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1 Abstract

We introduce a space-time metric-based approach for the best set of spatial
meshes Mopt(t), of complexity nopt(t) combined with a timestep τopt(t) for
the calculation of unsteady flows with implicit time advancing. Both types
of error, feature-based and Goal Oriented are considered. The case of a mesh
which is adapted at each time step, and the case where the mesh is constant
during a subinterval of the time interval are analysed. This approach then
takes place inside a Global Transient Fixed Point mesh adaptation algorithm.
Application to flows with vortex shedding are then described.
This work was supported by the ANR project NORMA under grant ANR-
19-CE40-0020-01 and is delivered as T4-D3 in replacement of a study on
parallel multiscale.
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Une méthode de point fixe en adaptation de maillage
espace-temps

Résumé : Nous introduisons une approche basée sur les métriques spatio-temporelles pour le
meilleur ensemble de maillages spatiaux Mopt(t), de complexité nopt(t) combiné avec un pas de
temps τopt(t) pour le calcul des écoulements instationnaires avec avancement implicite du temps.
Les deux types d’erreur, basées sur les fonctionnalités et orientées vers une fonctionnelle, sont
pris en compte. Le cas d’un maillage adapté à chaque pas de temps, et le cas où le maillage est
constant pendant un sous-intervalle de l’intervalle de temps sont analysés. Cette approche prend
place dans un algorithme de point fixe transitoire global d’adaptation de maillage. L’application
aux écoulements avec détachement tourbillonnaire est ensuite décrite.

Mots-clés : écoulement compressible, adaptation de maillage, anisotrope, espace-temps, im-
plicite
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1 Introduction

Metric based mesh adaptation allows to address anisotropic meshes, and can be done either in
a feature-based mode, relying on the Hessian of one or several sensors (=features), or in a goal-
oriented mode in which the error committed on a scalar output of a PDE is minimized, with
the help of an adjoint state. We are considering the discretization of a PDE on the space-time
cylinder Q = Ω×]0, T [. We advance in time and want to adapt the spatial mesh to the solution.

An important option is the all-time mesh adaptation, which consists in building at each time
step an anisotropic mesh HM by defining a metric M on computational domain Ω, which is
optimal for this time step. But this standpoint is expansive in terms of computational cost
and may be of low accuracy due to errors committed in transfering solutions between too many
successive meshes.

A somewhat better strategy consists in freezing the adapted mesh during several time steps.
Then it is mandatory that the mesh anticipates the flow behavior during these several time steps.
In [3, 2] a transient fixed point (TFP) mesh adaptation algorithm has been introduced in order
to master this issue. The TFP approach has been extended to a goal-oriented adaptation in [5]
where several analyses where proposed for evaluating the convergence order of the TFP. A more
complete analysis, for a feature-based adaptation is proposed in [4].

In those works, either the time step is directly specified by the user, or the time step is
assumed to be defined via a CFL stability condition related to an explicit time advancing, an
option useful when explicit time advancing is performed, and which more or less adapts the
timestep to the solution.

The choice of a time step is defined in other terms when an implicit time advancing is used.
Indeed, the size of the time step is no more directly related to a stability condition. The time
steps which are used can be notably larger than those permitted with an explicit time advancing.
Large time steps induce a higher CPU efficiency. But the approximation accuracy becomes an
important issue. Too large time steps degrade the prediction, too small time steps increases the
computational cost.

Many attempts to control the timestep size on an accuracy basis can be found in the littera-
ture. An example for a context rather close to our is [6]. But the authors adapt separately time
and space and none addresses the global space-time adaptation.

The present study adresses the problem of the space-time adaptation in TFP in which meshes
and time steps have to be defined in a coupled manner for minimizing an error functional, in
order to give the best accuracy given a measure of the global space-time computational effort.

For the feature-based approach, the problem of optimal simultaneous adaptation of spatial
mesh and time step can be formulated under the form of a severely nonlinear -tightly coupled-
optimization problem and we propose a slight simplification of it -loosely coupling- in order to
design a tractable accurate and efficicent timestep and mesh adaptative TFP algorithm.

In the case of a Goal Oriented criterion, we show that the proposed formulation applies in a
natural way.

Numerical examples demonstate the validity of the new mesh/timestep adaptation algorithms.

2 Time-advancing adapted mesh

A time-advancing adapted mesh of a cylindric space-time computational domain Ω×]0, T [ is
defined by:
(i)- a time discretization of the computational time interval ]0, T [

t1 = 0 < t2 < ... < tkmax = T

RR n° 7003



6 Sauvage & Alauzet & others

and
(ii)- for each time level k a spatial mesh Hk of the spatial computational domain Ω.

The number of time intervals, that is the number of time steps for advancing from 0 to T
is nstep = kmax − 1. For any k we consider a metric M(k) from which at a valid unit mesh
([8]) Hk of metric M(k) can be derived. Then defining the metrics (M(k), k = 1, ..., kmax) is
sufficient for building (ii). For any k the spatial complexity n(k) = Cspatial(M(k)) ([8]) defines
the analog of the number of cells but can be any positive real number. From the knowledge
of the n(k)’s, assuming an implicit time advancing of algorithmic complexity n(k), we get the
space-time complexity of the so-defined space-time mesh:

C
(

t1, ...tmax, M(1), ...M(k)
)

=

k=nstep
∑

k=1

n(k + 1). (1)

The above definition is discrete in time. We propose to replace the usual time discretization by
a continuous representation of it. The discrete time-step is defined by:

τk = tk+1 − tk for k = 1, nstep.

The following continuous time-step is considered:

τ : t ∈]0, T [ 7→ τ(t) = τk if tk ≤ t < tk+1.

Then:
∫ T

0

(τ(t))−1dt =

k=nstep
∑

k=1

∫ tk+1

tk

(τ(t))−1dt

=

k=nstep
∑

k=1

∫ tk+1

tk

(tk+1 − tk)−1dt = nstep.

(2)

In other words, τ−1 is the time discretization density, i.e. the number of time levels per time unit.

Similarly, when we extend the spatial complexity, 1

n : t ∈]0, T [ 7→ n(t) = nk if tk < t ≤ tk+1

the space-time complexity writes as follows:

C(M, n, τ) = C(n, τ) =

k=nstep
∑

k=1

n(k + 1)

=

k=nstep
∑

k=1

∫ k+1

k

n(t)τ−1dt =

∫ T

0

n(t)τ−1dt.

(3)

This motivates the definition of a space-time continuous mesh as follows:

Definition 2.1 Space-time continuous mesh. We call a valid space-time continuous mesh
(M, τ, nstep) the knowledge of the following ingredients:
- a number nstep of time intervals.

- a timestep function: t ∈]0, T [ 7→ τ(t) ∈]0, T [ valid in the sense that
∫ T

0
(τ(t))−1dt = nstep.

- for every t ∈]0, T [ a spatial metric M(t) of spatial complexity n(t) = Cspatial(M(t)).
1The motivation in basing the k-th step (from k to k + 1) on the k + 1-th mesh is the implicit time advancing,

solved at level k + 1, with typically data interpolated from the mesh of level k.

Inria



Space-time fixed point 7

Definition 2.2 Complexity. The space-time complexity C(M, τ, nstep) of a space-time continu-
ous mesh (M, τ, nstep) is:

C(M, τ, nstep) =

∫ T

0

Cspatial(M(t))(τ(t))−1dt. (4)

Definition 2.3 Unit space-time mesh. Given a (sufficiently smooth) space-time continuous
mesh, a discrete space-time mesh which is (approximatively) unit for it can be derived as fol-
lows:
(i)- Since the time density (τ(t))−1 is positive and satisfies

∫ T

0
(τ(t))−1dt = nstep we can succes-

sively build time levels tk by putting:
tk such that

∫ tk

tk−1
(τ(t))−1dt = 1,

stopping when it does not holds, for nstep = integer(
∫ T

0
τ−1dt).

(ii)- At any time level tk, M(t) is used for building a unit spatial mesh.

3 Errors for space-time analysis

3.1 Local error for feature-based analysis

We concentrate on the advection model

ut + cux = 0, x ∈ Ω (5)

where Ω ⊂ R is an interval of R. We consider the usual continuous P1 FEM approximation on
a partition Mh of Ω in intervals Ti = [xi, xi+1]:

Vh = ϕh ∈ C0(R), ∀Ti, ϕh|Ti
is affine (6)

uh ∈ Vh, ∀ϕh ∈ Vh, (ϕh, uh,t + cuh,x) = 0. (7)

We are first interested by the local spatial error:

εspace = (ϕh, uh,t + cuh,x − (ut + cux)) = 0. (8)

A rough truncation error estimate writes this error in terms of mesh size ∆x(Kx ∈ R):

|(ϕh, uh,t + cuh,x − (ut + cux))| ≤ Kx∆x(Hut
+ Hu)∆x (9)

where Hv holds for the absolute value of the Jacobian of v.
In the general case of a metric based mesh parametrization, we have: 2

|(ϕh, uh,t + cuh,x − (ut + cux))| ≤ Kxdet
(

M− 1
2 (Hut

+ Hu)M− 1
2

)

. (10)

We also have to define for all t ∈ [O, T ] a time dependant time step ∆t = τ(t), and a discrete
time-derivative:

uh,τ,t ≈ uh,t (11)

and estimate the time error (Kt ∈ R):

|uh,τ,t − uh,t| ≤ Ktτ
α|

∂αu

∂tα
|. (12)

2In the case of interpolation error (3D), Kx = 1
10

, see [7], Corollary 1 of Theorem 4.2.2.
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8 Sauvage & Alauzet & others

We can now define a strongly coupled error functional 3:

E0(Mh, τ) =

∫ T

0

∫

Ω

[

(Ktτ
α|

∂αu

∂tα
| + Kxdet

(

M− 1
2 (Hut

+ Hu)M− 1
2

)]p

dxdt. (13)

Remark 3.1 One way to specify the contants Kt and Kx in the particular case of α = 2, is
to decide that we are interested by the P1 interpolation error in the space-time representation of
the unknown: the tetrahedra of the time levels are extended into 4-dimensional simplexes and the
interpolatin error main term expresses in terms of the space-time Hessian of the unknown. Then
neglecting the hybrid second derivatives between space and time, and neglecting the Hessian of
the time derivative, we obtain the reduced expression

E0(Mh, τ) =

∫ T

0

∫

Ω

[

(Ktτ
2|

∂2u

∂t2
| + Kx∆x Hu ∆x

]p

dtdx. (14)

with
Kx = Kt = 1.�

The analysis of E0 is rather complex and we shall prefer in the sequel to analyse the following
loosely coupled error estimate 4:

E(Mh, τ) =

∫ T

0

∫

Ω

[

(Ktτ
α|

∂αu

∂tα
|
]p

+ [Kx∆x(Hut
+ Hu)∆x]pdtdx (15)

where we have a sum of a temporal part:

Etemp(Mh, τ) =

∫ T

0

∫

Ω

[Ktτ
α|

∂αu

∂tα
|]pdtdx (16)

and a spatial part:

Espace(Mh, τ) =

∫ T

0

∫

Ω

[Kx∆x(Hut
+ Hu)∆x]pdtdx (17)

also written:
Espace(Mh, τ) =

∫ T

0
Espace,t(t)dt with

Espace,t(t) =
∫

Ω
[Kx∆x(Hut

+ Hu)∆x]pdx
(18)

In a multidimensional and metric-based extension to a CFD model with state function W =
(ρ, ρu, ρv, ...) solution of a state equation:

Wt + Ψ(W ) = 0 (19)

this error analysis writes:

E(Mh, τ) = Etemp(Mh, τ) + Espace(Mh, τ) (20)

with

Etemp(Mh, τ) =

∫ T

0

∫

Ω

[Ktτ
α|

∂αW

∂tα
|]pdxdt (21)

and
Espace(Mh, τ) =

∫ T

0
Espace,t(t)dt with

Espace,t(t) =
∫

Ω
[trace

(

M− 1
2 (x, t) H(x, t) M− 1

2 (x, t)
)

]pdx
(22)

where H = |Hut
+ Hu|) depends of a sensor u computed from W .

3For simplifying computations we do not minimize an Lp norm but its power p.
4Again for simplifying computations we do not minimize an Lp norm but its power p.

Inria



Space-time fixed point 9

3.2 Goal oriented error

We consider the Goal Oriented formulation as introduced in [5] and keep the notations of that
paper. We want to minimize the error of the functional:

j = (g, W )

where W is the solution of the flow system (19). The novelty with respect to [5] is that taking
into account the error on the time discretization leads to have an extra term K(M) in the error
estimate:

|(g, Wh − W )| ≈ K(M) + E(M)

with

K(M) =

∫ T

0

∫

Ω

|W ∗| |Ktτ
α ∂αW

∂tα
| dΩ dt.

Let us define the adjoint state W ∗, solution of the adjoint system:

− W ∗
t +

( ∂Ψ

∂W

)∗

W = g. (23)

We reproduce now in short the error estimate developed in [9] for the unsteady Euler system.
The error E(M) writes:

E(M) ≈

∫ T

0

∫

Ω

|W ∗| |
(

W − πMW
)

t
| dΩ dt

+

∫ T

0

∫

Ω

|∇W ∗| |F(W ) − πMF(W )| dΩ dt

+

∫ T

0

∫

Γ

|W ∗| |(F̄(W ) − πMF̄(W )).n| dΓ dt. (24)

Symbol F and F̄ hold respectively for the internal and boundary Euler flux functions. Neglecting
the boundary term, we get ([9]):

E(M) ≈

∫ T

0

∫

Ω

trace
(

M− 1
2 (x, t) H(x, t) M− 1

2 (x, t)
)

dΩ dt

with H(x, t) =
5
∑

j=1

(∆tj(x, t) + ∆xj(x, t) + ∆yj(x, t) + ∆zj(x, t)) , (25)

with the notations
∆tj(x, t) =

∣

∣W ∗
j (x, t)

∣

∣ ·
∣

∣H(Wj,t)(x, t)
∣

∣,

∆xj(x, t) =

∣

∣

∣

∣

∂W ∗
j

∂x
(x, t)

∣

∣

∣

∣

·
∣

∣H(F1(Wj))(x, t)
∣

∣,

∆yj(x, t) =

∣

∣

∣

∣

∂W ∗
j

∂y
(x, t)

∣

∣

∣

∣

·
∣

∣H(F2(Wj))(x, t)
∣

∣,

∆zj(x, t) =

∣

∣

∣

∣

∂W ∗
j

∂z
(x, t)

∣

∣

∣

∣

·
∣

∣H(F3(Wj))(x, t)
∣

∣ .

(26)

Here, W ∗
j denotes the jth component of the adjoint vector W ∗, H(Fi(Wj)) the Hessian of the

jth component of the vector Fi(W ), and H(Wj,t) the Hessian of the jth component of the time
derivative of W .

RR n° 7003



10 Sauvage & Alauzet & others

3.3 Unified Feature/Goal Oriented criterion

The two error criteria examined previously can be unified as follows:

E(Mh, τ) = Etemp(Mh, τ) + Espace(Mh, τ) (27)

with

Etemp(Mh, τ) =

∫ T

0

∫

Ω

[Ktτ
α|W ∗ ·

∂αW

∂tα
|]pdxdt (28)

and

Espace(Mh, τ) =
∫ T

0
Espace,t(t)dt with

Espace,t(t) =
∫

Ω
[trace

(

M− 1
2 (x, t) H(x, t) M− 1

2 (x, t)
)

]pdx
(29)

where :

- in the Feature-Based case, a sensor u is computed from W , allowing to replace W ∗ · ∂αW
∂tα

by a time derivative ∂αu
∂tα of the sensor, and setting H = Hut

+ Hu.

- in the Goal-Oriented case, p = 1, and W ∗ is the adjoint state, H is defined as in (25).

4 Loosely coupled Analysis for all-time adaptation

In the sequel we assume that the spatial mesh depends of time:

M : t 7→ M(t) (30)

in such a way that for any time t we known the number n(t) of nodes

n(t) = Cspatial(M(t)) (31)

of the mesh M(t) 5.

Let N be an integer prescribed by the user, we call mesh adaptation problem the following
problem:

Find (Mh, τ, nstep) which minimizes E(Mh, τ) under the constraint that

C(Mh, τ, nstep) = N. (32)

In the case where the spatial mesh Mh(t) is defined via a Riemannian metric M(t), we have the
number of nodes defined by:

nM(t) =

∫

Ω

√

det(M(x, t)dx. (33)

Then the global complexity of the space-time mesh is defined as:

C(Mh, τ, nstep) =

∫ T

0

τ(t)−1 nM(t) dt. (34)

5Assuming that this number is finite for any t and globally bounded over [0, T ].

Inria



Space-time fixed point 11

4.1 Analysis for all-time mesh adaptation at a given time

Given n(t) we know the best metric Mopt,n(t) under constraint

C(M) = nM(t) = n(t)

by minimizing the spatial part of the error:

Mopt,n(t) = Arg min
M,nM=n(t)

Espace,t(t). (35)

According to Theorem 4.4.1 in [7], we have:

Mopt,n(t) = DLp det(H)
−1

2p+3 H, with DLp = n(t)
2
3

(
∫

Ω

det(H)
p

2p+3

)− 2
3

. (36)

In the 3D case, the optimal Lp norm of error is given by (4.38) in [7]:

E
1
p

space,t,opt(t) = 3 Kxn(t)− 2
3

(
∫

Ω

det (H)
p

2p+3

)

2p+3
3p

. (37)

and, recalling that our error functional is the power p of the Lp norm, our corresponding optimal
fonctional is given by (in 3D):

Espace,t,opt(t) = 3p Kp
xn(t)−

2p

3

(
∫

Ω

det (H)
p

2p+3 dx

)

2p+3
3

. (38)

We need to define it as a mapping:

Espace,t,opt : n ∈ C0[0, T ;R] 7→ Espace,t,opt(n) ∈ C0[0, T ;R],

Espace,t,opt(n) = n−
2p

3 h̃

h̃ = 3p Kp
x

(

∫

Ω
det (H)

p

2p+3 dx
)

2p+3
3

(39)

where n and h̃ are in C0[0, T ;R].

4.2 Analysis for all-time adaptation over time interval

We are now interested in minimizing the space-time error:

Espace−time =

∫ T

0

[

Espace,t,opt(n) + (Ktτ
α)p

∫

Ω

∣

∣

∣
W ∗ ·

∂αW

∂tα

∣

∣

∣

p

dx
]

dt.

We simplify the second term as follows:

(Ktτ
α)p

∫

Ω

∣

∣

∣
W ∗ · ∂αW

∂tα

∣

∣

∣

p

dx = ταp ũ,

with ũ = Kp
t

∫

Ω

∣

∣

∣
W ∗ · ∂αW

∂tα

∣

∣

∣

p

dx
(40)

With these notations, the space-time mesh adaptation problem becomes:

Find (nopt, τopt) = Arg min
n,τ

∫ T

0

n−
2p

3 h̃ + ταp ũdt

under the constraint:

∫ T

0

nτ−1dt = N.

(41)

RR n° 7003



12 Sauvage & Alauzet & others

Let us avoid nonlinear constraints. We decide to search (n, ζ = nτ−1).

Find (nopt, ζopt) = Arg min
n,ζ

G(n, ζ)

with G(n, ζ) =
∫ T

0
f(n) + g(n, ζ)dt

under the constraint:

∫ T

0

ζdt = N

(42)

with:
f(n) = n−

2p

3 h̃
g(n, ζ) = nαpζ−αpũ.

(43)

The derivatives of functions f and g are given by:

∂f
∂n

δn = − 2p
3 n−

2p+3
3 h̃ δn

∂g
∂n

δn = αpζ−αpnαp−1 ũ δn
∂g
∂ζ

δζ = −αpζ−αp−1nαp ũ δζ.

(44)

The optimality condition writes:

∂G

∂(n, ζ)

(

δn
δζ

)

= 0 ∀ (δn, δζ) s.t.

∫ T

0

δζdt = 0. (45)

In other words:
∫ T

0
( ∂f

∂n
+ ∂g

∂n
)δndt = 0 ∀ δn

∫ T

0
( ∂g

∂ζ
)δζdt = 0 ∀ δζ s.t.

∫ T

0
δζdt = 0

(46)

or:
∂f
∂n

+ ∂g
∂n

= 0
∂g
∂ζ

= −C.
(47)

where, according to (44), C is a positive constant not depending in time .

The second equation writes:

ũnαpζ−αp−1 = C. (48)

We get:

n =
(C

ũ

)
1

αp

ζ
αp+1

αp = bζ
αp+1

αp with b =
(C

ũ

)
1

αp

. (49)

The first equation becomes:

−
2p

3
n−

2p+3
3 h̃ + αp nαp−1ζ−αpũ = 0. (50)

Putting the value of n = bζ
αp+1

αp from (49):

2p

3
b−

2p+3
3 ζ−

2p+3
3

αp+1
αp h̃ = αp bαp−1ζ(αp−1) αp+1

αp
−αpũ (51)
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Space-time fixed point 13

then:

ζ(αp−1) αp+1
αp

−αp+ 2p+3
3

αp+1
αp =

2

3α

b−
2p+3

3 h̃

bαp−1ũ
. (52)

which simplifies as:

ζ
(2p+3)αp+2p

3αp = b−
3αp+2p

3
2h̃

3αũ
(53)

giving:

ζ = b−
3α2p2+2αp2

(2p+3)αp+2p

( 2h̃

3αũ

)

3αp

(2p+3)αp+2p

(54)

using b =
(

C
ũ

)
1

αp

we get it in terms of C:

ζ =
[C

1
αp

ũ
1

αp

]−
3α2p2+2αp2

(2p+3)αp+2p
( 2h̃

3αũ

)

3αp

(2p+3)αp+2p

(55)

thus:

ζ =
( 2

3α

)

3αp

(2p+3)αp+2p C−
3αp+2p

(2p+3)αp+2p h̃
3αp

(2p+3)αp+2p ũ−
3αp

(2p+3)αp+2p
+ 3αp+2p

(2p+3)αp+2p (56)

and:

ζ =
( 2

3α

)

3αp

(2p+3)αp+2p C−
3αp+2p

(2p+3)αp+2p h̃
3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p . (57)

In order to complete this computation, it remains to identify the value of C. This is done by
using the prescribed complexity C(M, τ, nstep):

∫ T

0

ζ dt = N. (58)

The general case writes:

N =
( 2

3α

)

3αp

(2p+3)αp+2p C−
3αp+2p

(2p+3)αp+2p

∫ T

0

h̃
3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p dt. (59)

C
3αp+2p

(2p+3)αp+2p =
( 2

3α

)

3αp

(2p+3)αp+2p N−1

∫ T

0

h̃
3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p dt, (60)

thus:

C =
(

2
3α

)

3αp

(2p+3)αp+2p

(2p+3)αp+2p

3αp+2p N−
(2p+3)αp+2p

3αp+2p

(

∫ T

0
h̃

3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p dt
)

(2p+3)αp+2p

3αp+2p

.
(61)

C =
(

2
3α

)

3αp

3αp+2p N−
(2p+3)αp+2p

3αp+2p

(

∫ T

0
h̃

3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p dt
)

(2p+3)αp+2p

3αp+2p

. (62)

The above computations are synthetized in the following lemma:
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14 Sauvage & Alauzet & others

Lemma 4.1 (Adaptation at each time step) Let us define the real constant const and the
two time dependant functions h̃, ũ:

h̃(t) = 2p3p−1Kp
x

(
∫

Ω

det (H)
p

2p+3

)

2p+3
3p

; ũ(t) = αpKp
t

∫

Ω

|(W ∗ ·
∂αW

∂tα
)|pdx (63)

the constant C:

C =
(

2
3α

)

3αp

3αp+2p N−
(2p+3)αp+2p

3αp+2p

(

∫ T

0
h̃

3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p dt
)

(2p+3)αp+2p

3αp+2p

. (64)

and the third time dependant function:

b(t) =
(C

ũ

)
1

αp

. (65)

Then for any t the spatial optimal metric is given by:

Mopt,n(t) = DLp det(H)
−1

2p+3 H, with DLp = n(t)
2
3

(
∫

Ω

det(H)
p

2p+3

)− 2
3

(66)

with H = Hut
+ Hu.

The time-dependant scalar mesh complexity nopt and timestep τopt are given by:

ζopt(t) =
(

2
3α

)

3αp

(2p+3)αp+2p C−
3αp+2p

(2p+3)αp+2p h̃
3αp

(2p+3)αp+2p ũ
2p

(2p+3)αp+2p

nopt(t) = b ζ
α+1
αp

τopt(t) = nopt(t)/ζopt(t).�

(67)

5 Loosely coupled analysis with time subintervals (GTFP)

In the GTFP ([4, 7]), the time interval [0.T ] is split into nadap subintervals:

[0.T [=

nadap
⋃

1

[ti−1, ti[, t0 = 0, tnadap
= T.

Inside each subinterval the mesh is not changed, but solely when passing from [ti−1, ti[ to [ti, ti+1[.
This section presents how to adapt the above results to the GTFP. We assume that the partition
[0.T [= ∪i[ti−1, ti[ is prescribed by the user, e.g. a uniform partition with a specified nadap. The
mesh complexity is therefore a constant ni over each interval [ti−1, ti[:

∀ i = 1, ..., nadap, ∀ t ∈ [ti−1, ti[, n(t) = ni ∈ R. (68)

We assume that the time-dependant metric is frozen on [ti−1, ti[, in other word, the previous
context is restricted to a time-dependant metric expressed in terme of a set of nadap metrics
(Mi, i = 1, nadap):

M(t) = Mi(t)

where the index i(t) varies in time t in such a way that:

If t ∈ [ti−1, ti[, then i(t) = i.
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We are again interested in minimizing the loosely coupled error

E(Mh, τ, nstep) = Etemp(Mh, τ, nstep) + Espace(Mh, τ, nstep)

Etemp(Mh, τ, nstep) =
∫ T

0

∫ +∞

−∞
[Ktτ

α|W ∗ · ∂αW
∂tα |]pdtdx

Espace(Mh, τ, nstep) =
∫ T

0

∫

Ω

[

trace
(

(Mi(t))− 1
2 (x) H(x, t) (Mi(t))− 1

2 (x)
) ]p

dx.dt

(69)

the second term is also written as:

Espace(M, τ, nstep) =
∑nadap

i=1

∫ ti

ti−1
E i(t)dt,

E i(t) =
∫

Ω

[

trace
(

(Mi(t))− 1
2 (x) H(x, t) (Mi(t))− 1

2 (x)
) ]p

dx

=
∫

Ω

[

trace
(

(Mi)− 1
2 (x) H(x, t) (Mi)− 1

2 (x)
) ]p

dx.

(70)

5.1 Spatial mesh optimization on a subinterval

Given i, 1 ≤ i ≤ nadap, and a mesh complexity ni for the adapted mesh used during time
sub-interval [ti−1, ti], we seek for the optimal continuous mesh Mi

opt solution of the following
problem:

min
Mi

E i(Mi) =

∫ ti

ti−1

∫

Ω

[

trace
(

(Mi)− 1
2 (x) H(x, t) (Mi)− 1

2 (x)
) ]p

dxdt

such that C(Mi) = ni ,

(71)

in which solely H depends of time. A conservative option for bounding this error functional is
to introduce the matrix Hi

inter is defined by

Hi
inter(x) = (ti − ti−1) max

t∈[ti−1,ti]
H(x, t),

the max being obtained by metric intersection (see chapter 3 of [7] or see [1]). Then each E i(t)
depends on i but not of t.

∫ ti

ti−1

∫

Ω

[

trace
(

(Mi)− 1
2 (x) H(x, t) (Mi)− 1

2 (x)
) ]p

dxdt

≤
∫

Ω

[

trace
(

(Mi)− 1
2 (x) maxt∈[ti−1,ti] H(x, t) (Mi)− 1

2 (x)
) ]p

dx
∫ ti

ti−1
dt

=
∫

Ω

[

trace
(

(Mi)− 1
2 (x) Hi

inter(x) (Mi)− 1
2 (x)

) ]p

dx.

(72)

Also the subinterval optimality problem becomes:

min
Mi

E i(Mi) =

∫

Ω

[

trace
(

(Mi)− 1
2 (x) Hi

inter(x) (Mi)− 1
2 (x)

) ]p

dx

such that C(Mi) = ni ,
(73)

Minimizing as previously, but in interval [ti−1, ti[, we get:

Lemma 5.1

Mi
opt(x) = (ni)

2
3 Mi

1(x)

with Mi
1(x) =

(

∫

Ω
(det Hi

inter(x̄))
p

2p+3 dx̄
)− 2

3

(det Hi
inter(x))− 1

2p+3 Hi
inter(x).

(74)

The corresponding optimal error E i(Mi) writes:

E i(Mi
opt) = 3p Kp

x (ni)
−

2p

3

(
∫

Ω

(det Hi
inter(x))

p

2p+3 dx

)

2p+3
3

.�
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16 Sauvage & Alauzet & others

5.2 Temporal optimization over the time subintervals

Now n = n1, ..., nadap is a vector of nadap scalar components, while τ remains a time-dependant
function. For our formulation, we use the time-dependant function n(t) defined from vector n
via (68). We also define the spatial error as parameterized by n:

Espace,opt(n) =

nadap
∑

i=1

E i(Mi
opt) (75)

or:

Espace(M, τ, nstep) =

nadap
∑

i=1

E i(Mi
opt)

The space-time mesh adaptation problem becomes:

Find (nopt, τopt) = Arg min
n,τ

G(n, τ)

with G(n, τ) = Espace,opt(n) +
∫ T

0
(Ktτ

α)p
∫

Ω

(

|W ∗ · ∂αW
∂tα |

)p

dxdt

under the constraint:

∫ T

0

nτ−1dt = N, and n being defined by (68).

(76)

Let us change our variables:

(n, ζ) = (n, nτ−1)
G(n, ζ) = G(n, n/ζ)

(77)

then

G(n, ζ) = f(n) + g(n, ζ). (78)

with:
f(n) = Espace,opt(n)

g(n, ζ) = (Ktn
αζ−α)p

∫

Ω
(|W ∗ · ∂αW

∂tα |)pdx.
(79)

Then we have to:
Find (nopt, ζopt) = Arg min

nopt,ζ
G(nopt, ζ)

with G(n, ζ) = f(n) +
∫ T

0
g(n, ζ)dt

under the constraint:
∫ T

0
ζdt = N.

(80)

The derivatives of these functions are given by:

∂f
∂n

δn = −2 3p−1 p Kp
x

∑nadap

i=1 n
−

2p+3
3

i

(

∫

Ω
det
(

|Hi
inter|

)

p

2p+3

)

2p+3
3

δni

∂g
∂n

δn = αpnαp−1(Ktζ
−α)p

∫

Ω
(|W ∗ · ∂αW

∂tα |)pdx δn
∂g
∂ζ

δζ = −αpζ−αp−1(Ktn
α)p

∫

Ω
(|W ∗ · ∂αW

∂tα |)pdx δζ.

(81)

Introducing:

h̃i
inter = 2 3p−1pKp

x

(
∫

Ω

det
(

|Hi
inter|

)

p

2p+3

)

2p+3
3

(82)

and:

ũ(t) = αpKp
t

∫

Ω

(|W ∗ ·
∂αW

∂tα
|)pdx (83)
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The derivatives in (81) become:

∂f
∂n

δn = −
∑nadap

i=1 n
−

2p+3
3

i h̃i
inter δni

∂g
∂n

δn = ũ(t) nαp−1ζ−αp δn
∂g
∂ζ

δζ = − ũ(t) ζ−αp−1 nαp δζ.

(84)

The optimality condition writes:

∂G

∂(n, ζ)

(

δn
δζ

)

= 0 ∀ (δn, δζ) s.t.
∫ T

0
δζdt = 0,

∀i = 1, ..., nadap, ∀t ∈ [ti−1, ti[, δn(t) = δn(ti−1).

(85)

Or:
∂f
∂n

δn +
∫ T

0
∂g
∂n

δndt = 0 ∀ δn, δn(t) = δn(ti−1)
∂g
∂ζ

= −const.
(86)

Second equation. Using the notation:

b(t) =
(const.

ũ

)
1

αp

(87)

we solve the second equation
ũζ−αp−1nαp = const.

and get:

n = b ζ
αp+1

αp or ζ = (b−1 n)
αp

αp+1 . (88)

Remark 5.1 For a smooth function u, b is smooth and therefore, if n is not a vector with
components all equal, which is necessary for ensuring that t 7→ n(t) is continuous function, the
time dependant function ζ will present discontinuities at subinterval limits ti.

First equation. The first equation writes:

i=nadap
∑

i=1

(
∂f

∂ni

+

∫ ti

ti−1

∂g

∂n
)δnidt = 0 ∀ δni ∈ R,

⇔ (
∂f

∂ni

+

∫ ti

ti−1

∂g

∂n
)dt = 0 ∀i = 1, ..., nadap.

(89)

It comes:

− n
−

2p+3
3

i h̃inter +

∫ ti

ti−1

nαp−1
i ζ−αpũ dt = 0 ∀i = 1, ..., nadap = 0. (90)

We inject (88):

− n
−

2p+3
3

i h̃i
inter +

∫ ti

ti−1

nαp−1
i b+ α2p2

αp+1 n
−

α2p2

αp+1

i ũ dt = 0 ∀i = 1, ..., nadap = 0 (91)

then:

n
−

2p+3
3

i h̃i
inter = n

αp−1−
α2p2

αp+1

i

∫ ti

ti−1

ũb+ α2p2

αp+1 dt

RR n° 7003



18 Sauvage & Alauzet & others

n
−

2p+3
3 −αp+1+ α2p2

αp+1

i =
[

∫ ti

ti−1

ũb+ α2p2

αp+1 dt
][

∫ ti

ti−1

h̃ dt
]−1

or, using that:

(−2p − 3)(αp + 1) + (−αp + 1)(3αp + 3) + 3α2p2 =
−2αp2 − 2p − 3αp − 3 − 3α2p2 − 3αp + 3αp + 3 + 3α2p2 =
−2αp2 − 3αp − 2p = −(2αp2 + 3αp + 2p)

(92)

we get

ni =
[

∫ ti

ti−1

ũb
α2p2

αp+1 dt
]−

3αp+3

2αp2+3αp+2p
[

h̃i
inter

]

3αp+3

2αp2+3αp+2p
(93)

and getting rid of the notation “b”:

ni =
[

∫ ti

ti−1

(const.

ũ

)

αp

αp+1

ũ dt
]−

3αp+3

2αp2+3αp+2p
[

h̃i
inter

]

3αp+3

2αp2+3αp+2p
(94)

and extracting “const.” (not depending on time): 6

ni = Di const.−
3α

2αp+3α+2

with:

Di =
[

∫ ti

ti−1
ũ

1
αp+1 dt

]−
3αp+3

2αp2+3αp+2p
[

h̃i
inter

]

3αp+3

2αp2+3αp+2p
.

(95)

In the continuous metric theory, the instantaneous complexity n(t) (deduced from ni’s via
(68)) is not necessarily an integer: solely the discretization of the optimal metric system will
have integer complexities. In particular, the above values of n(t) can be directly injected in the
definition of the timestep τ = n/ζ using (88):

τ = n(b−1 n)−
αp

αp+1 = b+ αp

αp+1 n
1

αp+1 =
(const.

ũ(t)

)
1

αp+1

n
1

αp+1 . (96)

Complexity constraint. In order to complete this computation, it remains to identify the value
of const.. This is done by using the prescribed complexity C(M, τ, nstep) ((4)(32)):

∫ T

0

nτ−1 dt = N (97)

which turns to be:

N =

∫ T

0

n
(const.

ũ(t)

)− 1
αp+1

n− 1
αp+1 dt =

∫ T

0

(const.

ũ(t)

)− 1
αp+1

n
αp

αp+1 dt (98)

where we can introduce the ni’s:

N =

i=nadap
∑

i=1

∫ ti

ti−1

(const.

ũ(t)

)− 1
αp+1

n
αp

αp+1

i dt (99)

6After simplification:

−

(αp)(3αp+3)

(αp+1)(2αp2+3αp+2p)
= −

3α

2αp+3α+2
.
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replacing ni from (95): 7

N =

i=nadap
∑

i=1

∫ ti

ti−1

(const.

ũ(t)

)− 1
αp+1

D
αp

αp+1

i const.−
3α2p

(αp+1)(2αp+3α+2) dt (100)

thus: 8

N = E const.β

with:
β = − 3α+2

2αp+3α+2

E =

i=nadap
∑

i=1

∫ ti

ti−1

ũ(t)
1

αp+1 D
αp

αp+1

i dt

(101)

Then:
const. = E− 1

β N
1
β (102)

7With the simplification:

−

(αp)2(3αp+3)

(αp+1)2(2αp2+3αp+2p)
= −

3α
2

p

(αp+1)(2αp+3α+2)
.

8Using the simplification:

−β = 1
αp+1

+ 3α
2

p

(αp+1)(2αp+3α+2)
= 2αp+3α+2+3α

2
p

(αp+1)(2αp+3α+2)
= 3α+2

2αp+3α+2
.
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Lemma 5.2 (GTFP with time adaptation) Let us define the two real constants β, const.,
and E, the two time-dependant functions h̃, ũ and the vector Di:

β = −
1

αp + 1
−

(αp)2(3αp + 3)

(αp + 1)2(2α2p2 + 3αp + 2p)
(103)

h̃i
inter = 2 3p−1pKp

x

(

∫

Ω
det (|Hinter|)

p

2p+3

)

2p+3
3

ũ(t) = αpKp
t

∫

Ω
(|W ∗ · ∂αW

∂tα |)pdx
(104)

Di =
[

∫ ti

ti−1

ũ
1

αp+1 dt
]−

3αp+3

2αp2+3αp+2p
[

h̃i
inter

]

3αp+3

2αp2+3αp+2p
i = 1, nadap (105)

E =

i=nadap
∑

i=1

∫ ti

ti−1

ũ(t)
1

αp+1 D
αp

αp+1

i dt (106)

const. = E− 1
β N

1
β . (107)

Then the optimal adaptation is defined by:

- (i) the spatial complexity n 7→ nopt(t) and the timestep t 7→ τ(t)opt:

ni,opt = Di const.−
3α

2αp+3α+2

τopt(t) =
(

const.
ũ(t)

)
1

αp+1

(nopt(t))
1

αp+1 ,
(108)

- (ii) the spatial metric defined in each i-th time interval [ti−1, ti[:

Mi
opt(x) = (ni)

2
3 Mi

1(x)

with Mi
1(x) =

(

∫

Ω
(det Hi

inter(x̄))
p

2p+3 dx̄
)− 2

3

(det Hi
inter(x))− 1

2p+3 Hi
inter(x)

and Hi
inter(x) = (ti − ti−1) maxt∈[ti−1,ti] H(x, t).�

(109)

Corollary 5.1 The optimal error is given by:

E(Mopt, nopt, τopt) =

i=nadap
∑

i=1

E i(Mi
opt) + Etime(Mopt, nopt, τopt)

E i(Mi
opt) = 3p Kp

x (ni,opt)
−

2p

3

(

∫

Ω
(det Hi

inter(x))
p

2p+3 dx
)

2p+3
3

Etime(Mopt, nopt, τopt) =
∫ T

0
(Ktτ

α
opt)

p
∫

Ω

(

|W ∗ · ∂αW
∂tα |

)p

dxdt.�

(110)

Restricting to α = 2 the above lemma writes:

Lemma 5.3 (GTFP with time adaptation for α = 2) Let us define E, the two time-
dependant functions h̃, ũ and the vector Di:

h̃i = 2p 3p−1Kp
x

(
∫

Ω

det
(

|Hi
inter|

)

p

2p+3

)

2p+3
3

ũ(t) = 2pKp
t

∫

Ω

(
∣

∣

∣

∣

∂2u

∂t2

∣

∣

∣

∣

)p

dx

(111)
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Di = h̃
3(2p+1)
4p(p+2)

i

(

∫ ti

ti−1

ũ
1

2p+1

)−
3(2p+1)
4p(p+2)

, E =

nadapt
∑

i=1

h̃
3

2(p+2)

i

(

∫ ti

ti−1

ũ
1

2p+1

)

2p+1
2(p+2)

Then the optimal adaptation is defined by:

- (i) the spatial complexity n → nopt(t) and the timestep t → τ(t)opt:

ni,opt = Di E− 3
4 N

3
4

τopt(t) =
(

Di

ũ(t)

)
1

2p+1

E
1
4 N− 1

4 ,
(112)

- (ii) the spatial metric defined in each i-th time interval [ti−1, ti]:

Mi
opt(x) = (ni)

2
3 Mi

1(x)

with Mi
1(x) =

(
∫

Ω

(det Hi
inter(x̄))

p

2p+3 dx̄

)− 2
3

(det Hi
inter(x))− 1

2p+3 Hi
inter(x)

and Hi
inter(x) = (ti − ti−1) maxt∈[ti−1,ti] H(x, t).

(113)
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Figure 1: Time splitting of the Transient Fixed Point mesh adaptation algorithm. Sub-intervals
(in green) used for the transient process and timesteps (in red).

6 Algorithm

The Transient Fixed Point algorithm was proposed for specifying automatically a succession of
nadap meshes over a decomposition in sub-intervals used for the transient process (Figure 1).
The flowchart is presented Figure 2.
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Choose nadap, (ti)i=1,nadap
, prescribe Nst, initial H0

st

...

Compute CFD solution WCFD solver

Compute h̃(Hinter(W ))Space error analysis

Compute ũ(W )Time error analysis

Compute new optimal space-time metric Mk
st:

(a)- Compute time step τk

(b)- Compute spatial metrics Mk
i

Compute space-time unit mesh Hk
stMesh generator

k → k + 1?

End

Figure 2: Space-time transient fixed Point algorithm

RR n° 7003



24 Sauvage & Alauzet & others

Figure 3: Cylinder at Reynolds number 3900. Mesh.

Figure 4: Cylinder at Reynolds number 3900. Velocity norm.

7 Numerical experiments

7.1 First numerical experiment

We consider the 2D computation of a flow around a cylinder at Reynolds number 3900, Mach
number 0.1, with Spalart-Allmaras turbulence model.
Mesh adaptation options are :
- only one adapted spatial mesh, i.e. nadap = 1
- Space-Time complexity Nst is prescribed to 10M, 20M, 100M, 200M.
The evolution of meshes and errors is presented in Table 1

7.2 Second numerical experiment

We consider now the 2D computation of a flow around a cylinder at Reynolds number 1M, Mach
number 0.1, with Spalart-Allmaras turbulence model.
Mesh adaptation options are :
- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 10M, 20M, 100M, 200M.
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Nst k TFP Cspace(nodes) # timesteps Espace Etime

10M 1 27K(63K) 361 5.2 10−3 3.1 10−5

10M 5 60K(64K) 166 2.9 10−3 3.1 10−3

20M 1 44K 456 3.3 10−3 3.1 10−5

20M 5 84K(86K) 237 2. 10−3 8.2 10−4

100M 1 128K 780 1. 10−3 3.1 10−5

100M 5 173K(186K) 575 9.4 10−4 8.8 10−5

200M 1 203K 982 7.1 10−4 3.1 10−5

200M 5 225K 887 7.1 10−4 4. 10−5

Table 1: Space-time statistics for circular cylinder case at Reynolds number 3900.
The space-time convergence order is about 1.5.

Figure 5: .

Figure 6: .
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Figure 7: .

Figure 8: .

7.3 Third numerical experiment

It concerns the 2D computation of a flow around a NACA0021 at Reynolds number 270K, Mach
number 0.1, with Spalart-Allmaras turbulence model.
Mesh adaptation options are :
- only one adapted spatial mesh,
- Space-Time complexity is prescribed to 10M, 20M, 100M, 200M.
We observe in Figure 9 the tendance of the algorithm to equilibrate the time and space error.

Figure 10 shows the timestep size for the initial computation with a coarse mesh of 1766 vertices
and a CFL of 50. It corresponds to 1132 timesteps. The optimal timestep size computed by
the algorithm for a much finer mesh of 16K vertices is between three and four times larger (123
timesteps).
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Nst k TFP Cspace(nodes) # timesteps Espace Etime

2M 1 1766 1132 1.7 10−1 2.4 10−6

2M 10 16K 123 2.6 10−2 1.3 10−2

4M 1 2804 1426 1. 10−1 2.4 10−6

4M 10 23K 172 1.9 10−2 4.6 10−2

8M 1 4451 1797 6.8 10−2 2.4 10−6

8M 10 31K 261 1.4 10−2 6. 10−3

16M 1 7066 2264 4.3 10−2 2.4 10−6

16M 10 42K 384 1.1 10−2 2.3 10−3

32M 1 11K 2852 2.7 10−2 2.4 10−6

32M 20 57K 558 7.5 10−3 1.8 10−3

Table 2: Space-time statistics for NACA0021 at Reynolds number 270K.

Figure 9: Evolution of theorical space error Espace and time error Etime with TFP iterations.

Figure 10: Blue: Timestep lengths of initial flow at CFL=50, 1132 timesteps on 1766 vertices,
and orange: first timestep lengths proposed by the adaptation algorithm, 123 timesteps on 16K
vertices.
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8 Concluding remarks

We have presented a proposition for the space-time metric based mesh optimization for a CFD
model. This proposition extends both the methods of Goal-Oriented Transient Fixed Point [5]
and Feature-based Global TFP of [4]. In particular, both Feature-Based and Goal-Oriented
criteria are taken into account.

Several applications are demonstrated. Best time steps are obtained in a few TFP itera-
tions, with CPU improvement. When the number of spatial meshes is nadap = 1, we observe a
space-time convergence order of about 1.5. In order to get higher order one needs to increase
progressively nadap.

We emphasize that several mesh constraints still limit the accuracy order:
- the choice of a low number nadap for the different spatial meshes used in the time interval,
- the particular family of space-time meshes imposed by the time-advancing option.

The performance of the proposed algorithme enables to consider in a future work its extension
to Large Eddy Simulation.
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