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1 Introduction

The paper studies the influence of LES and hybrid models on vortex shedding with an em-
phasis on noise generation for aeroacoustic calculations. High-fidelity Aeroacoustics models the
creation of noise in unstable turbulent parts of a flow. For this purpose, the models need to
behave like Large-Eddy Simulation (LES) models. Large Eddy Simulation is able to describe
turbulent boundary layers on a quasi-direct simulation mode, with extremely fine discretiza-
tions. At the same time, Aeroacoustics has the ambition to address complex industrial flows,
of high Reynolds number, involving very thin boundary layers, which today’s computers and
software cannot compute on a LES mode, only on a RANS mode. To account for both needs,
LES and RANS, the hybrid model approach, combining LES and RANS in a somewhat zonal
way is considered by many research teams.
After a seminal paper by C. Speziale [28], an important contribution was the proposition of the
DES method, [27]. This method, initally based on the Spalart-Allmaras one-equation closure
has been used and extended by many teams, and notably to the SST-k − ω.
Hybrid models are important models for aeroacoustics, assumed to be rather good LES models.
They are useful for the high Reynolds flows of aeronautics, allowing a rather good prediction of
the vortices which generate noise. Even for low Reynolds flow, they can appear as better than
RANS, while not being completely satisfactory.
Engineering problems involve more and more complex geometries with details around which
global flows are both of high Reynolds and low Reynolds. Details can involve blunt bodies like
landing gears, antennas, can involve after bodies, or shapes that can be far from aerodynamic
thin shapes (e.g. multi-rotor drones). A typical geometry to study to try to better address this
issue is the massively separated flow past a circular cylinder at rather high Reynolds numbers.



In this paper, we review a few hybrid turbulence models in combination with two numerical
schemes. We compare them on a benchmark of cylinder flows and a typical aeroacoustic flow
in order to examine the relation between pure LES abilities and aeroacoustic ones. The hybrid
methods look like:

Hybrid = URANS × θ + LES × (1− θ)
where θ is a blending function. The main sections of this report examine several blending
functions proposed in the literature and a geometric blending function proposed in this thesis.
The plan is as follows: A first part presents the numerical scheme. A second part presents
the different turbulence models which will be computed. A third part compares results on the
cylinders.

2 Numerical modeling

The numerical approach which is selected is basically a second-order accurate vertex centered
approximation. Dual cells are limited by facets, which are triangles, each of them being formed
by a mid-edge, a centroid of face, a centroid of tetraedron, Figure 1. The assemby of fluxes is
edge based. For each edge ij of the mesh fluxes are computed through the union of facets being
the common boundary between two dual cells around the vertices i and j.
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Figure 1: left, intersection of the boundary of a cell with a tetrahedron. Right, intersection of the
boundaries of cell i and cell j, on the facet of which is integrated the flux between Cell i and cell j.

The flux between each couple (i,j) of cells is numerically integrated through a unique approxi-
mate Riemann solver ARS(Wij ,Wji, νij). The integration values Wij Wji are two special upwind
and downwind interpolations of the unknown field W located at the middle Iij of the edge ij.
For these interpolations, we consider two methods, each of them resulting in a superconvergent
approximation. By superconvergence we mean that for some Cartesian meshes, the accuracy
may be much higher the second-order. The purpose is not higher-order convergence in this
particular context but a strong reduction of dissipation and some reduction of the dispersion in
the general case of a non-Cartesian but not so irregular mesh as generated for our aeroacoustic
calculations.

For cell-interface reconstruction, the V6 scheme has been introduced in [4, 2]. The interpolation
Wij uses the value of the field and its gradient on vertex j and on the vertices of the upwind
tetrahedron Tij . The interpolation Wji uses the value of the field and its gradient on vertex i and
on the vertices of the downwind tetrahedron Tji, Figure 2. The scheme is fifth-order accurate
on certain Cartesian meshes, and is (solely) stabilized by a sixth-order dissipation the strength
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Figure 2: Butterfly molecule in 3D: Downwind and Upwind tetrahedra are tetrahedra having respectively
Si and Sj as a vertex and such that line SiSj intersects the opposite face.

of which can be tuned by a parameter γ ∈]0, 1] (see [4, 2] for details).

3 Two equation RANS modeling

3.1 Goldberg model

The Goldberg-Peroomian-Chakravarthy [10] low Reynolds k − ε model has the following in-
teresting features : (1) a wall-distance-free model, (2) a good prediction of flows with adverse
pressure gradient, (3) a good ability to predict separated flows and is then a low Reynolds model
suitable for the simulation of blunt body flows in which we are interested. We describe it now
for completeness in a short manner. First, the turbulent viscosity is written:

µt = cµfµρ
k2

ε with fµ = 1−e−AµRt

1−e−R
1/2
t

max(1, ψ−1),

cµ = 0.09 , Aµ = 0.01 , ψ = R
1/2
t /Cτ

and Rt = k2/(νε) with ν = µ/ρ ; Cτ = 1.41. The closure variables are determined by:

∂ρk

∂t
+
∂(ρṽjk)

∂xj
=

∂
[(
µ+ µt

σk

)
∂k
∂xj

]
∂xj

+ τij
∂ṽi
∂xj
− ρε

∂ρε

∂t
+
∂(ρṽjε)

∂xj
=

∂
[(
µ+ µt

σε

)
∂ε
∂xj

]
∂xj

+
(
Cε1τij

∂ṽi
∂xj
− Cε2ρε+ E

)
T−1
τ

where Cε1 = 1.42,Cε2 = 1.83 and Tτ = k
εmax(1, ψ−1) is the realisable time scale (τ = k/ε).

Furthermore,

E = ρAEmax(
√
k, (νε)0.25)(εTτ )0.5max(

∂k

∂xi

∂τ

∂xi
, 0)

with AE = 0.3. This model solves indeed the flow up to the wall but in some case it can be
useful to couple it with a Reichardt wall law:

U+ =
1

κ
ln
(
1 + κy+

)
+ 7.8

[
1− exp

(
−y+

11

)
− −y

+

11
exp

(
−y+

3

)]
(1)

Since the Goldberg model is a low-Reynolds one, the matching thickness can be arbitrarily small.
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Menter correction

The Menter correction, which limits the eddy viscosity when production is greater than dissi-
pation, has the good following features : (1) it reduces the eddy viscosity in non-equilibrium
flows and therefore improves the ability of the model to predict separated flows, (2) it limits the
generation of turbulence in impingement zones (which is excessive with classic RANS model).
It is then appropriate to blunt body flow computation.

The previous definition of µt is replaced by:

µt =
ρk
√
cµfµ

max

(
ε

k
√
cµfµ

, | ∂u
∂y
| tanh(ψ2)

) with ψ = max

(
2
k3/2

yε
,
500µcµk

ρεy2Re

)
.

It has been remarked, for example in ([7]) that the combination of a k−ε with the above Menter
limiter carried a favourable behavior, somewhat similar to the k − ω SST model. We denote in
the sequel the association of Goldberg’s closure with Menter’s limiter as the RANS k−ε-Menter
model and write it in short:(∂〈W 〉

∂t
, φi

)
+ (∇ · F (〈W 〉), φi) = −

(
τRANS(〈W 〉), φi

)
.

4 Dynamic Variational Multiscale modeling

The VMS formulation consists in splitting between the large resolved scales (LRS) i.e. those
resolved on a virtual coarser grid, and the small resolved ones (SRS) which correspond to the
finest level of discretization. The VMS-LES method does not compute the SGS component of
the solution, but it models its dissipative effects on the SRS, and it preserves the Navier-Stokes
model for the large resolved scales.

4.1 VMS formulation

In the present work, we adopt the VMS approach proposed in [18] for the simulation of com-
pressible turbulent flows through a finite volume/finite element discretization on unstructured
tetrahedral grids. Let VFV be the space spanned by ψk, the finite volume basis function, and
VFE the one spanned by φk, the finite element basis function. In order to separate large and
small scales, these spaces are decomposed as: ψk =< ψk > +ψ′k and φk =< φk > +φ′k where the
brackets denote a coarse scale and the prime a fine scale. Consequently to this decomposition,
the flow variables are decomposed as follows:

W =< W > +W ′ +WSGS (2)

where < W > are the LRS, W ′ the SRS and WSGS the unresolved scales. The projection
operator based on spatial average on macro-cells defined in [18] is used to compute the basis
functions of the LRS space. This, for finite elements, leads to:

< φk >=
V ol(Ck)∑

jεIk

V ol(Cj)

∑
jεIk

φj (3)
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where V ol(Cj) denotes the volume of Cj , the cell around the vertex j, and Ik = { j/Cj ∈ Cm(k) }
where Cm(k) is the macro-cell containing the cell Ck. The macro-cells are obtained by a process
known as agglomeration [19]. An analogous definition holds for finite-volume basis functions.
The SGS model which introduces the dissipative effect of the unresolved scales on the resolved
scales is only added to the SRS and it is computed only as a function of the SRS. Therefore,
the term below is added to the momentum equations∫

Ω
τ ′ · ∇Φ′ dΩ (4)

The SGS stress tensor is expressed herein by means of an eddy-viscosity model and, as previously
stated, it is computed as a function of the small resolved scales:

τ ′ij = −µ′sgs(2S′ij −
2

3
S′kkδij) ; S′ij =

1

2
(
∂u′i
∂xj

+
∂u′j
∂xi

) (5)

where µ′sgs denotes the viscosity of the SGS model used to close the problem, computed as
a function of the smallest resolved scales, and u′i is the i-th component of the SRS velocity.
Likewise, the term

∫
Ω

Cpµ
′
sgs

Prsgs
∇T ′ · ∇Φ′5 dΩ (6)

is added to the energy equation. Cp is the specific heat at constant pressure, Prsgs is the
subgrid-scale Prandtl number which is assumed to be constant and T ′ the SRS temperature.

4.2 SGS viscosities

To obtain the SGS viscosity needed to close the above VMS formulation, we have to define the
SGS viscosity coefficient µ′sgs.

A first option is the widely used Smagorinsky model [26] is first considered. In the adopted VMS
formulation this writes:

µ′sgs = < ρ > (CS∆)2
∣∣S′∣∣ , with

∣∣S′∣∣ =
√

2S′ijS
′
ij (7)

where CS is the Smagorinsky coefficient A typical value for the Smagorinsky coefficient for shear
flows is CS = 0.1, which is used herein.

Symbol ∆ holds for the filter width, in the type of LES which we use, the filter width is fixed to
the local mesh size. The definition of the local mesh size is not an easy question when (highly)
anisotropic meshes are used. Two main options are (1) the third root of the grid element volume
and (2) the largest local edge. However, our experience is that, when combined with devices
like VMS and Dynamic-LES, the choice in defining the local mesh size is not so sensitive. Our
filter width is defined as the third root of volume of the grid element T, then:

∆ = ∆T =
( ∫

T
dv
) 1

3 . (8)
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Symbol ∆ holds for the filter width, in the type of LES which we use, the filter width is fixed to
the local mesh size. The definition of the local mesh size is not an easy question when (highly)
anisotropic meshes are used. Two main options are (1) the third root of the grid element volume
and (2) the largest local edge. However, our experience is that, when combined with devices
like VMS and Dynamic-LES, the choice in defining the local mesh size is not so sensitive. Our
filter width is defined as the third root of volume of the grid element T, then:

∆ = ∆T =
( ∫

T
dv
) 1

3 . (9)

A second SGS model is the Wall-Adapting Local Eddy -Viscosity (WALE) SGS model proposed
by Nicoud and Ducros [21]. The eddy-viscosity term in the VMS formulation is defined as
follows:

µ′sgs = < ρ >(CW∆)2
((Sdij)

′(Sdij)
′)

3
2

(S′ijS
′
ij)

5
2 + ((Sdij)

′(Sdij)
′)

5
4

(10)

with (Sdij)
′ = 1

2(g′ij
2 +g′ji

2)− 1
3δijg

′
kk

2 being the symmetric part of the tensor g′ij
2 = g′ikg

′
kj , where

g′ij = ∂u′i/∂xj . As indicated in [21], the constant CW is set to 0.5.

4.3 Dynamic model

In their original formulations, CS and CW appearing in the expression of the viscosity of the
Smagorinsky and WALE SGS model (Eqs. (7) and (10) respectively) are set to a constant
over the entire flow field and in time. In the dynamic model [8], this constant is replaced by a
dimensionless parameter C(x, t) that is allowed to be a function of space and time. The dynamic
approach also provides a systematic way for adjusting this parameter in space and time by using
information from the resolved scales. After the introduction of the grid filter, denoted by overline
and tilde, tilde being Favre averaging, f̃ = ρf/ρ, a second filter is considered, having a larger
width than the grid one, which is called the test-filter and denoted by a hat. The test-filter is
applied to the grid-filtered Navier-Stokes equations, and then, the subtest-scale stress is defined
as follows:

M test
ij = ρ̂uiuj −

(
ˆ̄ρ
)−1

(
ρ̂ui ρ̂ui

)
(11)

The deviatoric part of M test
ij can be written using a Smagorinsky or WALE model, as

M test
ij − 1

3
M test
kk δij = − C∆̂2 ˆ̄ρg(ˆ̃u) ˆ̃Pij (C = CW

2 or CS
2) (12)

with ˆ̃Pij = −2
3

ˆ̃Skkδij + 2 ˆ̃Sij and where g(ˆ̃u) denotes the contribution to the SGS viscosity
depending on the gradient velocity that appears in (7) for the Smagorinsky model, and in (10)
for the WALE model. The constant C, as originally proposed in [8], is assumed to be constant
at the subgrid and subtest levels.

By using the Germano identity [8] and a least-square approach [20] to contract the resulting
tensorial equation, we obtain:

(C∆2) =
LijBij
BpqBpq

(13)

where:

Lij = Lij −
1

3
Lkkδij ; Lij = ̂̄ρũiũj −

(
ˆ̄ρ
)−1

(̂̄ρũî̄ρũi) (14)
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and

Bij = ̂ρ̄g(ũ)P̃ij −

(
∆̂

∆

)2

ˆ̄ρg(ˆ̃u) ˆ̃Pij . (15)

Note that all quantities in the right-hand side of Eq. (13) are known from the LES computation.
Note also that we preferred to dynamically compute (C∆2), instead of C as done in the original
dynamic procedure, in order to partially overcome difficulties in the definition of the filter width
for inhomogeneous and unstructured grids. Finally, as done also in [14], the classical dynamic
procedure previously briefly outlined, which involves all the resolved scales, is used herein. Once
(C∆2) is dynamically computed, it is injected in Eq. (7) or (10) to obtain the SGS viscosity
used in the VMS approach.

A possible drawback of the dynamic procedure based on the Germano-identity [8] when applied
to a SGS model already having a correct near-wall behavior, as the WALE one, is the introduc-
tion of a sensitivity to the additional filtering procedure. A simple way to avoid this inconvenient
is to have a sensor able to detect the presence of the wall, without a priori knowledge of the
geometry, so that the dynamic SGS model adapts to the classical constant of the model, which is
equal to 0.5 in the near wall region for the WALE model, and compute the constant dynamically
otherwise. We adopt the sensor proposed in [30], having the following expression:

SV S =
(S̃ij

d
S̃ij

d
)
3
2

(S̃ij
d
S̃ij

d
)
3
2 + (S̃ijS̃ij)3

. (16)

This parameter has the properties to behave like y+3 near a solid wall, to be equal to 0 for pure
shear flows and to 1 for pure rotating flows.

It should be noticed that the implementation of the dynamic SGS models in our software has
been optimized so that the additional cost of the resulting dynamic LES and VMS models, in the
case of an implicit time-marching scheme, which is our default option, is less than 1% compared
to their non-dynamic counterparts.

5 DDES-k-eps-Menter

The above k-eps-Menter RANS can been injected in a DDES formulation in a similar way to
[1], [11]. The DDES/k − ε model is obtained by replacing, in the ρk transport equation of the
Goldberg k− ε model, the dissipation term ρε by a DDES dissipation ρk3/2/lDDES introducing
the characteristic length lDDES :

∂ρk

∂t
+
∂(ρṽjk)

∂xj
=
∂
[(
µ+ µt

σk

)
∂k
∂xj

]
∂xj

+ τij
∂ṽi
∂xj
− ρ k3/2

lDDES
(17)

where lDDES =
k3/2

ε
− fd ∗max(0,

k3/2

ε
− CDDES∆) (18)

with fd = 1− tanh((8rd)
3) and rd =

νt + ν

max(
√
ui,jui,j , 10−10)K2d2

w

. (19)
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K denotes the von Kàrmàn constant (K = 0.41), dw is the normal distance to the wall, ui,j
is the derivative according to xj of the component i of the velocity u, and the model constant
CDDES is set to the value 0.65 (νt and ν are the turbulent kinematic viscosity and the fluid
kinematic viscosity, respectively).

(∂〈W 〉
∂t

, φi

)
+ (∇ · F (〈W 〉), φi) = −

(
τDDES(〈W 〉), φi

)
,

in which the above RANS model is introduced in a DDES formulation by replacing in the
RHS of the k equations the DRANS

k = ρε dissipation term by DDDES
k = ρk

3
2 /lDDES with

lDDES = k
3
2 /ε − fd max

(
0, k

3
2 /ε − CDDES ∆

)
where CDDES = 0.65. We have checked in [15]

that this model gives predictions close to other DDES approach based on the k−ω SST model.

6 Further hybridation

6.1 DVMS and Hybrid DVMS

In the VMS approach [6] which we use, the effect of unresolved structures are only modeled in
the equations governing the small resolved scales. In that sens the subgrid-scale is acting only
on small scales and is computed by applying Smagorinsky or Wale model. We detailled briefly
the VMS formulation which is semi-discretized :{ (

∂W
∂t , χi

)
+
(
∇ · Fc(W ), χi

)
=

(
∇ · Fv(W ), φi

)
+
(
τDVMS(W

′
), φ

′
i

)
Q(0,x) = Q0(x), ∀x ∈ Ωf

(20)

Here the convective and viscous flux do not contains any closure equations. Moreover, the
closure terms is defined as the following :(

τ les(W
′
h), φ

′
i

)
:=
(
0, MS(Wh, φ

′
i), MH(Wh, φ

′
i)
)T

(21)

and

MS(Wh, φ
′
i) :=

∑
T∈Ωh

∫
T
ρh(Cs∆T )2|S′|D(S′)∇φ′idx (22)

here |S′| =
√
S′ : S′, ∆T is the local mesh size defined in (9), D(S′) correspond to the deviatoric

part of tensor S′ = 1
2(∇u′ + (∇u′)T ) defined by D(S′) = 2

(
S′ − 1

3∇ · u
′Id
)
. The basis function

are written as φ′k = φk − φk where :

φk =
V ol(Ck)∑
j∈Ik V ol(Cj)

∑
j∈Ik

φj (23)

Ik means the index set of cells wich are contains in macro-cell Ck obtained by agglomeration
process, see also [19]. For the subgrid terms in relation with heat transfer, we write :

MH(Wh, φ
′
i) =

∑
T∈Ωh

∫
T
ρh
Cp(Cs∆T )2

Prt
|S′|∇T ′ · ∇φ′idx (24)
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URANS/DVMS model

Now, let us define the hybrid URANS/DVMS model based on the above DVMS and RANS
models : (

∂Wh
∂t , χi

)
+
(
∇ · F (W h), χi

)
=(

∇ · V (W h), φi
)

+ θ
(
τRANS(W h), φi

)
+ (1− θ)

(
τDVMS(W

′
h), φ

′
i

) (25)

Here Wh denotes the hybrid variable solution of the system above. It appears, with this varia-
tionnal approach, a theta function wich means a blending function ( values in [0, 1]), creating a
convex combinaison of closures terms of these two turbulence models, and τRANS contains the
closure terms of RANS modelisation.
To define the DDES/DVMS model, it suffice to change the RANS closure term by th DDES
one.

6.2 Design of the blending functions

As we can see in the previous section, we must define the hybridation function, wich is in a good
agreement with the local application of RANS or LES model. There exist several way to define
them :

A- One solution consist to define the following hybridation function :

θ = 1− fd (1− θ), (26)

Where fs ∈ {fd1, fd2, fd3} which usually called, the delayed or shielding function, the
choice of these shielding function depends of the thickness blending you want to apply. In
our case :

fd1 = 1− tanh((8rd)
3),

fd2 = 1− tanh((20rd)
3),

fd3 = 1− tanh((8rd)
4),

(27)

B- The geometric or zonal approach directly depending on the distance to wall:

θ = fgeo = 1− tanh(α ∗ d4
w) (28)

Where α is prescribed (depending on the mesh choosen).

C- Original blend :
θ = θ (29)

Definition of blends methods

1) We choose a blend method as a function of a ratio of turbulence model values :

θ = tanh(ξ2) (30)

with several way to choose ξ :
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a) ratio of the length scale :

ξ =
∆

lk/ε
with lk/ε =

k3/2

ε
(31)

b) ratio of turbulent viscosity :

ξ =
µles
µk/ε

(32)

c) ratio of caracteristic time scale :

ξ =
τles
τk/ε

with τles =
1√
S : S

and τk/ε =
k

ε
. (33)

2) We can find, on litterature other blending function, Han et al. [13] proposed :

θ = min

(
1,

[
1− exp(−βLc/Lk
1− exp(−βLi/Lk)

]2
)

(34)

with Lc is the local size of tetrahedron and Li = k3/2

ε is the k-ε length scale, Lk =
(
ν3

ε

)1/4

and β = 2× 10−3. We call it, Han-Krajnovic blending function.

3) A well known blending function is the blending function introduced by [23] to develop k-ω
SST model:

θ = tanh(ξ2)

where

ξ = max

[
2
√
k

0.09ωy
,
500ν

y2ω

]
(35)

4) We can define the blend method as a zonal approach considering the length scale of the
closure model :

θ =

{
1 if lk/ε < ∆

0 otherwise
(36)

5) Another way is to consider the blending function as a blend method and then we have :

θ = fs ; for fs ∈ {fs1, fs2, fs3} (37)

6) Finally, we can define a regularisation of a zonal approach, consiting to make a continuous
function which is 1 near the geometry and 0 otherwise. Consider V the domain you want
θ = 0 then we write θ as the following :

θ = 1− exp

(
− 1

2ε
d(r, V )2

)
(38)

where ε > 0 and d(r, V ) is the distance between r and the set V , if r ∈ V then d(r, V ) = 0
and θ = 0, else d(r, V ) > 0 and for a small ε > 0 :

lim
ε→0+

θ = 1
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7 A challenging geometry: the circular cylinder

Though the geometry of a circular cylinder is quite simple, computing the flow past this bluff
body remains a challenging benchmark. Indeed, the flow physics changes strongly with the
Reynolds number [32] and is characterized by many features: attached flow, separated flow,
laminar/turbulence transition, shear layer, recirculation, vortex shedding, among others. On
the other hand, the flow separation does not occur due to singularities in the geometry as for
square or rectangular cylinders for example, which makes the prediction of circular cylinder
flows more difficult.
Among the different regimes that can characterize this flow, we can mention the subcritical,
critical and supercritcal regimes (Reynolds number ranges are indicative):

• For Reynolds numbers 300 < Re < 3×105, the flow regime is subcritical: the vortex street
downstream the cylinder is fully turbulent and the separation points are laminar with a
separation angle less than 90o.

• For Reynolds numbers 3 × 105 < Re < 3.5 × 105, the critical regime is reached. The
boundary layer is laminar on one side of the cylinder. On the other side, turbulence settles
in the attached boundary layer and the separation point is turbulent leading to delayed
separation. This results in a sudden drop in drag coefficient known as the Drag crisis. The
wake is narrower and disorganized, and no vortex street is apparent.

• For Reynolds numbers 3.5 × 105 < Re < 3.5 × 106, the flow regime is supercritical:
the boundary layer is turbulent on both sides of the cylinder when the flow separates,
which results in a separation located further downstream compared to the subcritical case
(separation angle greater than 90o). The turbulent vortex street reappears and the wake
is thinner. The drag coefficient increases while remaining lower than the values observed
in subcritical regime.

7.1 Reynolds =140K

The conditions of computation for this subcrittcal case are as follows:

• Computational grids:
0.892MNodes span= 2D
165x165x21 mesh

• Flow parameters:
361x325x3 mesh
112000 times steps
cfl= 40
better ageement with experiments that 165x165x3 mesh
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Figure 3: Cylinder at Reynolds number 140K. Computation with the option DVMS-Smagorinsky.
Coarse mesh 165× 165. The experimental curve was published in [5].

mesh Cd −Cpb
Lr St

Experiments
Cantwell-Coles (1983) 1.24 1.21 0.5 0.179
Son-Hanratty (1969) ' 0.2
Zdravkovich (1997) ' 0.2
Present simulations
No model 165x165 0.43 0.40 0.63 0.142
URANS k − ε 165x165 0.77 0.87 1.05 0.218
DDES k − ε 165x165 0.97 1.01 0.96 0.217
DDES/DVMS 165x165 1.04 1.12 0.91 0.214
DVMS 165x165 1.25 1.33 0.88 0.217
DVMS 361x325 1.32 1.17 0.56 0.166

Table 1: Bulk quantities for Re = 140, 000 flow around a cylinder.
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Figure 4: Cylinder at Reynolds number 140K. Computation with the option DVMS-Smagorinsky. Finer
mesh 361× 325. The experimental curve was published in [5].
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7.2 Reynolds =1M

Let us start this part devoted to hybrid calculations by presenting the results of a circular cylinder
flow at Reynolds number, based on the cylinder diameter D and on the freesream velocity, equal
to 1 million. The computational domain is such that −15 ≤ x, y ≤ 15, and −1 ≤ z ≤ 1 where
x, y and z denote the streamwise, transverse and spanwise directions respectively, the cylinder
axis being located at x = y = z = 0. The mesh involves 4.8 millions nodes and 6.8 millions
tetrahedra. In this study, the Reichardt wall law (1) is used. Moreover, the subgrid scale model
used for hybrid model is either Smagorinsky or WALE model (mentioned in tables) in their
dynamic version. The hybrid function is chosen of the form of (24) with fs = fs1 and θ designed
as (28) with (29).

Only a few results with Reynolds larger than 5 × 105 are available in the litterature. This
range corresponds to a supercritical regime for which the boundary layer is turbulent at the flow
separation. It is generally admitted that the vortex shedding strength is low over the interval
[5 × 105, 1.5 × 106]. Experimental results involve those of Shih et al. [25], Schewe [24], Guven
et al. [12], Goelling [9] and Zdravkovich [31]. Computations are even more difficult to find in
the literature. LES computations of Kim et Mohan [17], Catalano et al. [3], Ono and Tamura
[22], and RANS computations of Catalano et al. [3] are used for comparison purpose. These
simulations were performed with grids of 2.3× 106 nodes (Catalano et al. [3]), 4.5× 106 nodes
(Ono and Tamura [22]) and 6.8×106 nodes (Kim and Mohan [17]). Probably LES computations
performed with less than 4 million nodes are underresolved and produce in particular a too large
drag.

Figure 5: Computational domain
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Name Mesh size y+w y+m Cd C ′
l −Cpb Lr θ

Experiments
Shih et al [25] 0.24 - 0.33
Schewe [24] 0.22 - -
Szechenyi [29] 0.25 - 0.32
Glling [9] - 130
Zdravkovich [31] 0.2-0.4 0.1-0.15 0.2-0.34
Other simulations
RANS Catalano [3] 2.3M - - 0.39 - 0.33
LES Catalano [3] 2.3M - - 0.31 - 0.32
LES Ono [22] Re=600K 4.5M - - 0.27 0.13 -
LES Kim [17] 6.8M - - 0.27 0.12 0.28 - 108
Present simulations
URANS
URANS k − ε - - - 0.24 0.07 0.26 - -
DDES
DDES k − ε Goldberg WL 4.8M 20 100 0.20 0.04 0.22 0.87 138
DDES k − ε Goldberg WL 4.8M 20 25 0.40 0.05 0.56 1.46 113
DDES k − ε Goldberg ITW 4.8M 1 - 0.50 0.07 0.54 1.22 103
DDES/ DVMS
k - ε / cubic WL Smagorinsky 4.8M 20 100 0.20 0.02 0.22 0.82 135
k - ε / cubic WALE ITW 4.8M 1 - 0.49 0.06 0.60 1.56 104
RANS / DVMS
k - ε / cubic Smagorinsky WL 4.8M 20 100 0.24 0.05 0.22 0.62 133
k - ε / Shur WALE WL 4.8M 1 100 0.25 0.11 0.23 0.68 133
k - ε / cubic WALE ITW 4.8M 1 - 0.48 0.11 0.55 1.14 109

Table 2: Bulk coefficient of the flow around a circular cylinder at Reynolds number 1M, Cd holds for the
mean drag coefficient, C ′

l is the root mean square of lift time fluctuation, Cpb
is the pressure coefficient

at cylinder basis, Lr is the mean recirculation lenght, θ is the mean separation angle.

From these results, we notice in Table 2 that RANS/DVMS model is better than others, in
particular the drag coefficient is contained in Zdravkovich [31] interval for the wall law modeli-
sation and also in a very good agreement with others experiments. But lift root mean square is
under estimated for all simulations compared to experimental datas, however we observe that it
is not the case for integration to the wall modelisation. In the other hand, the predicted mean
separation angle, which correspond to a turbulent flow separation, is closed to experimental data
for the wall law, the DDES and hybrids DDES are over estimated and under estimated for all
in the case of ITW.
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Figure 6: Distribution of mean pressure as a function of polar angle. Comparaison between experiment.
Wall law on the left and integration to the wall on the right.

Figure 7: On the top longitudonal velocity profile at x/D = 1, and on bottom the transverse velocity.
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Figure 8: Instantaneous vorticity field of our models at Reynolds 1 million. From top to bottom:
/RANS-DVMS-ITW, DDES-ITW, DDES-DVMS-ITW

7.3 Reynolds =2M

The computational grids are either quasi 2D or fully 3D:
- 2D: Inria 361x325 structured,
- 3D: Inria 4.8MNodes 361x325x41 structured, span = 2D and 3D.
We also refer to results obtained by KIAM’s 3D unstructured mesh with 4.8MNodes.

Figure 9 compares the aironum URANS-WL surface pressure with the recent paper of Sreeni-
vasan(2019), both are two-dimensional computations 1. Figure 9 shows that AIRONUM cor-
rectly predicts the minimum Cp surface pressure using a WL. That the WL gives accurate
surface pressure on the cylinder should not be surprising as experiments show that turbulent
separation occurs and the flow is fully turbulent at Re= 1M and 2M.

Figure 10 compares the aironum URANS-WL and URANS-ITW surface pressures. We would
like better agreement between the WL and ITW results. To explain the lack of agreement we
note that 1) The WL requires no transition model as the flow is assumed to be full turbulent
whereas 2) ITW requires a transition model (under development in the AIRONUM software)
and 3) ITW is more sensitive to the mesh than the WL,requiring a very fine mesh near the
no-slip surface.

1Other than [3], who only gave Cd values, the author could find no other published 3D CFD results at Re=
2M with which to compare the present results.
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Figure 9: Cylinder at Reynolds number 2M. Surface pressure using a WL. Experiment at Reynolds
number 2.7M comes from [16]

Figure 10: Cylinder at Reynolds number 2M. Surface pressure- WL vs ITW. Experiment at Reynolds
number 2.7M comes from [16].

It is difficult to discuss the Re= 2M results without comparison with the Re= 1M results. Shown
in Figure 11, for the WL case, are the lift spectra for both Reynolds numbers compared with the
Kolmogorov energy scale. The excellent agreement with the Kolmogorov scale gives confidence
that the meshes used are sufficient for the WL. The probe was located at (x,y,z) = (1,0,0).
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Figure 11: Lift Spectra at Re= 1M and Re- 2M.
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Re= 2M mesh/Re model/∆ SGS filter Cd C ′l -Cpb θ St/VTC

Exp Shih et al. Re= 1.5M 0.26 0.033 0.40 105 0.46
Exp Schewe al. Re= 2.0M 0.32 0.029 na na 0.26

2D-WL
AIRONUM-2D Inria2D RANS-WL 0.19 - 0.23 124 -/-
AIRONUM-2D Inria2D URANS-WL 0.29 0.12 0.30 115 0.41
Sreenivasan-2D Grid2D TBLE-WL 0.24 0.029 0.36 105 0.36

3D-WL
AIRONUM-3D Inria3D DDES-WL/∆Shur 0.28 0.038 0.27 132 0.42/108
AIRONUM-3D Inria3D URANS-DVMS-WL 0.26 0.048 0.31 128 0.44
AIRONUM-3D Inria3D URANS-WL 0.26 0.066 0.30 128 0.42/26

3D-ITW
NOISEtte-3D KIAM3D-f DDES-ITW/∆SLA 0.23 0.051 0.58 110 0.315
NOISEtte-3D KIAM3D-c DDES-ITW/∆SLA 0.22 0.027 0.55 109 0.34

Table 3: Re= 2M: C̄d is the mean drag, C
′

l is the root mean square (r.m.s) of the lift coefficient, θ̄ is
the mean flow separation angle. St is the Strouhal number based on the diameter, Lr/D the mean flow
recirculation length. Grid-2D 3.3M elements. Inria2D mesh has 117K vertices structured. Inria3D mesh
has 4.8M vertices structured. KIAM3D-c mesh 4.48M unstructured.
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Correctly predicts CL′rms
Re 2D 3D Notes

1M yes-WL yes-WL exceptions: Moussaed(2013,2014)and Kim and Mohan(2005)
2M no-WL yes-WL

1M no-ITW yes-ITW
2M no-ITW no-ITW

Table 4: Prediction of CL′
rms at Re= 1M and Re= 2M

8 Cylinder Re= 1M and 2M: Summary WL results

Table 3 shows various results for the Re= 2M case from which the following are noted.

• Observations at Re= 2M : LES, DDES and other Hybrid methods using a WL :

– The focus here is on the prediction of CL′.

– AIRONUM-2D over-predicts the experimental CL′ values at Re= 2M.

– Sreenivasan’s TBLE-2D correctly predicts the experimental CL′ values at Re= 2M. X

– AIRONUM-3D correctly predicts the experimental CL′ values at Re= 2M. X

– No published 3D CFD detailed studies exist with which to compare.

• Observations at Re= 1M :

– TBLE-2D and AIRONUM-2D correctly predict the experimental CL′ value at Re= 1M. X

– Moussaed(2013,2014) correctly predicted the exp CL′ value at Re= 1M. X

– Kim and Mohan(2005) correctly predicted the exp CL′ value at Re= 1M. X

– AIRONUM-3D correctly predicts the experimental CL′ value at Re= 1M.

– With the exception of Moussaed (2013), Moussaed et al.(2014) and, Kim and Mohan(2005),
no published 3D CFD results exist that correctly predict the experimental CL′ values at Re=
1M.

Table 4 summarizes the status of the Re= 1M and Re= 2M test cases.

9 Concluding remarks

The Rey = 140K case remains a difficult case due to the high variations of bulk coefficicents appearing
when the mesh is refined.

The Rey = 1M case is computed with the different options and results are reasonably accurate.
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Concerning the Rey = 2M case, some tracks to explore are:
- AIRONUM, add a transition prediction model in order to more accurately compute transitional bound-
ary layers (ITW, supercritical regime).
k−R transition model (Zhang-Rahman-Chen, 2019) combined with DDES, URANS/DVMS and DDES/DVMS.
- It is necessary to validate the ∆SLA (shear-layer-adaptive) filter in the AIRONUM sortware. - A SST
k − ω model could be combined with DDES, RANS/DVMS and DDES/DVMS.
- We have to further improve the blending function in the URANS/DVMS approach.
- A seamless DDES/DVMS strategy based on a blending function allowing for an automatic switch from
DDES to DVMS and vice versa has to be found.
- A DDES variant (limitation of the production term, Reddy-Ryon-Durbin, 2014) which avoids the log-
layer mismatch issue should be derived.
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