law (λ2,3 depending on problem dimension). Anisotropy of metric tensor is maximal
near boundary and eventually reduces to zero away from the body. Near each bound-
ary we define the layer of maximal normal stretching, and large time step of mesh
predictor is computed using thickness of this layer and a expected number of cells
inside layer in the normal direction. 2d and 3d results are presented.

1.1 Quasi-isometric functional

Description of quasi-isometric functional was published yearlier [9], [2]. Below we
explain how it is applied for controlled mesh deformation.

Let ξ1,ξ2, . . . ,ξd denote the Lagrangian coordinates associated with elastic ma-
terial, and x1,x2, . . . ,xd denote the Eulerian coordinates of a material point. Spatial
mapping x(ξ , t) : Rd →Rd depending on parameter t defines time-dependent elastic
deformation. We associate coordinates ξi with domain with initial mesh, namely, they
are frozen into cell of initial mesh, while Eulerian coordinates are fixed Cartesian
coordinates in the computational domain.

The Jacobian matrix of the mapping x(ξ , ·) is denoted by C, where ci j = ∂xi/∂ξ j.
Let Gξ (ξ , t) and Gx(x, t) denote the metric tensors defining linear elements and

length of curves in Lagrangian and Eulerian coordinates in the domains Ωξ and Ωx,
respectively. Then, x(ξ , t) is the mapping between metric manifolds Mξ and Mx.

Let us define the following polyconvex elastic potential (internal energy) which
serves as the distortion measure and is written as a weighted sum of the shape
destortion measure and the volume distortion measure [9]:

W (C) = (1−θ)

(1
d tr(CTC)

)
detC2/d +

1
2

θ(
1

detC
+detC). (1.1)

In most cases we set θ = 4/5.
We are looking for mesh deformation x(ξ , t) being the solution of the following

variational problem

F(x(ξ , t)) =
∫

Ωξ

W (Q(x, t)∇ξ x(ξ , t)H(ξ)−1)detH dξ , (1.2)

1 Moving deforming mesh generation based on quasi-isometric functional 3

In functional (1.2) time t is just a parameter.
Matrices H(ξ) and Q(x, t) are certain matrix factorizations of metric tensors Gξ

and Gx, respectively, defined by

HT H = Gξ ,detH > 0, QT Q = Gx,detQ > 0.

We assume that singular values of the matrices Q and H are uniformely bounded
from below and from above.

Time-dependent mesh deformation is introduced via time-dependent metric tensor
Gx(x, t) = QT (x, t)Q(x, t). Functional (1.2) attains its minimum equal to the volume
of domain Ωξ in the metric Gξ , when equality Q∇ξ xH−1 = U is satisfied, where
U is arbitrary orthogonal matrix. It means that in the uniform coordinates y = Qx
associated with metric Gx(x, t), when H(ξ) = ∇ξ x(ξ ,0), mapping x(x, t) is locally
isometric to mapping x(ξ ,0)

Suppose that domain Ωξ can be partitioned into convex polyhedra Dk. We con-
truct continuous piecewise-smooth deformation xh(ξ , ·), which is regular on each
polyhedron. In practice we use linear and polylinear finite elements in order to as-
semble global deformation. We call integral over this deformation F(xh(ξ), t) by
semidiscrete functional.

In order to approximate integral over a convex cell Dk one should use certain
quadrature rules. As a result semi-discrete functional is replaced by the discrete
functional:

F(xh(ξ))≈∑
k

vol(Uk)
Nk

∑
q=1

βqW (Cq) = Fh(xh(ξ))

Here Nk is the number of quadrature nodes per cell Dk, Cq denotes the Jacobian
matrix in q-th quadrature node of Uk, while βq are the quadrature weights.

The following majorization property should hold

F(xh(ξ))≤ Fh(xh(ξ)) (1.3)

This property can be used to prove that all intermediate deformations xh(ξ) providing
finite values of discrete functional are homeomorphisms [2].

In order to derive discrete mesh functional special quadrature rules are applied
which guarantee global invertibility of deformation mapping for finite values of
discrete functional [2].

1.2 Variational predictor and mesh interpolation for stable
time-dependent mesh deformation

Exact minimization of the discrete counterpart of variational problem (1.2) on each
time level allows to obtain stable and accurate mesh deformation method.

4 V. Garanzha and L. Kudryavtseva

Of course, in practice exact minimization is not acceptable. We have no other
choice but to assume that approximate solution of the variational problem is far from
exact minimizer.

Another problem is that due to nonlinearity of the Euler-Lagrange equations we
cannot assume that norm of residual of the functional is reduced to zero at each
time step. Thus time continuity of the moving mesh is not guaranteed since iterative
minimization of functional with changed metric may result in considerable displace-
ments even for infinitely small time steps and space-time trajectories of mesh cells
may become extremely inclined. In this work we suggest very simple and efficient
algorithm which is based on direct mesh interpolation. The idea of gradient search
algorithm [8] is based on the predictor, which constructs minimization direction
(displacement field) for each mesh vertex for large time increment. Every interme-
diate mesh computed via this displacement is guaranteed to be correct. We have
found that the length of the computed displacement field is very large compared to
displacements allowed by flow solver, hence number of costly implicit minimizations
can be sharply reduced. Assuming that time dependence of metric is smooth function,
we obtain mesh deformation/adaptation algorithm which requires one linear solve
per, say, 5-10 time steps, making it quite efficient component of the moving mesh
flow solver.

1.2.1 Preconditioned minimization algorithm and moving mesh
interpolation strategy

It is convenient to write our discrete functional as a function F(Z,Y, t) where spatial
argument is the vector Z such that ZT = (zT

1 zT
2 . . . zT

nv) where zk ∈ Rd , k = 1, . . . ,nv
are positions of mesh vertices. Dependence on time t is introduced via time-dependent
metric Gx(y, t). Vector Y corresponds to the argument y of the metric Gx.

Hessian matrix H̃ of the function F with respect to Z is built of d× d blocks
H̃i j =

∂ 2F
∂ zi∂ zT

j
. Here matrix H̃i j is placed on the intersection of i-th block row and j-th

block column. We filter Hessian matrix during finite element assembly procedure to
make it positive definite and to reduce number of nonzero elements by a factor of 2
[8]. Below we use the same notation H̃ for filtered Hessian matrix. Gradient of F
with respect to Z is denoted by R. This vector consists of d-sized subvectors ri. It is
approximate gradient of the functional since we do not differentiate metric Gx hence
dependence on argument Y is not taken into account.

One step of the Newton-type method for finding stationary point of the function
can be written as follows

nv

∑
j=1

H̃i j(Zl ,Y l , t +∆ t)δ z j + ri(Zl ,Y l , t +∆ t) = 0 (1.4)

zl+1
k = zl

k +µlδ zk, k = 1, . . . ,nv. (1.5)

1 Moving deforming mesh generation based on quasi-isometric functional 5

Here parameter µl is found as approximate solution of the following 1d problem

µl = argmin
τ

F(Zl +µδZ,Y l , t +∆ t). (1.6)

The standard golden ratio algorithm is used to find approximate minimum. Obvious
solution is now to assign new iteration using optimal parameter µl

Zl+1 = Zl +µlδZ (1.7)

Preconditioned conjugate gradient technique is used for approximate solution
with approximate second order Cholesky factorization [11] as a preconditioner.
For parallel version of a solver we use additive version of approximate second
order Cholesky factorization based on domain decomposition with overlaps [4]. The
resulting nonlinear scheme was found to be very stable and efficient enough.

One can try to simplify the structure of the Hessian matrix by setting H̃i j = 0
when i 6= j [10] or even by considering only diagonal part of Hessian matrix as
preconditioner. We have found that when global large deformations of initial mesh
are necessary in order to satisfy mesh compression criteria inside thin moving
layers, simple explicit methods of mesh optimization fail to follow metric precisely.
Our observation is that “explicit” solvers are not efficient in the case of global
deformations. Our linear solver is based on extraction from linear system (1.4) d
independent linear systems with symmetric positive definite nv× nv matrices [8]
closely resembling finite element approximations of scalar Laplace equations with
tensor coefficient and using preconditioned conjugate gradient technique for their
approximate solution.

Since our aim to use only one linear solve per time step, instead of repeating
(1.4) - (1.7) we use another algorithm to account for dependence of metric Gx on the
current mesh. We fix minimization direction and solve additional 1d minimization
problem, namely, we start with

Y 0 = Zl +
1
2

µlδZ,

Coefficient 1
2 is introduced to stabilize iterations and to avoid going too close to

non-admissible set of deformations.
for j = 0, . . . , jmax

τ j = argmin
τ

F(Y j + τδZ,Y j, t +∆ t). (1.8)

Y j+1 = Y j + τ jδZ

Zl+1 = Y jmax

We have found that 2-3 auxiliary 1d minimization steps are enough to essentially
reduce τ j and to stabilize mesh deformation on each time step as well as sharply
improve accuracy of mesh layer positioning with respect to target position.

6 V. Garanzha and L. Kudryavtseva

We observed that preconditioned gradient search technique allows for very large
mesh deformation per time step. From the minimization strategy it follows that
function F(Z,Z, ·) has finite values for any vector Zα defined by

Zα = αZl +(1−α)Zl+1, 0 6= α 6= 1

which means in turn that all intermediate mesh deformations are nondegenerate. Note
that for the interpolation scheme to work, we should use single Newton-type step, i.e.
l = 0 and single admissible increment direction δZ should be generated.

1.3 Mesh stretching and size gradation control

System of single or multiple moving and deforming bodies which are denoted as a
domain B ∈ Rd defined by implicit function ds(x, t) in such a way that the function
ds is negative inside body, positive outside it, and isosurface ds(x, t) = 0 defines
the boundary ∂B at the time t. We assume that ds(x, t) resembles signed distance
function for the instant domain boundary. In theory one can assume existence of
the quasi-isometric mapping x(y) : Rd → Rd such that the function ds(x(y), t) is
precisely the signed distance function. In practice we assume that when the vector
∇xds in the vicinity of the boundary is defined its norm is bounded from below and
from above by certain global constants.

Metric tensor G(x, t) is defined as function of ds(x, t) in such a way that it attains
largest value on the domain boundary and decreases using different laws inside and
outside body. Mesh inside body is in general quite coarse since immersed boundary
solver solution inside the body does not have physical meaning.

In order to attain smooth mesh size gradation we use logarithmic auxiliary map-
ping which allows to attain almost constant mesh size growth factor. Consider 1d
auxiliary mapping y(ξ) : [0,1]→ [0,1]. We define uniform mesh in ξ coordinates
with mesh size h = 1/N, where N is the number of cells. Vertices yi are distributed
assuming constant growth rate

yi+1− yi = (yi− yi−1)(1+ ε)

This equality can be considered as the finite difference approximation of equation

hÿ = ε ẏ

Interchanging dependent and independent variables we obtain

−ξ̈ h = εξ̇
2

The solution of this ODE is defined by the following formula

ξ = φ(y) =
h
ε

ln(1+
Aε

h
(y−δ))+δA

1 Moving deforming mesh generation based on quasi-isometric functional 7

We split “computational domain” into three subregions: “boundary layer” 0<= y<=
δ , transition zone δ ≤ y≤ D < 1 and outer zone D≤ y≤ 1. Since we apply mesh
adaptation for better implementation of immersed boundary method for moving
bodies, we just assign constant maximal mesh compression coefficient A inside
boundary layer. For outer zone we also imply linear distribution with constant
compression coefficient κ = 1−D

1−φ(D) ≤ 2. Function φ is used to control the transition
between smallest and largest scales. The overall result is shown in Fig. 1.1, left. Note
that we show here transposed graph.

The derivatives of this mapping are defined by the following equalities

γ(y,δ ,A) = φ̇ =
1

1
A + ε

h (y−δ)
, φ̈ =−ε

h
1

(1
A + ε

h (y−δ))2

Mesh compression coefficient is defined by function φ̇ . Its graph is hyperbola.

ξ

x

ξ(D)δA

δ

D

1

1 ξ

x

δA

δ

D

1

1 (1)

Fig. 1.1 Left - auxiliary 1d mapping defining stretching, right - target mesh compression ratio A is
too large and should be reduced.

The set of control parameters δ ,A,κ,h can be contradictory since for too large
values of compression factor A one may get φ−1(1) > 1, or even φ−1(D) > 1. In
this case we iteratively reduce the value of A with κ = 2 until equality φ−1(1) = 1 is
satisfied.

In order to compute dimensionless control parameters of function φ we use Rmax -
radius of influence zone of the body, δR - true mesh layer thickness, average mesh
size lR in the direction normal to the body.

Then

h =
3
2

lR
Rmax

, δ = max
(

δR

Rmax
,

h
A

)
Suppose that the body is zero isosurface of the signed distance function ds(x, t). We
compute normal compression function as follows

σ1(x, t) = γ(|ds(x, t)|/Rmax,δ ,An) (1.9)

8 V. Garanzha and L. Kudryavtseva

where An is compression factor in the normal direction to the boundary.
Denote by u1 = ∇ds/|∇ds| unit vector of normal direction. We can obtain full or-

thonormal basis U = (u1, . . . ,ud) using vectors u2, . . . ,ud which define local tangent
basis on the isosurface of ds. Metric tensor Gx(x, t) can be defined by equality

Gx =UΣUT , Σ = diag(σi) (1.10)

The choice of “tangential” stretches is not trivial. It is very important in order to obtain
mesh deformation without size jumps and ruptures. “Rupture” means appearance of
long and skewed mesh cells which resembles approximation of the rupture of elastic
material.

The isotropic choice σi = σ1 or Gx = σ2
1 I seems to be the simplest one. Unfor-

tunately its applicability is very limited, since preimage of the boundary layer in
the initial coordinates ξ is scaled by a factor An, as shown in Fig. 1.2 for An = 6.
Enlarged preimage may cover all initial doman or even go ouside boundary meaning
that most of the mesh cell will travel into boundary layer making resulting mesh
unusable.

Fig. 1.2 Isotropic metric: internal layer in computational domain and its preimage in parametric
domain.

If we specify maximal tangential compression At , then the linear size of preimage
would increase by the factor At , while thickness of preimage layer will increase by
factor An, as shown in Fig. 1.3 for An = 6,At = 2.

We assign maximal anisotropy ratio An/At in the boundary layer and build σi to
gradually reduce anisotropy away from the layer. In some cases constant At factor
does not allow to resolve boundary features, in particular in the presence of sharp
or highly curved boundary fragment. General argument is that when tangential
resolution is not enough one should use smart values of tangential stretches A∗t i,
i = 2, . . . ,d in different directions in the range At ≤ A∗t i ≥ An. Let us denote metric
with constant stretches in boundary layer by G1, and consider metric introduced
around surface features by G2. We use the same representation (1.9), (1.10) for G2,
the main difference being the influence radius R2, which should be smaller compared

1 Moving deforming mesh generation based on quasi-isometric functional 9

Fig. 1.3 Anisotropic metric: internal layer in computational domain and its preimage in parametric
domain.

to global influence radius Rmax for G1. Then final metric is defined by

Gx = G3 = max(G1,G2)

The maximum operation is based on common circum-ellipsoid construction which is
close to the one suggested in [7] and is shown in Fig. 1.4. Consider two concentric
ellipsoids M1 and M2 defined by quadratic forms xT G−1

1 x = 1 and xT G−1
2 x = 1, re-

spectively. Common circum-ellipsoid M3 defines matrix G3. Construction of ellipsoid
M3 is simple: find affine map which transforms one of the ellipsoids into sphere. In
transformed coordinates circum-ellipsoid is trivially constructed and mapped back
into original coordinates. Since each metric is defined by its spectral decomposition,
this construction is reduced to a number of products by orthogonal and diagonal
matrices.

M2

M

(M , M)

1

21max

M3

Fig. 1.4 Illustration of maximum operation for two metrics.

10 V. Garanzha and L. Kudryavtseva

1.3.1 MPI-based Parallel implementation

We use spatial mesh decompostion in order to build parallel algorithm. Since degrees
of freedom which define mesh deformation are mesh vertices, we build consistent
partitioning of mesh cells and vertices: parametric domain Ωxi is split into connected
subdomains consisting of full mesh cells. Mesh vertices belonging to boundaries
between subdomains are distributed between subdomains. We use parallel ILU2-
based iterative solver [11], [4] to compute minimization direction. Input data for this
solver are right hand side partitioned into blocks and sparse matrix partitioned into
block rows. Each block precisely corresponds to the partitioning of mesh vertices.
Our implementation of iterative scheme is based on extended subdomains defining
two cell-wide subdomain overlap. At the beginning of each iteration of minimization
(1.5) we use data exchange to create current guess at each extended subdomain. Such
an extension makes cell-by-cell assembly of functional, its gradient and the Hessian
matrix and its subsequent double scaling completely local operations. Additional
data exchanges are not necessary in order to find optimal value of τ by approximate
solution of 1d minimization problem (1.6), just global sums should be computed. As
one can see all operations of mesh generation algorithm are fully scalable hence one
can expect that overall scalability is defined by that of parallel linear solver. Note
that linear solver uses its own overlaps and data exchange scheme [4].

1.4 Numerical experiments

We apply mesh deformation solver for geometric adaptation of computational mesh
in order to improve the resolution of the NOISETTE flow solver [6] for numerical
modelling of turbulent flow around propeller of quadrocopter. Flow solver is based
on Immersed Boundary Conditions (IBC). We test the numerical technology in the
2d case using 2d projection of realistic propeller geometry [5] with the main goal to
extend it to the case of real 3d propeller modeling. At this stage we run simple 3d
tests in order to check initial geometric adaptation, to compare computed position of
mesh layer with target moving position as well as check efficiency and scalability of
3d algorithm. The geometry of propeller is shown in Fig. 1.5 (left). Due to natural
geometrical limitations mesh is deformed only inside a circle which is 10% larger
compared to propeller itself, meaning that mesh adaptation near blade tip become
nontrivial task. Propeller is defined by the implicit signed distance-like function.
We impose compression factor 30 in the normal direction inside thin layer near the
blades. In order to initiate time-dependent deformation we start from initial mesh
adaptation to a fixed shape. This mesh shown in Fig. 1.5 (right).

In order to resolve corners and highly curved boundary fragment we introduce
locally isotropic metric influence zones (see Fig. 1.6). Isotropic metric is defined
by the same law (1.9) with different constants. Maximum operation for metrics is
applied in order to compute Gx.

Fig. 1.7 shows fragments of initial mesh near influenze zones of anisotropic metric

1 Moving deforming mesh generation based on quasi-isometric functional 11

Fig. 1.5 2d propeller model and initial adapted mesh.

Fig. 1.6 Influence zones of isotropic metric near sharp vertices.

Fig. 1.7 Fragments of initial adapted mesh near sharp vertices.

12 V. Garanzha and L. Kudryavtseva

Fig. 1.8 shows general mesh outline after first and second rotation of propeller.

Fig. 1.8 Mesh after first and second rotation.

Figs. 1.9-1.10 show mesh fragments after first and second rotation.

Fig. 1.9 Mesh fragment after first and second rotation.

Computation of long term mesh deformation demonstrates behaviour which is
close to the periodic one. Fig. 1.11 show trajectories of selected cells saved every
500 time steps.

Fig. 1.12 shows deformation of mesh subdomains when propeller spans quarter
of the rotation.

Fig. 1.13 shows mesh deformation and movement of subdomain boundaries in the
propeller-related reference frame.

Fig. 1.14 shows target σ1 distribution in the rotating reference frame in two
different time levels.One can observe that position of mesh layer follows controls
quite closely. Quite interesting effect is related to the bands of mesh cells which
are attracted to the blade, then travel some time along the boundary layer in the

1 Moving deforming mesh generation based on quasi-isometric functional 13

Fig. 1.10 Mesh fragment after first and second rotation.

Fig. 1.11 Cell trajectories for several rotations.

compressed state and eventually leave the propeller. Another group of cell in the
middle of the domain is attracted to the blades, cross them and go out at the other
side. Right figure in Fig. 1.14 is slightly inclined in 3d x1,x2, t coordinates in order
to make trajectories of cells more visible.

In order to evaluate scalability of the parallel implementation, we run several
2d and 3d test cases. In 2d we consider “small” problem with 357781 vertices
and 713760 triangles and “moderate” problem with 1429321 vertices and 2855040
triangles. In the 3d case we consider deformation of tetrahedral mesh with 9586347
vertices and 56715408 tets.

Scalability experiments were ran on the parallel cluster of Moscow Institute of
Physics and Technology. It is Intel CPU-based cluster with 24 cores per board and
Infiniband interconnect. Fig. 1.15 illustrates scalability of the mesh deformation
algorithm. Separate graph is devoted to linear solver. As one can expect, overall
scalability is defined by the linear solver scalability. Note that scalability with respect
to single core is not impressive, while results scale very well with respect to 24 cores.

14 V. Garanzha and L. Kudryavtseva

Fig. 1.12 Deformation of subdomains for quarter of rotation.

Fig. 1.13 Mesh deformation and movement subdomains in the rotating reference frame.

1 Moving deforming mesh generation based on quasi-isometric functional 15

Fig. 1.14 Mesh layer localization and cell trajectories in the rotating reference frame.

We were not able to explain this observation. In principle, it may be drawback of the
algorithm or cluster software/hardware misconfiguration artefact.

Fig. 1.15 Speed-up versus number of computational cores for moderate-sized 2d problem, (a) -
speed-up with respect to single core, (b) speed-up with respect to 24 cores

Fig. 1.16(a) shows speed-up for small scale 2d problem where saturation is quite
pronounced for more then 120 cores, while for 3d case 1.16(b) scalability is quite
reasonable and saturation is not observed until 600 cores. We plan to run 3d algorithm
on larger configurations.

Fig. 1.17 illustrates subdomains for 3d problem in the case of 144 cores. We show
trace of the subdomains on the boundary, cross-section of initial uniform mesh and
cross-section of mesh adapted to a moving sphere.

Fig. 1.18(a) shows initial adapted mesh and target σ1 distribution. Fig. 1.18(b)
shows preimage of the compressed boundary layer on the initial uniform 3d mesh. In
this example in the boundary layer σ1 = 30 and σ2,3 ≈ 3.

Fig. 1.19 shows fragments of mesh with two positions of computed mesh layer in
the process of sphere movement.

Fig. 1.20 show two positions of mesh layer extracted from the global meshes
using threshold 20 for target σ1 distribution.

16 V. Garanzha and L. Kudryavtseva

(a) (b)

Fig. 1.16 Speed-up versus number of computational cores. (a) Small 2d problem, (b) 3d problem

Fig. 1.17 Subdomains for initial uniform mesh and for instant moving deformed 3d mesh

1.5 Conclusions and discussions

We describe algorithm which allows to construct high quality time-dependent mesh
deformations via approximate minimization of quasi-isometric functional. Presented
algorithm is still slower compared to mesh solvers based on linear elliptic equations,
see e.g. [3], however difference is no longer crucial since we use d linear solves with
linear systems corresponding to FE approximations of scalar Laplace-like equations
per several time steps. It is well known, that algorithms based on linear elliptic
solver can attain reasonable mesh quality via careful choice of metric tensor/weight
functions [1] so it may happen that advantage of presented method in terms of
mesh quality does not overweight computational overhead. However, unlike linear
mesh solvers, presented algorithm does not have any limitation on the shape of the
domain and the type of the mesh elements. It can be applied in the case of multiple
dimensions and for high-order elements. Due to advanced parallel linear solver quite
reasonable parallel scalability of numerical algorithm was demonstrated.

1 Moving deforming mesh generation based on quasi-isometric functional 17

(a) (b)

Fig. 1.18 Distribution of mesh compression factor in normal direction and its preimage on initial
mesh

Fig. 1.19 Two positions of moving layer with imposed distribution of mesh compression factor

Fig. 1.20 Two positions of compressed layer extracted using threshold 20 for normal compression
factor

18 V. Garanzha and L. Kudryavtseva

Research is supported by Russian Science Foundation, Project 20-41-0901 ANR
(acronym NORMA).

References

1. Van Dam, A., Zegeling, P.A.: Balanced monitoring of flow phenomena in moving mesh methods.
Communications in Computational Physics 7(1), 138–170 (2010)

2. Garanzha, V.A., Kudryavtseva, L.N., Utyzhnikov, S.V.: Untangling and optimization of spatial
meshes. Journal of Computational and Applied Mathematics. 269, 24–41 (2014)

3. Tang, H.Z., Tang, T. Adaptive mesh methods for one- and two-dimensional hyperbolic conserva-
tion laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)

4. Kaporin, I.E., Milyukova, O.Yu. MPI+OpenMP parallel implementation of explicitly precondi-
tioned conjugate gradient method. Keldysh Institute preprints, 008 (Mi ipmp2369) (2018)

5. Brandt J.B. Small-scale propeller performance at low speeds : PhD thesis – University of Illinois
at Urbana-Champaign (2005).

6. Tsvetkova V.O., Abalakin I.V., Bobkov V.G., Zhdanova N.S., Kozubskaya T.K., Kudryavtseva
L.N. Simulation of flow near rotating propeller on adaptive unstructured meshes using immersed
boundary method. Accepted for publication in Mathematical Models and Computer Simulations,
2020.

7. Castro-Dı́az M.J., Hecht F., Mohammadi B., Pironneau O. Anisotropic unstructured mesh
adaption for flow simulations. International Journal for Numerical Methods in Fluids, 1997, 25
(4), 475-491.

8. V.A. Garanzha, L.N. Kudryavtseva. Hyperelastic springback technique for construction of
prismatic mesh layers, Procedia Engineering 203 (2017) 401–413.

9. V.A. Garanzha, The barrier method for constructing quasi-isometric grids. Comput. Math. Math.
Phys. 40(2000) 1617–1637.

10. S.A. Ivanenko, Construction of nondegenerate grids. Comput. Math. and Math. Phys. 28(1988)
141-146.

11. Kaporin, I. E. (1998). High quality preconditioning of a general symmetric positive definite
matrix based on its UTU+UTR+RTU-decomposition. Numerical linear algebra with applications,
5(6), 483-509.

