# SIMULATION OF THE SUPERCRITICAL FLOW AROUND A CIRCULAR CYLINDER USING HYBRID MODELS

F.Miralles<sup>1</sup>, S.Wornom<sup>1</sup>, B.Koobus<sup>1</sup>, A.Dervieux<sup>2,3</sup>

<sup>1</sup>IMAG, université de Montpellier, France, <sup>2</sup>Société LEMMA, Sophia-Antipolis, France <sup>3</sup>INRIA Sophia-Antipolis, France

33rd Nordic Seminar on Computational Mechanics, Jönköping, 25-26 november, 2021



イロト 不得 トイヨト イヨト

э

#### Why high Reynolds number?



Figure - Helicopter blades application, wind turbines

#### Why cylinder?



Figure – Flow Past a Cylinder at Re=1M, vorticty field.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

## Modeling of turbulent flow : RANS description

Compressible Averaged Navier Stokes Equation :

$$\frac{\partial W_h}{\partial t} + \nabla \cdot F_c(W_h) - \nabla \cdot F_d(W_h) = \tau(W_h)$$
(1)

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

**RANS**  $k - \varepsilon$  Goldberg closure term :

$$\tau^{RANS}(W_h) = \left(\overbrace{0}^{\rho}, \overbrace{0}^{\rho \mathbf{u}}, \overbrace{0}^{\rho E}, \overbrace{\tau : \nabla \mathbf{u} - \rho \epsilon}^{\rho k}, \overbrace{(C_1 \tau : \nabla \mathbf{u} - C_2 \rho \epsilon + E)T^{-1}}^{\rho \epsilon}\right)$$

DDES closure term  $\rho\epsilon$  is replaced by  $\rho \frac{k^{3/2}}{l_{ddes}}$  where :

$$\mathfrak{l}_{ddes} = \frac{k^{\frac{3}{2}}}{\epsilon} - f_{ddes} \max\left(0, \frac{k^{\frac{3}{2}}}{\epsilon} - 0.65\Delta\right), \quad \begin{array}{l} f_{ddes} = 1 - \tanh((8r_d)^3), \\ r_d = \frac{1 - \tanh((8r_d)^3)}{\epsilon^2 y^2 \max(\sqrt{\nabla u}:\nabla u, 10^{-10})} \end{array}$$

## Dynamic VMS description

VMS formulation

$$\left(\frac{\partial W_h}{\partial t}, \chi_i\right) + \left(\nabla \cdot F_c(W_h), \chi_i\right) = \left(\nabla \cdot F_d(W_h), \phi_i\right) + \left(\tau^{DVMS}(W_h), \phi_i'\right).$$
(2)

■ VMS closure term with dynamics coefficients  $C_{model} = C_{model}(\mathbf{x}, t)$  and  $Pr_t = Pr_t(\mathbf{x}, t)$ 

$$\left(\tau^{DVMS}(W_h),\phi_i'\right) = \left(0,\mathsf{M}_{\mathcal{S}}(W_h,\phi_h'),\mathsf{M}_{\mathcal{H}}(W_h,\phi_h'),0,0\right)$$

where :

$$\begin{split} \mathbf{M}_{S}(W_{h},\phi_{i}') &= \sum_{T\in\Omega_{h}}\int_{T}\underline{\overline{\rho}(C_{S}\Delta)^{2}|S|}\mathcal{D}(S)\nabla\phi_{i}'d\mathbf{x}, \\ M_{H}(W_{h},\phi_{i}') &= \sum_{T\in\Omega_{h}}\int_{T}\frac{C_{p}}{\underline{\overline{\rho}(C_{S}\Delta)^{2}|S|}}\underline{\nabla}T'\cdot\nabla\phi_{i}'d\mathbf{x} , \quad \Delta = \left(\int_{T}d\mathbf{x}\right)^{1/3} \end{split}$$

and  $\phi_h^{\prime} = \phi_h - \overline{\phi_h}$  where  $\overline{\phi_h}$  is computed from macro cells.



Hybrid description with finite volume/ finite element method

$$\begin{pmatrix} \frac{\partial W_h}{\partial t}, \chi_i \end{pmatrix} + (\nabla \cdot F_c(W_h), \chi_i) = (\nabla \cdot F_d(W_h), \phi_i)$$

$$+ \theta \left( \tau^C(W_h), \phi_i \right) + (1 - \theta) \left( \tau^{DVMS}(W'_h), \phi'_i \right).$$
(3)

 $\tau^{C} \in \{\tau^{RANS}, \tau^{DDES}\}$ 



Figure - Hybrid RANS blending surface.

## Set up

Model used : DDES, RANS/DVMS, DDES/DVMS with :

- Blending : 
$$\theta = 1 - f_d \times (1 - \overline{\theta}); \quad \overline{\theta} = \tanh\left(\left(\frac{\Delta}{k^{3/2}}\varepsilon\right)^2\right),$$

- Subgrid model for VMS : WALE, Smagorinsky
- Closure model for RANS  $k \varepsilon$  of Goldberg.
- Simulation set up :
  - Mach number : 0.1 (subsonic flow)
  - reference pressure :  $101300 [N/m^2]$
  - density : 1.225  $\rm [kg/m^3]$
  - Integration to the wall or Reichardt wall law :

$$U^{+} = \frac{1}{\kappa} \ln\left(1 + \kappa y^{+}\right) + 7.8 \left[1 - \exp\left(\frac{-y^{+}}{11}\right) - \frac{-y^{+}}{11} \exp\left(\frac{-y^{+}}{3}\right)\right]$$

- The mesh is radial with minimal mesh size is such that  $y_w^+ = 1 \Leftrightarrow \delta = 2 \times 10^{-5}$ .

| Name                                     | Mesh size | $y_w^+$ | $y_m^+$ | $\overline{C}_d$ | $c'_{l}$ | $-\overline{C}_{pb}$ | Lr   | $\overline{\theta}$ |
|------------------------------------------|-----------|---------|---------|------------------|----------|----------------------|------|---------------------|
| Present simulation                       |           |         |         |                  |          |                      |      |                     |
| URANS $k - \varepsilon$                  | 4.8M      | 1       | 0       | 0.50             | 0.24     | 0.61                 | 0.77 | 109                 |
| DDES $k - \varepsilon$ Goldberg WL       | 4.8M      | 20      | 100     | 0.20             | 0.04     | 0.22                 | 0.87 | 138                 |
| DDES $k - \varepsilon$ Goldberg WL       | 4.8M      | 20      | 25      | 0.40             | 0.05     | 0.56                 | 1.46 | 113                 |
| DDES $k - \varepsilon$ Goldberg ITW      | 4.8M      | 1       | 0       | 0.50             | 0.07     | 0.54                 | 1.22 | 103                 |
| DVMS                                     |           |         |         |                  |          |                      |      |                     |
| cubic Smagorinsky ITW                    | 4.8M      | 20      | 0       | 0.49             | 0.17     | 0.42                 | 0.71 | 92                  |
| DDES/ DVMS                               |           |         |         |                  |          |                      |      |                     |
| k - $\varepsilon$ / cubic WL Smagorinsky | 4.8M      | 20      | 100     | 0.20             | 0.02     | 0.22                 | 0.82 | 135                 |
| k - $\varepsilon$ / cubic WALE WL        | 4.8M      | 1       | 100     | 0.20             | 0.02     | 0.26                 | 0.80 | 132                 |
| k - $\varepsilon$ / cubic WALE ITW       | 4.8M      | 1       | 0       | 0.49             | 0.06     | 0.60                 | 1.56 | 104                 |
| RANS / DVMS                              |           |         |         |                  |          |                      |      |                     |
| k - $\varepsilon$ / cubic Smagorinsky WL | 4.8M      | 20      | 100     | 0.24             | 0.05     | 0.22                 | 0.62 | 133                 |
| k - ε / cubic Smagorinsky WL             | 4.8M      | 1       | 100     | 0.25             | 0.09     | 0.25                 | 0.64 | 132                 |
| k - $\varepsilon$ / cubic WALE WL        | 4.8M      | 1       | 100     | 0.26             | 0.11     | 0.22                 | 0.65 | 134                 |
| k - $\varepsilon$ / cubic WALE ITW       | 4.8M      | 1       | 0       | 0.48             | 0.11     | 0.55                 | 1.14 | 109                 |
| Other simulations                        |           |         |         |                  |          |                      |      |                     |
| RANS <sup>1</sup> Catalano [1] WL        | 2.3M      | -       | -       | 0.39             | -        | 0.33                 |      |                     |
| LES Catalano [1] WL                      | 2.3M      | -       | -       | 0.31             | -        | 0.32                 |      |                     |
| LES Kim [3] WL                           | 6.8M      | -       | -       | 0.27             | 0.12     | 0.28                 | -    | 108                 |
| Expériences                              |           |         |         |                  |          |                      |      |                     |
| Shih et al [5]                           |           |         |         | 0.24             | -        | 0.33                 |      |                     |
| Schewe [4]                               |           |         |         | 0.22             | -        | -                    |      |                     |
| Szechenyi [6]                            |           |         |         | 0.25             | -        | 0.32                 |      |                     |
| Gölling [9]                              |           |         |         |                  |          |                      | -    | 130                 |
| Zdravkovich [8]                          |           |         |         | 0.2-0.4          | 0.1-0.15 | 0.2-0.34             |      |                     |

Table – Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M,  $\overline{\underline{C}}_d$  holds for the mean drag coefficient,  $C'_l$  is the root mean square of lift time fluctuation,  $\overline{C}_{p_b}$  is the pressure coefficient at cylinder basis,  $L_r$  is the mean recirculation lenght,  $\overline{\theta}$  is the mean separation angle.

#### Pressure coefficient



Figure – Distribution of mean pressure as a function of polar angle. Comparison with  $y_w^+ = 20$  with Smagorinsky and  $y_{+w} = 1$  with WALE. Wall law on the left and integration to the wall on the right.

Integration to the Wall Q-criteria



Figure – Q-criteria contour using velocity color scale.

◆□> ◆□> ◆目> ◆目> □目

Conclusion and perspective

- Bulks coefficients are accurately predicts with RANS/DVMS model,
- RANS/DVMS approach with WALE model gives the best results,
- Bulk coefficients are closer to experimental data for WL,
- Drag coefficients are overestimated for ITW,
- Implement a transition prediction model in order to more accurately compute transitional boundary layers.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

**k** -  $\omega$  SST model, k - R model

### Annexe

Velocity profile



Figure – On the left longitudinal velocity profile at x/D = 1, and on right the transverse velocity.

= 900

#### SIMULATION OF THE SUPERCRITICAL FLOW AROUND A CIRCULAR CYLINDER USING HYBRID MODELS

|   | P. Catalano, M.Wang, G. Iaccarino and P. Moin. Numerical simulation of the flow around a circular cylinder                                                                                                                                                                   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | at High Reynolds numbers. International Journal of Heat and Fluid Flow, 24 :463-469, 2003.                                                                                                                                                                                   |
|   | Y. Ono and T. Tamura. LES of flows around a circular cylinder in the critical Reynolds number region.                                                                                                                                                                        |
|   | Proceedings of BBAA VI International Colloquium on : Bluff Bodies Aerodynamics and Applications,<br>Milano, Italy, July 20-24 2008.                                                                                                                                          |
|   | S.E. Kim and L.S. Mohan. Prediction of unsteady loading on a circular cylinder in high Reynolds number                                                                                                                                                                       |
|   | flows using large eddy simulation. Proceedings of OMAE 2005 : 24th International Conference on Offshore<br>Mechanics and Artic Engin.                                                                                                                                        |
|   | G. Schewe. On the force fluctuations acting on a circular cylinder in crossflow from subcritical up to                                                                                                                                                                       |
|   | transcritical Reynolds numbers. Journal of Fluid Mechanics, 133 :265-285, 1983.                                                                                                                                                                                              |
|   | W.C. L. Shih, C.Wang, D. Coles and A. Roshko. Experiments on Flow past rough circular cylinders at large                                                                                                                                                                     |
| _ | Reynolds numbers. Journal of Wind Engeneering and Industrial Aerodynamics, 49 :351-368, 1993.                                                                                                                                                                                |
|   | E. Szechenyi. Supercritical reynolds number simulation for two-dimensional flow over circular cylinders.                                                                                                                                                                     |
|   | Journal of Fluid Mechanics, 70 :529-542, 1975.                                                                                                                                                                                                                               |
|   | O. Guven, C. Farell, and V.C. Patel. Surface-roughness effects on the mean flow past circular cylinders.                                                                                                                                                                     |
|   | Journal of Fluid Mechanics, 98(4) :673-701, 1980.                                                                                                                                                                                                                            |
|   | M.M. Zdravkovich. Flow around circular cylinders Vol 1 : Fundamentals. Oxford University Press, 1997.                                                                                                                                                                        |
|   | B. Gölling. Experimental Investigations of Separating Boundary-Layer Flow from Circular Cylinder at                                                                                                                                                                          |
|   | Reynolds Numbers from 105 up to 107; three-dimensional vortex flow of a circular cylinder. G.E.A. Meier<br>and K.R. Sreenivasan, editors, Proceedings of IUTAM Symposium on One Hundred Years of Boundary<br>Layer Research, pages 455-462, The Netherlands, 2006. Springer. |
|   |                                                                                                                                                                                                                                                                              |
|   |                                                                                                                                                                                                                                                                              |
|   |                                                                                                                                                                                                                                                                              |