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Avertissement

La Tâche 4 “Time-advancing algorithmics and parallelism” a pour but d’aug-
menter l’efficacité des calculs instationnaires combinant LES et acoustique.
Nous avons exploré la possibilité d’utiliser une formulation “multirate” per-
mettant de restreindre à une petite région du domaine de calcul l’avancement
en temps à petit pas de temps. Le document proposé ici décrit cette approche
en CFD compressible sans aller jusqu’à l’extension à la propagation acous-
tique en milieu hétérogène. En effet, une approche alternative est d’adapter
au mieux le pas de temps, notamment lorsque le maillage spatial est adapté.
Cette deuxième approche a été préférée pour notre développement d’outils
en aéroacosutique et est décrite en T4-D3.
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Abstract

A frequent configuration in computational fluid mechanics combines an explicit time ad-
vancing scheme for accuracy purposes and a computational grid with a very small portion of
much smaller elements than in the remaining mesh. Two examples of such situations are the
travel of a discontinuity followed by a moving mesh, and the large eddy simulation of high
Reynolds number flows around bluff bodies where together very thin boundary layers and
vortices of much more important size need to be captured. For such configurations, multi-
stage explicit time advancing schemes with global time stepping are very accurate, but also
very CPU consuming. In order to reduce this problem, the multirate time stepping approach
represents an interesting improvement. The objective of such schemes, which allow to use
different time steps in the computational domain, is to avoid penalizing the computational
cost of the time advancement of unsteady solutions which would become large due to the
use of small global time steps imposed by the smallest elements such as those constituting
the boundary layers. In this document, we present a multirate scheme based on control
volume agglomeration for the solution of the compressible Navier-Stokes equations equipped
with turbulence models. The method relies on a prediction step where large time steps are
performed with an evaluation of the fluxes on macro-cells for the smaller elements for sta-
bility purpose, and on a correction step in which small time steps are employed only for the
smaller elements. The accuracy and effciency of the multirate method are evaluated on two
benchmarks flows: the problem of a moving contact discontinuity (inviscid flow), and the
computation with a hybrid turbulence model of a flow around a circular cylinder.

Keywords: Computational fluid dynamics, multirate time advancing, explicit scheme, vol-
ume agglomeration, unstructured mesh, compressible Navier-Stokes equations.
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1 Introduction

A frequent configuration in Computational Fluid Dynamics (CFD) calculations combines an
explicit time advancing scheme for accuracy purpose and a computational grid with a very
small portion of much smaller elements than in the remaining mesh.

A first example is the hybrid RANS/LES simulation of high Reynolds number flows
around bluff bodies. In that case, very thin boundary layers need be addressed with extremely
small cells. When applying explicit time advancing, the computation is penalized by the very
small time-step to be applied (CFL number close to unity). But this is not the only interesting
region of the computational domain. An important part of the meshing effort is devoted to
large regions of medium cell size in which the motion of vortices need be accurately captured.
For these vortices, the efficient and accurate time-step is of the order of the ratio of local mesh
size by vortex velocity. We can apply an implicit scheme with such a time-step, which would
produce a local CFL of order 1 for the vortices advection and a local CFL of order hundreds
for the boundary layer. However, this may have several disadvantages. First this standpoint
completely neglects a possible need of unsteady accuracy in the small-cell region, due to
unsteady separation, for example. Second, considering the need of accuracy for vortices
motion on medium cells, highly accurate explicit schemes are easily assembled. This includes
the TVD third-order ones, and the standard fourth-order Runge-Kutta method (RK4). In
contrast, high-order implicit schemes are complex and cpu consuming. More simple implicit
schemes using backward differencing show much more dissipation than explicit schemes.

The second example concerns an important complexity issue in unsteady mesh adapta-
tion. Indeed, unsteady mesh adaptive calculations are penalized by the very small time-step
imposed by accuracy requirements on regions involving small space-time scales. In the present
work, our first numerical example concerns the computation of an isolated traveling discon-
tinuity. The discontinuity needs to be followed by the mesh, preferably in a mesh-adaptive
mode. Except if the adaptation works in a purely Lagrangian mode, an implicit scheme will
smear the discontinuity of the solution. An explicit scheme will apply a costly very small
time step on the whole computational domain.

In order to overcome these problems, the multirate time stepping approach represents an
interesting alternative. A part of the computational domain is advanced in time with the
small time-step imposed by accuracy and stability constraints. Another part is advanced with
the larger time-step giving a good compromise between accuracy and efficiency. Multirate
time advancing has been studied for PDEs and hyperbolic conservation laws [5, 25, 21, 17,
27, 20], and for a few applications in CFD [20, 27]. Other references are proposed in the
annex of this document.

In this document, we present a multirate scheme which is based on control volume ag-
glomeration. This scheme is at the same time very simple to develop in an existing software
relying on explicit time-advancing, and well suited to a large class of finite volume approxi-
mations. The agglomeration produces macro-cells by grouping together several neighboring
cells of the initial mesh. The method relies on a prediction step where large time steps are
used with an evaluation of the fluxes performed on the macro-cells for the region of smallest
cells, and on a correction step advancing solely the region of small cells, this time with a
small time step. We demonstrate the method for the mixed finite volume/finite element
approximation. Target applications are three-dimensional unsteady flows modeled by the
compressible Navier-Stokes equations equipped with turbulence models and discretized on
unstructured possibly deformable meshes. The numerical illustration involves the two above
examples.

The multirate algorithm is described in Section 2. Section 3 provides some motivations of
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this construction. Section 4 gives some examples of applications. Some concluding remarks
are drawn in Section 5, and a short review of multirate works is given in Annex.

2 Multirate time advancing by volume agglomeration

2.1 Finite-Volume Navier-Stokes

The multirate time advancing scheme based on volume agglomeration will be denoted by
MR and is developed for the solution of the three-dimensional compressible Navier-Stokes
equations. This scheme is implemented in the code Aironum shared by INRIA and University
of Montpellier. The computational domain is split into computational finite volume cells such
that cells intersect only by their boundaries and cover the whole computational domain. The
discrete Navier-Stokes system is assembled by a flux summation Ψi involving the convective
and diffusive fluxes evaluated at all the interfaces separating cell i and its neighbors. More
precisely, the finite-volume spatial discretization combined with an explicit forward-Euler
time-advancing writes for the Navier-Stokes equations possibly equipped with a k− ε model:

voli w
n+1
i = voli w

n
i + ∆t Ψi, ∀ i = 1, ..., ncell,

where the quantity voli is the volume of cell i, ∆t denotes the time step, and
wn

i = (ρni , (ρu)
n
i , (ρv)

n
i , (ρw)

n
i , E

n
i , (ρk)

n
i , (ρε)

n
i ) are as usually the density, moments, total

energy, turbulent energy and turbulent dissipation at cell i and time level tn, and ncell the
total number of cells in the mesh. In the examples given below, the accuracy of the initial
scheme can be defined as a third-order spatial accuracy on smooth meshes, through the use
of a MUSCL-type upwind-biased finite volume, combined with a third-order time accurate
Shu multistage scheme.

Given an explicit -conditionally stable- time advancing, we assume that we can define a
maximal stable time step (local time step) ∆ti, i = 1, ..., ncell on each node. For the Navier-
Stokes model, the stable local time step is defined by the combination of a viscous stability
limit and an advective one according to the following formula:

∆ti ≤
CFL×∆l2i

∆li(||ui||+ ci) + 2 γ
ρi

(

µi

Pr + µti

Prt

) (1)

where ∆li is a local characteristic mesh size, ui the local velocity, ci the sound celerity, γ the
ratio of specific heats, ρi the density, µi

Pr + µti

Prt
the sum of local viscosity to Prandtl ratio,

laminar and turbulent, and CFL a parameter depending of the time advancing scheme, of
the order of unity. Using the local time step ∆ti leads to a stable but not consistent time
advancing. A stable and consistent time advancing should use a global/uniform time step
defined by:

∆t = min
1,ncell

∆ti.

For many advective explicit time advancing, in regions where ∆t is of the order of ∆ti,
accuracy is quasi-optimal, and in other regions, the accuracy is suboptimal, due to the
relatively large spatial mesh size.

2.2 Inner and outer zones

We first define the inner zone and the outer zone, the coarse grid, and the construction of
the fluxes on the coarse grid, ingredients on which our MR time advancing scheme is based.
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For this splitting into two zones, the user is supposed to choose a (integer) time step factor
K > 1. We define the outer zone as the set of cells i for which the explicit scheme is
stable for a time step K∆t

∆ti ≥ K∆t,

the inner zone is the set of cells i for which

∆ti < K∆t.

We shall build over the whole domain a coarse grid which should allow that:

• Advancement in time is performed with time step K∆t,

• Advancement in time preserves accuracy in the outer zone,

• Advancement in time is consistent in the inner zone.

A coarse grid is defined on the inner zone by applying cell agglomeration in such a way
that on each macro-cell, the maximal local stable time step is at least K∆t. Agglomeration
consists in considering each cell and aggregating to it neigboring cells which are not yet
aggregated to an other one (Figure 1). Agglomeration into macro-cell is re-iterated until
macro-cells with maximal time step smaller than K∆t have disappeared. We advance in
time the chosen explicit scheme on the coarse grid with K∆t as time step. The nodal fluxes
Ψi are assembled on the fine cells (as usual). Fluxes are then summed on the macro-cells I
(inner zone) :

ΨI =
∑

k∈I

Ψk. (2)

fine cells i macro-cell I

Figure 1: Sketch (in 2D) of the agglomeration of 4 cells into a macro-cell. Cells are dual cells of
triangles, bounded by sections of triangle medians.

2.3 MR time advancing

The MR algorithm is based on a prediction step and a correction step as defined here-
after :

Step 1 (prediction step) :
The solution is advanced in time with time step K∆t, on the fine cells in the outer zone
and on the macro-cells in the inner zone (which means using the macro-cell volumes and the
coarse fluxes as defined in expression (2)) :
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For α = 1, nstep

outer zone : voliw
(α)
i = aαvoliw

(0)
i + bα

(

voliw
(α−1)
i +K∆t Ψ

(α−1)
i

)

(3)

inner zone : volIwI,(α) = aαvol
IwI,(0) + bα

(

volIwI,(α−1) +K∆t ΨI,(α−1)
)

(4)

w
(α)
i = wI,(α) for i ∈ I (5)

EndFor α.

where wI,(α) denotes the fluid/turbulent variables at macro-cell I and stage α, (aα, bα)
are the multi-stage parameters, a1 = 0, a2 = 3/4, a3 = 1/3 and b1 = 1, b2 = 1/4, b3 = 2/3 for
the three-stage Shu time advancing [28], and volI is the volume of macro-cell I.

From a practical point of view, we do not introduce in our software a new variable wI to
that already existing wi. In other words, the previous sequence (4) is actually

inner zone : volIw
(α)
i = aαvol

Iw
(0)
i + bα

(

volIw
(α−1)
i +K∆t ΨI,(α−1)

)

(6)

where I is the macro-cell containing cell i. (7)

On the other hand, the coarse fluxes ΨI are not stored in a specific variable, which means
that no extra storage is necessary than the one required to store the fluxes Ψi. Indeed,

after the computation of the fluxes Ψ
(α−1)
i (using the values of w

(α−1)
i ) at each stage α of

the multi-stage time advancing scheme, the coarse flux ΨI,(α−1) is evaluated according to

expression (2) for each macro-cell I and then stored in the memory space allocated to Ψ
(α−1)
i

for each cell i in the inner zone belonging to the macro-cell I.

Step 2 (correction step) :

• The unknowns in the outer zone are frozen at level tn +K∆t.

• The unknowns in the outer zone close to the inner zone, which are necessary for ad-
vancing in time the inner zone (which means those which are useful for the computation
of the fluxes Ψi in the inner zone), are interpolated in time.

• Using these interpolated values for the computation of the fluxes Ψi in the inner zone
(at each stage of the time-advancing sheme), the solution in the inner zone is advanced
in time with the chosen explicit scheme and time step ∆t.

This time advancing writes:

For kt = 1,K
For α = 1, nstep

inner zone : voliw
(α)
i = aαvoliw

(0)
i + bα

(

voliw
(α−1)
i +K∆t Ψ

(α−1)
i

)

(8)

(outer zone : nothing is done) (9)

EndFor α.
EndFor kt.

The arithmetic complexity, proportional to the number of points in the inner zone, is
therefore mastered.
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3 Elements of analysis

3.1 Stability

The central question concerning the coarse grid is the stability resulting from its use in the
computation. Considering (1), we expect that the viscous stability limit will improve by a
factor four (1D) for a twice larger cell. The viscous stability limit can therefore be considered
as more easily addressed by our coarsening. For the advective stability limit, we can be a
little more precise. The coarse mesh is an unstructured partition of the domain in which cells
are polyhedra. Analyses of time advancing schemes on unstructured meshes are available in
L2 norm for unstructured meshes, see [3] [11] [10]. Here we solely propose a L∞ analysis
of the advection scheme. The gain in L∞ stability can be analysed for a first-order upwind
advection scheme. We get the following (obvious) lemma:

Lemma : The upwind advection scheme is positive on the mesh made of macro-cells as soon
as for all macro-cell I :

∆t ||VI || <
[

∑

J∈N (I)

∫

∂cell(I)∩∂cell(J)

dΣ
]−1

∫

cell(I)

dx

where N (I) holds for the neighbouring macro-cells of I.�

The application of an adequate neighboring-cell agglomeration, like in [19] producing
large macro-cells of good aspect ratio will produce a K-times larger stability limit.

3.2 Accuracy

In contrast to more sophisticated MR algorithms, the proposed method has not a rigorous
control of the accuracy. Let us however remark that the generic situation involves variable-
size meshes, which limits the unsteady accuracy on small scales propagation, already before
applying the MR method.

However the two following remarks tend to show that the scheme accuracy is conserved:
- the predictor step involves simply a sum of the fluxes and the formal accuracy order is

kept, with a coarser mesh size.
- still during the predictor step, if we assume that the mesh is reasonably smooth, then

the CFL applied in the inner part near the matching zone will be close to the explicit CFL
(applied on the outer part near the matching zone) and therefore accuracy is high.

Under these conditions, the effect of the corrector step will be just improving the result.
In practice, most of our experiments will involve a comparison between the three-stage

Shu explicit time advancing and the MR algorithm using the same explicit scheme.

3.3 Efficiency

The proposed two-level MR depends on only one parameter, the ratio K between the large
and small time step. Considering a mesh with N vertices, a short loop on the mesh will
produce the function K 7→ Nsmall(K) ≤ N which gives the number of cells in the inner
region for K. If CPUExpNode(∆t) denotes the CPU per node and per time step ∆t of the
underlying explicit scheme, a model for the MR cpu per ∆t would be

CPUMR(K)(∆t) =

(

N

K
+Nsmall(K)

)

× CPUExpNode(∆t)
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to be compared with the explicit case:

CPUExpli(∆t) = N × CPUExpNode(∆t).

We shall call the expected gain the ratio:

Gain =
CPUExpli(∆t)

CPUMR(K)(∆t)
=

1
1
K + Nsmall(K)

N

.

The above formula emphasizes the crucial influence of a very small proportion of inner cells.

Remark 1: In most other multirate methods, the phase with a larger time-step does not
concern the inner region and then their gain would be modelled by:

Gain =
1

1
KN (N −Nsmall(K)) + Nsmall(K)

N

.

Both gains are bounded by N/Nsmall(K) and show that this ratio has to be sufficiently
large.�

Remark 2: Once we have evaluated K 7→ Nsmall(K) for a given mesh it is possible to
predict a theoretical optimum Kopt for minimising the CPU time in scalar execution. How-
ever we shall see that the pertinence of the above theory will be strongly noised by parallel
implementation conditions.�

3.4 Towards many rates

Multirate strategies are supposed to extend to more than two different time step lengths
while keeping a reasonable algebraic complexity. Let us examine the case of three lengths,
namely ∆t, K∆t, K2∆t. It is then necessary to generate two nested levels of agglomeration
in such a way that Grid1 is stable for CFL = 1, Grid2 is stable for CFL = K, Grid3 is
stable for CFL = K2. While a two-rate calculation would involve a prediction-correction
based on Grid1 and Grid3,
- prediction on Grid3,
- correction on inner part of Grid1,
in a three-rate calculation, the correction step is replaced by two corrections:
- prediction on Grid3,
- correction on medium part of Grid2,
- correction on inner part of Grid1,
but this replacement is just the substitution (on a part of the mesh) of a single-rate advancing
by a two-rate one and therefore can carry a higher efficiency (the smallest time step is
restricted to a smaller inner zone). In contrast to other MR methods, we have a (second)
duplication of flux assembly on the inner zone. However, this increment remains limited,
since this computation is done 1 +K−1 +K−2 times (111% for K = 10).

3.5 Impact of our MR complexity on mesh adaption

An important impact of MR methods is the increment of accuracy order in unsteady mesh
adaption methods. We now check that the proposed MR indeed improves mesh adaption
accuracy order. Let us consider the space-time mesh used by a time advancing method.
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A usual time advancing uses the Cartesian product {t0, t1, ...tN} × spatial mesh as space-
time mesh. The space-time mesh is a measure of the computational cost since the discrete
derivatives are evaluated on each node (tk, xk) of the Ntime×Nspace nodes of the space-time
mesh.

In [6] is proposed an analysis which determines the maximal convergence order (in terms of
number of space-time nodes) which can be attained on a given family of mesh. This analysis
is useful for evaluating mesh-adaptive methods. For example, in [4], a 3D mesh adaptive
method for computing a traveling discontinuity has a convergence order α not better than
αmax = 8/5, according to

error = O(N
−α/4
st ), (10)

4 being the space-time dimension. The purpose of this section is to show that replacing the
usual time-advancing by the MR algorithm will indeed improve the maximal convergence
order of a mesh adaption method defined as in [4].

Let us concentrate on the calculation of a planar horizontal discontinuity vertically trav-
elling in a 3D spatial cubic domain and its approximation by a second-order accurate P1

finite-element method. The approximation error is of first order (space and time) near the
discontinuity. Then starting from an uniform space-time mesh, dividing mesh size and time
step by a factor 4 will divide by 4 the error, at the cost of N2/N1 = 256 times more space-time
nodes. We verify that, according to (10), this is an order of 1.

In order not to go into many details given in [4] , we ask the reader to believe us if we
say that an anisotropic mesh adaptor is able to improve the spatial mesh of each time level
in such a way that starting from a constant time step and adapted space meshes at each
time level, and dividing the time step by 4 and using adapted meshes with only 8 times more
nodes than before will produce a 4 times smaller error. In short, this is due to the fact that
mesh size normal to the discontinuity can be divided by 4, ensuring a 4 times smaller error

with only a small fraction of Nspace, typically of the order N
2/3
space, the number of points lying

on the planar discontinuity. The resulting performance an order of 8
5 is poor with respect to

second order due to the uniform division by 4 of the time step. With a MR time advancing,

the four-times smaller time step can be restricted to the N
2/3
space smaller spatial cells and a

two-times smaller time step is applied to the others. The amplification of CPU time is then

16 + 32 ∗N
−1/3
space for the proposed algorithm and (16 ∗ (1−N

−1/3
space) + 32 ∗N

−1/3
space for a usual

MR algorithm). Both formulas, for Nspace large, give the second order (α = 2) convergence.

3.6 Parallelism

3.6.1 Implementation of MR

The proposed method needs be adapted to massive parallelism. We consider its adaptation
to parallel MPI computation relying on mesh partitioning. In a preprocessing phase, the
cell-agglomeration is applied at run time inside each partition, which saves communications,
and over the whole partition. The motivation is to do it once for the whole computation,
while fluctuations of the inner zone at each time level will be taken into account by changing
the list of active macro-cells to be agglomerated in inner zone. Since our purpose is to
remain with a rather simplified modification of the initial software, we did not modify the
communication library in order to restrict the communications to the inner zone when it is
possible (i.e. in the correction step). Due to this, the complexity of the correction step is not
strictly of order of the number of nodes in the inner zone, while its arithmetic complexity
satisfies this condition.
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To synthetize, the MR algorithm involves at each time step:
- an updating of the inner zone (with a volume agglomeration done once for the computa-
tion),
- a prediction step which is similar to an explicit step (with a larger time step length), but
with also a local sum of the fluxes in each macro-cell,
- a correction step which is similar to explicit arithmetics restricted to the inner region, and
for simplicity of coding, communications which are left identical to the explicit advancing,
that is communications applied to both inner and outer zones.

An intrinsic extra cost of our algorithm with respect to previous multirate algorithms is
the computations on the inner zone during the predictor step. An intrinsic cost is also the
local sums on macro-cell which account for a very small part of the computational cost.
The correction step complexity is close to an explicit advancing one on the inner zone ex-
cept the two phases of time interpolation and communications. Time interpolation can be
implemented with a better efficiency by applying it only on a layer around the inner zone.
However, the cost of the time interpolation is a very small part of the total cost. Global
communications are less costly than 10% of the explicit time step cost. If the inner zone
is 30% of the domain, developing communication restricted to inner zone will reduce the
communication from 10% to 3% of the explicit time step on the whole domain, which shows
that the correction step would be decreased from 40% to 33% of an explicit time stepping
CPU.

3.6.2 Load balancing

The usual Metis software can be applied on the basis of a balanced repartion of the mesh.
However, as remarked in previous works (see for example [27]), if the mesh partition does not
take into account the inner zone, then the work effort will not be balanced during the correc-
tion step. The bad work balance for correction step can be of low impact if this step concerns
a sufficiently small part of the mesh, resulting in a small part of the global work. However,
a more reasonable assumption is that the correction phase represents a non-negligible part
of the effort. In this section we discuss the question of a partitioning taking into account the
correction phase. We observe that in the proposed method the inner zone depends on the
flow through the CFL condition. This means that dynamic load balancing may be useful in
some case. It would be compulsory if a strong mesh adaption is combined with the multirate
time advancing. However, in the class of flow which we consider, the change in inner zone
can be neglected and we consider only static balancing. An option resulting from the work
of Karypis and co-workers [16] and available in Metis is the multi constraint partitioning
(MCP) which minimizes the communication cost with multiple constrains. The two con-
straints for MR are:
- partition is balanced for the whole computational domain, which would be optimal for the
prediction step,
- partition is balanced for the inner part of the computational domain, which would be op-
timal for the correction step.
More precisely, this partitioning algorithm produces a compromise between:
- the number of nodes in each subdomain of the global mesh,
- the number of nodes in each subdomain of the inner part of the mesh,
- the communications between the subdomains which are minimized in the multi-constrained
algorithm.
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In some particular cases, the user can specify an evident partition which perfectly balances
the number of nodes in each subdomain of the global mesh and in each subdomain of the
inner part of the mesh. In our experiments, we explicitly specify when it is the case and how
it is performed.

4 Applications

The MR algorithm is implemented into the parallel (MPI) CFD code AIRONUM shared by
INRIA and university of Montpellier. A MUSCL-type upwind-biased finite volume ensuring
a third-order spatial accuracy on smooth meshes is used. The explicit time-advancing is a
three-stage Shu method. The mean CPU for an explicit time step per mesh node varies
between 10−7 and 4 × 10−7 seconds according to the partition quality and the number of
nodes per subdomain.

For the first test case, it will be interesting to compare the efficiency and accuracy of
the proposed MR time advancing with an implicit calculation of the same flow over the
same time interval. The implicit algorithm (BDF2) which we use combines a second-order
backward differencing formula for the time quadrature and a GMRES linear solver using a
Restrictive-Additive Schwarz preconditioner and ILU(0) in each partition, see [18] for fur-
ther details. In the cases computed with the implicit scheme, the CFL is fixed to 30 and the
total number of GMRES iterations for one time step is around 20. For this CFL, the gain
of an implicit computation with respect to an explicit one at CFL 0.5 is measured between
12 and 22 depending on the number of nodes per processor. The implicit scheme scalabil-
ity decreases with partitions less than 10, 000 vertices while the explicit (and MR) scheme
remains scalable for partitions of 5, 000 vertices. The BDF2 algorithm is second-order ac-
curate in time and we shall use this property when estimating which time step reduction is
necessary for reducing by a given factor the deviation with respect to explicit time-advancing.

4.1 Circular cylinder at very high Reynolds number

Figure 2: Circular cylinder at Reynolds number 8.4 × 106. Instantaneous Q-criterion
isosurfaces (coloured with velocity modulus).
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The discussion concerning the parallel processing of the multirate scheme will rely on a
non-adaptative application. It is the simulation of the flow around a circular cylinder at
Reynolds number 8.4 × 106. The computational domain is made of small cells around the
body in order to allow a proper representation of the very thin boundary layer that occurs
at such a high Reynolds number. On the other hand, a hybrid RANS/VMS-LES model is
used to compute this flow, which implies that both the fluid and turbulent variables need to
be advanced by the time integration scheme, and therefore also the MR method. Figure 2
depicts the Q-criterion isosurfaces and shows the very small and complex structures that need
to be captured by the numerical and the turbulence models, which renders this simulation
very challenging.

The mesh used in this simulation contains 4.3 million nodes and 25 million tetrahedra.
The smallest cell thickness is 2.5.10−6. The computational domain is decomposed into 768
subdomains. When integer K, used for the definition of the inner and outer zones, is set
to 5, 10 and 20, the percentage of nodes located in the inner zone is 15%, 19% and 24%,
respectively (see Table 1). For each simulation, 768 cores were used on a Bullx B720

K nproc N
small

N
Expected Measured Error

(%) gain gain (%)
(theoretical) (UP/MCP/R)

20 192 24 3.45 1.18/1.43/2.27 2.6 10−3

60 192 27 3.48 1.21/1.52/2.32 5. 10−3

BDF2
CFL=30 192 20./− /− 1.0
CFL=2(est.) 192 1.5/− /− 5. 10−3

Table 1: Circular cylinder at Reynolds number 8.4 × 106 Time step factor K, CPU of
the explicit scheme per explicit time-step ∆t and per node, percentage of nodes in the inner
region, theoretical gain in scalar mode, CPU of the prediction step per time-step K∆t, CPU
of the correction step per time-step K∆t, measured parallel gain, and relative error for the
explicit, MR and implicit BDF2 time advancing. UP holds for usual partition, MCP for Metis
multi-constrained partition, R for analytic radial optimal partition.

Figure 3: Circular cylinder at Reynolds number 8.4×106. Zoom of the lift curves obtained
with explicit, implicit and MR schemes.
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cluster, and the CFL number was set to 0.5. CPU times for the explicit and MR schemes
with different values of K are given in Table 1. One can observe that the efficiency of the
MR approach is rather moderate, with however a noticeable improvement of the gain in the
case of a radial optimal partition. The cost of the correction step is indeed relatively high
compared to the prediction step. This is certainly due to an important number of inner nodes
(which implies also a moderate theoritical scalar gain) and a non uniform distribution of these
nodes among the computational cores for the usual partition. An implicit simulation, with a
CFL number set to 30, was also performed. An important gain is observed compared to the
MR case, but at the cost of a degradation of the accuracy (see Table 1 and Figure 3) . This
is probably related to the very small scale fluctuations which arise at this Reynolds number
(Figure 2). They need be captured with a rather accurate time advancing. A 1% deviation
after a shedding cycle may become 20% after 20 cycles and deteriorate the prediction of bulk
fluctuations. In order to obtain the same level of error, the implicit time advancing, which is
second-order accurate in time, should be run with a CFL of 2, with a gain of only 1.5 (less
than the MR case with the radial optimal partition).

4.2 Mesh adaption for a contact discontinuity

This example is a simplified case of mesh adaptation. We consider the case of a moving
contact discontinuity. For this purpose, the compressible Euler equations are solved in a
rectangular parallelepiped as computational domain where the density is initially discontin-
uous at its middle (see Figure 4) while velocity and pressure are uniform.

Figure 4: Mesh adaptative calculation of a traveling contact discontinuity. Instanta-
neous mesh with mesh concentration in the middle of zoom and corresponding advected discon-
tinuous fluid density.

The uniform velocity is a purely horizontal one. As can be seen in Figure 4, small cells
are present on either side of the discontinuity. The mesh adapts analytically during the
computation in such a way that the nodes located at the discontinuity are still the same, and
that the number of small cells are equally balanced on either side of the discontinuity. An
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K N small(K)/N Expected CPU CPU Measured
(%) gain pred. step correc. step gain

(theoretical) (s/K∆t) (s/K∆t) (parallel)

5 1.3 4.7 0.124 0.244 1.7
10 1.3 8.8 0.124 0.482 2.0
15 1.3 12.5 0.124 0.729 2.2

Table 2: Mesh adaptative propagation of a contact discontinuity: Time step factor K,
CPU of the explicit scheme per explicit time-step ∆t and per node, percentage of nodes in the
inner region, theoretical gain in scalar mode, CPU of the prediction step per time-step K∆t,
CPU of the correction step per time-step K∆t, and measured parallel gain.

Arbitrary Lagrangian-Eulerian formulation is then used to solve the Euler equations on the
resulting deforming mesh. Our long term objective is to combine the MR time advancing with
a mesh adaptation algorithm in such a way that the small time steps imposed by the necessary
good resolution of the discontinuity remain of weak impact on the global computational time.

The 3D mesh used in this simulation contains 25000 nodes and 96000 tetrahedra. The
computational domain is decomposed into 2 subdomains, the partition interface being defined
in such a way that it follows the center plan of the discontinuity. When integer K, used for
the definition of the inner and outer zones, is set to 5, 10 and 15, the percentage of nodes
located in the inner zone is always 1.3%, which corresponds to the vertices of the small cells
located on either side of the discontinuity. The CFL with respect to propagation is 0.5.
The MR scheme with the aforementioned values of K is used for the computation. Each
simulation was run on 2 cores of a Bullx B720 cluster. In Table 2, CPU times (prediction
step / correction step) are given for the MR approach and different time step factors K. The
correction step, consists of explicit time advancing on inner zone, 1.3% of the mesh (solely
78 vertices on each partition), but, due to parallel and vector inefficiency, one Shu step of
it is 39% of one Shu explicit step on the whole mesh. As a result, an improvement in the
efficiency of about 1.7, 2.0 and 2.2 is observed when K is set to 5, 10 and 15, respectively,
unstead of the 4.7, 8.8 and 12.5 predicted by the theory.

5 Conclusion

A simplified multirate time advancing strategy for unstructured finite volume CFD is pre-
sented in this document. The motivation for using such a multirate approach is two folds.
First, with the arising of novel anisotropic mesh adaptation methods, the complexity of un-
steady accurate computations with large and small mesh sizes needs to be mastered with
new methods. Second, we are interested by increasing the efficiency of accurate unsteady
simulations. Indeed, the very high Reynolds number hybrid simulations can be computed
with implicit time advancing for maintaining a reasonable cpu. But in many cases this is
done with an important degradation of the accuracy with respect to smaller time steps on
the same mesh.

The proposed method is based on control volume agglomeration, and relies on:
- a prediction step where large time steps are used and where the fluxes for the smaller
elements are evaluated on macro-cells for stability purpose,
- a correction step in which only the smaller elements of the so-called inner zone are advanced
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in time with a small time step.
An important interest of the method is that the modification effort in an existing explicit

unstructured code is very low. Preliminary interesting results are given. They show that
the proposed MR strategy can be applied to complex unsteady CFD problems such as the
prediction of three-dimensional flows around bluff bodies with a hybrid RANS/LES turbu-
lence model. A simplified mesh adaptive calculation of a moving shock is also performed, as
a preliminary test for mesh adaptation.

All the numerical experiments are parallel computed with MPI. This allows to identify
the main difficulty in obtaining high computational gain, which is related with the parallel
efficiency of the computations restricted to the inner zone.

Thanks to the use of an explicit Runge-Kutta time advancing, the time accuracy of the
MR scheme remains high and the dissipation remains low, as compared with an implicit
computation. Only very small time-scales are lost with respect to a pure explicit computa-
tion. Implicit accuracy is limited not only by the intrinsic scheme accuracy but also by the
conditions required to achieve greater efficiency which involve a sufficiently large time-step
and a short, parameter dependant, convergence of the linear solver performed in the time
advancing step. In contrast, explicit and MR computations are parameter safe, and the
accuracy of the MR method is optimal in regions complementary to the inner zone.

6 Annex: a short review of multirate works

A brief review of multirate methods is proposed. It starts from Skelboes’s pioneering work
using Backward Differentiation Formulas (BDF) [29] to recent works dealing with hyperbolic
conservation laws [5, 25, 21, 27].

6.1 Introduction

For the solution of EDOs or EDPs, explicit integration schemes are still often used because
of the accuracy they can provide and their simplicity of implementation. Nevertheless, these
schemes can prove to be very expensive in some situations, for example stiff EDOs whose
solution components exhibit different time scales, system of non-stiff EDOs characterized
by different activity levels (fast/slow), or EDPs discretized on computational grids with
very small elements. In order to overcome this efficiency problem, different strategies were
developped, first in the field of EDOs, in order to propose an interesting alternative:

• Multi-method shemes: for systems of EDOs containing both non-stiff and stiff parts,
an explicit scheme is used for the non-stiff subsystem and an implicit method for the
stiff one [15, 22, 30].

• Multi-order schemes: for non-stiff system of ODEs, the same explicit method and step
size are used, but the order of the method is selected according to the activity level
(fast/slow) of the considered subsystem of EDOs [7].

• Multirate schemes: for stiff and non-stiff problems, the same explicit or implicit method
with the same order is applied to all subsystems, but the step size is chosen according
to the activity level. The first multirate time integration algorithm goes back to the
work of Rice [23].

In what follows, we focus on the multirate approach. The application of such shemes
was first limited to ODEs [23, 1, 9, 29, 24, 2, 14, 8, 7, 13, 12, 26] and restricted to a low
number of industrial problems. In the last fifteen years, the developpment and application
of such methods to the time integration of PDEs was also performed. In particular, a
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few works were conducted on the system of ODEs that arise after semidiscretization of
hyperbolic conservation laws [5, 25, 21, 17, 27, 20], and rare applications were performed in
Computational Fluid Dynamics (CFD) [27, 20] for which we are interested.

In the following review, a short survey of some important works performed in the domain
of multirate approaches is given in Subsection 1.2. It starts from Skelboe’s work on multirate
BDF methods [29] to recent works dealing with hyperlic conservation laws [5, 25, 21, 27].

6.2 Several works on multirate schemes

6.2.1 The work of Skelboe on multirate BDF methods, 1989 [29].

In this work concerning multirate BDF schemes, first order EDOs, made of a fast subsystem
and a slow subsystem, are considered. In the proposed multirate strategy, the fast subsystem
is integrated by a k-step BDF formula (BDF-k) with step length h, and the slow subsystem
is integrated by the same BDF-k formula but with time step H = qh where q is an integer
multiplying factor. Interpolation and extrapolation values (following a Newton type formula)
of the solution are used in the proposed algorithms.
As for the application part, a 2× 2 test problem is considered for investigating the stability
properties of the multirate algorithms. From this application, it appears that the proposed
multirate algorithms are not necessarily A-stable, limiting the use of such methods.

6.2.2 The work of Günther and Rentrop on multirate Rosenbrock-Wanner
(ROW) methods, 1993 [14].

In this work regarding multirate ROW algorithms, autonomous first order EDOs, which can
be split into active and latent components, are considered. The multirate strategy is based
on a ROW method in which a large time step H is used for the latent subsystem and a
small time step h = H/m is employed for advancing the active components of the solution.
In the proposed multirate method, the latent and active components of the solution are
extrapolated using a Padé approximation.
The application part concerns the simulation of electric circuits (inverter chain) leading to
the solution of stiff EDOs (system of 250-4000 differential equations). A multirate 4-steps
ROW method was implemented, leading to a A-stable algorithm, and a speedup up to 2.8
compared to the classical explicit 4-stages Runge Kutta (RK) method.

6.2.3 The work of Löhner-Morgan-Zienkiewicz on explicit multirate schemes
for hyperbolic problems with CFD applications, 1984 [20].

To our knowledge, this work is the first one on multirate methods which deals with ap-
plications in CFD. In the model problem, two subregions with different grid resolution are
considered and the solution is advanced in time using a given explicit scheme. A large time
step ∆t1 is used in the coarse subregion Ω1, and a small time step ∆t2 = ∆t1/n is employed
in the fine subregion Ω2. In the proposed multirate strategy, some grid points belonging
to Ω1 are added to the fine subregion Ω2 (which becomes Ω′

2), and appropriate boundary
conditions are used for both subregions Ω1 and Ω′

2, together with mean values at some points
belonging to Ω1 and Ω′

2. The proposed multirate scheme was implemented with a second
order explicit finite element scheme (Taylor-Galerkin method of Donea).
Several CFD test cases were considered, which illustrate that shocks can be handled by the
multirate method and that a speedup of 2 between the multirate scheme and its single-rate
counterpart can be obtained.
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6.2.4 The work of Kirby on a multirate forward Euler scheme for hyper-
bolic conservation laws, 2002 [17]

This theoritical work presents and analyzes a multirate method for the solution of one di-
mensional hyberbolic conservation laws. After semi-discretization by a finite volume MUSCL
approach, a system of EDOs is obtained which is partitioned in fast and slow subsystems. A
rather simple multirate scheme based on forward Euler steps is proposed for the solution of
these subsystems. The fast subsystem is advanced with a small time step ∆t/m, while a large
time step ∆t is used for the slow subsystem. No extrapolation/interpolation are performed
in the proposed multirate strategy. It is shown that the multirate scheme satisfies the TVD
property and a maximum principle under local CFL conditions, but it is only first order time
accurate.

6.2.5 The work of Constantinescu and Sandu on multirate RK methods
for hyperbolic conservation laws, 2007 [5]

One-dimensional scalar hyperbolic equations are considered in this study. For the solution
of these equations, a second-order accurate multirate scheme, that inherits stability proper-
ties of the single rate integrator (maximum principle, TVD, TVB, monotocity-preservation,
positivity), is developped. After a semi-discrete finite volume approximation (which satisfies
some of the above stability properties), a system of EDOs is obtained and partionned into
slow and fast subsystems. The computational domain is split into a subdomain ΩF corre-
sponding to a fast characteristic time where a small time step ∆t/m is used in the multirate
scheme and a subdomain ΩS with a slow characteristic time where a large time step ∆t is
employed. Furthermore, a buffer zone between ΩF and ΩS is introduced in order to bridge
the transition between these two subdomains for the purpose that the multirate scheme sat-
isfies the stability properties of the single rate scheme. In the proposed multirate method,
appropriate explicit RK schemes are also used in each subdomain and the buffer zone.
The resulting multirate algorithm is assessed on 1D problems (advection equation, and
Burger’s equation) with fixed and moving grids. It was checked that the numerical solu-
tions are second order accurate, positive, obey the maximum principle, TVD, wiggle free,
and the integration is conservative. Speedups up to 2.4 were obtained.

6.2.6 The work of Seny et al. on the parallel implementation of multirate
RK methods, 2014 [27]

The work of Seny et al. focuses on the efficient parallel implementation of explicit multirate
RK schemes in the framework of discontinuous Galerkin methods. The multirate RK scheme
used is the approach proposed by Constantinescu [5] and introduced in the previous subsec-
tion.
In order to optimize the parallel efficiency of the multirate scheme, they propose a solution
based on multi-constraint mesh partitioning. The objective is to ensure that the workload,
for each stage of the multirate algorithm, is almost equally shared by each computer core
i.e. the same number of elements are active on each core, while minimizing inter-processor
communications. The METIS software is used for the mesh decomposition, and the parallel
programming is performed with the Message Passing Interface.
The efficiency of the parallel multirate strategy is evaluated on two- and three-dimensional
CFD problems. It is shown that the multi-constraint partitioning strategy increases the
efficiency of the parallel multirate scheme compared to the classical single-constraint parti-
tioning. However, they observe that strong scalability is achieved with more difficulty with
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the multirate algorithm than with its single rate counterpart, especially when the number
of processors becomes important compared to the number of mesh elements. The possible
low number of elements per multirate group and per processor is a limiting factor for the
proposed approach.
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