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1 Introduction

The Norma project [48] is a Russia-France cooperation for improving high-
fidelity numerical models in order to better control the noise produced by
new and less new aeronefs like drones and helicopters which should move
around towns with the smallest sound pollution.

Among Norma’s goals is the improvement of numerical approximations
based on unstructured meshes, for solving the Navier-Stokes equations (and
linearisations). Dissipation and dispersion are the abomination of desolation
of second order approximations. The Russian and French teams use exten-
sions of second-order schemes called superconvergent approximation which
indeed reduce dissipation and dispersion. Research will tend to further re-
duce them and examine how the research in high order schemes can help in
further improvement of the approximations.

The present paper proposes a short overview of recent progress in these
schemes.

Many high-order schemes we are interested with rely on local higher order
interpolations, built from data in finite-element-like elements, e.g. tetrahe-
dra.

Having a degree k polynomial approximation in each element will produce
a k + 1-th order accuracy:

e ≈ hk+1

but the cost is related to the number of degrees of freedom:

NDOF ≈ 1

hd

An emblematic approximation, Discontinuous Galerkin, considers these poly-
nomial interpolation independantly in each element:

NDOF ≈ mk,d

hd
; mk,d =

1

d!

d∏
i=1

(k + 1)

where mk,d unknowns are needed to reconstruct a k-polynomial. These fea-
tures are in common in many recent studies, the way the time derivative (in
practise the spatial divergence) is computed from these data makes the main
difference between the methods.
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2 Analysis of the references

This review is based on a list of papers which we examine now by organizing
it in a few sections.

2.1 Reviews and workshops

The paper [80] proposes a review of basic HO methods. In [79] the authors
want to “facilitate the adoption” of HO methods, proposing a kind of manual
for it. The Hybrid High-Order (HHO) methods reviewed in [7] are formu-
lated in terms of discrete unknowns attached to mesh faces and cells. Hybrid
High-Order methods are also reviewed in [24]. The paper [84] reviews stabil-
ity theories and error estimates. The paper [81] reports on the 1st Interna-
tional Workshop on High-Order CFD Methods, producing also a discussion
on why HO are not yet prefered. Test cases involve channel, Ringleb, NACA,
flat plate flows, vortex transport, high lift in 2D, and various single wings in
3D. A further publication, [82], contains other comparisons on tests cases.

Let us mention papers presenting computer codes, [50] [69] [83].

2.2 Methodological contributions

Two particular contributions are: [30] proposing TVD-RK schemes for ad-
vancing the spatial HO methods.[42] proposes continuous Lagrange Galerkin
methods.

2.2.1 Superconvergent approximations

In approximation theory, the term of superconvergence is used for identify-
ing a better convergence when the sequence of mesh satisfy extra regularity
property. Designing specially superconvergent approximations can also lead
to notably reduce dissipation and dispersion of second-order approximations
while not increasing to much their computational cost. A family of super-
convergent approximations where designed in [23] [47] [2] where discrete gra-
dients on the vertices of the two upwind and downwind elements at both
sides of an edge are used for obtaining the input of the Remann solver. New
propositions are presented in [1] [9] [11] [10] where the edge is prolongated
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both side and its intersection with mesh used for a 1D higher-order flow
reconstruction.

2.2.2 A particular third order

A series of contributions aims at proposing improvements to a family of
MUSCL-type vertex-centered approximations. In [43], a corrected node-
centered scheme is shown to maintain third-order accuracy for the inviscid
terms on arbitrary triangular meshes. As main improvement, all gradients
are computed using a quadratic least squares method instead of a linear
method. Further extensions (including Navier-Stokes) and similar proposi-
tions can be found in [25] [44] [61] [55] [64] [67] [66] [65] [63] [45] [70] [62]
[29].

2.2.3 Continuous Galerkin

In SUPG/LSG/VMS methods the continuous Galerkin approximation is sta-
bilized by adding to the discrete equations terms which are inspired by the
initial residual, but estimated in the element, and are built in order to vanish
sufficiently rapidly with mesh refinement for not modifying the asymptotic
accuracy. See [35], and [77] for the extension to higher-order.

2.2.4 Discontinuous Galerkin

The discontinuous Galerkin method is a family of variational methods ap-
plying on finite-element meshes in which the unknown and test functions
are polynomial functions inside each element. They are a priori discontinu-
ous through inter-element faces. The integration of first-order hyperbolics is
completed by upwind (Riemann solvers) integration at inter-element faces.
The integration of second-order elliptic terms is addressed by a set of differ-
ent approaches, as explained in [8]. Further propositions for elliptic case are
given in [19],[21]. The extension to compressible Navier-Stokes is addressed
in [13]. A pedagogic presentation can be found in [33].

The initial DG is rather computationally expensive due to the many de-
grees of freedom. Improvements where introduced through hybrydizable1

1The mixed finite element method or hybrid finite element method, is a finite element
method in which extra independent variables are introduced as variables. The relation
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formulations (HDG), [59] [20]. In particular some HDG method have a num-
ber of degrees of freedom located on the inter-element faces and not much
more important than for continous Galerkin, together with being advanceble
with an explicit time stepping, see [60]. See also [46].

A posteriori estimates (for diffusion-convection) are presented in [18],
while in [74] is presented an explicit HDG method for numerically solving
the acoustic wave equation. Explicit and implicit options for this model are
compared in [49].

DG methods have been use in several approaches for HO mesh adap-
tation, either through purely discrete mesh optimization as in [22] [85], or
relying on continuous metrics as in [26] [71] [72].

An extended variant of DG, the PNPM scheme is proposed in [27].The first
index N indi- cates the polynomial degree of the test functions and the second
M is the degree of the polynomials used for flux and source computation. The
general PNPM schemes contain classical high order accurate finite volume
schemes (N = 0) as well as standard discontinuous Galerkin methods (M =
N).

2.2.5 Residual distribution schemes

The RD relies on cells -generally dual of the solution nodes- on which the
residual is computed. In a second step, each cell residual is distributed to
the solution nodal values. RD is extended to high order in [4], [5].

2.2.6 ENO/WENO/CENO

Initally designed [32] for structured meshes, the Essentially-Non-Oscillatory
scheme was soon extended to unstructured meshes, [3],[34]. The most pop-
ular extension is Weighted ENO (WENO) introduced in [68]. An extension
to unstructured triangular meshes is discussed in [28].

A family of formulation the central ENO (CENO) is close to the Barth-
Frederickson reconstruction scheme [12], and uses a unique molecule, [39] [57]

of these extra independent variables with the primary ones are generally constrained by
using Lagrange multipliers.
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[56] [15] [38] [73] [76] [41] [17] [31] [40] [6] [16] [58] [51].

A low dissipation version and a mesh-adaptive application is studied in
[14].

2.2.7 Spectral Volumes

In spectral volumes, as in DG, the unknown is a polynomial inside each
element (tetrahadron). Fluxes between elements are also integrated with a
Riemann solver. Instead of Lagrange interpolation from nodal values, each
element is split in subcell/finite volumes, and the polynomial is constrained to
a given mean, the degree of freedom, on each subcell. Fluxes between subcell
of an element are integrated with the continuous polynomial interpolation,
[54] [52] [75].

2.2.8 Spectral Differences

As in DG and SV, the unknown is a polynomial inside each element (tetra-
hadron). Fluxes between elements are also integrated with a Riemann solver.
In each element(tetrahedron), two sets of grid points are used, solution points
(the DOFs) with Lagrange reconstruction (degree k), and flux points. Flux
are the reconstructed (degree k + 1). Solution values are updated in differ-
ential form, i.e. with the divergence of flux at solution points. [53] [86]

2.2.9 Flux reconstruction

The flux reconstruction idea dates back probably to [36]. The approach
amounts to evaluating the derivative of a discontinuous piecewise polynomial
function by employing its straightforward derivative estimate together with
a correction, which accounts for the jumps at the interfaces. The resulting
degree k + 1 approximate total transformed flux is continuous at interfaces
and is used to update with a differential form the unknown at solution points.
A particular extension to 2D and triangles is the CPR method (Correction
Procedure via Reconstruction), [78] [37].
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