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1 Introduction

The Franco-Russian contribution T3-D4 planned in the Norma program included
the cooperative development of sufficiently industrialized methods and tools to
process the acoustic calculation of a multi-rotor UAV. Due to the cessation of
the collaboration with the Russian team, this aspect of the Norma program was
abandoned. Research and development on the French side has been redirected towards
a more general task, related to mesh adaptation for LES flows. This report is the
first version of an article in preparation on this theme.

Large Eddy Simulations and hybrid flow calculations are today still very computer
consuming CFD activities. More importantly, the user has difficuties in deciding if
the mesh used allows the expected accuracy. Upgrading mesh adaptation methods
to a better treatment of LES/hybrid flows is then an important issue in the Norma
research.

Large Eddy Simulation (LES) is a numerical tool for predicting turbulent flows.
Unlike a statistical Navier-Stokes model which tends to neglect fluctuations by
applying a statistical average, which in most cases damps all these fluctuations, LES
can be interpreted as damping only a part of unsteady turbulent structures, typically
structures with a scale smaller than a prescribed filter size. The smallest structures
being the most difficult to solve, LES consumes much less computational resources
than a Direct Numerical Simulation which computes all turbulence structures. LES
modelling relies on two steps :

(i)- defining the neglected scales as those which are smaller than a filter width Ay
and adding a model of the action of neglected scales on the non-neglected ones.
This defines a continuous model parameterized by the filter width Ay,

(ii)- using, in order to approximate the continuous model built in (i), a mesh-based
approximation with local mesh size Ay, typically :

A, = (€nC)3 (1)

(expressed directly in terms of the local mesh sizes (£, 7, () measured in three
orthogonal directions).

While, by construction, Ay should be larger than A,, in order to approximate
accurately the non-neglected scales, the research of the lowest computational cost
motivates the practitioner to set

Ap=A,,

with the consequence that the smallest unfiltered scales are the smallest scales
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computed on the grid and are then very poorly approximated, whatever be the
accuracy of the numerical scheme.

When using a second-order accurate approximation, an important disadvantage
comes from the fact that many LES models of Smagorinsky type are similar to
second-order accurate truncation terms, in such a way that approximation errors
are of same order as the filter model. According to an analysis of Ghosal [15]
and to the outputs of many numerical computations, see e.g. [18], using a second-
order accurate approximation may result in errors larger than the effect of LES
modelling. It remains that second-order accurate approximations are much used and
very useful for computing LES flows in engineering. A good practise for increasing
the confidence in second-order accurate LES computations is to compare (a) the
LES-based computations with (b) their no-model counterpart in order two, see e.g.
[20].

Let assume that an approximation with a truncation error of order o' is used.
An important issue is the fact that the convergence at truncation order is subject to
the condition of using a sufficiently refined mesh : the mesh should be in any point
sufficiently fine for capturing the smallest local detail of the flow computed, in order
to start second-order or higher order convergence.

- Already in steady CFD, the convergence at truncation order is difficult to attain. A
very efficient tool for obtaining this convergence is the convergent mesh adaptive
double loop as described in [1, 11]. The inner loop is an anisotropic metric-based
fixed-point adaptation working with a fixed number of unknowns. The outer loop is
an anisotropic metric-based enrichment increasing progressively the total number of
unknowns and controlling the actual convergence to the continuous solution. Thanks
to this double loop, steady second-order RANS calculations are reaching a higher
level of accuracy and fiability.

- As concerns unsteady RANS, mesh convergence with a double mesh adaptive loop
is more difficult to apply, but effective in many cases. See for examples [4], [23], [22].
- As concerns mesh convergence with LES, it is a much more difficult issue. The
scenario consisting of a brute-force strategy which increases simply the number
of nodes generally may not succeed for the following reason. The filter term can
be considered as a second order error. However, refining the mesh diminishes the
subgrid-scale (SGS) term and introduces the arising of smaller and smaller new
unstable scales in the solution which therefore cannot be accurately approximated
until the process simply solves the corresponding DNS flow. Therefore, in contrast to
laminar and RANS modeling, mesh adaptation for LES and hybrid models cannot
have as goal the faster/fastest convergence to a continuous field, except the exact
solution of Navier-Stokes.

1. In the sense of the usual order of convergence which can be observed when no singularity
occurs, typically second-order convergence when second-order codes are used with extremely fine
meshes.



The designing of a mesh adaptation criterion for LES is an important and difficult
issue, addressed by many publications, among which we have selected the following
typical ones.

In [5], the approach is a numerical one, related to truncature. The error estimator
identifies the regions lacking in accuracy, improving their resolution by either
decreasing the size of the element or increasing the polynomial degree which
approximates locally the solution. A smoothness indicator guides the hp-decision,
leading to p-enrichment for smooth regions and h-refinement for non-smooth regions.

The work in [17] compares three indicators. The first indicator is based on the
unsteady residual. The second indicator is based on a local smoothness indicator.
The third indicator is based on an estimate for small scale turbulent kinetic energy.
Comparisons with DNS tend to show that the first indicator is the best.

Similarly, in [16] several indicators more or less related to discretization and
modeling error are compared with a wall jet as main test case.

In [13], a field-inversion machine-learning (FIML) framework is introduced. It
only requires unsteady primal solutions. Two error estimates are compared in this
work, a time-averaged unsteady residual weighted by a time-averaged adjoint, and
an augmented-system residual weighted by the augmented-system adjoint.

In [21] the approach relies on a Discontinuous Galerkin (DG) high-order approximation.
It does not really propose a mesh adaptation, but defines the ideal DG-LES solution as
the result of the application of two successive filtering operations. A first convolution
filter is applied to the DNS data which filters out frequencies beyond the LES grid
cut-off. Next, a L2-projection of this filtered field is performed on the hp-discretization
space.

The physical approach is better addressed in [8] : arguments are based on the
ratio of subgrid to viscous dissipation or viscosity. They are meaningful only in the
buffer layer of wall-bounded turbulence while LES should be applicable to free shear
flows at any Reynolds number.

A mesh adaptive strategy needs a satisfactory measure of the actual modelling
error induced by LES. We discuss now an interesting analysis of this error. We
have observed that in most models the local filter size introduced in practical LES
models is generally taken identical to the local mesh size. Therefore informations
concerning the improvement of the filter size can be useful for the improvement of
mesh size. This is why we discuss now the work of Germano and co-workers [14]
which have proposed a method for improving the filter size. We use the notations of
[28] where this method is also explained. If a filter W — W of size A is applied to
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the continuous (incompressible) Navier-Stokes equations for the exact field (U, P) :

o, oUU; 1P o%U;
+ +

N(Z/[) - 8t 0xj ;8% B V&vjﬁxj

=0, 2)

then the coarse-grained representation (U, P) of the exact field satisfies :

_ [ — = exact
8Z/IZ 82/112/[] 4 1 @P 821/{1 aTij,A

exact (7 7\ _— - _
NA (u> 815 8xj P afL’j V@xjaxj 81’]’

— 0,
(3)
with TCX&Ct UU; —UU;.

The basic idea of Germano’s analysis is to introduce a second filter, not used directly
in the model, the filter test with a size A > A slightly larger than the LES filter. If
we apply successively filter © and test filter 7 to U, we have

U | UY; 0P U oros

gxact 77 _ - . -0
NA ) ot oz; * pOx; V@:cjaxj ox; ’
while applying T to NP (U) gives :
o, ouu, 10P o, | ome
exact (74} — ¢ o) _ — v ) =0
N ) ar 0z * p Oz V@xj(?a:j * x; ’
then 5
exact exact - exact exact *'* 27777
NEH D) — Nt ([ )_8%( TR 7O — T+ uu) (4)

In [14] the Germano identity is shown :

TZXZCt + Tj(ZCt HZHJ + HZHJ =0.
and the RHS of (4) is zero. The Germano identity is true for continuous solutions of
the exact Navier-Stokes system but will not apply if the exact Navier-Stokes system
is replaced by a continuous formulation of a LES model with one filter with u as
solution :

o, dwu; 10p 0w IRt

model (77\ _ _ _
N @) ot Ox; p Ox; V@xjaxj Ox;

~ 0. (5)

To fix the ideas, for the Smagorinsky model (incompressible case), it writes :

TN (@) = —(CsA)? S|Py,

ou o,
I 6
55 =3 (axj * aa:)’ ©)
P;; = 25;; — 2S5,




Cs being the Smagorinsky constant. A second formulation is the formulation with
both filters with T as solution :
- - - - model (5
8@ 8@1‘@]‘ 1 aﬁ 8261’ + aTij,OZe (U)
= - —v
ot &xj pf)xj 8xj8xj 8xj

Ngmdel(%) = 0. (7)

which implies that :

— model /— a model (= mode = — = =
Nyetel () — N (1) = %<Tij,f (@) — Tijid (@) + wu; — ui“j) (8)

which in general is not zero.

The interest of 8 is that it does not give an equation for the model error u — w,
but an equation for a quantity @ — @ which is quite close to the model error.

Although discarding the divergence %, the Germano identity error
J

Gy = maxd@) — TLN) + W - w
is a (tensorial) measure of the error between the (non-discretized) Navier Stokes flow
field and the (non-discretized) LES flow field. Therefore, the Dynamic Germano-
Piomelli procedure, by minimizing in some sense the Germano identity error, allows
to find either the optimal coefficient Cy, or the optimal product CA (both used
in (6)). In the Dynamic Germano-Piomelli practice, Cs = 0.1, u is not known and
is replaced by its discrete analog @, computed on a given mesh, the filter size A
is generally chosen as the local mesh size, the filter test is chosen as 2A, and the

method produces a new product (CyA)ops, which is usually interpreted as giving a
new value (Cs)opt = (CsA)opt/A.

Assuming that we do not want to change C;, the same computation proposes a
new value for A :

(D)opt = (Cs)opt/Cs

which seems to give informations concerning the filter, and then concerning the mesh
to use.

The dynamic Germano analysis has inspired Toosi and Larsson [27] in proposing
a method for adapting the mesh to a LES formulation. Toosi and Larsson identify
the source of LES-modelling error as the residual of the governing LES equation
applied to the coarse-grained exact Navier-Stokes solution. For filter level A :

ou, ouU; 1P U, OTIRU)
= + +-———=-v +
ot Oz, p Ox; O0x;0x; Oz,

Ria = N EOdel U)
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and, using (3), we get

9 model (77 exact
Ri,A = %[levA (U) TZ_],A :|
Similarly, for filter test A
.= N’model( ) 9 [Tm%del<ﬁ) _ Texgct} ) (9)
z A agj] i7,A 17,

The residual R 1s chosen as the error source of the LES modelling but is expressed

in terms of the unknown exact solution . In order to use it in practice, we need to
replace U by an approximate evaluation of it. The fundamental approximation done
by Toosi and Larsson is replacing in N in‘)del the coarse-grained exact Navier-Stokes

solution I by the LES one % :

R = Nmodel( ) Nmodel( ) (10)
thus : .
0T OhE 105 9 or s (@)
N - ot 8xj p@xj 8xj8:cj (9a:j

which is transformed applying the test-filtering to (5) :

O 0T, 105, 0% | InE
ot 8$j P (9xj 8xjaxj axj = U,

and then substracting the result from (10). This gives :

R5~F5 = o | TS@) — 7o%(w) — w, + T (1)

In order to minimize the RHS of (11), the authors consider a directional test filter
e of size A, in direction n, :

=(ns) A2 .
3 <I+ o nfvanx) 3. (12)
Applying the directional test filter to equation (5) gives the following evolution
equation for the filtered instantaneous fields at the filter test level :

—_—— (nz)

aﬁgn‘l,) N aﬁ](na) N 1 aﬁ(nz 62 + aTElodel(u)

ot oz, p Ox; oz, 8:1;] o,

~0. (13)



Following the above calculation in this directional context, the following source term
analog to (11) is obtained :

)

=(n2) 0
£ (x) = (%](

~(n (nz) — (n ~(ng)~(n
T}’{lodel(a( ac)) _ Tmodel(ﬂ) _ ﬂiﬂj( ) +ﬂ7,( x)ﬂ]( r)) (14)
and the Toosi-Larsson method proposes to minimize with respect to Anx,ﬁny, and
Ay, the error functional

— — — ~(ng) =(ng) =(ny) =(ny) =(z) =(n:)
e(Anz,An,Anz):/ﬂ(<}7 FNeF T FEM L FF )) (15)

Y 3 K3 7

in order to improve the mesh size in each direction.

The approach presented in this paper starts from an existing adaptation method
for the numerical approximation errors for steady RANS flows, see [1] and the
monograph [11]. In order to extend it to LES/hybrid, we try to combine (a) the
existing adaptation of mesh for RANS or non-turbulent steady flow with (b) a special
adaptation for LES error model built according to the Toosi-Larsson method. Focusing
on hybrid modeling, we could hope (i) a rather good quasi-convergent capturing in
RANS regions, to be combined with (ii) a suffficiently predictive resolution in LES
region.

In this work, we focus on flows which are of a somewhat intermediate difficulty.
These turbulent flows are assumed to be quasi-periodic with a rather well identified
Strouhal number, and possibly quasi-steady in a large part of the computational
domain. For a thin airfoil at small angle of attack for example, RANS calculation
will produce a steady flow. VLES and hybrid RANS/LES calculations with medium
meshes will produce a flow which is mainly steady, generally modeled with RANS,
for which a deterministic adaptation criterion will be applied, but which presents
also an unsteady region with vortices, where LES modeling applies, and for which a
LES-based adaptation criterion must be applied.
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2 Modeling

2.1 Navier-Stokes model

The compressible Navier-Stokes equations for mass, momentum and energy
conservation read :

NS(W)=0 + Initial and boundary conditions (16)

where NS(WW) = 0 holds for :

9 | N

pn + div(pu) =0,

a(ap:)—Fdiv(pu@u)—FV}U—divT:O, (17)
a(gtE) + div((pE + p)u) — div(T - u) + div(A\VT) =0,

where p denotes the density (kg/m?), u the velocity (m/s), E the total energy
per mass (m%.s7?), p the pressure (N/m?), given by : p = (y — 1)(,0E - %p[uP)
with v = 1.4, T the temperature (K) such that pC,T = E — 3p(u® + v* + w?),
A = uC,/Pr (C, being the specific heat at constant volume, p the dynamic viscosity,
C, the specific heat at constant pressure, Pr the Prandtl number). 7 is the laminar
stress tensor :

2
T=up|(Vu+ VuT) - 3divu]13] :

where (in 3D) u = (uy, ug, ug), p the laminar dynamic viscosity (kg/(m.s)) and A
the laminar thermal conductivity.

2.2 LES model

We have now to recall the LES analysis for the compressible model. For this
we recall some notations. The filtered Navier-Stokes equations are considered. The
density Favre filter f = (pf)/(p) (where the over-line denotes the gris filter) is
applied and its solution is denoted p, 1, U9, us, €.

The filtering of compressible Navier-Stokes equations gives the motion of large
structures :
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Op _ 0pt;)

8t 8J]j - 0 ’
opa) | OpuE) _ 0p | OwPy) oMY oM
ot or; O Ox; O Ox;
0(pE) | Ol(pE +p)u,]  0(1;65) 03 | O ( M), = (3))
= — E; E: E:
8t T a]}j 8901 an + 8a:j J + J * J 7
in which :

- is the resolved heat vector flux, § = —k V(f ) where k is the heat conductivity
and T is the Favre filtered temperature,

- Ej(l), Ej(?), Ej(3) are defined e.g. in [9], E](»Z), E](-?’) are negligible compared to E](l)

and the effect of Ej(l) will be neglected in the sequel,

- Mi(jl) is defined from the filtering of the convective term in the moment equation :

= o~ )
d(puju;)  O(pu;uy) 3Mi(j1 o _
_ = M =puw; — pui;. 18
Ox; Ox; + Ox; " pllitty = Pl (18)

- M;; ) is defined by :

%)

S ~ 2
MP = ubly; — pPy;  with Py = 25;; — gsk;kfsij (19)

1 (0w | Ou;
where S;; = 3 <8u + auj).

ox j 8@
As a consequence the resolved strain tensor is denoted by :

—  1,0u; Ou;
Sij = 5( ’)

2 ('3xj (9.%1
and the viscous term is written
— 2 _—
MP with P = QSZ] - gSkk(g%J (20)

M .(].2) is negligible compared to Mi( :

1,

can be neglected, [12], and its deviatoric part is defined by :

The isotropic part of M namely 3M,§,1€)51],

zya

1 —
Tij = Mi(jl) - gMzgzlf)%' = —psosPy = —,uscs( Sij Skkéz])
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In our theoretical development, the turbulent viscosity is defined according to
Smagorinsky model [24] :

and the model stress tensor is analogous to the one introduced in (5) for the
incompressible case :
750 = Ty = —p(CsD)?|S| Py (22)
In order to define a Large Eddy Simulation (LES) model from the above one, we
restrict to the usual definition of the grid size A, (cf. (1)). We replace in the viscous
term of moment equation the viscosity p by the incremented viscosity p + psas. We
restrict to quasi-isothermal flows and then we do not introduce a model in the energy
equation. Our LES model writes :

0
NSW) = | div (,uggs [(Vu + VuT) — 2divu ]13]) : (23)
0

2.3 Spalart-Allmaras model and DDES

Various forms of the Spalart-Allmaras (SA) turbulence model exist. The original
Spalart-Allmaras one equation turbulence model writes [26] :

ov 5 ~ 2
a% Fu-VE = e[l — f] 80— {cwlfw _ :’;ftg} (2)
1
+ - V(v + 2)VD) + e[ VO|?] + fudu?.

where 7 is the kinematic eddy turbulent viscosity. In this paper we consider the
simplified formulation considering f;; = 0 and f;5 =0 :

TR ) ST LN (Y AV .3
R R CU TR U ) el vl (v Bl v el

The turbulent eddy viscosity is computed from :

He = pﬂfvl

where ,

X3+ ¢

with V:H.
p

fo1 = and y =

NN
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Additional definitions are given by the following equations :

v
K2d?

The magnitude of the vorticity is computed from the vorticity tensor where each

1 (0u; Ou;
component is given by w;; = 3 (au — 8u3> and = /2 Z wijwij. Symbol d
Lj Li ij=1..3

holds for the distance from the field point to the nearest wall and

S=Q+ foz  where Q =]V xu.

X
wo=1—-——"
f ? 1 + val
Notice that we have the following relations :
ﬁful 4 X 1
vl = = — — 1—-— = - .
Xfn="7=9 L+ Xfur vt
The constants are
2
o=3 cp = 0.1355 ¢ = 0.622 Kk = 0.41
1
ep= T 03 ea=2 ey =T
K o

Finally, the function f,, is computed as :

1+ 8, 1o 6 1%
=g s ith g =1+ cyp (r° — d r=mi ( , 10) .
fu=y <g6 n ng)) wi =74 Cu (r r) and r = min X

The standard SA one-equation model reads in pseudo-vector notations :

ot t gy, = ol o

+1 [ 0 ((V‘Fl))&;) +Cb2&;(%]

o 873:] Ox; 0x,; 0x;
where fi» = czexp (—cux?) with ¢3=12 and ¢y =0.5.
The DDES model [25] replaces the distance d by :
d=d— fy maz[0,(d — CppsA)]
in which Cpgs = 0.65 and with (k = 0.41)

V+

[Ou; Du; .2 72
Ox; 6xj/£ d

fa=1- tanh([Srd]3> where 1, =
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fa =0 yields RANS for which we shall use a truncation error analysis while r4 < 1
yields the LES region for which we shall use the Germano-type error analysis due to
Toosi and Larsson. The above DDES system is denoted in a compact way as :

Uopes(W) =0 (24)
where W = (p, puy, pus, pus, pE, pv) and
T
(Wooes(W)s0) = [ [ 0[Wo+ Somes (W) + div (Fopus(W)) | dxatt~ (25)
T _
+ [ ] T omms(W) dodt (26)
o Joo

where Sppps(W), Fopes(W), Fopes(W) hold respectively for the source term, the
flux and the boundary flux of the DDES model.
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3 Mesh-adaptation

In this first study, the focus is on flows which are essentially steady, with a rather
small region of the computational domain in which we have a quasi periodic vortex
shedding.

In the goal oriented option, we observe that the numerical error 6W =W — W),
on state variable W is solution of a linearised system

A 5Wspace—time — Mspace-time

where :

- the linear operator A is the derivative of the Navier-Stokes (resp. URANS, or
DDES) residual with respect to the state,

- the right-hand side Sgpace-time Of the system is the local error resulting from the
space-time discretization (expressed in terms of the metric).

For minimizing the numerical error on the functional j = (g, W) with respect to
the mesh metric M, it is sufficient to minimize the product of the adjoint state W*
with the right-hand side,

5.] = (W*’ Sspace—time)

which will be made possible by the transformation of the local error into a quadratic
function of the metric :

m/\i[n 5.] = I%ﬂ(W*, Sspace—time (M))
We obtain the minimum M.

Similarly, assume that we have also a linear equation for the (test-filtered) error
resulting from the LES modeling

A(SWLES = SLES

where :

- the linear operator A is again the derivative of the Navier-Stokes residual with
respect to the state,

- the right-hand side Sy gg of the system, the local error of LES, is the divergence
of the Germano expression.
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As a result, the optimal mesh metric minimizing the total numerical and LES
error on the functional writes :

Mboth = Arg II/l\i[H(W*, Sspace—time<M) + SLES (M)) (27>

In this formulation, Sspace-time(M) and Sprs(M) are not necessarily positive and
therefore compensations of one error by the other one are possible and can be taken
into account in the minimization.

However, up to now, we have not found a satisfying way for expressing explicitly
Sies as a function of M and therefore we cannot apply the strategy producing (27).

In this paper, we shall separate the error analysis into two steps, namely :
(a) research the RANS-optimal metric and,

(b) research of a somewhat LES-optimal metric by defining the test filter directions
(ng, k = 1,3 from the RANS-optimal metric and then follow the Toosi-Larsson
for computing the optimal filter widths in these directions.

3.1 Riemannian metric

In the sequel, any mesh is represented by a Riemannian metric. See [1] and [11]
for more details on this approach. The Riemannian metric (M (x))xeq is a symmetric
positive matrix 3 x 3 field defined on the computational domain :

M:xeQm- M(x) = R(x)AX)R(x), (28)
where diagonal matrix A(x) is

A1(x) hi%(x)
Ao (x) = hy 2 (x) . (29)
A3(x) hs?(x)

R(x) is an orthonormal matrix providing the local orientation of mesh stretching
through the eigenvectors (v;(x))i=13, (Ai(X));=1.3 are the local eigenvalues. (h;(X))i=13 =
(/\,-(X)_%)Z-:Lg are the local mesh sizes along the principal directions pi m, P2,m, P3.m
of M defined by :

prm(x) = R(x)er"R(x) (30)
where eq, eg, e3 are the three Cartesian unitary vectors in z,y, z directions. The
density d of M is defined from its eigenvalues as

1

d(x) = det(M(x))* = (M) Aa(x) As(x))? = (ha(x) ha(x) h(x)) "
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We decompose M as follows :

where the r;’s define the stretching strength and where the density d controls the
local level of accuracy of M. The complexity C of M is defined by :

C(M):/Qd(x) dX:/Q\/det(M(X))dX.

This real-value parameter quantifies the global level of accuracy of (M (x))xeq-
A discrete tetrahedrization H is a unit mesh for the metric M if any of its edges
ab has a length in the metric sufficiently close to unity :

1 <

V2T

Then the complexity can also be interpreted as the continuous counterpart of
the number of vertices of a discrete unit mesh while d can be interpreted as the
continuous counterpart of the number of vertices per volume unit of a discrete unit

mesh.

Lastly, we call refinement the process which replaces a unit mesh of a given metric
M with local mesh size (hy(x) ha(x) h3(x)) by a unit mesh of M /3% with local mesh
size (Bh1(x) Bha(x) Bhz(x)) and complexity C(M /(%) = B3C(M) where refinement
factor 3 is smaller than one? .

1
J/tab M(a + tab) ab dt < V2
0

3.2 Adaptation sensor for compressible flow

Feature-based adaptation sensor

In the case of a steady RANS calculation of a compressible flow, an efficient
approach is to minimize the L* interpolation error on the Mach number [1][11]. The
local interpolation error ey (31) is evaluated in terms of the Hessian Hj; of Mach
number M and of the metric M used for generating the mesh :

ept(x) = (M — magM)(x) = fotrace(M(x)—% Hy(x)| M(x)),  (31)

2. For g = 2 this refinement is equivalent to dividing mesh size by a factor 2 and multiplying
the number of vertices in 3D by a factor 8.
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in which x € €2, (v;);=1,3 are the local eigen-directions of M, and (h;);=1 3 are the
local sizes of M along these directions. This local error? is a spatially second-order
error. In order to take into account boundary layers in good conditions, it has been
observed (see again [1] [11]) that the error norm to be minimized is an L* norm. The
mesh adaptation problem is then written :

Find M, = H/l\}ln/g (trace(/\/l(x)’% ]HM(X)|M(X)*%))% dx (32)

under the constraint that the complexity, or integral of the metric density is equal
to a specified number A :

C(M) :/Qdet(/\/l)dQ:/\/'.

Expressing via (31) the functional (32) in terms of Hj; and assuming that this
Hessian is sufficiently smooth, the solution of this constrained optimisation problem
can be explicitly computed [1][11] :

_2
My = Dy det(|Hy|)T |Hyl, with Dy = N3 (/Q det(|HM|)141dx> C33)

Goal-oriented adaptation sensor

We consider the Goal Oriented unsteady formulation as introduced in [7] and its
extension to RANS as in [6, 11]. We keep the notations of these papers. We want to
minimize the error (g, W — W},) committed in the approximation of the functional
(or scalar output) :

J= (g,W),

where W is the exact solution of the state equation (24,26) and W), the approximate
solution. Let us introduce the adjoint state WW*, solution of the adjoint system :
ow \ *
=) W*=g. 34
(aw) g (34)
We reproduce now in short the error estimate developed in [19],[7],[6][2]. The
functional error estimates writes :

|(9: Wi = W)| = ELpee(M) (35)

space

3. eaq is an a priori error when we consider that M is the exact Mach number field. In practice,
it will be an a posteriori error since e will be computed from a discrete solution through a recovery
technique.
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with
e M)~ [ [ (W = 70dlV), + Soes (W) — S0 Yo
/ / \WDDES YWH W — 7y Wdx di
[T LW o) = TaeFomes (1)) - .
Neglecting the boundary term, we get :
Expace( / / trace (M5 (x, £) H(x, 1) M3 (x, 1)) dxdt, (36)
with H(x,t) = [} + W*g{; + SVFV YW [HW), (37)

where H (W) is the Hessian of .

Lemma 3.1 Unified numerical error criterion. The two numerical error criteria,
namely (31,32,33) for the feature-based option and (35,30,37) for the Goal-Oriented
option, examined previously, and the related optimization problems can be unified as
follows :

hl,num(x)
Mnum(x) - Rnum(x) h2,num<x) tRnum(X)
h3,num(x>

T
M i = Argmin E(M) = Argmin/ Espacet (M, t)dt  with
0
1 1 p
Espacet (M, t) = /Q [trace (M_i(x,t) H(x,1) M_Q(x,t))} dz,

where :
- in the Feature-Based case, a sensor M is computed from W, setting H = H);.

- in the Goal-Oriented case, p =1, and W* is the adjoint state, H is defined as
in (37).
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Since the flow of interest is quasi-steady in a large part of the computational
domain, we keep the metric M, resulting from the optimization of the numerical
error functional £(M) as numerical criterion of the proposed extension to DDES.

3.3 Toosi-Larsson adaptation step

A simplified way to explain the Toosi-Larsson method [27] is to consider :
- an anisotropic Cartesian mesh available with Cartesian directions n,, n,,n,,
- three test filters evaluated on the flow in these three directions,

- then new local mesh sizes in these directions Az(x,n,), Ay(x,n,), Az(x,n,),
x € 2, are defined, defining a new adapted mesh, with variation of mesh size
and stretching, but with the same principal directions.

We propose here an equivalent approach for the case of a metric-based anisotropic
mesh. Let My, be one of the two metrics defined in (38) with local mesh sizes
(A1 mum (X), Ao num (X)), A3 num (X)) according to (29) and Hpym & unit mesh of M.
The LES or hybrid simulation is performed on H,., with a filter size :

Ao(x) = (hl,num(x) h2,num<x) h3,num(x)) .

wl=

Then three test filters are built in principal directions (pg(x)), k£ = 1,3 of Muyum
(according to the definition in (30)),

(X)) = A, (X)Pr, Mo (X) (39)

having the length
[lng(x)|| = An, (x) =2A(x) k=1,3. (40)

The test filter width = Ank will vary in the neighbohood of a reference width :

[nk0(x)]] = Ang,(x) = 280(x) &k =1,3. (41)

We consider the effect of the test filter, which we denote 7). The error source
term (14) becomes in the compressible case :

~(n ~(n (ng)
7 () = 2 (et @®™) = i@ - M), (42)

Ox;

where
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—(ng) —(ny)

N<nk>_(pui PU; )

It can be shown [14] that the SGS and the sub-test stress tensors are related by

the following identity :

———(n 1 /—m)— ——(ng)
£y = = o (7 ) = My 2 (44)
p
Let us denote )
Then, to each test filter n; corresponds an error source term
= (ng) 0 m ~(ny,) R (ng)
.Fi (x) = agvj<7_ijodel(u k ) — T d l(u) — Lij)- (46)

From (44),(45) and (46), we deduce :
Lemma 3.2

~(ny) o o () _ Ami) N 2 ~(ny), Zm) = (o)
FM00 = o (EMplsipy - ea(S) ™IS By
J

—— () —(ng) =< (ng) —— () —(ng) == ()
—puu;  + ﬁ(pui " o o ) + ;)(pulul — ﬁ(pul T ))51) (47)

i=1,..,3, k=1,...3 O

In the Piomelli dynamic formulation, C' (or CA?) is the unknown scalar parameter
to be choosen at each point of the computational domain in order to optimize
the efficiency of the LES model. In the present analysis, QAZ is known, and the
optimization variables are the three filter sizes A1) A®2) A3) \We observe that,
when we freeze all the filtered terms, A®™) appears explicitly in (47) under the
form of a quadratic term. But for all “hat” filtered quantity, we remark that they
approximatively differ from the non-filtered quantity by a rest proportional to the
product of square of filter width times a second derivative of unfiltered quantity.
However, following [27], and for the sake of simplicity, we work in the neighborhood

of a LES filter width Ag :

~(ngo) =(ng

F U=

)

) .
|A:A0, Z("k>zz(nkv0):2ﬁg7 1 = 1, ceey 3, k = 17 ceey 3 (48)

N _ =~ ()
In the neighborhood of A = Ay, A®) = 2A, we approximate the variation of F, *
in the neighborhood of n; ¢ with the following quadratic formula :

) ) i=1,..,3, k=1,..3, (49)

~%(ﬂk) - (A(nk)>25__(nk,o)
2 Ay
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We observe that this approximation of an error term for LES is coherent with the
fact that the LES model is obtained by perturbating the Navier-Stokes model by the
SGS term which is of second order with respect to the mesh size A. We introduce
the notations :

Anx) — = (ng,0) =(nko) 2
= ; gk:A—2<<f F >) F=1,..3, (50)

where the scalar product (a,b) = >>,_; 3 a;b;. We shall now find the following metric
(aligned with numerical metric My, defined in (38)) :

(B ) 2(x)
M(%) = R (X) (g ) 2(x) R (x)
(g Ay) 2(x)

which minimizes the functional :

(D1 Do Ag) = [ (GEAL+GEAL + GEAY) (51)

under the constraint :

C(M) = N,
where N is prescribed by the user. We observe that

C(M) = /Q A3 (hihahs A AgAg)~1dx,

which reduces the problem to a minimization with respect to (A1, Ay, Az) under
the constraint that the integral of their product is specified. Let us denote by
(AP, AP' ) ASPY) the solution of the minimization problem and :

-1
Copt _ <AtiptAc2)ptA(3)pt> )

In any point x, knowing solely (°, we can deduce the Aj"’s since the (squared)
value of the integrand

9(x) = GI(x)A1(x) + G5 (x)A(x) + G5(x) A3(x)

must be minimized with respect to the ((AJPY)%, (ASPY)% (ASP")4), with the constraint
that their product (¢°P*)~* is given. This implies that

G7(x) (A1) (x) = G3(x) (A5 (x) = G (A5 ()
: ; 52)
S (GRNGO I
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or, for k=1,3:

N |=

AP ) = ()7 (,000,600:)) (6400
It remains to minimize
K(0) = [ K¢ (x)dx,
with A
K(x) = 3(91(00:(x)0:(x))

under the constraint [, ((x)dx = A. The resolution of this minimization problem
gives : , ,
(x) = const. = ((x) = const.” 5 K(x)5,

wlot

K(x)¢™

3 3 3 3 -1

N:/Cdx=const.‘5/KSdX:>const._5:N(/K5dx> ,
Q Q Q

3
5

¢oP(x) = ( /Q K?(x')dx')_lz((x) N, (53)

and

A7) = (61006:096:09) " (6:00) ([ KE)ax) o0 v E (o

In practice we think it is better that the initial metric M, defining the filter
should be the metric defining the previous mesh while the test filter directions will

be chosen from the novel mean flow adaptation metric M. then the metric adapting
to both Mach field and LES would write :

(54)2(x)
MH,DDES(X) =R (X) (hQ—AQ )_2(X) tRl (X)

() ()

This step will probably increase the complexity C(My ppgs) which will be larger than
N. A final step of renormalization is then necessary :

Wl

MIPII?];VDES = N% <C(MH,DDES)) MH,DDES-

4 Space and time approximation

In the previous sections, space and time discretizations are not considered. Indeed,
a continuous optimization problem is introduced and solved under the form of an
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optimality system. It is this optimality system which is finally discretized by replacing
the direct dependancy of the flow field to the metric by a chain of mapping :

M= H— Wy (55)

from the metric M to the discrete flow field W3, via the construction of a unit mesh
H of the metric.

4.1 CFD numerics

The software used in this paper is the NiceFlow software and relies on the vertez-
centered MUSCL approximation for tetrahedrizations described in details in [11].
In particular, NiceFlow involves mesh adaptation functionalities described in [11] :
computation of metric-based adaptation criteria, regeneration of adapted anisotropic
meshes.

4.2 Implementation of LES criterion

LES filter

The SGS term is assembled by element and the filter size A = (hthhg)% i
evaluated from the volume of the local element jt :

1

Ap, = (vol(jt))g.

Test filter

In [20] an isotropic test filter is built at each vertex is from a mean on the
elements jt which have is as vertex, which we write jt 3 is :

— (X T wn) XX volljt) wiis) (56)
Jtois js€jt jtois js€jt

where the )7, c;, means the sum over the vertices js of element jt and vol(jt) holds
for the volume of element jt. It results that the integration area of the test filter is the
P, basis function support, or union of elements around a vertex. Equivalently, the test
filter is a mean on the set of neighboring elements, of volume Vol;, = 3,55 vol(jt).
Defining as N;, the number of elements having vertex ¢s as a vertex, and assuming
that the volume of elements around vertex is is close to vol(jt) for a element
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containing is, then Vol;s = N vol(jt). Taking vol(jt) as the integration area of the
model filter, we can set :

A 1
— = N3.
A 18

For building the anisotropic test filter directions, we use the principal directions
Prm (see (30)) of the background metric :

ny, = 2A py.

The anisotropic filter according to vector nyg, that is, aligned with the unit vector
P, and of filter width 2A writes :

isjs sjs !
= > > wol(jt)|( J| |sz<ZZUol]t 1‘] >\>

Jtois jsejt jtois js€jt | S]S|
(57)

where isjs is the vector from vertex is to vertex js.

5 Adaptation algorithm

The adaptation algorithm solves the discretization of the optimality conditions
for the optimal metric.

The flows under study are unsteady. In order to apply mesh adaptation, we
shall use a version of the Transient Fixed Point introduced in [3]. A sketch of this
algorithm is given by Algorithm 0.1.

Algorithm 0.1 Transient Fixed Point

Given a complexity Nprescribeds an initial metric, Mg of complexity cg,
build a unit mesh H, from M,

For iadapt = 0, nadapt

e Compute over [0, 7] the flow Wiggepe from with mesh Hiqaqpt

e Compute the k., new metrics /\/lfadapt +1 of complexity Np,eseribed €ach taking
into account the flow over [t, tx41].

e Compute the kpq, new meshes HE .0 from ME, -
e tadapt = iadapt + 1
End for iadapt

Let us assume that Algorithm 0.1 iteratively converges (when iadapt increases
to infinity) to a fixed point (W, M,). Then this fixed point is a numerical flow
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computed on a succession of meshes M* k= 1, kp.y, each mesh H% being adapted
to the best approximation (in some sense) of the flow on time interval [tg, txi1].
Further, the sum of the complexities of the different meshes for k = 1, k., is the
global complexity kmaxNprescribed-

Since we are interested by vortex shedding flows past blunt bodies, it is possible to
use a single mesh for the whole time interval, i.e. we shall work with the single-mesh
option of the transient fixed point :

Femae = 1 . (58)

6 Numerical applications

In this first application of the proposed mesh adaptation method, we concentrate
on the flow around a circular cylinder, and in particular on two typical flows,
depending of their Reynolds number :

- a typical subcritical flow is the flow at Reynolds number 3900 in which the boundary
layer is said a laminar one, while the detached wake is turbulent, we also consider
the case of the flow at Reynolds number 20K,

- a typical supercritical flow if Reynolds 1 Million, in which boundary layers and
wake pewsent turbulent characteristic.

Here subcritical and supercritical refer to the drag crisis Reynolds numbers around
300000 at which the drag decreases rapidly.

6.1 Subcritical flow calculation with adaptation

The subcritical cases are flows around a circular cylinder at Reynolds number
3900 and 20K . The boundary layer being of laminar regime (although participating
to the mechanism of the turbulent global flow), the state-of-art modelisation for this
flow is to apply a LES model of medium sophistication. We choose the combination
of the VMS formulation with the WALE SGS model, as described in Norma report
T1-D5.

A first mesh-adaptive calculation uses the Hessian of Mach number as anisotropic
adaptation criterion, with the L* norm, according to the results of available experiments,
see for example [11].
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Re = 3900

First, let us take a look at Figure 1 to see what our algorithm produces for
A" /A. Note that this value varies enormously, from 10~ to 86. Keeping in mind
that this value multiplies the local mesh size h; we decide to reduce the range of
possible values for A" /A (Figure 2).

In the mesh adaptation method of this work, the detection of vortices is translated
in a field of multiplicative factors of the local mesh size. This field is depicted in
Figure 2.
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FIGURE 1 — Instantaneous value of A{P'/A for flow around a cylinder at Re = 3900.
These values are those given by the algorithm without clamping.
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DeltaOpt X

FIGURE 2 — Instantaneous value of A‘fpt/A for flow around a cylinder at Re = 3900.
These values are those given by the algorithm with a choosen clamping.

The resulting mesh is presented in Figure 3 where the region one diameter after
the cylinder received a supplement of vertices.
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FIGURE 3 — Cylindre Re = 3900 VMS-WALE results : Top, mesh obtained with the

new LES criterion (around 400K vertices), and bottom, mesh obtained with Mach
criterion only (around 300K vertices).
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FIGURE 4 — Cylindre Re = 3900 VMS-WALE results : Top, vorticity obtained with
the new LES criterion, and bottom, vorticity obtained with Mach criterion only.
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Re = 20 000

For this test case, we compare the results obtained in Norma report T1-D5 with
those obtained for our new method. Looking at the meshes obtained in Figure 6, we
do not see any drastic change, even if the back body for the mesh obtained with our
new theory seems more remeshed. Nevertheless, Figure 1 shows that our vorticity
field is captured with much greater precision.

Vorticity Magnitude
0.0e+00 10 20 30 40 50 60 7.0e+01
\

L oreee—

FIGURE 5 — Cylindre Re = 20K VMS-WALFE results : Top, vorticity obtained with
the new LES criterion, and bottom, vorticity obtained with Mach criterion only.
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DeltaOpt X
05 06 07

FIGURE 7 — Instantaneous value of Afpt/A for flow around a cylinder at Re = 20K .
These values are those given by the algorithm with a choosen clamping.

6.2 Mesh adaptive computation of a supercritical flow

At a Reynolds of 1M, the flow around the circular cylinder is supercritical, with
a completely turbulent boundary layer. Computing with LES this boumdary layer
is very expansive, and therefore such a strategy is not useful in industrial studies.
However, this type of flow is frequently met in industry.

As options in NiceFlow, we start from the anisotropic mesh adaptation approach
which was proven as very efficient for steady RANS flows, see for example [1],[11],
and unsteady RANS, see [4].

For addressing both RANS regions and LES-type regions, we apply the DDES
available in NiceFlow, defined initially in [25]. This model is hybrid in the sense
that in some “LES” regions, the model viscosity is very small, comparable to a SGS
viscosity, while not being a Smagorinsky-like viscosity.

The rest of the algorithm which we apply is identical to the one applied to the two
previous subcritical flows, with two stages of adaptation criteria : a Mach-Hessian
criterion and its correction with the Toosi-Larsson analysis.

At this Reynolds number and with a limited number of vertices (around 1M),
the DDES calculation produces a poorly fluctuating flow, although the model DDES
viscosity is much lower in the wake than the RANS viscosity. We estimate that a
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more fluctuating solution would be obtained by running DDES with something like
3 times mode vertices. Our development was done on a lap top with 4 processors. A
more ambitious calculation is starting but will take weeks.

However, the results are reasonable without the LES criterion and improved with
the LES criterion.
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FI1GURE 9 — Instantaneous value of Afpt/A for flow around a cylinder at Re = 1M.
These values are those given by the algorithm with a choosen clamping.

7 Concluding remarks

Anisotropic mesh adaptive CFD is an arising important progress for applied
numerical CFD. Our contribution aims at making more available hybrid RANS/LES
calculations for industry, thanks to anisotropic mesh adaptation.

To address the hybrid modelization, we propose a hybrid mesh adaptation. The
RANS mesh adaptation contributes to a good capture of the overall flow. For LES
regions, we adapt and extend the analysis of Toosi and Larsson which is based on
the source term of LES-error equation. The two mesh-adaptation criteria are applied
inside a transient fixed point algorithm with the option of using a single adapted
mesh for the whole time interval. Numerical examples concerning subcritical and
supercritical vortex shedding flows past a circular cylinder demonstrate the interest
of the proposed approach.
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An extremely interesting sequel of this developement would be to extend the
analysis to the so-called goal-oriented analysis. In [10], the goal oriented analysis
permitted to look for the best mesh for propagating an acoustic wave produced by

an artificial acoustic source. With the new criterion, noise production by turbulence
could be addressed.

The introduction of the space-time adaptation would be also of interest in order
to compute with optimally chosen time steps.
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