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Abstract

Ce document présente une approche d’adaptation de maillage pour
les calculs utilisant des modeles de turbulence hybrid RANS/LES. On
priviliégie les applications au calcul d’écoulements quasi-stationnaires
et quasi-périodiques.
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1 Introduction

Large Eddy Simulation is a numerical tool for predicting turbulent flows.
Unlike a statistical Navier-Stokes model which tends to discard all fluctua-
tions into a statistical average, in many case by damping theses fluctuations.
LES can be interpreted as damping only a part of unsteady turbulent struc-
tures, typically structures with a scale smaller than a prescribed filter size.
The smallest structures being the most difficult to solve, LES consumes much
less computational effort than a Direct Numerical Simulation which computes
all turbulence structures. The idea of LES is to consider the Kolmogorov en-
ergy cascade and try to exclude from the computation the smallest scales of
smallest energy by :

(i)- defining the neglected scales as smaller than a filter width A, and adding
a model of the action of neglected scales on the non-neglected ones. This de-
fine a continuous model parameterized by the filter width Ay,

(ii)- using, in order to approximate the continuous model built in (i), a mesh-
based approximation with local mesh size A,.

While, by construction, Ay should be larger than A, in order to ap-
proximate accurately the non-neglected scales, the research of the lowest
computational cost motivates the practitioner to set Ay = A,, with the con-
sequence that the smallest unfiltered scales are the smallest scales computed
on the grid and are then very poorly approximated, whatever be the accuracy
of the numerical scheme.

When using a second-order accurate approximation, an important disad-
vantage comes from the fact that many LES models of Smagorinsky type
are similar to second-order accurate truncation terms, in such a way that
approximation errors are of same order as the filter model. According to
an analysis of Ghosal [8] and to the outputs of many numerical computa-
tions, see e.g. [11], using a second-order accurate approximation may result
in errors larger than the effect of LES modelling. I remains that second-
order accurate approximations are much used and very useful for computinf
LES flows in engineering. A good practise for increasing the confidence in
second-order accurate LES computations is to compare (a) the LES-based
computations with (b) their no-model counterpart in order two, see e.g. [12].

Let assume that an approximation of nominal order o ! is used. An im-

!By nominal we mean the usual order of convergence which can be observed when
no singularity occurs, typically second-order convergence with second-order codes and
extremely fine meshes.



portant issue is the fact that the convergence at nominal order, is subject
to the condition of using a sufficiently refined mesh: the mesh should be in
any point sufficiently fine for capturing the smallest local detail of the flow
computed, in order to start second-order or higher order convergence.

- Already in steady CFD, the convergence at nominal order is difficult to at-
tain. A very efficient tool for this purpose is the convergent mesh adaptation
double loop as described in [1, 6]. The inner loop is an anisotropic metric-
based fixed-point adaptation working with a fixed number of unknowns. The
outer loop is an anisotropic metric-based enrichment increasing progressively
the total number of unknowns and controlling the actual convergence to the
continuous solution. Thanks to this double loop, steady second-order RANS
calculations are reaching a higher level of accuracy and fiability.

- As concerns unsteady RANS, mesh convergence with a double mesh adap-
tive loop is more difficult to apply, but effective in many cases. See for
examples [3], [16], [15].

- At the contrary, with LES, the scenario consisting of a brute-force mesh
convergence with LES by increasing simply the number of nodes generally
may not succeed for the following reason. The filter term can be considered
as a second order error. However refining diminishes the SGS term and intro-
duces the arising of smaller and smaller new unstable scales in the solution
which therefore cannot be accurately approximated until the process simply
solves the corresponding DNS flow.

Therefore, in contrast to laminar and RANS modeling, mesh adaptation
for LES and hybrid models cannot have as goal the faster /fastest convergence
to a continuous field. The designing of a mesh adaptation criterion for LES
is an important and difficult issue, addressed by a large quantity of works,
among which we have selected the following typical ones.

In [4], The approach is a numerical one, related to truncature. The error
estimator identifies the regions lacking in accuracy, improving their resolution
by either decreasing the size of the element or increasing the polynomial de-
gree which approximates locally the solution. A smoothness indicator guides
the hp-decision, leading to p-enrichment for smooth regions and h-refinement
for non-smooth regions.

The physical approach is discuted in [5]: Arguments based on the ratio of
subgrid to viscous dissipation or viscosity are meaningful only in the buffer



layer of wall-bounded turbulence since LES should be ap- plicable to free
shear flows at any Reynolds number. Measuring the sufficiency of a grid in
LES by the ratio of modeled to resolved (or total) turbulence kinetic energy
has been found to correlate poorly to the known behavior of length scales in
wall-bounded flows. Methods that approximate a local turbulent spec- trum
have some basis for isotropic flows, but fail for more relevant cases.

The most well-grounded approach to date is that by Toosi and Lars-
son [17] which can be viewed as an estimate of the LES modeling residual,
i.e., the source term in an error transport equation. In Toosi and Larsson
proposition, a process analog to the dynamic Germano calculus identifies the
coarsest resolution for which the LES solution is sufficiently accurate and
exhibits minimal sensitivity to the resolution.

In [13] the approach relies on a Discontinuous Galerkin hifg-order approx-
imation. The ideal DG-LES solution is defined as the result of the application
of two successive filter- ing operations. A first convolution filter is applied to
the DNS data which filters out frequencies beyond the LES grid cut-off. Next,
a L 2 -projection of this filtered field is performed on the hp-discretization
space (referred to in the following as DG-projection). +VMS.DG-VMS. Pas
vraiment adaptatif.

In [7], a field-inversion machine-learning (FIML) framework is introduced.
It only requires unsteady primal solutions. Two error estimates are com-
pared in this work, (E1) Time-averaged unsteady residual weighted by a
time-averaged adjoint, (E2) an Augmented-system residual weighted by the
augmented-system adjoint

The work in [10] compares three indicators. The first indicator is based
on the unsteady residual. The second indicator is based on a local smooth-
ness indicator. The third indicator is based on an estimate for small scale
turbulent kinetic energy. Comparisons with DNS tend to show that the first
indicator is the best.

Similarly, in [9] several indicators are studied
The classic residual based error indicator and the newly introduced
heuristic indicator perform best. If an indicator is based on the eddy viscos-
ity v 1, we assume that both error types the discretisation and the modeling
error are tracked. In this sense we define TJmax := TJmax ( llt). For com-
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parison only the presumably weak performing indicator T/max (u), which
measures the maximum value of the veloci- ties, is introduced as well. Wall
jet.

In contrast to the above approaches, our approach starts from the success-
ful adaptation of steady RANS flows. In order to extend it to LES/hybrid,
we try to combine (a) an adaptation of mesh to the flow in a similar man-
ner to (RANS or non-turbulent) steady flow with (b) a special adaptation
for turbulence. Focusing on hybrid modeling, we could hope (1) a rather
good quasi-convergent capturing in RANS regions, to be combined with (2)
a suffficiently predictive resolution in LES region. The balance between both
criteria is a central question which we shall discuss.

In this work, we focus on flows which are of a somewhat intermediate dif-
ficulty. These turbulent flows are assumed to be quasi-periodic with a rather
well identified Strouhal number, and possibly quasi-steady in a large part of
the computational domain. For an thin airfoil at small angle of attack for
example, RANS calculation will produce a steady flow. VLES calculations
with medium meshes will produce a flow which is mainly steady, but which
presents an unsteady region with vortices. Our standpoint is to try to derive
a sufficiently efficient adapted mesh for this flow.



2 Recall: mesh adaptation double loop for
transient flows

2.1 Riemannian metric

The Riemannian metric (M (x))xeq is a symmetric positive matrix 3 x 3 field
on computational domain €2 yielding a local description of any “unit mesh”
following the mesh sizes specified by M:

M:xeQm—= M(x) = R(x)A(x)"R(x), (1)

where diagonal matrix A(x) is

Aa(x) = hy* (%) - (2
A3(x) hy® (%)

R(x) is an orthonormal matrix providing the local orientation of mesh stretch-
ing through the eigenvectors (v;(x))i=13, (Ai(X))i=13 are the local eigenval-
ues. (h;(x))ie1.3 = (Ai(x)72);—15 are the local mesh sizes along the principal
directions of M. The density d of M is defined from its eigenvalues as

N|=
D=

d(x) = det(./\/l(x)) = (A (x) A2(x) A3(x))2 = (h1(x) ha(x) hg(X))_l.

We decompose M as follows:

where the r;’s define the stretching strength and where the density d controls
the local level of accuracy of M. The complexity C of M is defined by:

eM) = [ o) ix = [ VAt (M) dx

This real-value parameter quantifies the global level of accuracy of

(M(x))xe-



A discrete mesh H is unit for the metric M if any of its edges ab has a
length in the metric sufficiently close to unity :

1 /1
— < tab M(a + tab abdtﬁx/ﬁ
\/5 0 \/ ( )

Then the complexity can also be interpreted as the continuous counterpart
of the number of vertices of a discrete unit mesh while d can be interpreted
as the continuous counterpart of the number of vertices per volume unit of a
discrete unit mesh.

We call refinement the process which replaces a unit mesh of a given met-
ric M with local mesh size (hy(x) ha(x) h3(x)) by a unit mesh of M /% with
local mesh size (3h1(x) Bha(x) Bhs(x)) and complexity C(M/3?%) = B3C(M)

where refinement factor 3 is smaller than one ? .

2.2 Metric-based mesh adaptation of an unsteady flow

The flows under study are unsteady. In order to apply mesh adaptation, we
shall use a version of the Transient Fixed Point introduced in [2]. A sketch
of this algorithm is given by Algorithm 1.

Algorithm 1 Transient Fixed Point for URANS

Given a complexity Ny eseribed, an initial metric, Mg of complexity cg,
build a unit mesh H, from M,

For iadapt = 0, nadapt

e Compute over [0, 7] the URANS flow Wiygap: from with mesh H;qgapt

e Compute the k,,,, new metrics Mfadapt 41 of complexity Npyeserivea €ach
taking into account the flow over [tg, txi1].

o Compute the kpq, new meshes HY ., from ME
e tadapt = iadapt + 1

End for iadapt

2For 8 = 2 this refinement is equivalent to dividing mesh size by a factor 2 and multi-
plying the number of vertices in 3D by a factor 8.



Let us assume that Algorithm 1 iteratively converges (when iadapt in-
creases to infinity) to a fixed point (Ws, My ). Then this fixed point is a
numerical flow computed on a succession of meshes M*  k = 1, k42, each
mesh H% being adapted to the best approximation (in some sense) of the
flow on time interval [tg,t;41]. Further, the sum of the complexities of the
different meshes for k = 1, ky,q, is the global complexity Ky,qz Nprescribed-

If we want to work with only one mesh for the whole time interval, we put:

kmaz =1 . (3)

In next section, we work with a single mesh, k,,,. = 1, for identifying the
best mesh (in some sense) for computing a quasi-steady quasi-periodic flow.

In the second study the problem of mesh convergence with k,,,, = 1 of a
LES flow is considered.
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3 Mesh-adapted LES for a quasi-periodic flow

The assumption is that the flow is essentially steady, with a rather small
region of the computational domain in which we have a quasi periodic vortex
shedding.

3.1 Grid filter and Riemannian metric

We restrict to a usual definition of the grid size:

Ay = (6£m5¢)

It is expressed directly in terms of the local mesh size measured from the
local mesh in three orthogonal directions. It can also be expressed locally in
terms of the metric used for generating the mesh, cf. (2).

W=

Apg = (hihahs)s.

We consider a LES formulation which replaces in the viscous term of Navier-
Stokes the viscosity v by the incremented viscosity v + vp. We define vp
according to the WALE model [14]:

<S;de;,jd) 3/2

(S;js;j)S/Q + (S;jdsgjd) i

(4)

psas = p(CwA)?

- o
where Smd is the symmetric part of tensor gfj = GikGrj, With gip = a;:
J
~d 1 1
Sij =5 (95 +925) — §5z’j9§k- (5)

In [14], the constant Cyy is fixed to 0.5.

3.2 Adaptation sensor

In the case of a steady RANS calculation of a compressible flow, an efficient
approach is to minimize the L* interpolation error on the Mach number.
We follow the metric-based adaptation approach as in, e.g. [6]. The local
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interpolation error ey (6) is evaluated in terms of the Hessian Hj; of Mach
number M and of the metric M used for generating the mesh:

1 1 1
em(x) = (M = mmM)(x) = 15 trace(M(x)"2 [Hu (x)| M(x)"2),  (6)
in which x € €, (v;);=1 3 are the local eigen-directions of M, and (h;);—1 3 are
the local sizes of M along these directions. This local error * is a spatially
second-order error. The metric based analysis would then use the following
symmetric matrix:

Hy=Hy (7)

In order to take into account boundary layers in good conditions, it has been
observed (see e.g. [6]) that the error norm to be minimized is an L* norm.
The mesh adaptation problem is then written:
1
Find M, = H/l\}(n/ <tmce(./\/l(x)’% | Hpr(x)| M(X)’%)) LA (8)
Q

under the constraint that the complexity, or integral of the metric density is
equal to a specified number N:

c(M) = /Q dM)Q = N.

Expressing via (6) the functional (8) in terms of Hj; and assuming that this
Hessian is sufficiently smooth, the solution of this constrained optimisation
problem can be explicitly computed ([6]):

2
3

My = Dy det(|Hy|)T |Hyl, with Dy = N3 (/ det(yHMDﬁdQ) . (9)
Q

Since the flow of interest is quasi steady in a large part of the computational
domain, we keep this metric M7 as mean flow criterion of our novel method.

It remains to identify a good strategy for the quasi periodic unsteady re-
gion. Main structures are unsteady vortices. We do not want to follow these
vortices with an unsteady mesh. Then we should try not to have strong

3eaq is an a priori error when we consider that M is the exact Mach number field. In
practice, it will be an a posteriori error since e will be computed from a discrete solution
through a recovery technique.
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stretching, but, preferrably an isotropic mesh in this region. Then we have
to build a second criterion for this region. At least two approaches can be
applied:

(a)- physically based criterion, e.g. vorticity,

(b)- a criterion based on the LES mechanism.

Let us explain (b): LES can be considered as a cure to our unability to
compute all the turbulent scales, at the price of a deviation with respect to
the exact DNS flow. Then we can consider the filtering term in the Navier-
Stokes equations

2
V.Tsas = V.sas | (Va+ Vul) — sV-ull
as a local error to minimize.

According to the definition (4) of uggs, an option is to consider this term
as a spatially second-order error term. Taking the norm of V.7gqg in R?
we get a scalar number, allowing to build an isotropic second adaptation
criterion

- |V.Tsasl
i1, = 25050, (10)

where Id is the identity 3 x 3 matrix. In general, H, is a very irregular
distribution and we shall work with a smoother representation of it:

V.T:
Hy = s(%)m. (11)

where § is a barycentering smoother. This allows to find a second “optimal”
metric, computed, this time, by minimizing an L? norm of error:

2
— 2 2 o3
Moy = D, det(|Ha|)7 |Hy|, with Dy = N3 (/ det(\H:,\y) . (12)
Q

Each of metrics M; and My has a complexity N. We can legitimately take
the intersection of both (without scaling) for satisfying both criteria:

Minter = Ml N MQ-

The general operator for intersecting two metrics is defined in [6]. Tts function
is to provide the metric defining in any spatial direction the largest mesh size
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less than the two mesh sizes specified by the two metrics. But since M, is
isotropic, it specifies in each point x of the computational domain €2 a single
mesh size hp,(x). Let us assume that at x, the metric M, specifies mesh
sizes hq, ho, hg in its caracteristic directions vy, vo, v3. Then the intersection
is obtained in replacing
hi, ha, hs
by
min(hy, ha, ), min(hg, b, ), min(hs, hay,)-

Note that the complexity fQ det(/\/lmter)%dQ of this intersection is not any-
more equal to N. Since applying our basic adaptation Algorithm 1 assumes

that we maintain the complexity constant and equal to N, the final proposed
metric is defined as:

win

)
[y det(Mipter)2dS2

Minter = < Minter. (13)

3.3 Step 1: Fixed Point

In the usual LES strategy, a mesh is given, and a filter size derived from it
at each local discretization node. In other words, giving the mesh is a mean
for prescribing the local filter size.

In the proposed mesh adaptation method for LES, the user prescribes
a global complexity, and the fixed point will iterate until an equilibrium is
found between the adapted mesh, the related local filter, and the filtered
RANS unsteady flow. This will be possible because we restrict the flows
under consideration to quasi-periodic flows with a quasi-period 7. Then
the adaptation interval during which the mesh is frozen will be set to one
periodicity interval [0, 7).
This gives Algorithm 2. We observe that when applied to a steady flow,
Algorithm 2 will converge to an adapted solution of the flow, and convergence
can be contained by increasing the complexity cqo. Similarly, when applied
to an unsteady non turbulent flow, Algorithm 2 will converge to an adapted
solution of the flow, and increasing both complexity ¢y and the number of
time subintervals, convergence to the continuous flow will be obtained.[]

Let us consider the application to a turbulent flow. Let us assume that
a fixed point of Algorithm 2 exists at least approximatively (two successive
iterations produce very similar unsteady flows. Then we get a LES numerical
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Algorithm 2 LES-Transient Fixed Point

Given a complexity Cprescribeds an initial metric Mg of complexity co
Compute the local filter size A, from M,

Build a unit mesh Hy from M,

For iadapt = 0, nadapt

Compute over [0, 7] the LES flow from A;qgapr and Hiadapt

Compute a new metric M,qqqp+1 0f complexity ¢y taking into account
the whole flow over [0, T7.

Compute a new filter Ajugapr+1 from Migaapi+1
e Compute a new mesh H;ggapi+1 from Miggape+1
e iadapt = iadapt + 1

End for iadapt

flow with a filter A, 44apr+1 defined from to the mesh, the mesh being adapted
to the best approximation (in some sense) of the flow.
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4

What next?

We have described a new method permitting to get accuracy improvements
by mesh adaptation for a class of LES calculations. This new method is being
implemented in the mesh adaptative CFD platform Wolf (see[6]). Next step
will produce numerical examples.
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