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II. NUMERICAL METHODS

HETEROGENEOUS IMPLEMENTATION OF PRECONDITIONERS BASED ON

GAUSS–SEIDEL METHOD FOR SPARSE BLOCK MATRICES

A. R. Magomedov1 and A. V. Gorobets2 UDC 519.6

In this paper we present a parallel preconditioner algorithm for the Krylov-type iterative method based

on the multicolor Gauss–Seidel method and its transferable heterogeneous software implementation using

the OpenCL computational standard. A special feature is its application to block sparse matrices as part of

a numerical technique for modeling compressible turbulent flows. Optimization techniques are described

that allow obtaining multiple speedups on graphics processors. Results of performance testing on a hybrid

computing system are presented.
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Introduction

The objective of this work is to create a heterogeneous parallel preconditioner for a solver of a system of

linear algebraic equations (SLAE) as part of the implicit time integration algorithm of the NOISEtte [1] simulation

code. This code is designed to simulate gas dynamics problems on hybrid supercomputers. The higher-accuracy

scheme [3] on unstructured mixed meshes is used for spatial discretization. Time integration is carried out using

implicit schemes based on Newton linearization (BDF1, BDF2). Parallel algorithm and heterogeneous imple-

mentation for central (CPU) and graphical (GPU) processors are presented in [1]. For multilevel parallelization,

the MPI, OpenMP and OpenCL standards are used. The open computing standard OpenCL allows us to use various

GPU architectures from different vendors, including NVIDIA, AMD, Intel. The simulation code is also adapted to

Russian CPU architecture Elbrus [2].

Currently, the importance of import substitution of software has significantly increased for industrial super-

computer applications. In the scale-resolving simulation of turbulent flows for which the NOISEtte was designed,

the size of the time step in the implicit scheme is naturally limited by the dynamics of the simulated flow struc-

tures. Therefore, the SLAE with the Jacobi matrix, as a rule, does not require complex solvers: in practice, the Bi-

CGSTAB [4] iterative method with a very simple preconditioner based on the block Jacobi method was sufficient.

However, in industrial problems, methods based on the Reynolds-averaged Navier–Stokes equations are often used,

which allow a much larger time step, which in turn makes the SLAE more stiff and requires the solver to perform

more iterations. We need preconditioners that improve convergence more significantly, but there is a problem with

them: the matrix changes at each time step, that is why methods with a computationally expensive setup stage

(for example, based on resource-intensive LU factorization) are inefficient or inapplicable. Another problem is the

extremely limited amount of GPU memory, which also imposes significant restrictions on the choice of method.
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In this work, the multicolor symmetric Gauss–Seidel method is used, in which the memory and computational

costs of construction are insignificant and comparable to those of the Jacobi method.

Parallel Algorithm

A feature of the Jacobian matrix in the implicit scheme for the Navier–Stokes equations is its block structure.

The block size of the main SLAE is 5 — according to the number physical or conservative variables. The portrait

of the block sparse matrix corresponds to the adjacency of mesh nodes via edges. When a turbulence model is

used, one or more additional matrices for turbulent variables appear. The SLAE solver works simultaneously with

multiple matrices and vector sets for the main and additional systems. Since the matrices share the same portrait,

only the coefficients of the additional matrices are stored. The matrices are stored in the block compressed sparse

row (CSR) format. The solver uses a set of kernel subroutines for basic operations of linear algebra, including

sparse matrix-vector product (SpMV), linear combination of two vectors (x = ay+ by), inner product. To reduce

the overhead of data exchange, which is necessary, in particular, for the SpMV, the exchanges are hidden behind

the calculations [1].

Symmetric Gauss–Seidel method used as a preconditioner for the Bi-CGSTAB [4] method works as follows.

The SLAE Ax = b, A ∈ R
n×n is solved. Matrix A = L + D + U is represented as the sum of the lower

triangular part, the diagonal and the upper triangular part, respectively. The iteration of the method consists of two

stages – the solution of the SLAE with a lower triangular matrix (forward substitution) and with an upper triangular

matrix (backward substitution):

(L+D)xk+1/2 = b−Uxk, (D+U)xk+1 = b− Lxk+1/2.

The substitutions have data dependencies that prevent GPU parallelization:
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To find the i th position of the vector, all the previous values are needed. To break these dependencies, an approach

with reordering of blocks of unknowns is used, which is based on the coloring of the graph, the portrait of the

adjacency matrix of which corresponds to the portrait of the block matrix of the system being solved minus the

main diagonal. Such coloring is widely used to implement algorithms based on the Gauss–Seidel method on

the GPU, see, for example, [5, 6].

To color the vertices of the graph in such a way that there are no adjacent vertices of the same color, we use

the very simple greedy algorithm. Blocks of unknowns corresponding to graph vertices are reordered by colors,

so in the forward and backward substitutions there are no unknowns of the same color from the new iterative layer.

After reordering, the algorithm is fully compatible with the parallel stream processing paradigm used on the GPU:

blocks of variables of the same color are grouped; sets of blocks grouped by color are processed in turn; each color

is processed in parallel. The coloring algorithm is applied only once at the start of the simulation and does not

make a significant contribution to the total computation time. The preconditioner setup stage is characterized by

low resource consumption. As in the Jacobi method, only the diagonal blocks of the matrix are inverted, additional

memory is allocated to store inverse blocks.

Heterogeneous implementation for CPU and GPU

The multicolor parallel Gauss–Seidel method is implemented trivially for the CPU using OpenMP loop

parallelism. After reordering, for each color, a contiguous range of block indices of the unknowns is obtained.
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The necessary modification of the forward and backward substitutions consists in adding an outer loop over colors,

narrowing the range of the substitution loop to a single color, and adding an OpenMP loop directive to that loop.

However, it is important to note that color reordering can significantly degrade the convergence of an iterative

solver. Therefore, in this work, instead of the multicolor version, a more efficient decomposition-based version is

used on the CPU. A similar algorithm is applied, for example, in [7].

In the CPU version, the unknowns are distributed over subdomains of MPI processes and OpenMP threads by

means of mesh graph decomposition with minimization of cut edges. The unknowns are ordered by subdomains,

and within the subdomains, the Cuthill–McKee reordering algorithm is used to increase the locality of memory

access.

Multiple subdomains are processed simultaneously. Inside the subdomains, the Gauss–Seidel method is used,

and at the interfaces between subdomains, in fact, switching to the Jacobi method occurs (i.e., values from the

positions of the solution vector belonging to other subdomains are taken for direct substitution from the previous

iteration, and for back substitution from the results of direct substitution). This approach gives only a slight

degradation of convergence compared to the sequential version, but is poorly suited for the GPU.

In the implementation of the multicolor method for the GPU, instead of a parallel substitution loop, the call to

the OpenCL kernel function is used (kernels in OpenCL terminology are subroutines running on the accelerator),

processing unknowns of the same color on the GPU in stream processing mode. Accordingly, one iteration of the

symmetric method requires two calls to the OpenCL kernel for each color — for forward and backward substitution.

The simplest OpenCL implementation is to port directly the CPU version of the multicolor method: the body of

the loop over blocks of unknowns of the same color forms the kernel function. Thus, each iteration of the loop

becomes a work item, i.e., an elementary task distributed in stream processing. Instead of a loop counter variable,

the kernel function has a work item identifier.

Unfortunately, such a “naive” implementation did not show significant acceleration on the GPU relative to

the CPU. To improve the performance of the GPU version, the work item elementary task had to be reduced many

times. In the original version, one work item the OpenCL kernel processes one block of 5 unknowns, operating on

matrix blocks of 25 coefficients, respectively. In the optimized version, one block is processed by 25 work items

at once, one item is responsible for only one coefficient in matrix blocks. The reduction of the sums to 5 positions

of the output vector is carried out using the fast local memory of the streaming multiprocessor (compute unit).

The work-group size for NVIDIA GPUs is 128, one work group processes 5 blocks, 3 units in the group remain

inactive. By reducing elementary tasks in this way, the consumption of register memory per work item is reduced,

which allows achieve much higher utilization of GPU streaming multiprocessor functional units.

Performance on CPU and GPU

The performance was tested on a representative case in which a two-bladed helicopter rotor is modeled (Fig. 1).

One blade is considered in periodic conditions, the mesh is mixed-element, unstructured, predominantly tetrahe-

dral (80%), consists of 1.3 million nodes. An implicit scheme of the 1st order is used, the Courant number is

about 103. The stopping criterion for the SLAE solver is the reduction of the residual vector L2 norm with respect

to the norm of the right side ✏ = 0.01. The hybrid compute server for testing has two 16-core Intel Xeon Gold

5218 2.30GHz CPUs (2 threads per core, 6 channels DDR4-2666 — 128GB/s); NVIDIA A5000 GPU (24 GB

GDDR6, 768 GB/s).

Since reordering by color can degrade convergence, of course, a more efficient decomposition-based version is

used on the CPU when demonstrating GPU acceleration relative to the CPU. At each iteration of Bi-CGSTAB, there

are two calls to the preconditioner, in which two iterations of the symmetric Gauss–Seidel method are performed.

In this test, the average number of Bi-CGSTAB iterations with the CPU version of the preconditioner is 6, for the

GPU version it is 10, i.e., the GPU is doing more work due to convergence degradation. The average number of

non-zero blocks in the rows of the matrix is 12.1, the number of colors in the coloring is 11, the block size is 5,
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Fig. 1. Test case. A fragment of the unstructured mixed-element mesh (left) and visualization of the tip vortex (right).

Table 1

Performance of Multicolor Gauss–Seidel Method

Version Devices MPI OpenMP Time, s Speedup GFLOPS GB/s

CPU 1 CPU 1 1 29.5 1 1.3 5.4

CPU 1 CPU 1 32 3.9 7.6 10 42

CPU 2 CPU 2 32 2.2 13.4 17.7 74

GPU-Base 1 GPU 1 32 3.6 8.2 18 46

GPU-Opt 1 GPU 1 32 0.52 57 125 519

CPU, 1 CPU, 2 28, 0.48 61.5 135 563

GPU-Opt 1 GPU 4

GPU-Opt 2 GPU 2 32 0.3 98 216 900

and the total number of unknowns is 6.8 million. The results are presented in Table 1 for three versions: the version

for central processors (denoted by CPU), the basic version for the GPU (GPU-Base), the optimized version for

the GPU (GPU-Opt). The table shows the resources involved; number of MPI processes; number of OpenMP

threads per process (if different, separated by commas for all processes); the time spent on the preconditioner when

solving the SLAE, averaged over 10 time steps; acceleration relative to sequential mode on the CPU; performance

in floating point operations per second (FLOPS); lower estimate for memory bandwidth utilization.

CONCLUSIONS

As a result of the work, a heterogeneous implementation of the preconditioner was created, which allows

using multiple CPUs and GPUs. From Table 1 we can draw the following conclusions. The use of coloring for the

symmetric Gauss–Seidel method makes it possible to obtain a significant acceleration on GPU versus CPU even
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though there is some convergence degradation due to color reordering. For these device models, the acceleration

on the GPU relative to the 16-core CPU was 7.5 times, which gives the practical equivalent of about 120 cores

from one GPU.

It should be noted that the NVIDIA A5000 GPU model is relatively inexpensive, about 3 times cheaper than

the currently widely used NVIDIA V100 computing GPUs. A heterogeneous mode with simultaneous use of the

CPU and GPU gives a certain gain, but with such a performance ratio it does not make much sense: the potential

acceleration from using the CPU in addition to the GPU is only 13%. In fact, less than 8% is obtained due to the

losses added for data exchange and inevitable load imbalance, since the CPU and GPU subdomains are balanced

by the performance ratio of the entire simulation algorithm, and not of the preconditioner alone.

The main conclusion is that when working with such small-block sparse matrices, it is very important to

optimize the OpenCL kernel functions for the GPU streaming multiprocessor architecture, which consists in min-

imizing the tasks of work items and tuning the work-group size. With appropriate optimization, the GPU handles

very effectively such a computational algorithm, the processing speed is close to 70% of the memory bandwidth,

in other words, the resulting performance is about 70% of the theoretically achievable on the given device and

algorithm.
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