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Abstract

A review on immersed boundary (IB) methods is proposed in this document. This starts
from Peskin’s pioneering work on the application of the IB approach for the computation of
the flow around heart valves [1] to recent works dealing with the computation of compressible
turbulent flows using continuous or discrete forcing IB techniques [20, 56, 39]. Emphasis is
placed on work dealing with IB methods applied to viscous compressible flows.
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1 Introduction
In computational fluid dynamics (CFD), the classical numerical procedure to perform the
simulation of fluid flows consists in discretizing the governing equations on body conform-
ing grids in which nodes are coincident to the surface of an obstacle. Since the grids are
constructed to precisely fit an obstacle, this technique allows for exact boundary conditions
to be imposed. An alternative is the immersed boundary (IB) approach which allows the
computation of a flow on a grid which does not conform to the solid boundary. In order to
take into account solid body effects, this last approach introduces forcing in the constitutive
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equations.
An important advantage of IB methods over classical body fitted methods is an easier grid
generation since the grid does not have to fit the body. In IB methods, the grid complexity
and quality are also not significantly affected by the complexity of the considered geometry.
Furthermore, the IB approach can manage moving boundaries, possibly involving large de-
formations and displacements, in a simple and robust way without the need to generate a
new grid at selected time steps. A disadvantage of this approach is that imposing the bound-
ary conditions is not straightforward compared to body fitted methods. The accuracy and
conservation properties of the numerical scheme are also not trivial. Another disadvantage of
IB methods compared to body fitted methods is that the grid lines are not aligned with the
body surface so that the accurate simulation of boundary layers is a complex and difficult
task.
Several approaches have been developped by using the IB concept and differ in the discretiza-
tion scheme used in the neighboring of the immersed surfaces. IB methods can be divided
in two categories, namely the continuous forcing approach (or diffusive interface methods)
and the discrete forcing approach (or sharp interface methods). In the first approach, a
forcing function is introduced in the governing equations before the discretization to take
into account the boundary conditions on the immersed surface. In the second approach, the
discretization in the cells near the immersed boundary is modified, or the cells closed to the
immersed surface are truncated, in order to directly impose the boundary conditions on the
immersed surface.
A survey of some works carried out in the domain of IB methods is given in the following
sections. The literature on the IB techniques is very rich and this review is not intended to
be exhaustive. After having presented the main IB methods, we then focus on some works
dealing with the simulation of viscous compressible flows using the IB approach. It is indeed
this type of numerical applications that interests us more particularly within the framework
of the ANR project NORMA.

2 IB methods: the main approaches
The various IB methods, which all discretize the governing equations on grids non conforming
to the body, differ in the way in which the boundary conditions on the immersed boundary
are taken into account.
Let us consider a viscous incompressible flow around a body which satisfies the following
Navier-Stokes equations:

∂u
∂t

+ u · ∇u = −1

ρ
∇p+ ν∆u in Ωf (1)

∇ · u = 0 in Ωf (2)
and u = uΓ on Γb (3)

where u is the fluid velocity, p the pressure, ρ the density and µ the viscosity. Ωf and Γb de-
note respectively the fluid domain and the boundary of the solid which occupies the domain
Ωb.
In the IB approach, we disinguish two methodologies, namely the continuous forcing proce-
dure and the discrete forcing procedure.
The continuous forcing technique consists in introducing in the governing equations an extra
term, called forcing function and denoted here by f = (fm, fp), in order to take into account
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the boundary conditions that apply on the immersed surface :

∂u
∂t

+ u · ∇u = −1

ρ
∇p+ ν∆u + fm in Ωf ∪ Ωb (4)

∇ · u = fp in Ωf ∪ Ωb (5)

The forcing terms used differ for an elastic boundary and a rigid boundary, with the in-
troduction of models which try to mimic the effect of the solid boundary on the flow. A
smooting of the forcing function usually occurs in the continuous forcing procedure since the
immersed surface does not coincide with the grid points, so that this technique provides a
rather diffusive representation of the immersed boundary.
On the contrary, in IB methods based on the discrete forcing technique, the effect of the
boundary conditions on the immersed surface is taken into account without introducing a
forcing term and its associated smoothing transfer, which allows for a sharp representation of
the immersed boundary. For that, the computational stencil closed to the immersed bound-
ary is usually modified to take into account the boundary conditions. We can mention three
methods that fit in this category : -the ghost-cell technique based on the use of cells in the
solid having at least one neighbor in the fluid (called ghost-cells) and on an interpolation
scheme in order to enforce the boundary condition on the immersed surface -the cut-cell pro-
cedure in which the cells at the immersed boundary are truncated to create body conforming
cells -and the hybrid Caresian/IB method in which the boundary conditions are enforced at
the interior fluid nodes closest to the solid wall.

2.1 Continuous forcing IB methods
As previously written, elastic and rigid boundaries require different forcing terms, so that we
present both cases in this section.

2.1.1 Elastic boundaries

This case corresponds to the original work on IB method performed by Peskin in the early
1970s [1]. In this work, Peskin tackled the coupled simulation of blood flow and muscle
contraction of a heart considered as an elastic body. The immersed surface is represented
by Lagrangian points of coordinate Xk moving with the fluid velocity and governed by the

equation
∂Xk

∂t
= u(Xk, t).

The forcing term is based on the stress F of the elastic fibers representing the immersed
boundary and on a smooth distribution function d which transfers the stress from Lagrangian
points Xk to surrounding fluid nodes xij since they do not coincide with the immersed surface:

fm(xij , t) =
∑
k

Fk(t)d(|xij −Xk|)

Various distribution functions d were proposed in past works [1, 2, 3, 4]. Some examples of
such functions are given in Fig. 1.

2.1.2 Rigid boundaries

To take into account this category of boundaries, the structure is usually considered to be
attached to an equilibrium location by a spring of restoring force F [2, 3]:

Fk(t) = −κ(Xk −Xe
k(t))
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Figure 1: Distribution functions used in past works [36].

where Xe
k is the equilibrium location of the Lagrangien point Xk, and κ is the spring constant

whose positive value is large in order to accurately impose the boundary condition on the
rigid immersed surface. It should be noted, however, that large values of κ result in a stiff
system of equations subject to severe stability constraints [3], while lower values can lead to
an excessive deviation from the equilibrium location [3].
One can mention the work of Goldstein et al. [5] in which the forcing term is given by

Fk(t) = α

∫ t

0

u(τ)dτ + βu(t)

where the parameters α and β are chosen to better enforce the boundary condition at the
immersed surface. It should be noted again that large values of these parameters are required
for accuratly enforcing the boundary conditions, which can lead to stability problems.
Another approach in this category is the penalization method in which the flow is assumed
to occur in a porous medium of permeabiblity taking large values in the fluid and small
values in the solid [9, 10], the flow being therefore governed by the Navier-Stokes/Brinkman
equations [15]. In this method, an extra force term F = µ

Ku is introduced in the Navier-
Stokes equations, where K is the medium permeability. As K is small only in the solid
regions, the force term is only active in the solid, ensuring zero value to the velocity u.
One can also mention the Characteristic Based Volume Penalization Method [55] which
extends the Brinkman penalization to generalized Neumann and Robin boundary conditions
for hyperbolic and parabolic equations by introducing hyperbolic penalization terms with
characteristics directing inward on solid obstacles.
Many developments and numerical expriments have been carried out using a penalty-based
IB approach [51, 50, 53, 55, 52, 39, 40, 41, 42, 43, 44, 45, 46, 47, 57, 58, 59, 68, 69, 72].

2.1.3 Advantages/weak points

The continuous forcing approach is independant of the discretization scheme, simple to im-
plement, can manage moving boundaries involving large motions, and numerous applications
of these methods were performed in past works, for flows with immersed elastic bound-
aries [2, 7, 6, 8] and immersed rigid ones [3, 2, 5]. Nevertheless, and as noticed above, the
smoothing of the forcing function does not allow a sharp representation of the immersed
boundaries. On the other hand, this approach is often parameter dependant, and can be
subject to stiffness/stability problems in the case of rigid boundaries. Furthermore, these
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methods require the solution of the governing equations inside the solid which can lead to a
significant computation overload, particularly for high Reynolds number flows.

2.2 Discrete forcing IB methods
In this subsection, we focus on sharp-interface IB methods, including the ghost-cell approach,
the hybrid Cartesian/IB technique and the cut-cell procedure. Unlike the continuous forcing
approach, with these methods no forcing term is added in the governing equations and no
smooting transfer is introduced avoiding the spread of the effect of the immersed boundary.

2.2.1 Ghost-cell approach

In this approach, the boundary condition is implicitly applied on the immersed surface
through the use of ghost-cells which are solid cells having at least one neighbor in the fluid
(see Fig. 2). On the other hand, the value of a given flow variable ψ at the ghost-cell nodes G

Figure 2: Ghost point (G), fluid points Fi, and boundary points Bi and Pi [36].

relies on an interpolation scheme which implicitly takes into account the boundary condition.
For each ghost-cell G, the coefficients of the associated interpolation scheme are evaluated
with the values of ψ at some fluid nodes Fi in the stencil and at some boundary nodes Bi
and/or Pi (see Fig. 2, Pi are the intersection points between the x- or y-lines passing through
G and the immersed surface, B1 is the midpoint of P1 and P2, and B2 is the intersection
point between the normal passing through G and the immersed boundary), the number and
the choice of these nodes depending on the interpolation order used.
This evaluation procedure in the ghost-cells is then performed simultaneously with the dis-
cretized governing equations for the fluid nodes, allowing to close these discrete equations.
Many developments and applications have been successfully carried out using this approach
[11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 61, 66, 67, 70, 74, 75, 76].

2.2.2 Hybrid Cartesian/IB approach

Unlike the previous approach in which the forcing points are located in the solid domain
(ghost-cells), in this sharp-interface IB approach, the boundary conditions are applied at
the interior fluid nodes closest to the solid wall. The values of the flow variables at such
nodes, noted B in this paragraph, are obtained by linear interpolation along an appropriate
grid line between he nearest interior node to B and the point where the grid line intersects
the solid wall where physical boundary conditions are known, as shown in Fig. 3 [23, 24].
A general interpolation scheme along the direction normal to the solid wall was proposed
in [25]. This IB methdology, initially developped in the finite difference framework and for
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Figure 3: Linear interpolation of the velocity at the nearest-to-wall fluid node B using the velocity
values at the nearest interior node to B, denoted C in the figure, and the intersection point W
between the solid wall and the grid line carried by B and C [24].

incompressible flows, was extended for inviscid and viscous compressible flows in the finite
volume framework in [26, 56]. The values of the flow variables at the interior fluid nodes
B closest to the wall, where the boundary conditions are enforced, are obtained by linear
interpolation in the wall-normal direction to close the discretized governing equations (Fig.
7).

2.2.3 Cut-cell approach

On the contrary to the above methods, the cut-cell methodology (also named Cartesian grid
method) allows to satisfy the conservations laws for the cells which intersect the immersed
surface. In this approach, the cells that cut the immersed boundary are truncated by keeping
only the part that lies in the fluid. Among these cells, those whose center lies in the solid
are gathered with neighboring cells (see Fig. 4a). The flux integrals on the faces of the
reshaped cells are based on interpolated values of the flow variables. The coefficients of the
interpolation function are evaluated using the values of the flow variables at appropriate
points located in the fluid and at the immersed boundary (for example in Fig. 4b, the
approximation of the flux fsw is based on an interpolation using a six-point stencil).
Many developments and applications using the cut-cell technique have been carried out in
past works [27, 38, 29, 30, 31, 16, 32, 33, 34, 35, 60, 62, 63, 64, 65, 71, 73].
It should be noted that the derivation of this approach to three dimensions is not trivial
because the cut-cell technique leads to complex polyhedral cells on which the discretization
of the Navier-Stokes equations is difficult.

Figure 4: Cut-cell technique: (a) A reshaped cell at the immersed boundary. (b) Interpolation
stencil for the evaluation of the flux fsw [36].
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2.2.4 Advantages/weak points

Unlike the continuous forcing approach, this category of IB methods allows for a sharp
representation of the immersed boundaries, which makes it more suitable for relative high
Reynolds number viscous flows (more accurate capture of boundary layer), and no extra
stability constraints are encountered in the case of rigid bodies. Furthermore, discrete forcing
IB techniques do not require the solution of the governing equations for the grid nodes located
in the solid. One should also mention that, in its cut-cell version, the discrete forcing approach
allows to preserve the conservation properties of the numerical scheme. Nevertheless, these
methods introduce the boundary condition directly into the discrete equations and, from a
practical point of view, their implementation is more complex than for the continuous forcing
approach. On the other hand, the cut-cell approach can generate complex polyhedral cells
in three dimensions, which makes the evaluation of the fluxes at the boundaries of the cells
more difficult.
It should also be mentioned that taking into account moving boundaries with the discrete
forcing technique is not as easy as for the continuous forcing term approach. Indeed, the flow
variables in the cells located in the fluid which were in the solid at the previous time step
due to the boundary motion, do not have a proper time history. One approach to solve this
problem is to agglomerate these cells with neighboring fluid cells for the first time step after a
solid cell becomes a fluid cell [37]. Another approach consists in evaluating the flow variables
in these cells for one time step with an interpolation procedure based on neighboring fluid
nodes and immersed boundary nodes [38].

3 Some recent works on the simulation of viscous com-
pressible flows using IB methods
In this section, we focus on IB techniques developped for the simulation of compressible
viscous flows since we are more particularly interested in these flows in the ANR project
NORMA. The following works are presented according to increasing publication dates.

3.1 Work of Liu et al. [51]
Liu et al. propose a Brinkman penalization method for the computation of viscous compre-
sible flows around solid obstacles. On the surface of the obstacle, the velocity satisfies the
no-slip condition u = us and the temperature is assumed constant T = Ts where us and
Ts are respectively, the velocity and the temperature of the obstacle. In their IB approach,
the penalized terms involving the velocity and temperature are added to the momentum and
energy equations. Furthermore, the continuity equation for porous media is considered in-
side obstacles in order to avoid nonphysical wave transmissions into obstacles. The penalized
compressible Navier-Stokes equations in non-dimensional form are then written:

∂ρ

∂t
= −

(
1 + (

1

φ
− 1)χ

)
∇ · (ρu)

∂ρu
∂t

= −∇ · (ρu⊗ u)−∇p+
1

Rea
∇ · τ − χ

η
(u− us)

∂E

∂t
= −∇ · [(E + p)u] +

1

Rea
∇ · (uτ) +

1

ReaPr(γ − 1)
∇ ·Q− χ

ηT
ρ(T − Ts)

where χ denote the characteristic function of the obstacle, φ is the porosity, η = αφ is a nor-
malized viscous permeability, ηT = αTφ is a normalized thermal permeability (0 < φ, η, ηT �
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1), Rea is the acoustic Reynolds number, Pr being the Prandtl number, ρ, u and E denote
the density, velocity and total energy, p is the pressure, τ = µ(∇u +∇uT )− 2

3µ∇ ·uId, and
Q = µ∇T .
Amplitude and phase errors are estimated by asymptotic analysis, and show that the accu-
racy of the numerical solution can be controlled through the porosity φ.
The numerical applications concern a one-dimensional normal wave problem and a two di-
mensional cylindrical acoustic benchmark. The obtained results show a very good agreement
with analytical solutions.

3.2 Work of Boiron et al. [50]
Boiron et al. proposed an IB method based on the Brinkman penalization technique for
the simulation of viscous compressible flows around obstacles. In their work, they consider
the two dimensional compressible Navier-Stokes equations with no-slip condition u = 0 and
a fixed temperature Ts on the surface of the obstacles. In the proposed IB model, these
boundary conditions are enforced by adding penalization terms that involve directly the
momentum and global energy unlike the model of Liu et al. [51], leading to the following
modified Navier-Stokes equations :

∂W
∂t

+∇ · F(W) =
1

Re
∇ · Fv(W)− χ

η


0
ρu
ρv

E − ρCvTs


where χ is the characteristic function of the solid domain Ωs and η the penalization param-
eter, W = (ρ, ρu, ρv, E)t is the vector of conservative variables, ρ being the density, u and
v the components of the velocity, E the total velocity, F and Fv representing the classical
convective and viscous fluxes, and Re being the Reynolds number.
A formal asymptotic analysis according to ν is performed which shows that, by identifying
the order η0 terms, the initial Navier-Stokes equations is retrieved in the fluid domain, while
the terms of order η−1 leads to the boundary conditions on the obstacles.
The spatial discretization is based on a high-resolution shock-capturing technique for the
convective fluxes and on a fourth-order accurate centered finte difference scheme for the vis-
cous fluxes. As for the time discretization, a third order TVD Runge-Kutta scheme is used.
The numerical applications, which concern the IB computations on cartesian grids of two
dimensional steady-state supersonic flows around a triangle and around one or several cylin-
ders, show that the proposed penalization method can be used efficiently for the simulation
of shocked flows with obstacles.

3.3 Work of Hu et al. [20]
In this work, a ghost cell technique is applied to simulate high Reynolds number compressible
viscous flows on adaptative Cartesian grids. The two-dimensional compressible Navier-Stokes
equations equipped with the SST-k−ω turbulence model is employed. The numerical model
is a cell-centered, second-order accurate finite volume method. For the turbulent boundary
condition, a wall function model is used. Hu et al. classified the cells into different categories
based on their location relative to the immersed boundary (see Fig. 5). Then, the primitive
flow variables at each ghost cell A (Fig. 5) are evaluated using a wall function and from the
value of the flow variables at the associated reference point C (located on the normal to the
immersed boundary passing through the ghost point and at a predetermined distance from
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this boundary, Fig. 5), as well as from different assumptions: the shear stress and the pressure
are constant in the lower part of the boundary layer, non-permeable wall boundary condition,
and the Crocco-Buseman equation. It should be noted that the value of the primitive variable
at a reference point C is obtained by bilinear interpolation from the surrounding flow cells.
As for the values of the turbulent variables k and ω at a ghost cell A, they are derived from
the turbulent eddy viscosity at the associated reference point C and the friction velocity,
both computed with a wall function model. On the other hand, the turbulent variables
at the boundary cells (see Fig. 5) are also computed from their reference points using the
same approach as for the ghost cells, while for the near-wall cells (see Fig. 5) the turbulent
variables are evaluated by using a wall law model and the flow variables at these cells.

Figure 5: Flow cells, boundary cells, solid cells, ghost cells, near-wall cells, and reference points,
as defined by Hu et al. [20].

The proposed methodology is applied to the simulation of two-dimensional turbulent flows
over the RAE2822 airfoil in transonic regime and past a circular cylinder in the supersonic
regime. It highlights the accuracy of the proposed IB method except in separated flow regions
like those encountered in the cylinder flow problem.

3.4 Work of Abgrall et al. [53]
In this work, Abgrall et al. propose to combine the IB method with the level-sets technique
and adaptated unstructured meshes. The IB method is based on the Brinkman penalization
approach. The resulting modified compressible Navier-Stokes equations used in this work
write:

∂W
∂t

+∇ · F(W) = ∇ · Fv(W) +
1

η

NS∑
i=1

χSi

 0
ρu− ρuSi

θSi
(ρCvT − ρCvTSi

) + (ρu− ρuSi
) · u


where NS is the number of rigid solids Si, χSi

is the characteristic function of Si and η the
penalization parameter, W = (ρ, ρu, E)t is the vector of conservative variables, ρ being the
density, u the velocity, T the temperature, F and Fv representing the classical convective
and viscous fluxes. At the boundary of a rigid solid Si, the no-slip condition for the velocity
u = uSi is considered, and for the temperature T either the Dirichlet boundary condition
T = TSi

( isothermal wall, θSi
= 1 in the above equations) or Neumann boundary condition

(adiabatic wall, θSi
= 0 in the previous equations) can be applied.

In this above equations, χSi
is computed from a level set function φSi

: χSi
= H(−φSi

)
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where φSi is the signed distance function to the boundary of Si (φSi is positive outside Si
and negative inside Si) and H is the heavyside function. For moving bodies, φSi satisfies the

same advection equation as χSi
:
∂φSi

∂t
+ (uSi

· ∇)φSi
. In this work, an accurate description

of the zero level set, i.e. the solid boundary, is obtained by an anisotropic mesh adaptation
leading to a reduced mesh size near the solid boundaries and an improved accuracy of the
IB method near the walls.
As for the numerical strategy, the spatial discretization is based on a classical mixed Finite El-
ement/Finite Volume scheme using Roe’s or HLLC numerical fluxes, and a Crank-Nicholson
scheme is employed for the time discretization.
As for the numerical applications, a blasius test case (2D), a supersonic flow around a triangle
(2D), a flow around a NACA0012 airfoil (2D) and a test case flow around an ellipse (3D) are
performed. For a given accuracy, the proposed IB method is about 20% more expensive than
its boddy-fitted counterpart but avoids the construction of meshes having to match complex
geometries.

3.5 Work of Brown-Dymkoski et al. [55]
This paper presents an extension of Brinkman penalization methods to homogeneous/inhomogeneous
Neumann and Robin boundary conditions for hyperbolic and parabolic equations. The
proposed volume penalization technique, called Characteristic Based Volume Penalization
Method, introduces hyperbolic penalization terms whose characteristics are directed inward
along the normal direction to the body surface.
Hereinafter, it is shown how this penalization method applies to the non-dimensional com-
pressible Navier-Stokes equations:

∂ρ

∂t
= −∇ · (ρu)

∂ρu
∂t

= −∇ · (ρu⊗ u)−∇p+
1

Rea
∇ · τ

∂E

∂t
= −∇ · [(E + p)u] +

1

Rea
∇ · (uτ) +

1

ReaPr(γ − 1)
∇ ·Q

where Rea is the acoustic Reynolds number, Pr being the Prandtl number, ρ, u and E denote
the density, velocity and total energy, p is the pressure, τ = µ(∇u +∇uT )− 2

3µ∇ ·uId, and
Q = µ∇T .
Let RHS be the right hand side of the previous set of equations. As an example, it is assumed

in the following that the no-slip condition u = uo and the heat flux condition
∂T

∂n
= q are

applied on the surface of an obstacle O, where T is the temperature, n denotes the inward-
oriented surface normal, uo = uo(x, t) and q = q(x, t) being respectively the velocity of the
obstacle O and the heat flux to be imposed at the wall of O.
The penalized Navier-Stokes equations then write in a domain Ω containing the obstacle O:

∂ρ

∂t
= (1− χ)×RHSρ −

χ

ηc

(
∂ρ

∂n
− φ

)
∂ρu
∂t

= (1− χ)×RHSρu − χ
(

1

ηb
ρ(u− uo)− ρνn

∂2u
∂xj∂xj

+
1

ηc
u
(
∂ρ

∂n
− φ

))
∂E

∂t
= (1− χ)×RHSE − χ

(
1

ηc

∂E

∂n
+
ρ(u− uo) · u

ηb
− ρu
ηc
· ∂u
∂n
− ρu · νn

∂2u
∂xj∂xj

− 1

ηc

E

ρ
φ− 1

ηc
cvρq

)
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where χ denotes the characteristic function of the object O, ηb and ηc are the penalization
parameters (ηb and ηc → 0, optimally ηb < ηc), νn is a non-physical diffusion which avoids
the creation of a discontinuous solution across the obstacle boundary (for a resolution of ∆x
within O, the diffusive coefficient must be νn ≥ O(∆x2/ηb)). Since the volume of the obstacle
is penalized and not its surface, the inward-oriented surface normal n is defined everywhere
by linear extension throughout O. In the above penalized equations, the quantity φ satis-

fies
∂φ

∂t
= − χ

ηc

∂φ

∂n
where φ = (1 − χ)

∂ρ

∂n
+ χφ. Due to the inward pointing characteristic,

the definition of φ in the whole domain Ω provides the necessary boundary condition for
this hyperbolic equation on φ, which is solved only within O. In other words, the density
derivatives are physically determined outside the obstacle O with the continuity equation
and extrapolating inside O by integrating this additional equation on φ.
It should be noted that in the penalized region, φ becomes the target for the inhomogeneous
Neuman condition on ρ, yielding to the penalized continuity equation given above. An ap-
propriate penalized equation for ρ must be provided, otherwise the equations of state are
under-constrained, and, on the other hand, ρ is solved in the whole domain Ω.
It should also be noted that, unlike the Brinkman penalization, this volume penalization
approach does not retain the constitutive equations inside the obstacle, which also explains
the presence of a non-physical diffusion term in the penalized equation (due to the Dirich-
let condition on the velocity u). It is also important to note that, with the definition of
the normal n, the hyperbolic penalization terms (for Neumann and Robin conditions) has
inward-pointing charateristics that extend perpendicular to the surface into the obstacle O.
The solution then propagates from the surface inward, which enforces the desired derivative.
It also prevents a non-physical solution in O from spreading outward, and then the solution
in the domain outside O is only affected through the surface derivative imposed by penaliza-
tion.
In this work, the penalized Navier-Stokes equations are discretized using a numerical solver
based on a wavelet decomposition to dynamically adapt on steep gradients in the solution
while retaining a predetermined order of accuracy (Adaptive Wavelet Collocation Method).
Adaptative mesh refinement grids are also used in order to have high resolution around
surfaces for computational accuracy and a proper definition of the geometry, as volume pe-
nalization techniques do not require body-conformal meshes.
The proposed penalization approach was successfully applied to a one-dimensional diffusion
problem, a one-dimensional acoustic reflection benchmark, flows past a two-dimensional cir-
cular cylinder at Reynolds numbers 40 (steady flow) and 1000 (unsteady flow with vortex
shedding), and the flow past a moving two-dimensional circular cylinder at Reynolds num-
ber 185. As with Brinkman penalization methods, the error was shown to be rigorously
controlled by the penalization parameters.

3.6 Work of Piquet et al. [52]
This paper compares the Brinkman penalization approach with the direct forcing IB method
for the simulation of compressible viscous flows. On the surface of the obstacle, the no-slip
condition u = us applies for the fluid velocity and the temperature is assumed constant
T = Ts where us and Ts are respectively the velocity and the wall temperature of the obsta-
cle.
As for the space and time discretization, a fifth-order WENO scheme and a third-order TVD
Runge-Kutta scheme are used.
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The penalized Navier-Stokes equations used in this work write:

∂ρ

∂t
= −

(
1 + (

1

φ
− 1)χ

)
∇ · (ρu)

∂ρu
∂t

= −∇ · (ρu⊗ u)−∇p+∇ · τ − χ

η
(ρu− (ρu)s)

∂E

∂t
= −∇ · [(E + p)u] +∇ · (uτ) +

cp
Pr
∇ ·Q− χ

η
(E − Es)

where χ denote the characteristic function of the solid, φ is the porosity, η is the permeability
(0 < φ, η � 1), cp is the heat capacity at constant pressure, Pr being the Prandtl number,
ρ, u and E denote the density, velocity and total energy, τ = µ(∇u + ∇uT ) − 2

3µ∇ · uId,
and Q = µ∇T .

The direct forcing approach proposed in this work uses a Cartesian grid split into fluid, solid
and ghost cells as defined in Fig. 6a. For each ghost point G, an image point IP is created
in the fluid domain as depicted in Fig. 6b. The bi-linear interpolation method is used to
interpolate the value at the image point IP from the neighboring fluid points and possibly
some points located on the immersed boundary if IP is surrounded by one or more ghost
points (6b). In order to evaluate the weighting coefficients Ci of the bi-linear interpolation
method given for a generic flow variable φ by φ(x, y) = C1xy + C2x + C3y + C4 in 2D and
φ(x, y, z) = C1xyz+C2xy+C3xz+C4yz+C5x+C6y+C7z+C8 in 3D, a 4 × 4 (2D) or 8 ×
8 (3D) Vandermonde matrix is inverted for each ghost point. Once the interpolated values
φIP at the image point IP of the flow variables φ are computed, the boundary conditions at
the immersed surface u = us, T = Ts and ∂p

∂n = 0 lead to the following values of uG, TG and
pG at the ghost point G: uG = 2us − uIP , TG = 2Ts − TIP and pG = pIP .

Figure 6: (a) Fluid cells, solid cells, ghost cells, as defined by Piquet et al. (b) Bi-linear interpo-
lation variables at image points IP from the neighboring fluid nodes and possibly interface points
B [52].

As numerical applications, a one-dimensional normal shock reflection off a solid wall, a
two dimensional transonic shock/boundary layer in a viscous shock tube, a two-dimensional
supersonic shock/cylinder interaction, and a three-dimensional supersonic turbulent chan-
nel flow are considered. The comparison shows that, with sufficient mesh resolution, the
Brinkman penalization approach and the ghost-cell method yield qualitatively similar re-
sults. The penalization technique is found to be an accurate and efficient method, though it
suffers from a lack of regularity in the very near-wall pressure fluctuations, which is attributed
to the fact that no specific pressure condition at the fluid/solid interface is required. It was
also found that the ghost-cell approach is much more complex to implement compared to
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the penalization method, and the Vandermonde matrix has to be recomputed at every time
step in the case of moving objects, which makes this discrete forcing approach less efficient
in terms of computational cost.

3.7 Work of Pu et al. [56]
In this work, a discrete forcing IB method is developped for the simulation of compressible
turbulent flows using RANS models and wall modeling. In the proposed IB approach, the
flow variables at fluid nodes located in the immediate vicinity of a wall (called IB nodes, Fig.
7) are evaluated by linear interpolation in the direction normal to the wall in order to close
the discretized governing equations. For this purpose, fictitious points (may not be mesh

Figure 7: IB model of Pu et al. [56]. B,B1,B2: IB nodes; F,F1,F2: fictitious points; for an IB
node B, F is located on the normal to the wall passing through B and located at a distance δ
from the wall (computed as the maximal distance between W and E over all IB nodes B).

nodes) inside the fluid domain are introduced (points F,F1,F2 in Fig. 7). All flow variables
at a fictitious point are computed by linear interpolation over the triangle containing it. If
W denotes the normal-wall intersection for a given IB node B (see Fig.7), then the normal
velocity at B is obtained by linear interpolation between points W and F and by applying the
no-penetration boundary condition. The pressure at the IB node B is obtained by considering
a simpified inviscid momentum equation in the direction normal to the wall and by using
the value of the pressure and density at the corresponding fictitious point F. The tangential
velocity at B is evaluated via the wall shear stress prescribed by the wall modeling technique
and by using the flow variables at point F. On the other hand, the density at the IB node B
is deduced from the temperature at B given by the Crocco-Busemann relation using the flow
variables at F. As for the turbulent variables, and considering for example the SST k − ω
model, ω is fisrt evaluated at point F by interpolation between a viscous sublayer value and
a log-layer value of ω, and then the value of ω at node B is set equal to that at point F. At
least, k is obtained at the IB node B by using the value of ω at B and the profile of the eddy
viscosity in the vicinity of the wall.
The governing equations are discretized by the Galerkin finite element approach and the
resulting semi-discrete equations are integrated in time via a dual-time stepping scheme.
As for the numerical experiments, the test cases investigated in this work are a flat plate,
the NACA0012 airfoil (fixed and oscillating), the RAE2822 airfoil, and the Onera M6 wing
(3D). The RANS SST k − ω or Spalart-Almaras model is employed in the simulations.
The used triangular and tetrahedral meshes are derived from Cartesian meshes (by dividing
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rectangular or tetrahedral cells, respectively), and are refined locally in the region near the
solid boundary. The proposed IB/wall modeling approach yields acceptable results for the
prediction of high-Reynolds compressible turbulent flows past fixed and moving bodies.

3.8 Work of Abalakin et al. [39]
Alabakin et al. developped a continuous forcing approach based on the Brinkman penaliza-
tion technique for the simulation of a three dimensional flow around a circular cylinder using
the IDDES hybrid turbulence approach derived from the Spalart-Allmaras model. If χ is the
characteristic function of the solid domain (χ = 1 in the solid, boundary included, and 0 else-
where) and η the small penalization parameter, the Navier-Stokes equations equipped with
the Spalart-Allmaras equation in the IDDES framework and modified by the penalization
terms writes in this work:

∂ρ

∂t
+∇ · (ρu) = 0,

∂ρu
∂t

+∇ · (ρu⊗ u) = −∇p+ µ∇ · τ +∇ · (ρνfν1τ)− χ

η
ρu,

∂E

∂t
+∇ · [(E + p)u] = µ∇ · (uτ) +∇ · (ρνfν1uτ) +∇ ·Q− χ

η
ρ||u||2

∂ρν

∂t
+∇ · (ρνu) = Dν +Gν − cωfω

(
ν

lT

)2

− χ

η
ρν

where ρ, u and E denote the density, velocity and total energy, µ is the molecular viscosity,
τ = (∇u + ∇uT ) − 2

3∇ · uId, Q = Cv
(
µ+ ρνfν1 + γ

Prµ
)
∇T , and in the last equation

governing the turbulent kinematic eddy viscosity ν:

- Dν and Gν are respectively the diffusion and production of turbulence (given, for
instance, in [48]),

- fω, fν1 denote damping functions (can be found, for instance, in [48])

- lT is the turbulence scale introcuced by the IDDES model (described, for instance, in
[49]).

The penalization source terms in the above system of equations ensure a fast relaxation of
order exp(−t/η) of the solution for the velocity u and the turbulent kinematic eddy viscosity
ν to the zero Dirichlet condition at the grid nodes for which the characteristic function is
equal to one. An edge-based reconstruction finite volume scheme and an implicit second-
order time integration scheme are used for the discretization of the above penalized system
on unstructured grids.
The turbulent flow past a three-dimensional circular cylinder at Reynolds number 3900 is
performed using the proposed IB method on unstructured grids. The obtained results show
that the IB techniques is in good agreement with the traditional approach based on body
fitted grid.

4 Conclusion
A review on IB methods is proposed in this document. Some important works have been
reviewed, ranking from that of Peskin [1] in 1972 on the simulation of blood flow and heart-
beat using the IB technique to recent works on IB methods with applications in turbulence
[20, 56, 39]. The main IB techniques are briefly presented, including penalty-based methods,
the ghost-cell procedure, the cut-cell technique and the hybrid Cartesian/IB approach. The
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strengths and weaknesses of the different methods are recalled. On the basis of this review, it
can be said that few works on IB methods were conducted with three-dimensional compress-
ible turbulent flows, and particularly in the case of moving geometries. In the field of CFD,
there is therefore a need to develop numerical methods which allow for a good prediction of
three-dimensional turbulent flows on grids non conforming to the body, with possibly moving
geometries, including in particular the accurate capture of boundary layers which remains a
challenging problem.
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